JP2007511082A - 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel - Google Patents

側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel Download PDF

Info

Publication number
JP2007511082A
JP2007511082A JP2006538650A JP2006538650A JP2007511082A JP 2007511082 A JP2007511082 A JP 2007511082A JP 2006538650 A JP2006538650 A JP 2006538650A JP 2006538650 A JP2006538650 A JP 2006538650A JP 2007511082 A JP2007511082 A JP 2007511082A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
layer
light emitting
vertical light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006538650A
Other languages
English (en)
Other versions
JP4829119B2 (ja
Inventor
アルプレヒト トニー
ブリック ペーター
ルートゲン シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of JP2007511082A publication Critical patent/JP2007511082A/ja
Application granted granted Critical
Publication of JP4829119B2 publication Critical patent/JP4829119B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明は、光学的にポンピングされる面発光型垂直発光領域(2)と、該垂直発光領域(2)を光学的にポンピングするための、少なくとも1つのモノリシック集積ポンピングビーム源(5)とを有する半導体レーザ装置であって、前記垂直発光領域はアクティブにビームを形成する垂直発光層(3)を有し、前記ポンピングビーム源はアクティブなビーム形成ポンプ層(6)を有する形式の半導体レーザ装置に関する。本発明によれば、前記ポンプ層(6)は垂直発光層(3)に垂直方向で後置されており、導電層(13)が垂直発光層(3)とポンプ層(6)との間に設けられており、コンタクト(9)が半導体レーザ装置の一方の側に取り付けられており、当該一方の側は、導電層(13)よりもポンプ層(6)に接近しており、導電層(13)とコンタクト(9)との間では、ポンピングビーム(7)を形成するための電界を電荷担体注入によって励振可能である。

Description

本発明は、光学的にポンピングされる面発光型垂直発光領域と、該垂直発光領域を光学的にポンピングするための、少なくとも1つのモノリシック集積ポンピングビーム源とを有する半導体レーザ装置に関するものであり、前記垂直発光領域はアクティブにビームを形成する垂直発光層を有し、前記ポンピングビーム源はアクティブなビーム形成ポンプ層を有する。
このようなレーザ装置およびその製造方法は刊行物WO01/93386から公知であり、その内容は本明細書に取り入れたものとする。ここには、光学的にポンピングされる面発光型半導体レーザ装置が記載されており、このレーザ装置は垂直発光領域としての増幅領域と、ポンピングビーム源としての少なくとも1つのエッジ発光型半導体レーザを備える。垂直発光領域とポンピングビーム源は共通のサブストレート上でエピタクシャル成長される。このようにしてスペースを節約した、垂直発光領域とポンピングビーム源とのモノリシック集積構成が実現される。
高いポンピング効率、およびひいては垂直発光の高い出力は、ポンピングビーム源の波長が垂直発光から放射されるビームの波長より小さい場合に達成される。このことは例えばビ―ムを形成するポンプ発光層ないし垂直発光層の材料組成を異ならせることにより、またはこれらの層の寸法を異ならせることにより達成される。
このような半導体レーザ装置に対する典型的な製造方法は、サブストレート上にまず大面積の層を垂直発光領域に対してエピタクシャル成長させることである。続いて、ポンピングビーム源に対して設けられた側方領域で、この層を選択的に再びエッチング除去する。引き続き第2エピタクシャルステップで、この領域でポンピングビーム源の層をエピタクシャル成長させる。
このような2ステップエピタクシャルプロセスは複数の理由からポンピングビーム源と垂直発光領域との間の移行領域では、粒子限界と上昇した欠陥密度を回避するのが非常に困難であり、このことはこの層での光学的吸収損失につながる。
さらに垂直発光領域のエッジがポンピングビーム源の層の成長モードに移行領域で影響を及ぼすことがあり、このことはこの移行領域での層厚が不利に偏差することにつながり得る。さらに2ステップエピタクシャルプロセスは高い製造コストと結び付いている。
Gerhold et al.著、IEEE Journal of Quantum Electronics, Volume 34 Nr. 3 1998, ページ 506−511から、1ステップエピタクシーで作製される光学的ポンピング半導体レーザ装置が公知である。垂直発光領域とポンピングビーム源は、量子井戸構造の共通のアクティブ層を有する。ポンピングビーム源として使用される領域では量子井戸構造に異原子が混合されており、これによりこの領域では垂直発光領域溶離も短い波長のビームが形成される(IILD − Impurity Induced Layer Disordering)。異原子を混合する方法により、とりわけ波長の変動は小さく、ビーム形成の効率の低下、およびひいてはポンピング効率が低下する危険性が回避される。
1ステップエピタクシーで作製される光学的ポンピング半導体レーザ装置の一般的問題は、垂直発光領域およびポンピングビーム源がまず最初に同じ層構造であることである。理想的には動作時にポンピングビーム源の領域では側方に伝播するビームフィールドだけが形成され、垂直発光領域では垂直方向に伝播するビームフィールドだけが形成されるべきである。ポンピングビーム源の領域での垂直伝播モードは形成されるポンピングビーム出力を緩和する。
同様に垂直発光領域で形成される側方伝播ビームモードは反転分布とひいてはポンピング効率が低下させる。従って前記形式の半導体装置の効率的動作は、ポンプ層と垂直発光層とが同等に相殺されることを前提とする。
本発明の課題は、高いポンピング効率を有し、1ステップエピタクシー法で作製することのできる光学的ポンピング半導体レーザ装置を提供することである。
この課題は、請求項1記載の特徴を備えた半導体レーザ装置により解決される。本発明の有利な実施形態は従属請求の対象である。
本発明によればポンプ層が垂直発光層に垂直方向で後置され、導電層が垂直発光層とポンプ層との間に設けられている。さらに半導体レーザ装置の、導電層よりもポンプ層に接近した側にはコンタクトが取り付けられている。このコンタクトと導電層との間では、ポンピングビームを電荷担体注入によって形成するための電界を励起することができる。
垂直発光層とポンプ層は相互に別個に垂直に順次成長された層である。この構造は材料の選択、およびこの層に対する寸法の選択の点で大きな自由度を保証する。このことによりポンピングビーム並びに垂直発光ビームの波長をさらなる限界で調整することができ、これによって高いポンピング効率が達成される。半導体レーザ装置の片側における導電層とコンタクトの本発明による構成により、この導電層とコンタクトの間に印加される電界によって電荷担体が選択的にポンプ層へ注入され、垂直発光層へは注入されなくなる。これにより垂直発光層では、側方に伝播する寄生的なビームの励振が阻止される。
有利には半導体レーザ装置は部分的に切削され、これにより導電層は部分的に露出される。本発明の実施形態では、半導体レーザ装置は平行な溝の形態に切削される。とりわけ有利には、露出された導電層の領域にこの導電層を接触接続するための別のコンタクトを取り付ける。
本発明の別の構成では、導電層と別のコンタクトとの間に導電性の層が設けられており、この層はポンピングビーム層により形成されるのと同じ波長のビームに対して透過性である。
本発明の半導体レーザ装置を製作するためにただ1つのエピタクシャルプロセスで十分である。前に説明した実施例のように層が部分的に再び切削され、別の層またはコンタクトが取り付けられる場合であっても、このことを技術的コストの高い第2エピタクシャルそうなしで実行することができる。
別の実施形態では、半導体レーザ装置の切削をコントロールして終了することができるようにするため、導電層に隣接してエッチング阻止層が設けられている。このエッチング阻止層は、導電層を露出させるのに適するエッチングプロセスに対するレジストある。
導電層を、これが垂直発光体のレゾネータにある定在波フィールドのノードに存在するように垂直に配置すると有利である。これによって、導電層による垂直発光領域の光学的損失が最小となる。
本発明の有利な構成では、垂直発光層と導電層との間に垂直導波構造体が設けられている。垂直導波構造体が、側方から見てコンタクトと別のコンタクトの間にある領域においては、これがコンタクトと別のコンタクトとの間にない領域とは別の光学的特性を有すると有利である。
垂直発光層とポンプ層は垂直方向に積層されている。ポンピングビームの主ビーム方向は側方である。光学的ポンピングのためのポンピングビームが垂直発光層に完全に到達するようにするため、ポンピングビームが垂直方向にも伝播できる領域が存在しなければならない。この目的のために垂直導波構造体を用いる。ここでは、ポンピングビームの垂直伝播が垂直発光領域において良好であり、これに対してポンピングビーム源の領域ではできるだけ抑圧されるようにすることが所望される。このことは本発明によれば、ポンピングビーム源の領域で、すなわちコンタクトと別のコンタクトとの間で、垂直導波構造体が垂直発光領域とは別の、すなわちこれがコンタクトと別のコンタクトとの間にない領域とは別の光学的特性を有すると有利である。
本発明の有利な改善形態では、光学的特性の差が次のようにして達成される。すなわち、垂直導波構造体が、側方で見てコンタクトと別のコンタクトとの間にある領域で酸化されることにより達成される。
本発明の有利な実施形態では、ポンプ層と垂直発光層に垂直方向で内部共振器ミラー構造体が後置されており、この共振ミラー構造体は特に有利にはブラッグ反射器である。本発明の改善形態では、内部共振器ミラー構造体は垂直発光層とサブストレートとの間に配置されており、垂直発光層により形成されるビームは、サブストレートに対向する側で出力結合される。
本発明の別の構成では、垂直発光層に外部ミラーが配属されており、この外部ミラーは内部共振ミラー構造体と共に垂直発光領域に対する共振器を形成する。本発明の有利な構成では、共振器にビーム形成エレメントまたは周波数選択性エレメントまたは周波数変換エレメントが配置されている。
本発明の有利な改善形態では、垂直発光層および/またはポンプ層がそれぞれ1つまたは複数の量子井戸構造体を有し、ここで量子井戸構造体とは本願の枠内で、電荷担体を閉じ込める(コンファイメント)ことによりそのエネルギー状態を量子化される構造体を含む。殊に、量子井戸構造の概念には量子化の次元数に関する規定は含まない。したがって量子化には殊に量子箱、量子細線、量子点およびこれらの構造の各組み合わせを含む。
以下本発明の種々の実施例基づき、12の図面を参照して詳細に説明する。
図1は、本発明による半導体レーザ装置の第1の実施例の概略的な断面図を示す。
図2は、第1実施例の概略的断面を3次元で示す図である。
図3は、本発明による半導体レーザ装置の第2実施例の概略的な平面図を示す。
図4は、図3に示された切断線AAに沿った第2実施例の概略的断面図である。
図5は、図3に示された切断線BBに沿った第2実施例の概略的断面図である。
図6は、本発明による半導体レーザ装置の第3実施例の概略的な平面図である。
図7は、図6に示された切断線AAに沿った第3実施例の概略的断面図である。
図8は、図6に示された切断線BBに沿った第3実施例の概略的断面図である。
図9は、垂直発光領域でのポンピング発光モードと垂直発光モードとのオーバラップを示す線図である。
図10は、垂直発光領域での垂直方向のポンピングビームの伝播を示す線図である。
図11は、本発明の半導体レーザ装置の種々の実施例を、ポンピングビーム源と垂直発光領域の可能な構成を説明するために概略的に示す平面図である。
図12は、本発明の半導体レーザ装置の別の実施例を、ポンピングビーム源と垂直発光領域の別の可能な構成を説明するために概略的に示す平面図である。
同一、同種の素子また同様に作用する素子には図面において同一の参照番号が付されている。図面は概略的なものである。とりわけエレメントの大きさの関係は縮尺通りに表示されていない。
図1は、本発明の半導体レーザ装置の第1実施例を示す。半導体本体1の中央には垂直発光領域2が配置されている。
垂直発光領域2はアクティブエレメントとして、ビームフィールド4を形成するための垂直発光層3を有する。ビームフィールド4は半導体本体1内に連続波線として概略的に示されている。側方に隣接して垂直発光領域2にはポンピングビーム源5が配置されている。ポンピングビーム源は、垂直発光層3を光学的にポンピングするためのポンピングビーム7を形成するポンプ層6を有している。ポンピングビーム7は概略的にそのガウス状の強度プロフィールによって、ポンプ層6に対して垂直に示されている。
垂直発光領域2とポンピングビーム源5はサブストレート8の上で共通にエピタクシー成長される。このサブストレートの一方の側にはコンタクト9が設けられている。サブストレート8の、コンタクト9とは反対の側には、ブラッグ−ミラー構造体10が、それに続いて外套層11が取り付けられている。外套層11には、サブストレート8の反対側でポンピング導波層12が続いており、このポンピング導波層12は中央エレメントしてポンプ層6を含む。ポンピング導波体12は、導電層13のサブストレート8とは反対側に制限されており、この導電層13にahポンピングビーム源5の領域で導電性かつ透明な層14が取り付けられている。導電性かつ透明な層14には、サブストレート8とは反対側で別のコンタクト15が設けられている。
垂直発光領域2内に半導体レーザ装置は、導電層13に、サブストレート8の反対側で垂直に後置された垂直導波構造体16を有する。この垂直導波構造体16は垂直発光層3の他にエッチング阻止層17を含んでいる。とりわけ窓18が設けられており、この窓は垂直発光領域2をサブストレート8とは反対の側で制限し、この窓を通ってビームフィールド4は半導体本体1を去ることができる。
本発明を実現するために適切な材料システムはIII−IV化合物半導体の群にある。図示の実施例は例えば(AlIn1−x)yGa1−yAS1−z、ただし0≦x≦1,0≦y≦1,0≦z≦1に基づき実現することができる。他の可能な材料システムは、所望の波長に応じてGaNまたはInPに基づくものである。
もちろん本発明はこの材料システムに限定されるものではなく、所望の波長に応じて、またはそのほかの要求に応じて別の材料システムに基づき実現することができる。
ポンピングビーム源5は、電気的にポンピングされるエッジ発光性の半導体レーザとして構成されており、その主ビーム方向は垂直発光領域2に向いている。
垂直発光領域2とは反対側の、ポンピングビーム源5の相互に平行な端面は鏡面に構成されており、ポンピングビーム7に対する共振ミラーとして使用される。この端面は有利には分裂によって形成することができるが、エッチングによって形成することもでき、オプションとして高反射性にミラー化することができる。図示の実施例では、2つのポンピングビーム源5がただ1つのコヒーレントな発振レーザを形成する。
ポンプ層6は例えば個々の量子井戸(SQW,単一量子井戸)によって、または複数の量子井戸構造体の層シーケンスとして(MQW,多重量子井戸)として実現することができる。量子井戸は典型的にはバリヤー層に埋め込まれており、これによりポンピング導波体12が形成される。
半導体レーザ装置を駆動するために、コンタクト9と別のコンタクト15を介して電荷担体が半導体本体1に注入される。この電荷担体はポンプ層6で発光性に再結合し、これによりポンピングビーム7が形成される。十分な導電性を得るために、電流を導く半導体本体11のすべての層には高濃度でドーピングしなければならない。とりわけポンピング導波体12に直接接する導電層は有意に大きい光学的損失を、自由電荷担体でのビーム吸収によって引き起こす。
有利にはこの理由から、ポンピング導波体12に直接接する、ブラッグ−ミラー構造体10の層には比較的に低濃度でドーピングされる。択一的にドーピングされたブラッグ−ミラー構造体10に比較的に低濃度でドーピングされた外套層11を取り付けることもできる。これは図1の実施例に示されている。
ポンピング導波体12の対向する側では同じ理由から、別のコンタクト15がポンピング導波体12に直接は取り付けられていない。ここで付加的に挿入された導電性かつ透明な層14は理想的には電流に対して導電性であり、これによりこの層は良好な電流供給に対する要求を満たし、同時にポンピングビーム7に対して透明である。このことにより光学的損失は最小となる。このような層に対する可能な材料は例えばインジウム−酸化錫(ITO−Indium Tin Oxide)または酸化亜鉛含有化合物である。
ポンピング導波体12と導電性かつ透明な層14との間に配置された導電層13は側方の電流分散に用いられ、ポンピングビーム源5のポンピングされる領域を垂直発光領域2まで拡張する。導電層13での光学的損失を小さく維持するため、この導電層13は比較的薄く構成されている。
ポンピング導波体12ないし導電層13には垂直発光領域2およびポンピングビーム源5の領域で種々異なる層が隣接している(エッチング阻止層17および垂直導波構造体16が垂直発光領域2に隣接し、導電性かつ透明な層14がポンピングビーム源5に隣接している)。そこからこの種々異なる領域内で、ポンピング導波体12の屈折率に実際上の差が生じる。従ってポンピングビームはポンピングビーム源5から垂直発光領域2へ移行する際に回折を受ける。このことによりポンピングビーム7は垂直発光領域2内を垂直ポンピングモードで伝播し、この垂直ポンピングモードにより垂直発光領域2は光学的にポンピングされる。このメカニズムはさらに後で図9と10に関連して詳細に説明する。
ポンプ層6と同じように垂直発光層3も、個別の量子井戸構造体、または複数の量子井戸構造体からなる構成によって形成することができる。垂直発光層3または直接当接する層でのポンピングモードによって解放された電荷担体は垂直発光層3で発光性に再結合する。量子井戸構造体および直接当接しない層におけるポンピングモードの吸収は、良好なビーム品質を形成するために有利である。
ブラッグ−ミラー構造体10とここに図示しない外部ミラーによって構成される共振器はビームフィールド4を形成する。高いポンピング効率は、ポンピングビーム7の波長をビームフィールド4の波長よりも小さく選択することによって達成される。
導電層13によるビームフィールドの吸収損失を最小にするため、導電層13をノードに、すなわち垂直発光領域における共振器のビームフィールドの強度最小値の個所に配置すると有利である。
図示の実施例における半導体層全体はエピタクシャルプロセスによって作製することができる。引き続き、側方に選択的にポンピングビーム源5の領域が導電層13を除いて切削される。このことは有利にはエッチングプロセスで実行される。エッチングプロセスによって導電層13を所定のように露出するため、導電層に直接隣接してエッチング阻止層17が設けられている。このエッチング阻止層は使用されるエッチングプロセスに対して耐性がある。エッチングプロセス後にエッチング阻止層17は適切なプロセスによって除去される。このようにして露出された導電層13には後続の製造プロセスで導電性かつ透明な層14と別のコンタクト15が取り付けられる。この非結晶層は厳密にコントロールしてエピタクシャル成長させる必要がなく、簡単に蒸着することができる。
図2には上に説明した本発明の半導体レーザ装置の第1実施例の3次元断面図が示されている。
付加的に半導体本体1にはこの構成で、外部共振器ミラー19が示されている。外部共振器ミラー19は半透明ミラーとして構成されており、ビームフィールド4から垂直発光領域2のレーザビームを出力結合する。ミラーは共振器側では、共振器内部のビームモードを安定させるために湾曲して構成されている。
図2では斜視図によって、半導体本体1が垂直発光領域2を除いて導電層13まで切削されていることが明瞭に示されている。ポンピング効率を高くする点で、ポンピングビーム源5を垂直発光領域2の直径よりも広く構成することは有利ではないから、導電性かつ透明な層14と取り付けられたコンタクト15はウェブの形態で導電層13に取り付けられている。
図3、半導体レーザ装置の第2実施例を略示した平面図である。この例でも2つのポンピングビーム源5が中央の垂直発光領域2に隣接して配置されている。しかしコンタクト9はこの実施例ではサブストレート8の裏側に設けられておらず、半導体レーザ装置の、サブストレートとは反対側に設けられている。
図4にはこの実施例の概略的断面が、図3の切断線AAに沿って示されている。層の構成は第1実施例とは異なり、とりわけここでは垂直発光層3がポンプ層6よりもよりブラッグ−ミラー構造体10に接近している。
この実施例では、ポンプ層6と垂直発光層3を同等に引き上げるために2つの手段が使用される。
1つには第1実施例と同じように、電荷担体をポンプ層6にだけ注入し、垂直発光層3には注入しない。このことは、半導体レーザ装置をコンタクト9と、側方で導電層13と接続された別のコンタクト15を介して接触接続することにより達成される。従ってコンタクト9と導電層13はポンプ層6を包囲し、これに対して垂直発光層3には静的電界は存在しない。
第2の手段では、垂直発光領域2にポンピングビームに対して、ポンピングビーム源5の領域におけるよりも比較的に良好な垂直導波特性を形成する。
この目的のために、垂直導波構造体16の一部は規則的な導波層構造体20(RPG−Resonant Periodic Gain)として構成される。AlInGaAsP材料システムに基づき半導体レーザ装置では、規則的な導波層構造体20は例えばアルミニウム含有の大きいAlGaAs層を有することができる。このようなアルミニウム高含有層は、湿式化学的酸化方法によって半導体本体1の側方から所定のように移行領域まで、ポンピングレーザ構造体5と垂直発光領域2との間で貫通酸化することができる。このことにより酸化領域の屈折率は約50%まで変化することができる。
規則的導波層構造体20の酸化部分はポンピングビーム7に対して共振条件をもはや満たさない。そのため導波層構造体はこの領域においては垂直方向に良好な導波特性を示さない。ポンピングビーム源の領域における垂直導波特性を後から、例えば酸化により変化する手段は、もちろん規則的導波層構造体20に制限されるものではなく、本発明の枠内で同様に垂直導波構造全体またはそのうちの任意の部分に拡張することができる。
図5には第2の実施例の概略的な断面図が切断線BBに沿って示されている。
ここには、半導体レーザ装置がポンピング領域の両側で導電層13まで切削されていることが示されている。ここでも導電層13に直接隣接してエッチング阻止層17が設けられており、これにより所定のように阻止可能なエッチングプロセスによって切削を実現することができる。露出された導電層13には両側で別のコンタクト15がコンタクトストライプの形態で取り付けられている。図示の電流経路21はポンピングビーム源5内の電流を明瞭にするものである。
第2エッチングプロセスで半導体レーザ装置の外側領域は、規則的導波層構造体20のエッジに湿式化学酸化のウェハ化合物内でも接近できるまで切削される。
図3,4,5と同じように図6,7,8にも、本発明の半導体レーザ装置の第3実施例の概略的平面図、並びに概略的断面図が示されている
さらに垂直発光層3とポンプ層6を同等に引き上げるために2つの手段が使用される。この実施例では2つのコンタクト9と15の間で半導体レーザ装置の層シーケンス全体が配置されている。層の構成は実質的に第1実施例に相応する(ポンプ層6がブラッグ−ミラー構造体10に垂直発光層3よりも接近している)。ここでもポンプ層6と垂直発光層3との間には規則的導波層構造体20が配置されている。
第1実施例とは異なりこの場合、半導体レーザ装置はポンピングビーム源5の領域で平坦に切削されておらず、細い平行な溝22の形態で切削されている。これは図8に示されている。この溝22は、導電層13に直接隣接するエッチング阻止層17の深さまで半導体本体1内へエッチングされている。
従って、ポンピングビーム源5の領域ではこの溝が規則的導波層構造体20も切断している。従ってこの溝は有利には規則的導波層構造体20の湿式化学酸化に用いることができる。択一的にまたは付加的に別の溝を半導体レーザ装置の外側領域に酸化のために設けることができる。これはすでに第2実施例で説明したのと同じである。規則的導波層構造体20の酸化を行った後、溝22には導電材料が充填され、それからコンタクト15が取り付けられる。有利な実施形態では導電材料として、溝22の全深さにわたって、または導電層13に隣接する下方領域にだけ導電性かつ透明な材料が使用される。ここでもITOまたは酸化亜鉛含有化合物が材料として考えられる。
図9はポンピングビーム7と垂直発光領域2の種々異なるビームモードとのオーバラップを示す線図である。オーバラップは次元のない制限係数として、垂直発光領域2の最初の5つのTEモードとTMモードに対してプロットされている。図示のデータは、図1に示した実施例についての検査結果である。
第1のTE/TM基本モードに対しては良好なオーバラップが存在し、したがってこの基本モードが有利には共振器で増幅され、半導体レーザ装置から放射される。この結果は、本発明によるほぼ完全なTEM00ビーム品質を有する半導体レーザ装置が実現されることを示している。
図10には、ポンピングビーム7がポンピングビーム源5から垂直発光領域2への移行時にどのように垂直方向に伝播するかが概略的に示されている。位置ラインには、ポンピングビームフィールドが元の値の係数1/eで低下していることがプロットされている。縦軸にはサブストレートへの垂直間隔がμmでプロットされており、横軸にはビ―ムが側方に垂直発光領域2を進んだ区間がプロットされている。方向を分りやすくするために、半導体レーザ装置の種々の層が水平ラインとして線図にプロットされており、参照符号が付してある。ポンピングビーム源からすでに40μm出射した後、ポンプモードの強度はその最大強度の1/e(37%)であることが示されている。従い垂直発光層3においてポンピングビーム強度は垂直発光領域2の中心方向へ上昇する。このことはポンプモードと垂直発光領域2のTEM00基本モードとの大きなオーバラップとなる。
図11は本発明の半導体レーザ装置の種々の実施形態の平面図である。
本発明の半導体レーザ装置を1ステップエピタキシャル法によって製作可能であることによって、垂直発光領域2とポンピングビーム源5の種々の複雑な構成を比較的簡単に実現することができる。いくつかの考えられる手段が図11に示されている。
図の上方には、これまでに説明した実施形態に類似する構成が示されており、この構成は相互に対向する2つのポンピングビーム源5を有する。この2つのポンピングビーム源5は側方で、ここでは垂直に構成された中央の垂直発光領域2に隣接している。図11の中央左には類似の構成が示されており、ここでは6つのポンピングビーム源5がそれぞれペアで対向している。図11の中央に示された構成では、垂直発光領域2が矩形に構成されており、リングレーザとして構成された2つのポンピングビーム源が設けられており、この2つのポンピングビーム源は垂直発光領域2で交差するようにオーバラップしている。これに類似して右に示した構成では、8の字型に巻回されたリングレーザ5が設けられており、その交点にはここでも垂直発光領域2が配置されている。図示の、導波体に基づくリングレーザ構造体の利点は、共振器ミラーを省略できることであり、この共振器ミラーでの損失もなくなる。図11の下方に示された構成では、六角形垂直発光領域2が一列に複数設けられており、それらは種々異なる線形のまたは湾曲したポンピングビーム源5によってポンピングされる。
図12には本発明の半導体レーザ装置の別の実施例の平面図が概略的に示されている。この半導体レーザ装置では4つのポンピングビーム源5が1つの矩形の垂直発光領域2をポンピングする。
図12は、円形ではない、ここでは矩形の垂直発光領域2でも、可及的に半径方向に対称のビームプロフィールを達成する手段を示す。例えば図11に示した実施例では垂直発光領域2が円形でなくなることはほとんど不可避である。この実施例では、リングレーザとして構成されたポンピングビーム源5が垂直発光領域2で交差している。この手段では垂直発光領域2の外側領域23で垂直発光層3が例えばイオンビーム打ち込みによって変化され、垂直発光層がこの領域においては、内側にある円形の非変化領域よりもポンピングビーム源5のポンプ光を比較的小さな効率で吸収するようにされる。
実施例に基づいた本発明の説明は、本発明をこれに制限するものであるとはみなすべきでない。
図1は、本発明による半導体レーザ装置の第1の実施例の概略的な断面図を示す。 図2は、第1実施例の概略的断面を3次元で示す図である。 図3は、本発明による半導体レーザ装置の第2実施例の概略的な平面図を示す。 図4は、図3に示された切断線AAに沿った第2実施例の概略的断面図である。 図5は、図3に示された切断線BBに沿った第2実施例の概略的断面図である。 図6は、本発明による半導体レーザ装置の第3実施例の概略的な平面図である。 図7は、図6に示された切断線AAに沿った第3実施例の概略的断面図である。 図8は、図6に示された切断線BBに沿った第3実施例の概略的断面図である。 図9は、垂直発光領域でのポンピング発光モードと垂直発光モードとのオーバラップを示す線図である。 図10は、垂直発光領域での垂直方向のポンピングビームの伝播を示す線図である。 図11は、本発明の半導体レーザ装置の種々の実施例を、ポンピングビーム源と垂直発光領域の可能な構成を説明するために概略的に示す平面図である。 図12は、本発明の半導体レーザ装置の別の実施例を、ポンピングビーム源と垂直発光領域の別の可能な構成を説明するために概略的に示す平面図である。

Claims (19)

  1. 光学的にポンピングされる面発光型垂直発光領域(2)と、該垂直発光領域(2)を光学的にポンピングするための、少なくとも1つのモノリシック集積ポンピングビーム源(5)とを有する半導体レーザ装置であって、前記垂直発光領域はアクティブにビームを形成する垂直発光層(3)を有し、前記ポンピングビーム源はアクティブなビーム形成ポンプ層(6)を有する形式の半導体レーザ装置において、
    前記ポンプ層(6)は垂直発光層(3)に垂直方向で後置されており、
    導電層(13)が垂直発光層(3)とポンプ層(6)との間に設けられており、
    コンタクト(9)が半導体レーザ装置の一方の側に取り付けられており、
    当該一方の側は、導電層(13)よりもポンプ層(6)に接近しており、
    導電層(13)とコンタクト(9)との間では、ポンピングビーム(7)を形成するための電界を電荷担体注入によって励振可能である、ことを特徴とする半導体レーザ装置。
  2. 請求項1記載の半導体レーザ装置において、
    半導体レーザ装置は部分的に切削されており、これにより導電層(13)は部分的に露出されている半導体レーザ装置。
  3. 請求項2記載の半導体レーザ装置において、
    半導体レーザ装置は平行な溝(22)の形態で切削されている半導体レーザ装置。
  4. 請求項2または3記載の半導体レーザ装置において、
    導電層(13)の露出された領域には別のコンタクト(15)が取り付けられている半導体レーザ装置。
  5. 請求項4記載の半導体レーザ装置において、
    導電層(13)と別のコンタクト(15)との間に層(14)が設けられており、該層は導電性であり、かつポンピングビーム層により形成されるのと同じ波長のビームに対して透明である半導体レーザ装置。
  6. 請求項2から5までのいずれか一項記載の半導体レーザ装置において、
    導電層(13)に隣接してエッチング阻止層(17)が設けられており、該エッチング阻止層はエッチングプロセスに対して耐性があり、当該エッチングプロセスは導電層(13)を露出するのに適する半導体レーザ装置。
  7. 請求項1から6までのいずれか一項記載の半導体レーザ装置において、
    導電層(13)は、垂直発光領域(2)のレゾネータにあるビームフィールドのノードに存在するように垂直に配置されている半導体レーザ装置。
  8. 請求項1から7までのいずれか一項記載の半導体レーザ装置において、
    垂直発光層(3)と導電層(13)との間には垂直導波構造体(16)が設けられている半導体レーザ装置。
  9. 請求項8記載の半導体レーザ装置において、
    垂直導波構造体(16)は、側方から見てコンタクト(9)と別のコンタクト(15)の間にある領域においては、これがコンタク(9)トと別のコンタクト(15)との間にない領域とは別の光学的特性を有する半導体レーザ装置。
  10. 請求項9記載の半導体レーザ装置において、
    垂直導波構造体(16)は、側方で見てこれがコンタクト(15)と別のコンタクト(15)との間にある領域において酸化されている半導体レーザ装置。
  11. 請求項1から10までのいずれか一項記載の半導体レーザ装置において、
    ポンプ層(6)と垂直発光層(3)には垂直方向で内部共振器ミラー構造体が後置されている半導体レーザ装置。
  12. 請求項11記載の半導体レーザ装置において、
    内部共振器ミラー構造体はブラッグ−ミラー構造体(10)である半導体レーザ装置。
  13. 請求項11または12記載の半導体レーザ装置において、
    内部共振器ミラー構造体は垂直発光層(3)とサブストレート(8)との間に配置されており、垂直発光層(3)により形成されるビームは、サブストレートに対向する側で出力結合される半導体レーザ装置。
  14. 請求項1から13までのいずれか一項記載の半導体レーザ装置において、
    垂直発光層(3)には外部共振器ミラー(19)が配属されており、該外部共振器ミラーは内部共振器ミラー構造体と共に垂直発光領域(2)に対する共振器を形成する半導体レーザ装置。
  15. 請求項14記載の半導体レーザ装置において、
    共振器にはビーム形成エレメントが配置されている半導体レーザ装置。
  16. 請求項14または15記載の半導体レーザ装置において、
    共振器には周波数選択性エレメントが配置されている半導体レーザ装置。
  17. 請求項14から16までのいずれか一項記載の半導体レーザ装置において、
    共振器には周波数変換エレメントが配置されている半導体レーザ装置。
  18. 請求項1から17までのいずれか一項記載の半導体レーザ装置において、
    垂直発光領域(3)および/またはポンプ層(6)はそれぞれ1つまたは複数の量子井戸構造体を有する半導体レーザ装置。
  19. 請求項14記載の半導体レーザ装置において、
    量子井戸構造体は、量子箱、量子細線、量子点およびこれらの構造体の各組み合わせを含む半導体レーザ装置。
JP2006538650A 2003-11-13 2004-11-09 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel Expired - Fee Related JP4829119B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10353216.1 2003-11-13
DE10353216 2003-11-13
PCT/DE2004/002477 WO2005048424A1 (de) 2003-11-13 2004-11-09 Monolithischer optisch gepumpter vcsel mit seitlich angebrachtem kantenemitter

Publications (2)

Publication Number Publication Date
JP2007511082A true JP2007511082A (ja) 2007-04-26
JP4829119B2 JP4829119B2 (ja) 2011-12-07

Family

ID=34585101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006538650A Expired - Fee Related JP4829119B2 (ja) 2003-11-13 2004-11-09 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel

Country Status (8)

Country Link
US (1) US7570682B2 (ja)
EP (1) EP1683245B1 (ja)
JP (1) JP4829119B2 (ja)
KR (1) KR101180166B1 (ja)
CN (1) CN1879270B (ja)
DE (1) DE112004002025D2 (ja)
TW (1) TWI276274B (ja)
WO (1) WO2005048424A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245178A (ja) * 2009-04-02 2010-10-28 Canon Inc 面発光レーザ
JP2011511444A (ja) * 2008-01-31 2011-04-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 面発光型半導体レーザー
US8526480B2 (en) 2006-02-28 2013-09-03 Osram Opto Semiconductors Gmbh Semiconductor laser device
JP2015500486A (ja) * 2011-12-07 2015-01-05 日本テキサス・インスツルメンツ株式会社 微細加工された原子マグネトメータ及び形成方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036963A1 (de) 2004-05-28 2005-12-22 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaser-Vorrichtung
DE102006010727B4 (de) * 2005-12-05 2019-10-24 Osram Opto Semiconductors Gmbh Oberflächenemittierendes Halbleiterbauelement mit einem Tunnelübergang
DE102006010728A1 (de) * 2005-12-05 2007-06-06 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Laservorrichtung
DE102005058900A1 (de) * 2005-12-09 2007-06-14 Osram Opto Semiconductors Gmbh Vertikal emittierender, optisch gepumpter Halbleiterlaser mit externem Resonator
KR100754698B1 (ko) 2006-01-02 2007-09-03 삼성전자주식회사 2차 고조파 광을 생성하기 위한 레이저 장치
DE102006024220A1 (de) * 2006-04-13 2007-10-18 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
DE102007002303A1 (de) * 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
EP1906497B1 (de) 2006-09-27 2011-01-05 OSRAM Opto Semiconductors GmbH Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
DE102007061481A1 (de) * 2007-09-21 2009-04-02 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement mit vertikaler Emissionsrichtung und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements
DE102008008595A1 (de) * 2007-12-21 2009-06-25 Osram Opto Semiconductors Gmbh Oberflächenemittierender Halbleiterlaser und Verfahren zu dessen Herstellung
DE102008017268A1 (de) * 2008-03-03 2009-09-10 Osram Opto Semiconductors Gmbh Oberflächenemittierender Halbleiterlaser mit monolithisch integriertem Pumplaser
EP2335331A1 (en) * 2008-09-04 2011-06-22 3M Innovative Properties Company Monochromatic light source
NL1038419C2 (en) * 2010-12-02 2012-06-05 Rotterdam Res B V Wavelength tunable laser diode comprising a surface acoustic wave generator.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107389A (ja) * 1996-09-13 1998-04-24 Alcatel Alsthom Co General Electricite 半導体光電子素子の製造方法およびこの方法によって製造される素子および素子マトリックス
JP2003304033A (ja) * 2002-03-28 2003-10-24 Osram Opto Semiconductors Gmbh 光ポンピング可能な垂直エミッタを有する面発光半導体レーザ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719891A (en) * 1995-12-18 1998-02-17 Picolight Incorporated Conductive element with lateral oxidation barrier
US6252896B1 (en) * 1999-03-05 2001-06-26 Agilent Technologies, Inc. Long-Wavelength VCSEL using buried bragg reflectors
US6370168B1 (en) * 1999-10-20 2002-04-09 Coherent, Inc. Intracavity frequency-converted optically-pumped semiconductor laser
WO2001031756A1 (en) * 1999-10-29 2001-05-03 E20 Communications, Inc. Modulated integrated optically pumped vertical cavity surface emitting lasers
US6424669B1 (en) * 1999-10-29 2002-07-23 E20 Communications, Inc. Integrated optically pumped vertical cavity surface emitting laser
US6545335B1 (en) * 1999-12-27 2003-04-08 Xerox Corporation Structure and method for electrical isolation of optoelectronic integrated circuits
DE10108079A1 (de) * 2000-05-30 2002-09-12 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
DE10026734A1 (de) * 2000-05-30 2001-12-13 Osram Opto Semiconductors Gmbh Optisch gepumpte oberflächenemittierende Halbleiterlaservorrichtung und Verfahren zu deren Herstellung
US6434180B1 (en) * 2000-12-19 2002-08-13 Lucent Technologies Inc. Vertical cavity surface emitting laser (VCSEL)
JP2002305354A (ja) * 2001-04-05 2002-10-18 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
DE10129616A1 (de) 2001-06-20 2003-01-09 Infineon Technologies Ag Halbleiterlaser, Verfahren zum Herstellen eines Halbleiterlasers und Verfahren zum Betreiben eines Halbleiterlasers
JP3712686B2 (ja) 2002-03-20 2005-11-02 株式会社東芝 面型光半導体装置
TW595059B (en) 2002-05-03 2004-06-21 Osram Opto Semiconductors Gmbh Optically pumped semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107389A (ja) * 1996-09-13 1998-04-24 Alcatel Alsthom Co General Electricite 半導体光電子素子の製造方法およびこの方法によって製造される素子および素子マトリックス
JP2003304033A (ja) * 2002-03-28 2003-10-24 Osram Opto Semiconductors Gmbh 光ポンピング可能な垂直エミッタを有する面発光半導体レーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526480B2 (en) 2006-02-28 2013-09-03 Osram Opto Semiconductors Gmbh Semiconductor laser device
JP2011511444A (ja) * 2008-01-31 2011-04-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 面発光型半導体レーザー
JP2010245178A (ja) * 2009-04-02 2010-10-28 Canon Inc 面発光レーザ
JP2015500486A (ja) * 2011-12-07 2015-01-05 日本テキサス・インスツルメンツ株式会社 微細加工された原子マグネトメータ及び形成方法

Also Published As

Publication number Publication date
US20070217463A1 (en) 2007-09-20
TWI276274B (en) 2007-03-11
WO2005048424A1 (de) 2005-05-26
EP1683245B1 (de) 2011-06-15
DE112004002025D2 (de) 2006-06-29
KR20060123318A (ko) 2006-12-01
KR101180166B1 (ko) 2012-09-05
TW200520337A (en) 2005-06-16
JP4829119B2 (ja) 2011-12-07
CN1879270A (zh) 2006-12-13
EP1683245A1 (de) 2006-07-26
CN1879270B (zh) 2010-11-24
US7570682B2 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
JP4829119B2 (ja) 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel
KR100991064B1 (ko) 수직공진기형 면발광레이저
US6792026B2 (en) Folded cavity solid-state laser
US6683898B2 (en) Mode control using transversal bandgap structure in VCSELs
US5052016A (en) Resonant-periodic-gain distributed-feedback surface-emitting semiconductor laser
US6704343B2 (en) High power single mode vertical cavity surface emitting laser
JP5118544B2 (ja) 面発光レーザ素子
JP4602701B2 (ja) 面発光レーザ及び光伝送システム
AU4992999A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
US6714574B2 (en) Monolithically integrated optically-pumped edge-emitting semiconductor laser
JP2009182145A (ja) 半導体光素子
JP5254045B2 (ja) 半導体レーザ装置
US8798109B2 (en) High-efficiency diode laser
JP4360806B2 (ja) 光学的にポンピングされる面発光型半導体レーザ装置および該装置の製造方法
JP2010109223A (ja) 面発光レーザ
JP4602692B2 (ja) 面発光レーザ及び光伝送システム
US6704336B1 (en) Folded cavity surface emitting laser
JP4748646B2 (ja) フォトニック結晶レーザおよび光伝送システム
JP2007103544A (ja) 面発光レーザ及び面発光レーザアレイ及び光伝送システム及びレーザプリンタ書き込みシステム
KR100404043B1 (ko) 수직으로 집적화된 고출력 면발광 반도체 레이저 장치 및그 제조 방법
US6560265B2 (en) Method and apparatus for polarizing light in a VCSEL
US10243330B2 (en) Optoelectronic device with resonant suppression of high order optical modes and method of making same
KR100394095B1 (ko) 수직 공진기 면발광 레이저 다이오드 및 그 제조방법
US20030123509A1 (en) Semiconductor laser based on matrix, array or single triangle optical cavity with spatially distributed current injection
KR100394096B1 (ko) 수직 공진기 면발광 레이저 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees