JP2010109223A - 面発光レーザ - Google Patents

面発光レーザ Download PDF

Info

Publication number
JP2010109223A
JP2010109223A JP2008280987A JP2008280987A JP2010109223A JP 2010109223 A JP2010109223 A JP 2010109223A JP 2008280987 A JP2008280987 A JP 2008280987A JP 2008280987 A JP2008280987 A JP 2008280987A JP 2010109223 A JP2010109223 A JP 2010109223A
Authority
JP
Japan
Prior art keywords
layer
emitting laser
photonic crystal
dimensional photonic
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280987A
Other languages
English (en)
Inventor
Shoichi Kawashima
祥一 川島
Yasuhiro Nagatomo
靖浩 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008280987A priority Critical patent/JP2010109223A/ja
Publication of JP2010109223A publication Critical patent/JP2010109223A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】2次元フォトニック結晶による帰還効果を向上させ、その結晶層に分布する光の割合を増加させ、素子を形成する半導体が良好な結晶性を維持し、素子面積を小さくできるDFB型の面発光レーザを提供する。
【解決手段】バリア層と井戸層とで形成される活性層を含む複数の半導体層からなる積層中に、屈折率の異なる媒質が面内方向に周期的に配列された2次元フォトニック結晶層を備え、該結晶層の面内方向に共振モードを有する面発光レーザであって、
第1クラッド層と、2次元フォトニック結晶層と、活性層と、第2クラッド層とが順次積層されており、
バリア層、第1クラッド層、第2クラッド層のいずれの屈折率よりも高い屈折率を有し、
かつ、井戸層のバンドギャップよりも広いバンドギャップを有する光誘引層が、2次元フォトニック結晶層と活性層との間、または、2次元フォトニック結晶層と第1クラッド層との間に設けられる構成とする。
【選択図】 図1

Description

本発明は、面発光レーザに関し、特に素子面積を小さくすることが可能な2次元フォトニック結晶を利用した分布帰還型の面発光レーザに関するものである。
面発光レーザは、基板に対して垂直方向に光を出射することを特長とするレーザである。
中でも、活性層の上下を、分布ブラッグ反射ミラーで挟んだ、垂直共振器型の面発光レーザ(Vertical Cavity Serface Emitting Laser;VCSEL)は、すでに赤外域の波長で実現されている。
以下、この活性層の上下を、分布ブラッグ反射ミラーで挟んだ、垂直共振器型の面発光レーザを、VCSELと略記する。
これらのVCSELは、共振器が活性層に対して垂直方向に形成されているため、単素子面積を小さくできるという特長を備えている。
この特長を積極的に利用すると、複数のVCSELを集積させた面発光レーザアレイが実現可能であり、既に赤外域の波長においては、VCSELアレイが実用化されている。
一方で、紫外から緑色帯域に発振波長をもつVCSELは、材料となる窒化物半導体の結晶成長の観点から、分布ブラッグ反射ミラーを作製することが難しく、特に、その帯域において電流注入が可能なVCSELを実現することは困難である。
そこで、最近では、2次元フォトニック結晶を利用した分布帰還(Distributed Feedback;DFB)型の面発光レーザが研究されている。以下、この2次元フォトニック結晶を利用した分布帰還型の面発光レーザを、DFB型の面発光レーザと略記する。
これらのDFB型の面発光レーザは、基板面内に形成された2次元フォトニック結晶による帰還効果を得ると同時に、1次回折を利用することで、単一モードのレーザ光が、基板に対して垂直方向に出射されるという特長を備えている。
非特許文献1においては、発振波長が406.5nmである青紫色のDFB型の面発光レーザが実証されている。
このDFB型の面発光レーザを高密度に集積し、VCSELアレイと同様なレーザアレイを実現するには、単素子あたりの面積は小さいことが望ましい。
しかし、DFB型の面発光レーザの場合、単素子面積を小さくすると、基板面内方向の光閉じ込め効果が弱まるため、素子特性が悪化する。
一方、非特許文献2には、そのDFB型面発光レーザにおける基板面内方向の光閉じ込め効果、つまり帰還効果について、結合波理論を適用した定量的解析手法が開示されている。
ここでは、帰還効果の大きさを表す3次の光結合係数κ3は、つぎの(式1)により表されている。

κ3∝ΓPhC×(εB−εA) (式1)

ここで、ΓPhCは素子断面方向の光分布のうち、2次元フォトニック結晶層に分布する光の割合である。
また、εBは2次元フォトニック結晶を形成する高屈折率媒質の屈折率、εAはその低屈折率媒質の屈折率である。
光結合波理論を用いた解析によれば、2次元フォトニック結晶が形成され、かつ、利得が得られる長さをLとしたとき、ほぼκ3L=1〜4を満たす程度に、Lを設計すると、安定したレーザ発振が得られる。このとき、素子面積はL2で表される。
これらが示すのは、2次元フォトニック結晶を形成する2種類の媒質の屈折率差(εB−εA)が小さいと、κ3が小さくなるため、安定したレーザ発振を得るには、比較的大きな素子面積L2が必要となるということである。
そのため、窒化物半導体のように、GaAsやInPなどと比較して屈折率が小さいIII−V族半導体で、DFB型の面発光レーザを実現する場合、自ずとその単素子面積は大きくなる。
逆に、アレイ化に対応できるような単素子面積が数十μm角程度のレーザでは、発振そのものが困難となる。
これを言い換えると、上記の光結合係数κ3を大きくした場合には、素子面積の小さなDFB型の面発光レーザの実現が図れると言うこととなる。
上記非特許文献2における光結合係数κ3を表す上記(式1)によれば、(εB−εA)あるいはΓPhCを大きくすることで、光結合係数κ3を大きくすることができる。
すなわち、2次元フォトニック結晶を形成する高屈折率媒質と低屈折率媒質との屈折率差(εB−εA)を大きくすることで、帰還効果を増大させ、基板面内方向の光閉じ込めを強くして、光結合係数κ3を大きくすることができる。
あるいは、クラッド層および光閉じ込め層の屈折率差を適切に設定し、活性層から2次元フォトニック結晶層へ染み出すエバネッセント光の割合を増加させる。つまり、2次元フォトニック結晶層に分布する光の割合(ΓPhC)を増加させることで、光結合係数κ3を大きくすることができる。
上記した非特許文献1、あるいは特許文献1では、上記したように素子面積を小さくすることには言及されていない。
しかし、2次元フォトニック結晶による帰還効果を効果的に得るようにするために、屈折率差(εB−εA)とΓPhCが大きくなるように工夫がされている。
ここでは、低屈折率媒質を空気で形成することで、屈折率差(εB−εA)を大きくする。
それと同時に、活性層を中心にして、2次元フォトニック結晶層とは反対側のクラッド層の屈折率を小さくし、活性層から2次元フォトニック結晶層への光染み出し割合を増加させることで、ΓPhCを大きくするようにされている。
Science,vol.319,no.5862,pp.445−447,(2008) Applied Physics Letters,vol.89,021101,(2006) 特開2006−165309号公報
上記したように非特許文献1、あるいは特許文献1では、2次元フォトニック結晶による帰還効果を効果的に得るようにするために、屈折率差(εB−εA)とΓPhCが大きくなるようにする工夫がされているが、これらはつぎのような課題を有している。
すなわち、非特許文献1、あるいは特許文献1において、クラッド層と光閉じ込め層の屈折率の調整は、それらを形成する半導体の材料組成比を変化させることにより行われる。
しかし、その半導体の材料組成比によっては、良好な結晶性を得ることが困難な場合があり、素子の通電性を悪化させる。その結果、レーザ発振の閾値が上昇し、さらには、レーザ発振そのものが難しくなる場合がある。
例えば、特許文献1の構成では、活性層からみて、2次元フォトニック結晶側と反対側の屈折率を小さくする際、クラッド層のAl組成等をつぎのように構成することが記載されている。
すなわち、AlGaNで形成されるクラッド層のAl含有率を13%以上、かつ、厚さを100nm以上とすることで、2次元フォトニック結晶層への光分布割合(ΓPhC)を増加させることが記載されている。
しかし、AlGaN層は、Alの含有率が高いほど、GaN基板との格子不整合が生じ、また、厚さが厚いほど、格子定数差起因のひずみが大きくなるため、その結晶性は悪化する。
つまり、特許文献1の構成で、例えば、単素子面積30μm角の面発光レーザを実現するのに必要な、ΓPhCを得ようとすると、素子の電気特性は悪化し、レーザ発振は難しい。
このように、クラッド層と光閉じ込め層の屈折率を調整するにも、結晶性の観点から、半導体の材料組成比を大きく変化させないことが望ましい。
本発明は、上記課題を解決するため、2次元フォトニック結晶による帰還効果を向上させると共に、2次元フォトニック結晶層に分布する光の割合を増加させることができ、
素子を形成する半導体が良好な結晶性を維持し、素子面積を小さくすることが可能となるDFB型の面発光レーザの提供を目的とする。
本発明は、以下のように構成した面発光レーザを提供する。
本発明の面発光レーザは、バリア層と井戸層とで形成される活性層を含む複数の半導体層からなる積層中に、屈折率の異なる媒質が面内方向に周期的に配列された2次元フォトニック結晶層を備え、該2次元フォトニック結晶層の面内方向に共振モードを有する面発光レーザであって、
第1クラッド層と、前記2次元フォトニック結晶層と、前記活性層と、第2クラッド層とが順次積層されており、
前記バリア層、前記第1クラッド層、前記第2クラッド層のいずれの屈折率よりも高い屈折率を有し、
かつ、前記井戸層のバンドギャップよりも広いバンドギャップを有する光誘引層が、前記2次元フォトニック結晶層と前記活性層との間、または、前記2次元フォトニック結晶層と該第1クラッド層との間に設けられていることを特徴とする。
また、本発明の面発光レーザは、
前記2次元フォトニック結晶層を形成する媒質のうち、屈折率が高い方の媒質の屈折率が、前記バリア層、前記第1クラッド層、前記第2クラッド層のいずれの屈折率よりも高いことを特徴とする。
また、本発明の面発光レーザは、
前記2次元フォトニック結晶層を形成する屈折率の異なる媒質のうち、屈折率が高い方の媒質のバンドギャップ、および前記光誘引層を形成する媒質のバンドギャップが、前記活性層を形成する井戸層のバンドギャップに対して、5%以上大きいことを特徴とする。
また、本発明の面発光レーザは、前記活性層が、III−V族半導体で形成されることを特徴とする。
また、本発明の面発光レーザは、前記活性層が、複数の井戸層とバリア層とで形成された多重量子井戸構造を有することを特徴とする。
また、本発明の面発光レーザは、前記第1クラッド層、および前記第2クラッド層よりも広いバンドギャップを有する少数キャリアブロック層が、前記第1クラッド層と前記第2クラッド層で挟持されていることを特徴とする。
また、本発明の面発光レーザは、前記光誘引層は、厚さが100nm以下であることを特徴とする。
また、本発明の面発光レーザは、前記光誘引層が、前記2次元フォトニック結晶層と隣接していることを特徴とする。
また、本発明の面発光レーザは、前記光誘引層と前記活性層を形成する井戸層との距離が、300nm以下であることを特徴とする。
また、本発明の面発光レーザは、前記2次元フォトニック結晶層と前記活性層を形成する井戸層との距離が、200nm以下であることを特徴とする。
また、本発明の面発光レーザは、前記2次元フォトニック結晶層を形成する媒質のうち、屈折率が低い方の媒質の充填率が、3%以上20%以下であることを特徴とする。
本発明によれば、2次元フォトニック結晶による帰還効果を向上させると共に、2次元フォトニック結晶層に分布する光の割合を増加させることができ、
素子を形成する半導体が良好な結晶性を維持し、素子面積を小さくすることが可能となるDFB型の面発光レーザを実現することができる。
以下に、本発明の実施形態におけるDFB型の面発光レーザを、図面に基づいて説明する。
図1は、本発明を適用した実施形態におけるDFB型の面発光レーザの構成例を説明する断面図を示す。
100は面発光レーザ、101はn型基板、102はn型クラッド層(第1クラッド層)、103は光閉じ込め層、104はp型クラッド層(第2クラッド層)、105はp型コンタクト層、106はn側電極、107はp側電極である。
108は光誘引層、109は2次元フォトニック結晶層、110は活性層、111はバリア層、112は井戸層、113は少数キャリアブロック層、114は高屈折率媒質、115は低屈折率媒質である。
本実施形態の面発光レーザ100は、n型基板101、n型クラッド層102、光閉じ込め層103、p型クラッド層104、p型コンタクト層105、が順次積層された積層構造を備えている。
そして、n型基板101側にn側電極106が設けられ、p型コンタクト層105側にp側電極107が設けられている。
光閉じ込め層103は、n型クラッド層102とp型クラッド層104に挟持され、かつ、n型クラッド層102に近い方から順に、光誘引層108、2次元フォトニック結晶層109、活性層110を備える。
さらに、活性層110は、バリア層111と井戸層112で形成される。井戸層112とp型クラッド層104の間には、少数キャリアブロック層113を配置する。
2次元フォトニック結晶層は、層面内に、高屈折率媒質114と低屈折率媒質115が周期的に配列され、上記積層中におけるn型クラッド層(第1クラッド層)とp型クラッド層(第2クラッド層)との間に介在させ、上記積層構造が形成されている。
図1の面発光レーザ100において、n側電極106より電子を、p側電極107より正孔を注入すると、井戸層112において電子と正孔が再結合し、井戸層112のバンドギャップに相当するエネルギーの光が発生する。
少数キャリアブロック層113は、注入した電子の一部が井戸層112における発光再結合を逃れ、p型クラッド層104へ流入することを防ぐために、井戸層112とp型クラッド層104の間に挿入する。
その少数キャリアブロック層113のバンドギャップは、p型クラッド層104およびバリア層111のバンドギャップよりも広い。
なお、本実施形態では、活性層110は、1つの井戸層112からなる単一量子井戸構造であるが、複数の井戸層112とバリア層111からなる多重量子井戸構造であってもよい。
さらに、活性層110を形成する媒質は、Ga、N、In、Al、As、P、Sbのいずれかを含むIII−V族半導体である。
また、n側電極106とp側電極107は、Au、Ni、Cu、Pt、Pd、Al、Ti、Hfのいずれかを含む合金で形成される。
また、n側電極106もしくはp側電極107が透明電極である場合には、これらはつぎのいずれかの材料により形成される。
すなわち、これらは酸化インジウムスズ(Indium Tin Oxide;ITO)、酸化インジウム亜鉛(Indium Zinc Oxide;IZO)、酸化亜鉛(Zinc Oxide;ZnO)のいずれかの材料で形成される。
井戸層112で発生した光は、主に光閉じ込め層103内に分布する。
面発光レーザ100の断面方向の光強度分布は、活性層110近傍に極大値を有し、活性層110よりも屈折率の低いn型クラッド層102およびp型クラッド層104にかけて徐々に減衰しながら分布する。
その光閉じ込め層103内に分布する光のうち、2次元フォトニック結晶層109に分布する光は、フォトニック結晶による基板面内方向の帰還効果を受けると同時に、1次回折されることで、面垂直方向へ出射される。
光誘引層108は、n型クラッド層102、p型クラッド層104、バリア層111のいずれの屈折率よりも高い媒質で形成する。
その結果、光閉じ込め層103内の光強度分布は、光誘引層108を導入しない場合と比較して、光誘引層108側へ多く分布させることができる。
その光誘引層108と2次元フォトニック結晶層109は、活性層110を中心に、両者ともn型クラッド層102側に位置している。
そのため、光誘引層108側へ光強度分布が増加するということは、活性層から2次元フォトニック結晶層側への光染み出し割合、すなわち、2次元フォトニック結晶層109に分布する光の割合(ΓPhC)を大きくできることを意味する。
その結果、光誘引層108を導入しない場合に比べて、フォトニック結晶の帰還効果を、より効果的に利用でき、素子面積の微小化に有効である。
一方で、半導体の屈折率を大きくすると、そのバンドギャップは狭くなるのが一般的である。
よって、導入した光誘引層108が、井戸層112において発生した光を吸収しないよう、光誘引層108の媒質を選定する必要がある。
本実施形態においては、光誘引層108のバンドギャップは、井戸層112のバンドギャップよりも大きい媒質とする。
これにより、光誘引層108が、井戸層112で発生した光を吸収することはない。特に、光誘引層108のバンドギャップを、井戸層112のバンドギャップよりも5%以上大きくしておくことが望ましい。
以上のように、光誘引層108の屈折率が、n型クラッド層102、p型クラッド層104、バリア層111のいずれの屈折率よりも高く、
かつ、光誘引層108のバンドギャップが、井戸層112のバンドギャップよりも大きいように、光誘引層108の媒質を選定する。
なお、光誘引層108が、上記条件を満たせば、その層内で連続的に屈折率が変化する屈折率分布(GRIN)型であってもよい。
光誘引層108が上記条件を満たすような例として、
例えば、窒化物半導体で実施するには、
n型クラッド層102とp型クラッド層104が、AlsGa1-sN(0<s≦1)であり、
バリア層111が、InxGa1-xN(0≦x<1)であり、
井戸層112が、InyGa1-yN(x<y≦1)であるとき、
光誘引層108は、InzGa1-zN(x<z<y)とすることにより、実施することができる。
また、例えば、n型クラッド層102とp型クラッド層104が、AlsGa1-sAs(0<s≦1)であり、
バリア層111が、AltGa1-tAs(0≦t<s)であり、
井戸層112が、InyGa1-yAs(0<y≦1)であるとき、
光誘引層108は、InzGa1-zAs(0<z<y)とすることにより、実施することができる。
また、例えば、n型クラッド層102とp型クラッド層104が、(AlsGa1-stIn1-tP(0<s≦1、0.4≦t≦0.6)であり、
バリア層111が、(AlxGa1-xtIn1-tP(0<x<s、0.4≦t≦0.6)であり、
井戸層112が、(AlyGa1-ytIn1-tP(0≦y<x、0.4≦t≦0.6)であるとき、
光誘引層108は、(AlzGa1-ztIn1-tP(y<z<x、0.4≦t≦0.6)とすることにより、実施することができる。
また、光誘引層108の厚さは、100nm以下とすることが望ましい。
光誘引層108を厚くすると、光閉じ込め層103内に形成される0次の共振モードと高次の共振モードとの周波数間隔が狭くなる。
その結果、活性層110の利得帯域に、0次と高次の共振モードが重なり、レーザ発振を期待する0次モードが、効率的に利得を得られないことが予想される。また、光誘引層108を効果的に機能させるため、光誘引層108と2次元フォトニック結晶層109は隣接させて配置することが望ましい。
また、光誘引層108と井戸層112の距離は300nm以下にすることが望ましく、これにより井戸層112で発生した光の多くを光誘引層108へ引き込むことができる。
さらに、2次元フォトニック結晶層109と井戸層112の距離を200nm以下にすることが望ましく、井戸層112で発生した光の多くを2次元フォトニック結晶層109に分布させることができる。
また、図1に示した面発光レーザ100においては、n型クラッド層102から順に、光誘引層108、2次元フォトニック結晶層109、活性層110で配置しているが、光誘引層108と2次元フォトニック結晶層109の順を入れ替えて配置してもよい。
その際、図2に示した面発光レーザ200の断面図のように、光誘引層108が活性層を構成する片側のバリア層111を兼ねる構造であっても良い。
図2に示した面発光レーザ200は、n型クラッド層102から順に、2次元フォトニック結晶層109、光誘引層108、井戸層112、バリア層111が積層されている。
また、図1の面発光レーザ100と図2の面発光レーザ200は、井戸層112を中心にしてn側に光誘引層108と2次元フォトニック結晶層109を配置した構造を備えているが、このような構造に限定されるものではない。
例えば、図3に示した面発光レーザ300のように、p側に光誘引層108と2次元フォトニック結晶層109を配置した構造であっても良い。
図3に示した面発光レーザ300においては、第1クラッド層がp型クラッド層104、第2クラッド層がn型クラッド層102である。
また、その際、少数キャリアブロック層113は、活性層110と2次元フォトニック結晶層109の間に設置する。
これにより、井戸層112における発光再結合を逃れた電子が、2次元フォトニック結晶層109もしくは光誘引層108へ流入することを防止することが可能で、その結果、井戸層112における発光再結合の効率を上げることができる。
図4は、図1から図3に示した面発光レーザが有する2次元フォトニック結晶層109の上面図である。
図4において、400は2次元フォトニック結晶層、401は高屈折率媒質、402は低屈折率媒質である。
本実施形態の2次元フォトニック結晶層400は、高屈折率媒質401に、円柱の低屈折率媒質402が正方格子状に配置されている。
低屈折率媒質402の周期aは、2次元フォトニック結晶層400の面内に分布する光が、1次回折を受けて、垂直方向に出射される条件を満たすように決定される。
例えば、高屈折率媒質401がGaNで、低屈折率媒質402が空気の場合、周期aを160nmとすることで、波長400nm付近の光を垂直方向に回折させることが可能である。
また、低屈折率媒質402が、2次元フォトニック結晶層400の面内に占める面積割合を充填率といい、図4のように、直径がdで表される円柱の低屈折率媒質402が、周期aで正方格子状に配置されたとき、その充填率fは、つぎの(式2)で表される。

f=π×(d/2)2/a2 (式2)

図5に、2次元フォトニック結晶の低屈折率媒質の充填率fと光結合係数κ3の関係を説明する図を示す。
図5はその充填率fと光結合係数κ3の関係を計算した結果であり、後述する実施例1、実施例2、比較例1の3種類のレーザ構造について計算した。
図5の結果より、本発明を適用していない比較例1との差が顕著に表れるのは、低屈折率媒質402の充填率が3%から20%までの範囲である。
よって、本発明においては、低屈折率媒質402の充填率は、3%以上20%以下であることが望ましく、上記範囲内の充填率であれば、2次元フォトニック結晶の帰還効果が強くなるため、レーザの素子面積の微小化に有効である。
さらに、2次元フォトニック結晶の帰還効果を強くするためには、高屈折率媒質401と低屈折率媒質402の屈折率差(εB−εA)を大きくすることが理想的である。
そこで、本実施形態では、上記光誘引層108と同様に、高屈折率媒質401は、バリア層111、n型クラッド層102、p型クラッド層104のいずれの屈折率よりも高く、
かつ、高屈折率媒質401のバンドギャップは、井戸層112よりも大きくする。
なお、図4においては、2次元フォトニック結晶層400を形成する低屈折率媒質402は正方格子状に配置したが、三角格子状に配置してもよい。
三角格子状に配置する際も、2次元フォトニック結晶層400の面内に分布する光が、1次回折を受けて垂直方向に出射されるよう周期aを適切に選定する。
また、図4において、低屈折率媒質402の形状は円柱であるが、四角柱であっても良い。
以下に、本発明のDFB型の面発光レーザの構成を適用した実施例について説明する。
なお、光誘引層108の効果を定量的に説明するため、実施例1では、つぎのような構成例について説明する。
すなわち、光誘引層108と2次元フォトニック結晶の高屈折率媒質114の両方が、n型クラッド層102、p型クラッド層104、バリア層111のいずれの屈折率よりも高く、かつ井戸層112のバンドギャップよりも広い媒質で形成された構成例を説明する。
実施例2では、光誘引層108のみが、n型クラッド層102、p型クラッド層104、バリア層111のいずれの屈折率よりも高く、かつ、井戸層112のバンドギャップよりも広い媒質で形成された場合の構成例について説明する。
さらに、後に記載する比較例1では、光誘引層108と2次元フォトニック結晶の高屈折率媒質114が、バリア層111と同じ屈折率である場合の構成例について説明する。
以下では、これら3つの構成例を互いに比較し、光誘引層108の効果を定量的に説明する。
また、同様に、実施例3の効果を、後に示す比較例2と対応付けて説明する。
また、実施例1から実施例3までは、n側に光誘引層108と2次元フォトニック層109を配置した窒化物半導体による面発光レーザについて説明する。
さらに、実施例4では、p側に光誘引層108と2次元フォトニック結晶層109が配置された面発光レーザについて説明する。
[実施例1]
図6に、実施例1における面発光レーザのウエハ構造を説明する図を示す。
n型基板101としてn型GaN基板を用い、順に、以下に示す窒化物半導体層を有機金属気層成長法(MOVPE法)によって積層する。
まず、結晶性向上に必要なバッファ層601として厚さ1μmのn型GaNの上に、n型クラッド層102として厚さ1.5μmのn型Al0.09Ga0.91Nを積層する。
その上に、光誘引層108として厚さ60nmのn型In0.015Ga0.985Nを積層し、厚さ100nmの2次元フォトニック結晶層109を積層する。
更に、スペーサ層602として厚さ40nmのn型GaNを積層し、その上に活性層110を積層する。
このスペーサ層602を設けない場合、つまり、2次元フォトニック結晶層109と活性層110を隣接させた場合、低屈折率媒質が埋め込まれた2次元フォトニック結晶層109によって、活性層110近傍の平均的な屈折率が低下する。このような場合、光閉じ込め層103の平均的な屈折率の低下につながり、光閉じ込め層103に共振モードが形成されないことが生じる。
特に、窒化物半導体は、屈折率が2.5前後と、GaAs系やInP系と比較して低いため、2次元フォトニック結晶層109の低屈折率媒質115が空気で形成される場合には、光閉じ込め層103に共振モードが形成されにくくなる。
そこで、本実施例1のように、スペーサ層602としてn型GaNを、2次元フォトニック結晶層109と活性層110の間に挿入すると、光閉じ込め層103の平均的な屈折率を上昇させることができ、共振モードが形成される。
活性層110は、井戸層112として厚さ2.5nmのIn0.09Ga0.91N、バリア層111として厚さ5nmのGaNが5周期積層された多重量子井戸構造を備える。
さらに、活性層110上に、少数キャリアブロック層113として厚さ20nmのp型Al0.18Ga0.82Nを積層する。
更に、p型クラッド層104として厚さ400nmのp型Al0.09Ga0.91N、p型コンタクト層105として厚さ100nmのp型GaN、を積層する。
また、n型GaN基板とp型コンタクト層105のp型GaNには、キャリアが注入できる電極を形成する。
n型電極は、TiとAlで形成し、p型電極は、AuとNiで形成する。
本実施例における2次元フォトニック結晶層109は、高屈折率媒質114に円柱状の低屈折率媒質115を、正方格子状に配列して構成される。
円柱状の低屈折率媒質の周期は160nm、円柱の直径は64nmであり、このとき低屈折率媒質の充填率は12.6%となる。
本実施例において、2次元フォトニック結晶層109の高屈折率媒質114は、n型In0.015Ga0.985N、低屈折率媒質115は空気で形成する。本実施例における面発光レーザ100は、上記のように空孔がウエハ内部に埋め込まれた構造を備える。
このような構造の作製方法として、まず、n型GaN基板101上に2次元フォトニック結晶層109まで、MOVPE法によって各層を成長する。
上記2次元フォトニック結晶構造は、半導体リソグラフィ技術とドライエッチング技術によって作製し、その後、埋め込み再成長法によりスペーサ層602を形成することで、空孔をウエハ内部に形成することが可能である。
活性層110からp型コンタクト層105までは、MOVPE法によって成長させる。
本実施例において、光誘引層108(In0.015Ga0.985N)の屈折率は2.584、バリア層111(GaN)の屈折率は2.549であり、光誘引層108の方が0.035だけ屈折率が高い。
また、光誘引層108(In0.015Ga0.985N)のバンドギャップは3.350eV、井戸層112(In0.09Ga0.91N)のバンドギャップは3.028eVである。
この光誘引層108のバンドギャップは、井戸層112よりも10.6%広いため、井戸層112で発生した光が、光誘引層108で吸収されることはない。
また、本実施例においては、上記2次元フォトニック結晶の高屈折率媒質114も、光誘引層108と同じIn0.015Ga0.985Nである。
それら、光誘引層108と2次元フォトニック結晶層109のInの含有率は1.5%と少ない上に、2つの層を合わせた厚さも180nmと、結晶成長の観点からは比較的薄いといえる。
よって、それら光誘引層108と2次元フォトニック結晶層109を、n型クラッド層(Al0.09Ga0.91N)上にエピタキシャル成長したとしても、半導体の結晶性が悪化することはなく、良好な通電性が維持できる。
なお、本実施例においては、光誘引層108と2次元フォトニック結晶の高屈折率媒質114は、互いに同じ組成の半導体(In0.015Ga0.985N)としたが、それぞれが組成の異なる半導体であっても良い。
図7は、図6のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示している。
2次元フォトニック結晶層の光閉じ込め係数(ΓPhC)、つまり断面方向全体に対する光の分布割合は、17.1%である。
このΓPhCと、2次元フォトニック結晶を形成する高屈折率媒質114と低屈折率媒質115の屈折率差(εB−εA)から、フォトニック結晶の帰還効果の強さを表す光結合係数κ3を求めた。
その結果、κ3=1507cm-1となり、仮にL=4/κ3としたとき、L=27μmである。
これは、素子面積L2が730μm2程度でもレーザ発振が可能であることを示唆している。
つまり、後に比較例1として示した、本発明を適用していない面発光レーザよりも、約3.7倍の集積度を達成でき、本実施例の構造は、高集積が可能なDFB型面発光レーザだといえる。
[実施例2]
図8に、実施例2における面発光レーザ200(図2の構成)のウエハ構造を説明する図示す。
実施例1においては、2次元フォトニック結晶の屈折率差(εB−εA)を大きくするため、高屈折率媒質114も、光誘引層108と同様に、Inを1.5%含有させたInGaNで形成していた。
本実施例では、2次元フォトニック結晶の高屈折率媒質114は、Inを含まないGaNで形成し、光誘引層108のみIn0.015Ga0.985Nで形成する。
つまり、2次元フォトニック結晶層109以外は、実施例1と同じ構造である。
図9は、図8のウエハ構造を備えた面発光レーザにおける断面方向の屈折率分布と光強度分布を示している。
この結果より、ΓPhC=12.1%、κ3=1040cm-1となり、仮にL=4/κ3としたとき、L=38μmである。
これは、素子面積L2が1440μm2程度でレーザ発振が可能であることを示唆している。
つまり、後に比較例1として示した、本発明を適用していない面発光レーザよりも、約1.9倍の集積度を達成でき、本実施例においても、実施例1と同様に高集積が可能なDFB型面発光レーザを構成することが可能となる。
[実施例3]
図10に、実施例3における面発光レーザ300(図3の構成)のウエハ構造を説明する図を示す。
実施例1においては、n型クラッド層102から順に、光誘引層108、2次元フォトニック結晶層109、活性層110を配置しているが、図10に示した本実施例においては、光誘引層108と2次元フォトニック結晶層109の順序を入れ替えて配置している。
その際、光誘引層108は、活性層110のバリア層111のうち、最もn側に位置するバリア層111を兼ねる。
本実施例では、n型基板101としてn型GaN基板を用い、以下に示す順に積層する。
まず、結晶性向上に必要なバッファ層601として厚さ1μmのn型GaNの上に、n型クラッド層102として厚さ1.5μmのn型Al0.09Ga0.91N、厚さ100nmの2次元フォトニック結晶層109を積層する。
更に、光誘引層108として厚さ50nmのn型In0.015Ga0.985N、その上に活性層110を積層する。
活性層110は、井戸層112として厚さ2.5nmのIn0.09Ga0.91N、バリア層111として厚さ5nmのIn0.01Ga0.99Nが5周期積層された多重量子井戸構造を備える。
さらに、活性層110上に、少数キャリアブロック層113として厚さ20nmのp型Al0.18Ga0.82Nを積層する。
その上に、p型クラッド層104として厚さ400nmのp型Al0.09Ga0.91N、p型コンタクト層105として厚さ100nmのp型GaNを積層する。
また、本実施例における、2次元フォトニック結晶層109は、高屈折率媒質114が、Inを2%含有するIn0.02Ga0.98Nであり、低屈折率媒質115は空気で形成する。
本実施例において、光誘引層108(In0.015Ga0.985N)の屈折率は、実施例1と同様、つぎのいずれの層の屈折率よりも高い。
すなわち、バリア層111(In0 .01Ga0.99N)およびn型クラッド層102(Al0.09Ga0.91N)、p型クラッド層104(Al0.09Ga0.91N)のいずれの層の屈折率よりも高い。
また、光誘引層108(In0.015Ga0.985N)と2次元フォトニック結晶の高屈折率媒質114(In0.02Ga0.98N)は、互いに組成の異なる媒質である。しかし、いずれも、井戸層112(In0.09Ga0.91N)のバンドギャップよりも広いため、井戸層112で発生した光が、光誘引層108で吸収されることはない。
図11は、図10のウエハ構造をもつ面発光レーザにおける、断面方向の屈折率分布と光強度分布を示している。
この結果より、ΓPhC=16.1%、κ3=1437cm-1となり、仮にL=4/κ3としたとき、L=28μmである。
これは、素子面積L2が780μm2程度でもレーザ発振が可能であることを示唆している。
つまり、後に比較例2として示した、本発明を適用していない面発光レーザよりも、約5.1倍の集積度を達成でき、本実施例の構造によれば、高集積が可能なDFB型面発光レーザを構成することが可能となる。
[実施例4]
図12に、実施例4における面発光レーザのウエハ構造を説明する図を示す。本実施例では、光誘引層108と2次元フォトニック結晶層109を、p側に配置した。
また、半導体の材料として、赤色レーザに用いられるAlGaInP系を用いた。
本実施例は、n型基板101としてn型GaAs基板を用い、以下の順に積層する。
まず、結晶性向上に必要なバッファ層601として厚さ0.3μmのn型GaAs、n型クラッド層102として厚さ1.5μmのn型(Al0.7Ga0.30.5In0.5P、その上に活性層を積層する。
その活性層110は、バリア層111として厚さ5nmの(Al0.55Ga0.450.5In0.5P、井戸層112として厚さ8nmのGa0.5In0.5Pで形成され、3周期の多重量子井戸構造を有する。
さらに、活性層110上に、少数キャリアブロック層113として厚さ50nmのp型Al0.5In0.5P、厚さ100nmの2次元フォトニック結晶層109を成長させる。
更に、その上に、光誘引層108として厚さ50nmのp型(Al0.5Ga0.50.5In0.5Pを積層する。
その上に、p型クラッド層104として厚さ500nmのp型(Al0.7Ga0.30.5In0.5P、p型コンタクト層105として厚さ100nmのp型GaAsを積層する。
これにより、光誘引層108の屈折率が、n型クラッド層102、p型クラッド層104、バリア層111のいずれの屈折率よりも高く、かつ、光誘引層108のバンドギャップが、井戸層112のバンドギャップよりも大きくすることができる。
なお、本実施例では、2次元フォトニック結晶を構成する高屈折率媒質114は、p型(Al0.5Ga0.50.5In0.5P、低屈折率媒質115は空気で形成し、屈折率差(εB−εA)を大きくとれるようにしている。
以下に、本発明の効果を定量的に説明するため、本発明を適用していない面発光レーザの比較例について説明する。
(比較例1)
図13に、比較例1における面発光レーザのウエハ構造を説明する図を示す。
実施例1においては、2次元フォトニック結晶の屈折率差(εB−εA)を大きくするため、高屈折率媒質114は、光誘引層108と同様に形成されていた。すなわち、Inを1.5%含有させたIn0.015Ga0.985Nで形成されていた。
また、実施例2においては、高屈折率媒質114はバリア層111と同じ組成のGaNで形成し、光誘引層108のみIn0.015Ga0.985Nで形成されていた。これに対して、本比較例では、実施例1と実施例2の光誘引層108の効果を確認するため、光誘引層108および2次元フォトニック結晶の高屈折率媒質114の両方とも、バリア層111と同じ組成のGaNで形成する。
なお、本比較例においては、光誘引層108に相当する層をスペーサ層1301と称す。
それらスペーサ層1301と2次元フォトニック結晶層109以外は、実施例1と同じ構造である。
図14は、図13のウエハ構造を備えた面発光レーザの断面方向の屈折率分布と光強度分布を示している。
この結果より、ΓPhC=9.0%、κ3=769cm-1となり、仮にL=4/κ3としたとき、L=52μmである。
これは、本比較例の構造でレーザ発振を得るには、素子面積L2を2700μm2程度まで大きくする必要があることを示唆している。
(比較例2)
図15に、比較例2における面発光レーザのウエハ構造を説明する図を示す。実施例3の効果を確認するため、図10に示した光誘引層108(In0.015Ga0.985N)と2次元フォトニック結晶層109を構成する高屈折率媒質114(In0.02Ga0.98N)を、Inを含まないGaNで形成した。
なお、本比較例は、特許文献1の構成で実現できるものである。
図16は、図15のウエハ構造を備えた面発光レーザの断面方向の屈折率分布と光強度分布を示している。
この結果より、ΓPhC=7.4%、κ3=633cm-1となり、仮にL=4/κ3としたとき、L=63μmである。
これは、素子面積L2を3970μm2程度まで大きくしなければ、レーザ発振が難しいことを示している。
本発明の実施形態におけるDFB型の面発光レーザの構成例を説明する断面図である。 本発明の実施形態における光誘引層が活性層を構成する片側のバリア層を兼ねる構造を備えたDFB型の面発光レーザの構成例を説明する断面図である。 本発明の実施形態におけるp側に光誘引層と2次元フォトニック結晶層を配置した構造を備えたDFB型の面発光レーザの構成例を説明する断面図である。 本発明の実施形態における図1から図3に示した面発光レーザが有する2次元フォトニック結晶層の上面図である。 本発明の実施形態における2次元フォトニック結晶の低屈折率媒質の充填率fと光結合係数κ3の関係を説明する図である。 本発明の実施例1におけDFB型の面発光レーザのウエハ構造を説明する図である。 本発明の実施例1の図6のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示す図である。 本発明の実施例2におけDFB型の面発光レーザのウエハ構造を説明する図である。 本発明の実施例2の図8のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示す図である。 本発明の実施例3におけDFB型の面発光レーザのウエハ構造を説明する図である。 本発明の実施例3の図10のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示す図である。 本発明の実施例4におけDFB型の面発光レーザのウエハ構造を説明する図である。 比較例1における面発光レーザのウエハ構造を説明する図である。 比較例1の図13のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示す図である。 比較例2における面発光レーザのウエハ構造を説明する図である。 比較例2の図15のウエハ構造を備える面発光レーザにおける断面方向の屈折率分布と光強度分布を示す図である。
符号の説明
100:面発光レーザ
101:n型基板
102:n型クラッド層
103:光閉じ込め層
104:p型クラッド層
105:p型コンタクト層
106:n側電極
107:p側電極
108:光誘引層
109:2次元フォトニック結晶層
110:活性層
111:バリア層
112:井戸層
113:少数キャリアブロック層
114:高屈折率媒質
115:低屈折率媒質
200:面発光レーザ
300:面発光レーザ
400:2次元フォトニック結晶層
401:高屈折率媒質
402:低屈折率媒質
601:バッファ層
602:スペーサ層
1301:スペーサ層
1501:スペーサ層

Claims (11)

  1. バリア層と井戸層とで形成される活性層を含む複数の半導体層からなる積層中に、屈折率の異なる媒質が面内方向に周期的に配列された2次元フォトニック結晶層を備え、該2次元フォトニック結晶層の面内方向に共振モードを有する面発光レーザであって、
    第1クラッド層と、前記2次元フォトニック結晶層と、前記活性層と、第2クラッド層とが順次積層されており、
    前記バリア層、前記第1クラッド層、前記第2クラッド層のいずれの屈折率よりも高い屈折率を有し、
    かつ、前記井戸層のバンドギャップよりも広いバンドギャップを有する光誘引層が、前記2次元フォトニック結晶層と前記活性層との間、または、前記2次元フォトニック結晶層と該第1クラッド層との間に設けられていることを特徴とする面発光レーザ。
  2. 前記2次元フォトニック結晶層を形成する媒質のうち、屈折率が高い方の媒質の屈折率が、前記バリア層、前記第1クラッド層、前記第2クラッド層のいずれの屈折率よりも高いことを特徴とする請求項1に記載の面発光レーザ。
  3. 前記2次元フォトニック結晶層を形成する屈折率の異なる媒質のうち、屈折率が高い方の媒質のバンドギャップ、および前記光誘引層を形成する媒質のバンドギャップが、
    前記活性層を形成する井戸層のバンドギャップに対して、5%以上大きいことを特徴とする請求項1または請求項2に記載の面発光レーザ。
  4. 前記活性層が、III−V族半導体で形成されることを特徴とする請求項1から3のいずれか1項に記載の面発光レーザ。
  5. 前記活性層が、複数の井戸層とバリア層とで形成された多重量子井戸構造を有することを特徴とする請求項2から4のいずれか1項に記載の面発光レーザ。
  6. 前記第1クラッド層、および前記第2クラッド層よりも広いバンドギャップを有する少数キャリアブロック層が、
    前記第1クラッド層と前記第2クラッド層で挟持されていることを特徴とする請求項2から5のいずれか1項に記載の面発光レーザ。
  7. 前記光誘引層は、厚さが100nm以下であることを特徴とする請求項1から6のいずれか1項に記載の面発光レーザ。
  8. 前記光誘引層が、前記2次元フォトニック結晶層と隣接していることを特徴とする請求項1から7のいずれか1項に記載の面発光レーザ。
  9. 前記光誘引層と前記活性層を形成する井戸層との距離が、300nm以下であることを特徴とする請求項2から8のいずれか1項に記載の面発光レーザ。
  10. 前記2次元フォトニック結晶層と前記活性層を形成する井戸層との距離が、200nm以下であることを特徴とする請求項2から8のいずれか1項に記載の面発光レーザ。
  11. 前記2次元フォトニック結晶層を形成する媒質のうち、屈折率が低い方の媒質の充填率が、3%以上20%以下であることを特徴とする請求項1から10のいずれか1項に記載の面発光レーザ。
JP2008280987A 2008-10-31 2008-10-31 面発光レーザ Pending JP2010109223A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280987A JP2010109223A (ja) 2008-10-31 2008-10-31 面発光レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280987A JP2010109223A (ja) 2008-10-31 2008-10-31 面発光レーザ

Publications (1)

Publication Number Publication Date
JP2010109223A true JP2010109223A (ja) 2010-05-13

Family

ID=42298355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280987A Pending JP2010109223A (ja) 2008-10-31 2008-10-31 面発光レーザ

Country Status (1)

Country Link
JP (1) JP2010109223A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033705A (ja) * 2010-07-30 2012-02-16 Kyoto Univ 2次元フォトニック結晶レーザ
JP2012109410A (ja) * 2010-11-17 2012-06-07 Canon Inc 2次元フォトニック結晶面発光レーザ
JP2012253288A (ja) * 2011-06-06 2012-12-20 Canon Inc 発光素子
JP2013004906A (ja) * 2011-06-21 2013-01-07 Canon Inc フォトニック結晶面発光レーザおよびその製造方法
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
US9287454B2 (en) 2012-10-09 2016-03-15 Canon Kabushiki Kaisha Nitride semiconductor light-emitting device with a layer containing In and Mg and method for producing the same
JP2018198302A (ja) * 2016-07-25 2018-12-13 浜松ホトニクス株式会社 半導体発光素子およびその製造方法
DE102022134979A1 (de) 2022-12-29 2024-07-04 Ams-Osram International Gmbh Halbleiterlaser und verfahren zur herstellung eines halbleiterlasers
JP7527576B2 (ja) 2018-09-03 2024-08-05 国立大学法人京都大学 面発光レーザ素子及び面発光レーザ素子の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033705A (ja) * 2010-07-30 2012-02-16 Kyoto Univ 2次元フォトニック結晶レーザ
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
JP2012109410A (ja) * 2010-11-17 2012-06-07 Canon Inc 2次元フォトニック結晶面発光レーザ
JP2012253288A (ja) * 2011-06-06 2012-12-20 Canon Inc 発光素子
JP2013004906A (ja) * 2011-06-21 2013-01-07 Canon Inc フォトニック結晶面発光レーザおよびその製造方法
US9287454B2 (en) 2012-10-09 2016-03-15 Canon Kabushiki Kaisha Nitride semiconductor light-emitting device with a layer containing In and Mg and method for producing the same
JP2018198302A (ja) * 2016-07-25 2018-12-13 浜松ホトニクス株式会社 半導体発光素子およびその製造方法
JP7527576B2 (ja) 2018-09-03 2024-08-05 国立大学法人京都大学 面発光レーザ素子及び面発光レーザ素子の製造方法
DE102022134979A1 (de) 2022-12-29 2024-07-04 Ams-Osram International Gmbh Halbleiterlaser und verfahren zur herstellung eines halbleiterlasers

Similar Documents

Publication Publication Date Title
US8737447B2 (en) Nitride semiconductor laser
EP2639900B1 (en) Semiconductor stack and vertical cavity surface emitting laser
JP5020866B2 (ja) 垂直共振器型面発光レーザ
JP2010109223A (ja) 面発光レーザ
JP6947386B2 (ja) 半導体発光素子および半導体発光素子の製造方法
US7974324B2 (en) Surface-emitting laser device
JP2007036233A (ja) 横方向p/n接合を有するvcselシステム
JP2007299791A (ja) 半導体光素子
JP2009182145A (ja) 半導体光素子
JP2006196852A (ja) 面発光型半導体レーザ、面発光型半導体レーザアレイ、画像形成装置、光ピックアップ、光送信モジュール、光送受信モジュール及び光通信システム
US7830940B2 (en) Nitride semiconductor laser element having nitride semiconductor substrate and nitride semiconductor layer laminated thereon with nitride semiconductor substrate and nitride semiconductor layer having recesses formed in high dislocation density region of nitride semiconductor substrate and nitride semiconductor layer having portions with different film thicknesses
JP4829119B2 (ja) 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel
JP2007294789A (ja) 半導体レーザ素子
JP2006222196A (ja) 面発光レーザ素子
JP5892534B2 (ja) 半導体レーザ素子
JP2002064244A (ja) 分布帰還型半導体レーザ素子
EP1553670B1 (en) Semiconductor device having a quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device and methods of manufacturing the semiconductor device and the semiconductor laser.
JP5381692B2 (ja) 半導体発光素子
US8374205B2 (en) Vertical cavity surface emitting laser and image forming apparatus
JP2004253802A (ja) 改善された温度特性を有するGaAsSb/GaAs素子
JP2010021430A (ja) 半導体光素子
JP5836609B2 (ja) 面発光レーザ、アレイ及び画像形成装置
JP5204690B2 (ja) 分布帰還型半導体レーザ及びその製造方法
JP2004179640A (ja) 半導体レーザおよび光送信用モジュールおよび光通信システム
JP2019041102A (ja) レーザダイオード