JP2007501330A - Method for producing copper foil for printed circuit board - Google Patents

Method for producing copper foil for printed circuit board Download PDF

Info

Publication number
JP2007501330A
JP2007501330A JP2006532035A JP2006532035A JP2007501330A JP 2007501330 A JP2007501330 A JP 2007501330A JP 2006532035 A JP2006532035 A JP 2006532035A JP 2006532035 A JP2006532035 A JP 2006532035A JP 2007501330 A JP2007501330 A JP 2007501330A
Authority
JP
Japan
Prior art keywords
copper foil
copper
printed circuit
circuit board
electrolysis tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006532035A
Other languages
Japanese (ja)
Inventor
サンボム キム
スンリャン ジョン
Original Assignee
イルジン コッパー ホイル カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イルジン コッパー ホイル カンパニー リミテッド filed Critical イルジン コッパー ホイル カンパニー リミテッド
Publication of JP2007501330A publication Critical patent/JP2007501330A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating

Abstract

本発明は印刷回路基板に積層され,各種回路網を形成する銅箔の製造方法に関する。本発明の方法は,銅箔の被接着面の凸部11または平滑面に銅電着物12からなる粗面層を形成するため,酸性の電気分解槽おいて,限界電流密度で,陰極とした銅箔を電気分解することを含む。かかる場合において,電気分解槽のメッキ溶液の中に,分子量2000以上の無機ポリアニオンがさらに添加されることによって,銅箔の被接着面の接触面積が相対的に増加され,銅箔と樹脂基板の接着強度が常に維持されて,電気的特性及び耐酸性が向上し,銅粉の落下を最小にする。
【選択図】図3
The present invention relates to a method for producing a copper foil laminated on a printed circuit board to form various circuit networks. In the method of the present invention, a rough surface layer made of a copper electrodeposit 12 is formed on the convex portion 11 or the smooth surface of the bonded surface of the copper foil. Electrolyzing the copper foil. In such a case, by further adding an inorganic polyanion having a molecular weight of 2000 or more to the plating solution in the electrolysis tank, the contact area of the adherend surface of the copper foil is relatively increased, and the copper foil and the resin substrate are in contact with each other. Adhesive strength is always maintained, electrical properties and acid resistance are improved, and copper powder fall is minimized.
[Selection] Figure 3

Description

本発明は,印刷回路基板に積層されて各種回路網を形成する粗処理された銅箔に関し,特に銅箔の表面積を増加させ,銅箔と樹脂との間の接着強度を増加させて,電気的特性を向上させる印刷回路基板用の銅箔の製造方法に関する。   The present invention relates to a rough-processed copper foil that is laminated on a printed circuit board to form various circuit networks, and in particular, by increasing the surface area of the copper foil and increasing the adhesive strength between the copper foil and the resin. The present invention relates to a method for manufacturing a copper foil for a printed circuit board that improves the mechanical characteristics.

一般的に,印刷回路基板は,電気装置や電子通信装備などの精密制御回路に利用される電子部品として,合成樹脂などのような絶縁基板の一面または両面に銅箔を用いて回路網を配線した後,基板上にICまたは電子部品などを配置し,これらの間を電気的に配線し,絶縁体でコーティングして製造される。   In general, printed circuit boards are used as electronic parts used in precision control circuits such as electrical equipment and electronic communication equipment, and wiring is made using copper foil on one or both sides of an insulating substrate such as synthetic resin. After that, an IC or an electronic component is arranged on the substrate, and the wiring is electrically wired between them and coated with an insulator.

また,印刷回路基板を多層で構成しようとする場合,絶縁基板上に高温高圧の下で銅箔を積層し回路パターンをスクリーン印刷して,これを商用エッチング溶液などにエッチングして回路網を形成した後,銅箔の表面に粗面層を形成してから,半導体装置などの素子を搭載して構成する。   When a printed circuit board is to be composed of multiple layers, a copper foil is laminated on an insulating substrate under high temperature and high pressure, a circuit pattern is screen printed, and this is etched into a commercial etching solution to form a circuit network. After that, a rough surface layer is formed on the surface of the copper foil, and then an element such as a semiconductor device is mounted.

このとき,印刷回路基板用の銅箔は,その被接着面に多数の突起状の銅電着物からなった粗面層を形成して表面積を最大限に増加させることによって,銅箔と絶縁基板との間の接着性能,すなわち,例えば高温加熱,湿式処理,溶接,薬品処理などの過程でも十分な接着強度を維持させることができる。   At this time, the copper foil for the printed circuit board is formed by forming a rough surface layer made of a large number of protruding copper electrodeposits on the surface to be bonded, thereby maximizing the surface area. Adhesive performance between them, that is, sufficient adhesive strength can be maintained even in processes such as high-temperature heating, wet processing, welding, and chemical processing.

従って,図1と図2に示すように,銅箔の接着強度を増加させるための手段として,銅箔に山模様の凸部11が形成された場合,凸部11に銅電着物12を電着するとか,銅箔に山模様の凸部11がない場合,銅箔の平滑面に銅電着物12を電着して粗面層を形成することが行われる。   Therefore, as shown in FIG. 1 and FIG. 2, as a means for increasing the adhesive strength of the copper foil, when a ridge-shaped convex portion 11 is formed on the copper foil, the copper electrodeposit 12 is electrically connected to the convex portion 11. When the copper foil is not provided with the mountain-shaped convex portions 11, the copper electrodeposit 12 is electrodeposited on the smooth surface of the copper foil to form a rough surface layer.

ところが,銅電気分解槽で,凸部11に銅電着物12からなった粗面層を形成した結果,図2に示すように,凸部11の山と谷に沿って広い範囲にかけて銅電着物12が混在されている状態で電着されるので,銅箔で樹脂基板との接着面が減少し,絶縁基板との接着性能が低下し,銅箔が樹脂基板から剥離する恐れがある問題点があった。   However, as a result of forming the rough surface layer made of the copper electrodeposit 12 on the convex portion 11 in the copper electrolysis tank, as shown in FIG. 2, the copper electrodeposited material covers a wide range along the peaks and valleys of the convex portion 11 as shown in FIG. Since 12 is electrodeposited in a mixed state, the adhesive surface with the resin substrate is reduced by the copper foil, the adhesive performance with the insulating substrate is deteriorated, and the copper foil may be peeled off from the resin substrate. was there.

一方,銅箔の凸部11に銅電着物12を形成する方法として,日本国特開昭54−38053号と日本国特開昭53−39327号では,電気分解槽の中にヒ素,アンチモン,ビスマス,セレンなどの周期表6B族の元素を含み限界電流密度の前後で電気分解した技術が提案されている。   On the other hand, as a method of forming the copper electrodeposit 12 on the convex portion 11 of the copper foil, Japanese Patent Laid-Open No. 54-38053 and Japanese Patent Laid-Open No. 53-39327 disclose arsenic, antimony, There has been proposed a technique that includes elements of Group 6B of the periodic table such as bismuth and selenium and that is electrolyzed before and after the limiting current density.

ところが,電気分解槽の中にヒ素を含む場合,電気分解の過程で銅電着物の中にヒ素が一定量含まれるため,銅箔の再生及びその他の処理過程や,ヒ素が溶けているエッチング液を処分する過程でヒ素による環境上そして健康上に重大な問題が引き起こされることがある。   However, when arsenic is contained in the electrolysis tank, since a certain amount of arsenic is contained in the copper electrodeposit during the electrolysis process, copper foil regeneration and other treatment processes, and an arsenic-dissolving etching solution In the process of disposal, arsenic can cause serious environmental and health problems.

一方,銅箔の凸部11に銅電着物12を形成する方法として,日本国特開昭56−411196号のベンゾキノリン類を微量に添加した槽を使う方法と,日本国特開昭62−56677号のモリブデンやバナジウムまたは両方を添加した槽を使う方法と,日本国特開平6−169169号,特開平8−236930号のクロム,タングステンまたは両方を添加した槽を使う方法,日本国特開昭63−17597号,日本国特開昭58−164797号のパルスメッキする方法,またはバナジウム,亜鉛,鉄,ニッケル,コバルト,クロムなどを含ませることなどが提案されている。   On the other hand, as a method of forming the copper electrodeposit 12 on the convex portion 11 of the copper foil, a method using a benzoquinoline-added tank described in Japanese Patent Application Laid-Open No. 56-411196, and Japanese Patent Application Laid-Open No. Sho 62- No. 56777, a method using a tank to which molybdenum or vanadium or both are added; Japanese Patent Application Laid-Open No. 63-17597 and Japanese Patent Application Laid-Open No. 58-164797 propose a pulse plating method, or include vanadium, zinc, iron, nickel, cobalt, chromium, or the like.

ところが,これらの方法はヒ素のような毒性の元素を含んでいないので,環境上及び健康上に悪影響を及ぼさないという長所はあるが,銅箔に形成されている凸部11の山と谷に電着物12が混在されて電着されるので,絶縁基板との接着強度が低下し,銅電着物12が剥離する恐れがあった。   However, since these methods do not contain toxic elements such as arsenic, there is an advantage that they do not adversely affect the environment and health, but the peaks and valleys of the protrusions 11 formed on the copper foil. Since the electrodeposits 12 are mixed and electrodeposited, the adhesive strength with the insulating substrate is lowered, and the copper electrodeposits 12 may be peeled off.

従って,本発明は,上記した関連技術における従来の問題点を考慮し,本発明の目的は,銅箔の表面積を増加させ,絶縁基板と銅箔と間の接着強度を向上させて,印刷回路基板の電気的特性を向上させる印刷回路基板用の銅箔の製造方法を提供することにある。   Accordingly, the present invention takes into account the conventional problems in the related art described above, and an object of the present invention is to increase the surface area of the copper foil and improve the adhesive strength between the insulating substrate and the copper foil, thereby improving the printed circuit. An object of the present invention is to provide a method for producing a copper foil for a printed circuit board that improves the electrical characteristics of the board.

上記のような目的を果たすための本発明は,印刷回路基板用の銅箔の製造方法において,銅箔の凸部または平滑面に銅電着物からなる粗面層を形成するため,酸性の電気分解槽において,限界電流密度で,陰極とした銅箔を電気分解し,電気分解槽のメッキ溶液の中に,タングステンを含む分子量2000以上の無機ポリアニオン,電気分解槽のメッキ溶液の中に,タングステンとリンを含む分子量2000以上の無機ポリアニオン,または電気分解槽のメッキ溶液の中に,タングステンとケイ素を含む分子量2000以上の無機ポリアニオンがさらに添加されたことを特徴とする,印刷回路基板用の銅箔の製造方法が提供される。   In order to achieve the above object, the present invention provides a method for producing a copper foil for a printed circuit board, in which a rough surface layer made of a copper electrodeposit is formed on the convex or smooth surface of the copper foil. In the decomposition tank, the copper foil used as the cathode was electrolyzed at the limiting current density, and the inorganic polyanion containing tungsten and having a molecular weight of 2000 or more in the plating solution of the electrolytic tank, tungsten in the plating solution of the electrolytic tank Copper for printed circuit boards, characterized in that an inorganic polyanion having a molecular weight of 2000 or more containing phosphorus and phosphorus, or an inorganic polyanion having a molecular weight of 2000 or more containing tungsten and silicon is further added to a plating solution in an electrolysis tank. A method of manufacturing a foil is provided.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図3は,本発明に関し,銅箔の凸部に銅電着物が電着された状態を示した電子顕微鏡写真である。印刷回路基板用の銅箔の製造方法において,酸性の電気分解槽において,限界電流密度で,陰極とした銅箔を電気分解すると,銅箔の凸部11または平滑面に銅電着物12からなる粗面層が形成される。このとき,タングステンを含む分子量2000以上の無機ポリアニオンが,電気分解槽のメッキ溶液の中にさらに添加される。または,タングステンとリンを含む分子量2000以上の無機ポリアニオンが,電気分解槽のメッキ溶液の中にさらに添加される。または,タングステンとケイ素を含む分子量2000以上の無機ポリアニオンが,電気分解槽のメッキ溶液の中にさらに添加される。   FIG. 3 is an electron micrograph showing a state in which a copper electrodeposit is electrodeposited on the convex portion of the copper foil in the present invention. In a method for producing a copper foil for a printed circuit board, when a copper foil serving as a cathode is electrolyzed at a limiting current density in an acidic electrolysis tank, a copper electrodeposit 12 is formed on a convex portion 11 or a smooth surface of the copper foil. A rough surface layer is formed. At this time, an inorganic polyanion having a molecular weight of 2000 or more containing tungsten is further added to the plating solution in the electrolysis tank. Alternatively, an inorganic polyanion having a molecular weight of 2000 or more containing tungsten and phosphorus is further added to the plating solution in the electrolysis tank. Alternatively, an inorganic polyanion having a molecular weight of 2000 or more containing tungsten and silicon is further added to the plating solution in the electrolysis tank.

まず,本発明にかかる酸性の電気分解槽の中に含まれるメッキ溶液の組成及びメッキ条件を表1に示す。また,メッキ溶液の中に添加するヒ素の代わりに,環境に悪影響のない分子量2000以上の無機ポリアニオンを添加したものである。   First, Table 1 shows the composition and plating conditions of the plating solution contained in the acidic electrolysis tank according to the present invention. Further, instead of arsenic added to the plating solution, an inorganic polyanion having a molecular weight of 2000 or more that does not adversely affect the environment is added.

Figure 2007501330
Figure 2007501330

また,酸性の銅電気分解槽の中に無機ポリアニオンをさらに添加して粗面層を形成した結果,銅箔の凸部11に銅電着物12が電着される過程で,デンドライト組織の発達だけでなく,核発生が抑制される。その結果,図3に示すように,銅電着物12は,球形状で形成される。   In addition, as a result of further adding an inorganic polyanion to the acidic copper electrolysis tank to form a rough surface layer, only the development of the dendrite structure is caused in the process of electrodepositing the copper electrodeposit 12 on the convex portion 11 of the copper foil. Rather, nucleation is suppressed. As a result, as shown in FIG. 3, the copper electrodeposit 12 is formed in a spherical shape.

また,無機ポリアニオンの供給源として,パラタングステン酸,メタタングステン酸,12−リンタングステン酸,12−モリブデンタングステン酸,または,これらのナトリウム塩やアンモニウム塩などの使用が可能である。このとき,無機ポリアニオンは,銅電気分解槽のメッキ溶液中に,0.001〜5g/lの濃度で添加される。または,0.01〜2g/lとしてもよい。   In addition, as a supply source of the inorganic polyanion, paratungstic acid, metatungstic acid, 12-phosphotungstic acid, 12-molybdenum tungstic acid, or a sodium salt or ammonium salt thereof can be used. At this time, the inorganic polyanion is added at a concentration of 0.001 to 5 g / l in the plating solution of the copper electrolysis tank. Or it is good also as 0.01-2 g / l.

本発明にかかる方法は,外表面に凸部11が形成されている銅箔に適用させることができるだけでなく,銅箔の外表面に凸部11が形成されていない電気分解銅箔や圧延銅箔などにも適用させることができる。   The method according to the present invention can be applied not only to a copper foil having convex portions 11 formed on the outer surface, but also to an electrolytic copper foil or rolled copper having no convex portions 11 formed on the outer surface of the copper foil. It can be applied to foil and the like.

以下,本発明による実施例と比較例を,添付した図面を参照しながら詳しく説明すると以下のとおりである。   Hereinafter, embodiments and comparative examples according to the present invention will be described in detail with reference to the accompanying drawings.

硫酸銅5水塩100g/lと,硫酸200g/l,及びメタタングステン酸ナトリウム0.001〜5g/lを含む30℃の水溶液を電気分解槽に使用して,厚さ35μmの電気分解銅箔の被接着面に電流密度20A/dmで6秒間メッキした。その後,銅イオン50g/l,硫酸100g/lを含む45℃の電解液を使用して,電流密度20A/dmで10秒間メッキした。 Electrolytic copper foil with a thickness of 35 μm using an aqueous solution of 30 ° C. containing copper sulfate pentahydrate 100 g / l, sulfuric acid 200 g / l and sodium metatungstate 0.001 to 5 g / l in an electrolysis tank The surface to be bonded was plated at a current density of 20 A / dm 2 for 6 seconds. Thereafter, plating was performed at a current density of 20 A / dm 2 for 10 seconds using an electrolytic solution at 45 ° C. containing 50 g / l of copper ions and 100 g / l of sulfuric acid.

次いで,実施例1によって得られた銅箔をエポキシ樹脂(図示しない)に加熱加圧して銅箔積層板を製作した後,銅箔と樹脂の接着強度をUTMを使用して測定することと共に,銅粉の落下について,光学顕微鏡を使用して,エッチング後の樹脂面を観察した。その結果を表2に示す。   Next, the copper foil obtained in Example 1 was heated and pressed on an epoxy resin (not shown) to produce a copper foil laminate, and then the adhesive strength between the copper foil and the resin was measured using UTM. Regarding the falling of the copper powder, the resin surface after etching was observed using an optical microscope. The results are shown in Table 2.

このとき,銅箔と樹脂の接着強度を10回にわたって測定した結果,その平均値がおおよそ2.25kg/cm位で非常に優れていることが分かった。また,銅粉の落下がなく,銅電着物の電着効率が非常に高いことが分かった。   At this time, the adhesive strength between the copper foil and the resin was measured 10 times. As a result, it was found that the average value was very excellent at about 2.25 kg / cm. In addition, it was found that there was no drop of copper powder and the electrodeposition efficiency of the copper electrodeposit was very high.

すなわち,図3に示すように,銅箔の凸部11の山の部分に均一な大きさの銅電着物12が形成されるので,エポキシ樹脂との接着面積が図2に比べ,大きく増加して,接着性能が向上していると推測することができる。   That is, as shown in FIG. 3, since the copper electrodeposit 12 having a uniform size is formed at the peak portion of the convex portion 11 of the copper foil, the adhesion area with the epoxy resin is greatly increased compared to FIG. Thus, it can be estimated that the adhesion performance is improved.

また,酸性の銅電気分解槽の中にメタタングステン酸ナトリウムが0.001g/l未満の濃度で添加された場合,接着強度は増加せず,エッチング後の銅粉の落下が発生した。また,メタタングステン酸ナトリウムが5.0g/l以上の濃度で添加された条件では,経済的な負担が過大となることが分かった。   In addition, when sodium metatungstate was added to the acidic copper electrolysis tank at a concentration of less than 0.001 g / l, the adhesive strength did not increase and the copper powder dropped after etching. It was also found that the economic burden would be excessive under conditions where sodium metatungstate was added at a concentration of 5.0 g / l or more.

硫酸銅5水塩100g/lと,硫酸200g/l,及び12−ケイタングステン酸0.001〜5g/lを含む30℃の水溶液を電気分解槽に使用して,厚さ35μmの電気分解銅箔の被接着面に電流密度20A/dmで6秒間メッキした。その後,銅イオン50g/l,硫酸100g/lを含む45℃の電解液を使用して,電流密度20A/dmで10秒間メッキした。 Electrolytic copper having a thickness of 35 μm using an aqueous solution of 30 ° C. containing copper sulfate pentahydrate 100 g / l, sulfuric acid 200 g / l, and 12-silicotungstic acid 0.001 to 5 g / l in an electrolysis tank and 6 seconds plated at a current density of 20A / dm 2 surface to be adhered of the foil. Thereafter, plating was performed at a current density of 20 A / dm 2 for 10 seconds using an electrolytic solution at 45 ° C. containing 50 g / l of copper ions and 100 g / l of sulfuric acid.

次いで,実施例2によって得られた銅箔をエポキシ樹脂に加熱加圧して銅箔積層板を製作した後,銅箔と樹脂の接着強度をUTMを使用して測定することと共に,銅粉の落下について,光学顕微鏡を使用して,銅箔のエッチング後の樹脂面を観察した。その結果を表2に示す。   Next, after the copper foil obtained in Example 2 was heated and pressed on an epoxy resin to produce a copper foil laminate, the adhesive strength between the copper foil and the resin was measured using UTM, and the copper powder dropped. About the resin surface after etching of copper foil was observed using the optical microscope. The results are shown in Table 2.

このとき,銅箔と樹脂の接着強度を10回にわたって測定した結果,その平均値がおおよそ2.20kg/cm位で非常に優れていることが分かった。また,銅粉の落下がなく,銅電着物の電着効率が高いことが分かった。   At this time, the adhesive strength between the copper foil and the resin was measured 10 times. As a result, it was found that the average value was very excellent at about 2.20 kg / cm. It was also found that there was no copper powder falling and the electrodeposition efficiency of the copper electrodeposit was high.

すなわち,銅箔の凸部11の山の部分に実施例1と比べてやや小さな大きさの銅電着物12が形成されるので,エポキシ樹脂との接着面積が図2に比べ,大きく増加して,樹脂基板との接着性能が向上していると推測することができる。   That is, since the copper electrodeposit 12 having a slightly smaller size than that of Example 1 is formed at the peak portion of the convex portion 11 of the copper foil, the adhesion area with the epoxy resin is greatly increased as compared with FIG. Therefore, it can be estimated that the adhesion performance with the resin substrate is improved.

また,酸性の銅電気分解槽の中に12−ケイタングステン酸が0.001g/l未満の濃度で添加された場合,接着強度は増加せず,エッチング後の銅粉の落下が発生した。また,12−ケイタングステン酸が5.0g/l以上の濃度で添加された条件では,経済的な負担が過大となることが分かった。   In addition, when 12-silicotungstic acid was added to the acidic copper electrolysis tank at a concentration of less than 0.001 g / l, the adhesive strength did not increase and the copper powder dropped after etching. It was also found that the economic burden would be excessive under conditions where 12-silicotungstic acid was added at a concentration of 5.0 g / l or more.

(比較例1)
添加物を含んでいない例として,硫酸銅5水塩100g/lと,硫酸200g/lを含む30℃の水溶液を電気分解槽に使用して,厚さ35μmの電気分解銅箔の被接着面に電流密度20A/dmで6秒間メッキした。その後,銅イオン50g/l,硫酸100g/lを含む45℃の電解液を使用して,電流密度20A/dmで10秒間メッキした。
(Comparative Example 1)
As an example that does not contain additives, an adhesive surface of an electrolytic copper foil having a thickness of 35 μm using an aqueous solution containing 30 g of copper sulfate pentahydrate and 30 g of sulfuric acid containing 100 g / l of sulfuric acid in an electrolysis tank. Was plated for 6 seconds at a current density of 20 A / dm 2 . Thereafter, plating was performed at a current density of 20 A / dm 2 for 10 seconds using an electrolytic solution at 45 ° C. containing 50 g / l of copper ions and 100 g / l of sulfuric acid.

次いで,比較例1によって得られた銅箔をエポキシ樹脂に加熱加圧して銅箔積層板を製作した後,銅箔と樹脂の接着強度をUTMを使用して測定することと共に,銅粉の落下について,光学顕微鏡を使用して,エッチング後の樹脂面を観察した。その結果を表2に示す。   Next, after the copper foil obtained in Comparative Example 1 was heated and pressed on an epoxy resin to produce a copper foil laminate, the adhesive strength between the copper foil and the resin was measured using UTM, and the copper powder dropped. The surface of the resin after etching was observed using an optical microscope. The results are shown in Table 2.

このとき,銅箔と樹脂の接着強度を10回にわたって測定した結果,その平均値がおおよそ1.93kg/cm位で実施例1,2と比べ顕著に低下したことが分かった。また,凸部の銅電着物が球状に形成されず,針状に形成され,これにより銅粉の落下が生じ,電着効率が低下することが分かった。   At this time, as a result of measuring the adhesive strength between the copper foil and the resin 10 times, it was found that the average value was about 1.93 kg / cm, which was significantly lower than those of Examples 1 and 2. In addition, it was found that the copper electrodeposits on the convex portions were not formed in a spherical shape, but were formed in a needle shape, which caused a drop of copper powder, resulting in a decrease in electrodeposition efficiency.

(比較例2)
硫酸銅5水塩100g/lと,硫酸200g/l,及び砒酸3g/lを含む30℃の水溶液を電気分解槽に使用して,厚さ35μmの電気分解銅箔の被接着面に電流密度20A/dmで6秒間メッキした。その後,銅イオン50g/l,硫酸100g/lを含む45℃の電解液を使用して,電流密度20A/dmで10秒間メッキした。
(Comparative Example 2)
Using an aqueous solution containing 30 g of copper sulfate pentahydrate, 100 g / l of sulfuric acid, 200 g / l of sulfuric acid, and 3 g / l of arsenic acid in the electrolysis tank, the current density was applied to the adherend surface of the 35 μm thick electrolytic copper foil. Plating was performed at 20 A / dm 2 for 6 seconds. Thereafter, plating was performed at a current density of 20 A / dm 2 for 10 seconds using an electrolytic solution at 45 ° C. containing 50 g / l of copper ions and 100 g / l of sulfuric acid.

次いで,比較例2によって得られた銅箔をエポキシ樹脂に加熱加圧して銅箔積層板を製作した後,銅箔と樹脂の接着強度をUTMを使用して測定することと共に,銅粉の落下について,光学顕微鏡を使用して,エッチング後の樹脂面を観察した。その結果を表2に示す。   Next, after the copper foil obtained in Comparative Example 2 was heated and pressed on an epoxy resin to produce a copper foil laminate, the adhesive strength between the copper foil and the resin was measured using UTM, and the copper powder dropped. The surface of the resin after etching was observed using an optical microscope. The results are shown in Table 2.

このとき,銅箔と樹脂の接着強度を10回にわたって測定した結果,その平均値がおおよそ2.21kg/cm位で実施例1,2とほぼ同じ位であった。また,銅粉の落下が生じず,電着効率が良好であったが,ヒ素が100PPM程度含まれ,環境上そして健康上の悪影響を及ぼすことが分かった。   At this time, the adhesive strength between the copper foil and the resin was measured 10 times. As a result, the average value was about 2.21 kg / cm, which was almost the same as in Examples 1 and 2. Moreover, the copper powder did not fall and the electrodeposition efficiency was good, but it was found that about 100 PPM of arsenic was contained, which had an adverse effect on the environment and health.

以上の結果より,酸性の電気分解槽の中に,分子量2000以上の無機ポリアニオンをさらに添加することによって,銅電着物からなる粗面層が形成された。その結果,銅箔の被接着面に電着される銅電着物12が,図3に示すように,球状に形成され,銅箔の表面積が相対的に増加されたことが分かった。   From the above results, a rough surface layer made of a copper electrodeposit was formed by further adding an inorganic polyanion having a molecular weight of 2000 or more to an acidic electrolysis tank. As a result, it was found that the copper electrodeposit 12 that was electrodeposited on the adherend surface of the copper foil was formed in a spherical shape as shown in FIG. 3, and the surface area of the copper foil was relatively increased.

Figure 2007501330
Figure 2007501330

以上で説明したように,本発明は,印刷回路基板用の銅箔の製造方法を提供する。銅箔の被接着面に球状の銅電着物からなった粗面層が形成され,銅箔の被接着面の接触面積が相対的に増加されることを特徴とする。その結果,絶縁基板との接着性及び耐熱性が向上するだけでなく,銅箔と樹脂基板の接着強度が常に維持されて,電気的特性及び耐酸性が向上し,銅粉の落下を最小にする。   As described above, the present invention provides a method for producing a copper foil for a printed circuit board. A rough surface layer made of a spherical copper electrodeposit is formed on the adherend surface of the copper foil, and the contact area of the adherend surface of the copper foil is relatively increased. As a result, not only the adhesion and heat resistance with the insulating substrate are improved, but also the adhesive strength between the copper foil and the resin substrate is always maintained, the electrical characteristics and acid resistance are improved, and the copper powder falls to a minimum. To do.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,添付した特許請求の範囲に開示した発明の範囲や思想から離れず,当業者は,各種の修正例,追加例,置換例に想到し得る。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, without departing from the scope and spirit of the invention disclosed in the appended claims, those skilled in the art will recognize various modifications, additional examples, A substitution example can be conceived.

従来技術に関して,銅箔の凸部を示した電子顕微鏡写真である。It is the electron micrograph which showed the convex part of copper foil regarding a prior art. 図1の銅箔の凸部に銅電着物が電着されている状態を示した電子顕微鏡写真である。It is the electron micrograph which showed the state by which the copper electrodeposit was electrodeposited on the convex part of the copper foil of FIG. 本発明に関して,銅箔の凸部に銅電着物が電着されている状態を示した電子顕微鏡写真である。It is the electron micrograph which showed the state by which the copper electrodeposit was electrodeposited on the convex part of copper foil regarding this invention.

Claims (5)

印刷回路基板用の銅箔の製造方法において;
銅箔の凸部または平滑面に銅電着物からなる粗面層を形成するため,酸性の電気分解槽において,限界電流密度で,陰極とした前記銅箔を電気分解し,
前記電気分解槽のメッキ溶液の中に,タングステンを含む分子量2000以上の無機ポリアニオンがさらに添加されたことを特徴とする,印刷回路基板用の銅箔の製造方法。
In a method for producing a copper foil for a printed circuit board;
In order to form a rough surface layer made of a copper electrodeposit on the convex or smooth surface of the copper foil, the copper foil as a cathode is electrolyzed at a limiting current density in an acidic electrolysis tank,
A method for producing a copper foil for a printed circuit board, wherein an inorganic polyanion having a molecular weight of 2000 or more containing tungsten is further added to the plating solution of the electrolysis tank.
印刷回路基板用の銅箔の製造方法において;
銅箔の凸部または平滑面に銅電着物からなる粗面層を形成するため,酸性の電気分解槽において,限界電流密度で,陰極とした前記銅箔を電気分解し,
前記電気分解槽のメッキ溶液の中に,タングステンとリンを含む分子量2000以上の無機ポリアニオンがさらに添加されたことを特徴とする,印刷回路基板用の銅箔の製造方法。
In a method for producing a copper foil for a printed circuit board;
In order to form a rough surface layer made of a copper electrodeposit on the convex or smooth surface of the copper foil, the copper foil as a cathode is electrolyzed at a limiting current density in an acidic electrolysis tank,
A method for producing a copper foil for a printed circuit board, wherein an inorganic polyanion having a molecular weight of 2000 or more containing tungsten and phosphorus is further added to the plating solution of the electrolysis tank.
印刷回路基板用の銅箔の製造方法において;
銅箔の凸部または平滑面に銅電着物からなる粗面層を形成するため,酸性の電気分解槽において,限界電流密度で,陰極とした前記銅箔を電気分解し,
前記電気分解槽のメッキ溶液の中に,タングステンとケイ素を含む分子量2000以上の無機ポリアニオンがさらに添加されたことを特徴とする,印刷回路基板用の銅箔の製造方法。
In a method for producing a copper foil for a printed circuit board;
In order to form a rough surface layer made of a copper electrodeposit on the convex or smooth surface of the copper foil, the copper foil as a cathode is electrolyzed at a limiting current density in an acidic electrolysis tank,
A method for producing a copper foil for a printed circuit board, wherein an inorganic polyanion containing tungsten and silicon and having a molecular weight of 2000 or more is further added to the plating solution of the electrolysis tank.
前記無機ポリアニオンは,前記メッキ溶液の中に0.001〜5g/lの濃度で添加されたことを特徴とする,請求項1〜3のいずれかに記載の印刷回路基板用の銅箔の製造方法。   The copper foil for a printed circuit board according to claim 1, wherein the inorganic polyanion is added to the plating solution at a concentration of 0.001 to 5 g / l. Method. 前記無機ポリアニオンは,バナジウム,亜鉛,鉄,ニッケル,コバルト,クロムの群から選択された少なくともいずれかを添加した電解液に含まれることを特徴とする,請求項4に記載の印刷回路基板用の銅箔の製造方法。
5. The printed circuit board for a printed circuit board according to claim 4, wherein the inorganic polyanion is contained in an electrolytic solution to which at least one selected from the group of vanadium, zinc, iron, nickel, cobalt, and chromium is added. A method for producing copper foil.
JP2006532035A 2003-05-29 2004-04-16 Method for producing copper foil for printed circuit board Pending JP2007501330A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030034371A KR100553840B1 (en) 2003-05-29 2003-05-29 Method for manufacturing thin copper film for printed circuit board
PCT/KR2004/000883 WO2004107833A1 (en) 2003-05-29 2004-04-16 Method for manufacturing copper foilfor printed circuit board

Publications (1)

Publication Number Publication Date
JP2007501330A true JP2007501330A (en) 2007-01-25

Family

ID=36806206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006532035A Pending JP2007501330A (en) 2003-05-29 2004-04-16 Method for producing copper foil for printed circuit board

Country Status (4)

Country Link
JP (1) JP2007501330A (en)
KR (1) KR100553840B1 (en)
CN (1) CN1795704A (en)
WO (1) WO2004107833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
WO2013065699A1 (en) * 2011-10-31 2013-05-10 古河電気工業株式会社 High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP2013104121A (en) * 2011-11-16 2013-05-30 Nan Ya Plastics Corp Method for producing copper foil for environmentally friendly printed circuit board composed of fine granular surface with high peeling strength

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130058051A (en) * 2010-09-24 2013-06-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board
CN102548202B (en) * 2010-12-08 2014-09-03 金居开发铜箔股份有限公司 Roughly-processed copper foil and manufacture method thereof
CN103348041B (en) * 2011-07-29 2016-10-12 古河电气工业株式会社 Electrolyte used in cathode copper Alloy Foil, its preparation method, preparation, use secondary battery cathode collector body, secondary cell and the electrode thereof of this cathode copper Alloy Foil
KR101787513B1 (en) * 2013-01-29 2017-10-18 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, battery current collector comprising said electrolytic copper foil, electrode obtained using said current collector for secondary battery, and secondary battery obtained using said electrode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840001643B1 (en) * 1981-04-03 1984-10-12 후루가와 서킷트 호일 가부시끼 가이샤 Copper foil for a printed circuit
US4387006A (en) * 1981-07-08 1983-06-07 Fukuda Metal Foil & Powder Co., Ltd. Method of treating the surface of the copper foil used in printed wire boards
KR930007925B1 (en) * 1991-09-16 1993-08-21 덕산금속 주식회사 Copper or copper alloy and surface treatment method for plating the same
JPH07138794A (en) * 1993-11-10 1995-05-30 Japan Energy Corp Copper foil having zinc-silica multiple coating film and its production
JP3238278B2 (en) * 1994-04-12 2001-12-10 株式会社日鉱マテリアルズ Manufacturing method of electrolytic copper foil
JP3329572B2 (en) * 1994-04-15 2002-09-30 福田金属箔粉工業株式会社 Copper foil for printed circuit and surface treatment method thereof
US6497806B1 (en) * 2000-04-25 2002-12-24 Nippon Denkai, Ltd. Method of producing a roughening-treated copper foil
GB2361713B (en) * 2000-04-14 2003-09-24 Fukuda Metal Foil Powder Method for surface treatment of copper foil
JP3709142B2 (en) * 2001-01-19 2005-10-19 福田金属箔粉工業株式会社 Copper foil for printed wiring board and method for producing the same
KR100389061B1 (en) * 2002-11-14 2003-06-25 일진소재산업주식회사 Electrolytic copper foil and process producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110092A1 (en) * 2009-03-27 2010-09-30 日鉱金属株式会社 Copper foil for printed wiring board and method for producing same
WO2013065699A1 (en) * 2011-10-31 2013-05-10 古河電気工業株式会社 High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
US9428840B2 (en) 2011-10-31 2016-08-30 Furukawa Electric Co., Ltd. High strength, high heat resistance electrodeposited copper foil and manufacturing method for same
JP2013104121A (en) * 2011-11-16 2013-05-30 Nan Ya Plastics Corp Method for producing copper foil for environmentally friendly printed circuit board composed of fine granular surface with high peeling strength

Also Published As

Publication number Publication date
KR100553840B1 (en) 2006-02-24
KR20040102768A (en) 2004-12-08
WO2004107833A1 (en) 2004-12-09
CN1795704A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
EP0380545B1 (en) Improved circuit board material and electroplating bath for the production thereof
JP5481577B1 (en) Copper foil with carrier
CN103857833B (en) Excellent copper foil, its manufacturing method and printed wiring board or negative electrode battery material using the electrolytic copper foil with resin adhesiveness
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
KR20040073387A (en) Copper foil for high frequency circuit and method of production of same
JP3739929B2 (en) Copper foil for printed wiring board and method for producing the same
JPH07120564B2 (en) Conductive material with resistive layer and printed circuit board with resistive layer
KR102655111B1 (en) Electrodeposited copper foil with its surfaceprepared, process for producing the same and usethereof
US5234573A (en) Method of surface treatment of copper foil for printed circuit boards and copper foil for printed circuit boards
KR101695236B1 (en) Copper foil, electric component and battery comprising the foil
KR101188146B1 (en) Copper foil including resistive film layer
US7976956B2 (en) Laminated circuit board
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2007501330A (en) Method for producing copper foil for printed circuit board
KR101045538B1 (en) Method of forming thin film resistive layer, conductive substrate with resistive layer and material for circuit board with resistive layer
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
KR20010102562A (en) Surface treated copper foil and method for preparing the same and copper-clad laminate using the same
CN102783255B (en) Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JP3943214B2 (en) Electrolytic copper foil containing silver
GB2123616A (en) Circuit boards and method of manufacture thereof
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
JP5481591B1 (en) Copper foil with carrier
JP4257632B2 (en) Copper foil with resistance layer and manufacturing method thereof
KR101224034B1 (en) Copper foil for printed circuit and Fabrication method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216