JP3238278B2 - Manufacturing method of electrolytic copper foil - Google Patents
Manufacturing method of electrolytic copper foilInfo
- Publication number
- JP3238278B2 JP3238278B2 JP09702694A JP9702694A JP3238278B2 JP 3238278 B2 JP3238278 B2 JP 3238278B2 JP 09702694 A JP09702694 A JP 09702694A JP 9702694 A JP9702694 A JP 9702694A JP 3238278 B2 JP3238278 B2 JP 3238278B2
- Authority
- JP
- Japan
- Prior art keywords
- tungsten
- copper foil
- acid
- electrolytic
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電解銅箔の製造方法に
関するものであり、特には印刷回路用銅箔として、ピン
ホールが少なく、樹脂基板との接着性に優れかつ180
℃における熱間伸び率が高い電解銅箔の製造方法に関す
る。熱間伸び率が高い銅箔は高高温伸び銅箔とも呼ばれ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrolytic copper foil, and particularly to a copper foil for a printed circuit, which has a small number of pinholes, has excellent adhesiveness to a resin substrate, and has a 180
The present invention relates to a method for producing an electrolytic copper foil having a high hot elongation at ℃. A copper foil having a high hot elongation is also referred to as a high-temperature elongation copper foil.
【0002】[0002]
【従来の技術】銅及び銅合金箔(以下、銅箔と称する)
は、電器・電子関連産業の発展に大きく寄与しており、
特に印刷回路材として不可欠の存在となっている。印刷
回路用銅箔は一般に、合成樹脂ボード、フィルム等の基
材に接着剤を介して或いは接着剤を使用せずに高温高圧
下で積層接着して銅張積層板を製造し、その後目的とす
る回路を形成するべく必要な回路を印刷した後、不要部
を除去するエッチング処理が施される。最終的に、所要
の素子が半田付けされて、エレクトロニクスデバイス用
の種々の印刷回路板を形成する。印刷回路板用銅箔に対
する品質要求は、樹脂基材と接着される面(粗化面)と
非接着面(光沢面)とで異なり、それぞれに多くの方法
が提唱されている。2. Description of the Related Art Copper and copper alloy foils (hereinafter referred to as copper foils)
Has contributed greatly to the development of the electrical and electronics related industries,
In particular, it is indispensable as a printed circuit material. In general, copper foil for printed circuits is laminated and bonded to a base material such as a synthetic resin board and a film under a high temperature and a high pressure with an adhesive or without using an adhesive to produce a copper-clad laminate. After printing a circuit necessary to form a desired circuit, an etching process for removing unnecessary portions is performed. Finally, the required elements are soldered to form various printed circuit boards for electronic devices. The quality requirements for the copper foil for printed circuit boards are different for the surface (roughened surface) bonded to the resin base material and the non-bonded surface (glossy surface), and many methods have been proposed for each.
【0003】銅張積層板の製造方法としては、ホットプ
レス法や近時では連続法が採用されている。例えば、ホ
ットプレス法による紙基材フェノール樹脂銅張積層板の
製造を例にとると、紙基材へのフェノール樹脂の含浸及
び乾燥を行ってプリプレグを製造し、最後に、所定数量
のプリプレグと銅箔とを組み合わせ、多段式プレス機に
より熱圧成形を行い、解板、耳切りを行い、次工程へと
送られる。連続法の場合、片面銅張積層板及び両面銅張
積層板が製造されている。例えば、紙基材ポリエステル
樹脂銅張積層板の場合、複数個のロール状原紙から原紙
が繰り出され、それぞれ個別に紙処理、樹脂含浸工程を
経て、複数枚の樹脂含浸紙はロール対によって積層され
る。次いで接着剤塗布工程を経た銅箔、片面の場合は銅
箔とキャリアがラミネートされる。この積層およびラミ
ネート工程で製品厚みを制御する。次に硬化炉へ送り込
まれ、樹脂の硬化反応が起こり、硬化する。硬化後定尺
切断、アフターキュアおよび端面の研摩工程を経て、さ
らに外観検査、特性検査を実施し製品となる。片面と両
面の相違点は、片面の場合には、下方よりキャリアフィ
ルムを繰り出し、樹脂硬化後このキャリアを引き剥し、
巻取るのに対し、両面の場合には下方からも接着剤塗布
工程を経た銅箔を繰り出す点であり、他の工程は、片面
も両面も同等である。その他、ガラス−エポキシ樹脂基
板等に関しても同様の工程で製造される。更に、多層プ
リント配線板を製造する場合には、片面及び/又は両面
に銅箔等で回路を形成した内層用の回路板にプリプレグ
を介して外層用回路板もしくは銅箔を重ね、これを積層
形成して内層用の回路板と外層用の回路板もしくは銅箔
とを樹脂含浸基材による絶縁接着層を介して積層するこ
とにより製造するのが一般的である。[0003] As a method for producing a copper-clad laminate, a hot press method or a continuous method has recently been adopted. For example, taking the production of a paper-based phenolic resin copper-clad laminate by a hot press method as an example, a prepreg is produced by impregnating and drying a phenolic resin on a paper base, and finally, a predetermined amount of prepreg and Combined with copper foil, hot-press forming is performed by a multi-stage press machine, de-plated, trimmed, and sent to the next step. In the case of the continuous method, a single-sided copper-clad laminate and a double-sided copper-clad laminate are manufactured. For example, in the case of a paper-based polyester resin copper-clad laminate, the base paper is unwound from a plurality of roll-shaped base papers, individually processed through a paper treatment and a resin impregnation step, and a plurality of resin-impregnated papers are laminated by a roll pair. You. Next, a copper foil that has undergone an adhesive application step, or in the case of one side, a copper foil and a carrier are laminated. The product thickness is controlled in the laminating and laminating steps. Next, the resin is sent to a curing furnace, where a curing reaction of the resin occurs and the resin is cured. After curing, it goes through a fixed-size cutting, after-curing and end-face polishing steps, and is further subjected to appearance inspection and characteristic inspection to produce a product. The difference between one side and both sides is that, in the case of one side, the carrier film is pulled out from below, and after the resin is cured, the carrier is peeled off.
In contrast to winding up, in the case of both sides, the point is that the copper foil that has passed through the adhesive application step is also drawn out from below, and the other steps are the same on both sides. In addition, a glass-epoxy resin substrate and the like are manufactured in a similar process. Furthermore, in the case of manufacturing a multilayer printed wiring board, an outer layer circuit board or a copper foil is laminated via a prepreg on an inner layer circuit board having a circuit formed of copper foil on one side and / or both sides and laminated. It is generally manufactured by forming and laminating a circuit board for the inner layer and a circuit board or copper foil for the outer layer via an insulating adhesive layer made of a resin-impregnated base material.
【0004】銅箔には電解銅箔と圧延銅箔とがあるが、
プリント配線板用として使用される銅箔は、その接着強
度等の観点から、大部分電解銅箔である。電解銅箔は、
電気銅乃至それと同等の純度を有する電線スクラップを
原料とし、それを硫酸酸性硫酸銅水溶液中に溶解させて
電解浴を調製し、通常ステンレス鋼、チタン、クロムめ
っきなどで表面が構成されている陰極円筒体を水平に
し、この陰極と相対して配置された陽極との間に電解液
を流し、陰極を回転させながら陽極との間に電流を流し
て、陰極の表面に銅を電着させた後、所定の厚さとなっ
た電着物を銅箔として連続的に剥離して生箔を製造する
ことを基本とする。銅箔の厚みは、電流の大きさと、回
転速度とを調節することで行う。その後、印刷回路板用
銅箔に対する品質要求に応じて、樹脂基材と接着される
面(粗化面)と非接着面(光沢面)とでそれぞれに多く
の処理がなされる。これはトリート処理(表面処理)工
程と呼ばれる。[0004] There are two types of copper foil: electrolytic copper foil and rolled copper foil.
Copper foil used for printed wiring boards is mostly electrolytic copper foil from the viewpoint of its adhesive strength and the like. Electrolytic copper foil is
Cathode whose surface is composed of stainless steel, titanium, chromium plating, etc., prepared from electrolytic copper or electric wire scrap having the same purity as a raw material and dissolved in an aqueous solution of sulfuric acid-acidic copper sulfate to prepare an electrolytic bath The cylindrical body was leveled, an electrolytic solution was flowed between the cathode and the anode arranged opposite to the cathode, and a current was passed between the anode and the anode while rotating the cathode, and copper was electrodeposited on the surface of the cathode. After that, the electrodeposit having a predetermined thickness is continuously peeled off as a copper foil to produce a raw foil. The thickness of the copper foil is adjusted by adjusting the magnitude of the current and the rotation speed. After that, according to the quality requirement for the copper foil for a printed circuit board, many processes are performed on the surface to be bonded to the resin substrate (roughened surface) and the non-bonded surface (glossy surface). This is called a treatment (surface treatment) step.
【0005】工業的に多く使用されている電解銅箔製造
のための硫酸酸性硫酸銅溶液中にはカソードである回転
ドラム表面を保護するために或いは製品のピンホール等
の欠陥の発生を防止するために、ニカワを2〜10pp
m添加している。その他、電解銅箔製造のための硫酸酸
性硫酸銅溶液として各種の添加剤を添加した浴が報告さ
れている。例えば、特公昭49−31415号は、靱
性、硬さ等の向上並びにピンホールの防止を目的とし
て、ポリアルキレングリコール及びニカワ、ゼラチン等
の膠質剤の1種乃至両種(0.2〜5mg/l)と塩化
物イオン5〜100mg/lを添加した酸性銅めっき浴
或いはそれに加えてピロ燐酸若しくは燐酸またはこれら
塩類のうちの少なくとも1種を10g/l以下を添加し
た酸性銅めっき浴を記載している。特公平2−2599
5号は、高温加熱時の伸び率を改善することを目的とし
て、硫酸酸性銅めっき浴にトリイソプロパノールアミン
を2〜10ppmと、ゼラチン0.05〜0.2ppm
を併用添加した電解液を記載している。これら一方が添
加されないと、電解銅箔は微細粗面とならないか、ある
いは高温加熱時の伸び率が極端に大きくなって変動が大
幅となり、目的とする安定した伸び率が得られないと記
載する。特開昭63−310990号は、加熱時の伸び
率改善及び粗面を形成する凹凸の円錐形化を目的とし
て、硫酸酸性銅めっき浴にトリイソアミルアミン0.5
〜15ppm、塩化物イオン1〜30ppm及びゼラチ
ン0.1〜5ppmの3種類の添加剤を配合した銅めっ
き浴を記載している。特開平4−88185号は、粗面
の凹凸を小さくしかも均一化するロープロファイル化を
目的として硫酸酸性銅めっき浴に酵素分解ゼラチンを5
〜50ppm添加した銅めっき浴を記載している。[0005] A sulfuric acid-acidic copper sulfate solution used for producing electrolytic copper foil, which is widely used in industry, is used to protect the surface of a rotating drum as a cathode or to prevent the occurrence of defects such as pinholes in products. In order to reduce glue, 2 ~ 10pp
m is added. In addition, a bath to which various additives are added as a sulfuric acid acidic copper sulfate solution for producing an electrolytic copper foil has been reported. For example, Japanese Patent Publication No. 49-31415 discloses one or both of polyalkylene glycols and colloids such as glue and gelatin (0.2 to 5 mg / day) for the purpose of improving toughness and hardness and preventing pinholes. 1) and an acidic copper plating bath to which 5 to 100 mg / l of chloride ion is added, or an acid copper plating bath to which 10 g / l or less of pyrophosphoric acid or phosphoric acid or salts thereof are added. ing. 2-2599
No. 5 aims to improve the elongation at the time of high-temperature heating, 2 to 10 ppm of triisopropanolamine and 0.05 to 0.2 ppm of gelatin in a sulfuric acid acidic copper plating bath.
Are described in combination. If one of these is not added, the electrodeposited copper foil does not become a fine rough surface, or the elongation at the time of high-temperature heating becomes extremely large and the fluctuation becomes large, stating that the intended stable elongation cannot be obtained. . Japanese Unexamined Patent Publication (Kokai) No. 63-310990 discloses a method for improving the elongation at the time of heating and forming conical irregularities for forming a rough surface by adding triisoamylamine 0.5 to a sulfuric acid acid copper plating bath.
Describes a copper plating bath containing three kinds of additives, 1515 ppm, 1-30 ppm of chloride ions and 0.1-5 ppm of gelatin. Japanese Patent Application Laid-Open No. 4-88185 discloses that enzymatically degraded gelatin is added to a sulfuric acid acidic copper plating bath for the purpose of forming a low profile for making the roughness of the rough surface small and uniform.
It describes a copper plating bath added with 5050 ppm.
【0006】いずれにせよ、前述した通り、工業的に多
く使用されている電解銅箔製造のための硫酸酸性硫酸銅
溶液中にはカソードである回転ドラム表面を保護するた
めに或いは製品のピンホール等の欠陥の発生を防止する
ためにニカワを多量に添加しまたその他の目的で各種有
機添加剤を添加しているのが実情である。例えば、ニカ
ワを多量に添加した条件で電解銅箔を製造すれば、銅箔
粗面の粗さも大きくなり、樹脂基板と銅箔との接着性も
良好であることが知られている。In any case, as described above, a sulfuric acid-acidic copper sulfate solution used for producing an electrolytic copper foil, which is widely used in industry, is used to protect the surface of a rotating drum as a cathode, or to pinhole a product. In fact, a large amount of glue is added to prevent the occurrence of defects such as defects, and various organic additives are added for other purposes. For example, it is known that when an electrolytic copper foil is manufactured under the condition that a large amount of glue is added, the roughness of the copper foil rough surface increases, and the adhesion between the resin substrate and the copper foil is also good.
【0007】[0007]
【発明が解決しようとする課題】しかし、このようにし
て製造された電解銅箔は、180℃における熱間伸び率
が3%未満と低く、そのため銅張積層板作製時に積層板
の伸びに追随できないため、亀裂が入るあるいは銅張積
層板に反り、ねじれが発生する等の欠点があった。詳し
くは、例えば、特開平5−243698号に記載される
ように、従来の金属箔張り積層板の連続製造方法におい
て用いられている金属箔は、高温時の伸び率が小さく、
このため樹脂含浸基材が絶縁層となる際の硬化収縮や樹
脂の熱膨張など樹脂の動きに追従できず、絶縁層内部に
歪みが生じやすくなる。この歪みが金属箔張り積層板に
反りやねじれ現象を起こさせる。特に、長尺の金属箔を
用いて連続的に製造された金属箔張り積層板では、その
製造時に金属箔を常に引張りながら積層一体化するため
伸び率が小さいと緩和しろが少ないため一層著しい反り
やねじれ現象を起こさせる。また、両面金属箔張り積層
板の場合、片面の金属箔のみを除去すると、絶縁層の歪
みのために反り、ねじれが大きくなる。However, the electrolytic copper foil manufactured in this manner has a low hot elongation at 180 ° C. of less than 3%, and therefore follows the elongation of the laminate at the time of producing the copper-clad laminate. Since it cannot be performed, there are disadvantages such as cracking, warpage of the copper-clad laminate, and twisting. Specifically, for example, as described in JP-A-5-243698, the metal foil used in the conventional method for continuously manufacturing a metal foil-clad laminate has a small elongation at high temperatures,
Therefore, the resin-impregnated base material cannot follow the movement of the resin, such as curing shrinkage and thermal expansion of the resin when the resin-impregnated base material becomes the insulating layer, and distortion is likely to occur inside the insulating layer. This distortion causes the metal foil-clad laminate to warp or twist. In particular, in metal foil-clad laminates manufactured continuously using long metal foils, the metal foil is always laminated while being stretched during the manufacturing process. And cause a twisting phenomenon. Further, in the case of a double-sided metal foil-clad laminate, if only one side of the metal foil is removed, the warpage and torsion increase due to distortion of the insulating layer.
【0008】近年、電算機を始めとする電子工業の分野
において、装置の小型化、軽量化が進んでおり、このた
め回路の高密度化、多層化が図られている。高密度化、
多層化に適するプリント回路を得るために、銅箔に要求
される特性は幾つかあるが、特に、ピンホールが少な
く、基体に確実に接着し、180℃における熱間時の伸
び率が3%以上であることが重要である。前2者は、薄
い銅箔の場合に重要である。[0008] In recent years, in the field of the electronics industry such as computers, the size and weight of devices have been reduced, and thus higher density and multilayer circuits have been achieved. Densification,
In order to obtain a printed circuit suitable for multilayering, there are several characteristics required for a copper foil, but in particular, the number of pinholes is small, the film is securely adhered to a substrate, and the elongation at hot at 180 ° C. is 3%. It is important that this is the case. The former two are important in the case of thin copper foil.
【0009】こうした状況に鑑み、少なくとも3%の高
温での伸びを有する電解銅箔を製造することが要望され
ている。従来は有機添加剤の濃度を低下させるなどし
て、180℃熱間伸び率を向上させた電解銅箔を製造し
ていた。しかし、このようにして製造された電解銅箔
は、樹脂基板との接着性が低下するばかりでなく、ピン
ホールが発生しやすいという問題点があった。先に列挙
した従来技術にも、電解銅箔の高温伸びを改善する試み
は存在するが、電解液中への有機添加剤の添加を必要と
する。In view of these circumstances, there is a demand for producing an electrolytic copper foil having an elongation at a high temperature of at least 3%. Conventionally, an electrolytic copper foil having an improved 180 ° C. hot elongation by reducing the concentration of an organic additive has been manufactured. However, the electrodeposited copper foil manufactured in this way has a problem that not only the adhesiveness to the resin substrate is lowered but also a pinhole is easily generated. In the prior arts listed above, there are attempts to improve the high-temperature elongation of the electrolytic copper foil, but it requires the addition of an organic additive to the electrolytic solution.
【0010】本発明の課題は、180℃における熱間伸
び率が3%以上であり、銅箔粗面の粗さが大きく、しか
もピンホール発生の少ない電解銅箔の製造方法を確立す
ることである。なお、本発明において高高温伸び電解銅
箔とは、180℃での伸びが3%以上、好ましくは7〜
50%のものをいう。An object of the present invention is to establish a method for producing an electrolytic copper foil having a hot elongation at 180 ° C. of 3% or more, a rough surface of a copper foil having a large roughness, and less occurrence of pinholes. is there. In the present invention, the high-temperature stretched electrolytic copper foil means that the elongation at 180 ° C. is 3% or more, preferably 7 to
It means 50%.
【0011】[0011]
【課題を解決するための手段】本発明者等は、180℃
熱間伸び率が3%以上で、銅箔粗面の粗さが大きく、し
かもピンホール発生の少ない銅箔の製造方法について検
討を進めてきた。その結果、電解液中にタングステン若
しくはタングステン酸等のタングステン化合物を添加す
ることで、電解銅箔の製造に用いる公知のにかわ等の有
機物添加量を減らすこと無く、180℃熱間伸び率が3
%以上でかつ粗面の粗さが大きい電解銅箔を製造できる
ことを見出した。この知見に基づいて、本発明は、硫酸
酸性硫酸銅溶液を電解液として電解銅箔を製造する方法
において、該電解液にタングステン若しくはタングステ
ン化合物をタングステンとして0.1μg/l〜250
mg/l、好ましくは0.1mg/l〜50mg/l添
加することを特徴とする電解銅箔の製造方法を提供す
る。電解液中のタングステン化合物の沈殿発生を防止す
るためには、亜リン酸、リン酸、ピロリン酸、ポリリン
酸、亜ヒ酸、ヒ酸、メタバナジン酸から選ばれる1種以
上の酸或いは塩の形態の化合物の添加が有効であること
も判明した。これに基づいて、本発明はまた、硫酸酸性
硫酸銅溶液を電解液として電解銅箔を製造する方法にお
いて、該電解液にタングステン若しくはタングステン化
合物をタングステンとして0.1μg/l〜250mg
/l、好ましくは0.1mg/l〜50mg/l添加
し、併せて亜リン酸、リン酸、ピロリン酸、ポリリン
酸、亜ヒ酸、ヒ酸、メタバナジン酸から選ばれる1種以
上の酸或いは塩の形態の化合物を添加することを特徴と
する電解銅箔の製造方法を提供する。ニカワ:10mg
/l以下及び塩化物イオン:20〜100mg/lを含
む硫酸酸性硫酸銅溶液を電解液として用いることが好ま
しい実施法の一つである。タングステン若しくはタング
ステン化合物はタングステン金属、タングステン酸塩、
タングステン−銅合金から選ばれる1つ以上の形態で電
解液中に添加することが好ましい。Means for Solving the Problems The inventors of the present invention have a temperature of 180 ° C.
Studies have been made on a method of manufacturing a copper foil having a hot elongation of 3% or more, a large roughness of the copper foil rough surface, and less occurrence of pinholes. As a result, by adding a tungsten compound such as tungsten or tungstic acid to the electrolytic solution, the hot elongation at 180 ° C. can be reduced to 3 without reducing the amount of addition of known organic substances such as glue used in the production of electrolytic copper foil.
% Or more, and it has been found that an electrolytic copper foil having a large roughness can be produced. Based on this finding, the present invention relates to a method for producing an electrolytic copper foil using a sulfuric acid-acidic copper sulfate solution as an electrolytic solution, wherein the electrolytic solution contains tungsten or a tungsten compound in an amount of 0.1 μg / l to 250 μm.
mg / l, preferably from 0.1 mg / l to 50 mg / l. In order to prevent precipitation of the tungsten compound in the electrolytic solution, at least one form of acid or salt selected from phosphorous acid, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenous acid, arsenic acid, and metavanadic acid It was also found that the addition of the compound was effective. Based on this, the present invention also provides a method for producing an electrolytic copper foil using a sulfuric acid-acidic copper sulfate solution as an electrolytic solution, wherein the electrolytic solution contains tungsten or a tungsten compound in an amount of 0.1 μg / l to 250 mg as tungsten.
/ L, preferably 0.1 mg / l to 50 mg / l, and one or more acids selected from phosphorous acid, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenous acid, arsenic acid and metavanadic acid, or Provided is a method for producing an electrolytic copper foil, which comprises adding a compound in the form of a salt. Glue: 10mg
It is one of the preferable methods to use a sulfuric acid acidic copper sulfate solution containing not more than 20 mg / l and chloride ion: 20 to 100 mg / l as the electrolytic solution. Tungsten or a tungsten compound is tungsten metal, tungstate,
It is preferable to add to the electrolytic solution in one or more forms selected from a tungsten-copper alloy.
【0012】[0012]
【作用】タングステン若しくはタングステン酸等のタン
グステン化合物を硫酸酸性硫酸銅電解液に添加すること
により、180℃における熱間伸び率が3%以上で銅箔
粗面の粗さが大きく、ピンホール発生の少ない電解銅箔
を製造する。タングステン化合物の添加が電解銅箔の電
着に及ぼす影響は明確でないが、電解銅箔の断面を観察
すると、柱状晶部分の結晶が大きくなっているととも
に、若干の結晶の乱れも同時に観察される。結晶が大き
くなることで、粗面の粗さが増加していると言える。ま
た、若干の結晶の乱れが、180℃熱間伸び率の向上に
関係していると推定される。また、何らかの理由で、タ
ングステンの添加が本電解液を用いて製造した電解銅箔
中のニカワの取り込み量を低減せしめ、高温処理時に結
晶のアニール(再結晶)を促進せしめ、その結果として
高温での伸び率を増大させるものとも思われる。タング
ステンは、併存するニカワ等の有機添加剤の作用を阻害
することなく、所期の作用効果を発生するか、或いは、
ニカワ等の有機添加剤の作用を補って余りある作用効果
を奏するものと思われる。By adding a tungsten compound such as tungsten or tungstic acid to a sulfuric acid-acidic copper sulfate electrolyte, the hot elongation at 180 ° C. is 3% or more, the roughness of the copper foil rough surface is large, and pinholes are not generated. Produce less electrolytic copper foil. The effect of the addition of the tungsten compound on the electrodeposition of the electrodeposited copper foil is not clear, but when observing the cross section of the electrodeposited copper foil, the crystals in the columnar crystal part are large and some crystal disorder is also observed at the same time . It can be said that the larger the crystal, the greater the roughness of the rough surface. Further, it is estimated that slight crystal disorder is related to the improvement of the 180 ° C. hot elongation. Also, for some reason, the addition of tungsten reduces the amount of glue taken up in the electrolytic copper foil produced using this electrolyte, and promotes the annealing (recrystallization) of the crystal during high-temperature treatment. It is thought to increase the elongation rate. Tungsten produces the desired effect without hindering the action of organic additives such as glue, or
It is thought that the effect of the organic additive such as glue is complemented by a considerable effect.
【0013】本発明は、一般的に使用されている硫酸酸
性硫酸銅電解液並びにそれに公知の添加剤を添加した電
解液全般に適用することができる。本発明で用いる代表
的な電解液の基本的な組成及び電解条件は以下の通りで
ある(塩化物イオン及びニカワの添加例も示す)。 (A)電解液組成: CuSO4・5H2O:200〜600g/l 硫酸 :20〜200g/l 塩化物イオン(Cl- ):20〜100mg/l ニカワ:10mg/l以下 W :0.1μg/l〜250mg/l、好ましくは
0.1mg/l〜50mg/l (B)電解条件: 電解液温度:20〜70℃ 電流密度 :50〜150A/dm2 電解時間 :10〜300秒 アノード :PbThe present invention can be applied to generally used sulfuric acid-acidic copper sulfate electrolytes as well as general electrolytes to which known additives are added. The basic composition and electrolysis conditions of a typical electrolytic solution used in the present invention are as follows (an example of addition of chloride ions and glue is also shown). (A) Electrolyte composition: CuSO 4 .5H 2 O: 200 to 600 g / l Sulfuric acid: 20 to 200 g / l Chloride ion (Cl − ): 20 to 100 mg / l glue: 10 mg / l or less W: 0.1 μg / L to 250 mg / l, preferably 0.1 mg / l to 50 mg / l (B) Electrolysis conditions: Electrolyte temperature: 20 to 70 ° C Current density: 50 to 150 A / dm 2 Electrolysis time: 10 to 300 seconds Anode: Pb
【0014】本発明の最大の特徴は、硫酸酸性硫酸銅電
解液においてタングステン若しくはタングステン化合物
を電解液に添加することであるが、その添加形態は、タ
ングステン金属、タングステン酸塩、タングステン−銅
合金から選ばれるものであれば良い。タングステン金属
及びタングステン−銅合金は、線状、粉末状などで電解
液に浸すことで溶解可能である。タングステン酸塩とし
ては、メタタングステン酸ナトリウム等のアルカリ金属
塩、アンモニウム塩等が使用可能であり、これらの塩を
水に溶解した後、電解液に添加する。The most important feature of the present invention is that tungsten or a tungsten compound is added to a sulfuric acid-acidic copper sulfate electrolyte solution. The addition form is selected from tungsten metal, tungstate, and tungsten-copper alloy. Anything can be selected. Tungsten metal and a tungsten-copper alloy can be dissolved by immersing them in an electrolytic solution in the form of a wire or powder. As the tungstate, alkali metal salts such as sodium metatungstate, ammonium salts, and the like can be used. These salts are dissolved in water and then added to the electrolytic solution.
【0015】溶解しているタングステン濃度が0.1μ
g/l以上、望ましくは0.1mg/l以上であれば、
前述したような180℃熱間伸び率向上及び銅箔粗面の
粗さ増大に十分効果がある。250mg/lを超えると
効果が飽和してしまう。The dissolved tungsten concentration is 0.1 μm.
g / l or more, desirably 0.1 mg / l or more,
It has a sufficient effect on improving the hot elongation at 180 ° C. and increasing the roughness of the copper foil rough surface as described above. If it exceeds 250 mg / l, the effect will be saturated.
【0016】電解中、タングステン化合物による沈殿の
発生が起こることがあるが、これをを防止するために
は、亜リン酸、リン酸、ピロリン酸、ポリリン酸等のリ
ンの酸或いは塩を添加することが望ましい。これらは、
電解液中で最終的にリン酸の形になるため、その場で入
手が容易なものを選択すれば良い。リン酸濃度は、10
mg/l以上であれば、沈殿発生防止に効果がある。ま
た、上記のリン酸類の他に、亜ヒ酸、ヒ酸、メタバナジ
ン酸等の存在も、タングステンの沈殿発生防止に効果が
ある。リン酸類、ヒ酸類、メタバナジン酸等の添加によ
るタングステン化合物の沈殿発生防止は、ヘテロポリ酸
等の錯体形成によるものと推定される。要は、これら沈
殿発生防止剤は、電解条件に応じて、沈殿発生防止効果
を奏するに充分な量を添加すればよい。During the electrolysis, precipitation may occur due to the tungsten compound. To prevent this, an acid or salt of phosphorus such as phosphorous acid, phosphoric acid, pyrophosphoric acid or polyphosphoric acid is added. It is desirable. They are,
Since it finally becomes phosphoric acid in the electrolytic solution, it is sufficient to select a phosphoric acid which is easily available on the spot. Phosphoric acid concentration is 10
If it is not less than mg / l, it is effective in preventing precipitation. Further, in addition to the above-mentioned phosphoric acids, the presence of arsenous acid, arsenic acid, metavanadic acid, etc. is also effective in preventing precipitation of tungsten. Prevention of precipitation of the tungsten compound by the addition of phosphoric acids, arsenic acids, metavanadic acid, and the like is presumed to be due to complex formation of heteropoly acids and the like. In short, it is sufficient to add these precipitation preventing agents in an amount sufficient to exhibit the effect of preventing precipitation, depending on the electrolysis conditions.
【0017】CuSO4・5H2Oは200〜600g/l、好ま
しくは250〜500g/lとされる。硫酸は20〜2
00g/l、好ましくは40〜120g/lとされる。
適正な銅電着速度を確保するためにこれらが必要とされ
る。硫酸が20g/l未満では、電解液の電導度が低下
し、電解槽電圧が上昇する。200g/lを超えると、
高温伸び銅箔が製造が次第に困難となり、設備の腐蝕が
発生しやすくなる。The amount of CuSO 4 .5H 2 O is 200 to 600 g / l, preferably 250 to 500 g / l. 20 to 2 sulfuric acid
00 g / l, preferably 40 to 120 g / l.
These are required to ensure proper copper electrodeposition rates. If the amount of sulfuric acid is less than 20 g / l, the conductivity of the electrolytic solution decreases, and the electrolytic cell voltage increases. If it exceeds 200 g / l,
The production of high-temperature stretched copper foil gradually becomes difficult, and the corrosion of the equipment is liable to occur.
【0018】好ましくは、塩化物イオンが20〜100
mg/lの量において添加される。この範囲外では、銅
箔の基本的特性(抗張力、粗さ等)が一定とならない。
塩化物イオンは、塩酸、食塩、塩化カリウム等の形で添
加される。Preferably, the chloride ion is 20 to 100.
It is added in an amount of mg / l . Outside this range, the basic properties (tensile strength, roughness, etc.) of the copper foil are not constant.
Chloride ions are added in the form of hydrochloric acid, salt, potassium chloride and the like.
【0019】電解液温度は20〜70℃、好ましくは3
0〜60℃にすることが望ましい。電解液温度を下げる
と、ニカワ濃度が高めでも高温伸び銅箔が製造できる。
20℃未満では、電解液の電導度が低下し、電解槽電圧
が上昇する。70℃を超えると高温伸び銅箔が製造が次
第に困難となり、エネルギーコストも増大する。The temperature of the electrolyte is 20 to 70 ° C., preferably 3
It is desirable that the temperature be 0 to 60 ° C. When the electrolyte temperature is lowered, a high-temperature stretched copper foil can be produced even when the glue concentration is high.
If the temperature is lower than 20 ° C., the conductivity of the electrolytic solution decreases, and the electrolytic cell voltage increases. If the temperature exceeds 70 ° C., the production of a high-temperature stretched copper foil becomes gradually difficult, and the energy cost increases.
【0020】硫酸酸性硫酸銅電解液においてニカワは元
来、カソードである回転ドラム表面を保護するため或い
は製品のピンホール等の欠陥を防止するため、更には銅
の結晶成長を抑止させて均一化させるため10mg/l
以下添加するのが通例である。In the sulfuric acid acidic copper sulfate electrolyte, glue is originally used to protect the surface of the rotating drum serving as the cathode or to prevent defects such as pinholes of the product, and to suppress the crystal growth of copper to make it uniform. 10mg / l
It is customary to add below.
【0021】電流密度範囲は、安定してかつ実用上許容
される時間で電解銅箔を製造するためには50〜150
A/dm2 である。電解時間は、必要とする銅箔の厚さ
(5〜100μm)に応じて、他の電解条件にもよるが
通常10〜300秒の範囲で実施される。The current density range is 50 to 150 for producing an electrolytic copper foil in a stable and practically acceptable time.
A / dm 2 . The electrolysis time depends on the required thickness of the copper foil (5 to 100 μm), but is usually in the range of 10 to 300 seconds, depending on other electrolysis conditions.
【0022】タングステンを添加による180℃での熱
間伸び率の向上は、にかわ濃度を低下させても発現す
る。従って、近時、熱間伸び率を上昇させるためにニカ
ワ濃度を下げた電解液が提唱されているが、そうしたニ
カワ濃度を下げて180℃熱間伸び率の高い箔を製造す
る方法においても、ピンホールの発生を抑えて、同等以
上の180℃熱間伸び率を示す銅箔を製造することが可
能である。この場合のニカワの濃度は、好ましくは0.
01〜2mg/l、特に好ましくは0.1〜1mg/l
である。The improvement of the hot elongation at 180 ° C. by adding tungsten is exhibited even when the glue concentration is reduced. Therefore, recently, an electrolytic solution with a reduced glue concentration has been proposed to increase the hot elongation, but even in a method of producing a foil having a high hot elongation of 180 ° C. by lowering the glue concentration, It is possible to produce a copper foil having a hot elongation of 180 ° C. or higher while suppressing the occurrence of pinholes. The concentration of glue in this case is preferably 0.
01 to 2 mg / l, particularly preferably 0.1 to 1 mg / l
It is.
【0023】タングステン化合物の添加が電解銅箔の電
着に及ぼす影響は明確でないが、電解銅箔の断面を観察
すると、柱状晶部分の結晶が大きくなっているととも
に、若干の結晶の乱れも同時に観察される。結晶が大き
くなることで、粗面の粗さが増加していると言える。ま
た、若干の結晶の乱れが、180℃熱間伸び率の向上に
関係していると推定される。The effect of the addition of the tungsten compound on the electrodeposition of the electrolytic copper foil is not clear. However, when the cross section of the electrolytic copper foil is observed, the crystal in the columnar crystal portion is large and the crystal disorder is also small. To be observed. It can be said that the larger the crystal, the greater the roughness of the rough surface. Further, it is estimated that slight crystal disorder is related to the improvement of the 180 ° C. hot elongation.
【0024】[0024]
【実施例】以下に実施例及び比較例を示す。有機添加剤
としてニカワ及び塩化物イオンを含む硫酸酸性硫酸銅電
解液を使用して厚さ35μmの電解銅箔をドラム型カソ
ードを用いて製造した。粗面粗さの測定は、光学式粗さ
計を使用した。高温での伸び率の測定は次の条件で為さ
れたものである:温度180℃の熱オーブン型引張り装
置に5分間静置した後、破断するまで引張り、破断時の
伸び率を測定した(IPC−TM−650 3.3)。EXAMPLES Examples and comparative examples are shown below. An electrolytic copper foil having a thickness of 35 μm was manufactured using a drum-type cathode using a sulfuric acid acidic copper sulfate electrolytic solution containing glue and chloride ions as an organic additive. An optical roughness meter was used to measure the roughness of the rough surface. The measurement of the elongation at high temperature was carried out under the following conditions: After standing in a hot oven-type tension device at a temperature of 180 ° C. for 5 minutes, the film was pulled to break, and the elongation at break was measured ( IPC-TM-650 3.3).
【0025】(実施例1)電解液として、硫酸銅(Cu
SO4 ・5H2 O)300g/l、硫酸120g/l、
塩化物イオン濃度70mg/lの硫酸酸性硫酸銅溶液を
用い、電解液温度約55℃そして電流密度100A/d
m2 で電解して35μmの電解銅箔を製造した。ニカワ
濃度は、2mg/lとした。これにタングステン酸ナト
リウムを、タングステンとして1mg/lになるように
添加した。このときの粗面粗さはRa=0.35μmそ
して180℃における熱間伸び率は3.5%であった。(Example 1) Copper sulfate (Cu
SO 4 .5H 2 O) 300 g / l, sulfuric acid 120 g / l,
Using a sulfuric acid acidic copper sulfate solution having a chloride ion concentration of 70 mg / l, an electrolyte temperature of about 55 ° C. and a current density of 100 A / d
Electrolyzed at m 2 to produce a 35 μm electrolytic copper foil. The glue concentration was 2 mg / l. To this, sodium tungstate was added so as to be 1 mg / l as tungsten. At this time, the rough surface roughness was Ra = 0.35 μm, and the hot elongation at 180 ° C. was 3.5%.
【0026】(実施例2〜4)タングステン酸ナトリウ
ムをタングステン濃度として0.1μg/l、10μg
/l、10mg/lとした以外は、実施例1と同様にし
て銅箔を製造した。このときの180℃熱間伸び率は、
それぞれ3.4、3.2及び3.4%であった。また、
タングステン濃度10μg/lのときの粗面粗さは、
0.31μmであった。(Examples 2 to 4) 0.1 μg / l, 10 μg of sodium tungstate as a tungsten concentration
A copper foil was produced in the same manner as in Example 1 except that the amount was changed to 10 mg / l and 10 mg / l. The 180 ° C. hot elongation at this time is
They were 3.4, 3.2 and 3.4%, respectively. Also,
When the tungsten concentration is 10 μg / l, the rough surface roughness is
It was 0.31 μm.
【0027】(実施例5〜7)タングステン酸ナトリウ
ムをタングステン濃度として30、100、250mg
/lとし、沈殿発生防止のためにリン酸を10mg/l
添加した以外は、実施例1と同様にして銅箔を製造し
た。このときの180℃熱間伸び率は、それぞれ3.
3、3.5及び3.1%であった。また、タングステン
濃度として30mg/lのときの粗面粗さはRa=0.
37μmであった。(Examples 5 to 7) 30, 100, 250 mg of sodium tungstate as a tungsten concentration
/ L and phosphoric acid at 10 mg / l to prevent precipitation
A copper foil was manufactured in the same manner as in Example 1 except that the copper foil was added. The 180 ° C. hot elongation at this time was 3.
3, 3.5 and 3.1%. Further, when the tungsten concentration is 30 mg / l, the rough surface roughness is Ra = 0.
It was 37 μm.
【0028】(実施例8及び9)タングステン原料とし
て、タングステン金属粉末とタングステン−銅合金を硫
酸に溶解したものを使用した以外は、実施例1と同様に
して銅箔を製造した。このときの180℃熱間伸び率
は、それぞれ3.1及び3.4%であった。(Examples 8 and 9) Copper foil was produced in the same manner as in Example 1, except that a tungsten metal powder and a tungsten-copper alloy dissolved in sulfuric acid were used as a tungsten raw material. The 180 ° C. hot elongation at this time was 3.1 and 3.4%, respectively.
【0029】(実施例10及び11)ニカワ濃度を0.
1及び0.3mg/lとした以外は、実施例1と同様に
して銅箔を製造した。このときの180℃熱間伸び率
は、それぞれ25及び7%であった。この様にニカワ濃
度を低下させた場合、180℃熱間伸び率は大巾に向上
する。(Examples 10 and 11)
A copper foil was produced in the same manner as in Example 1 except that the amounts were 1 and 0.3 mg / l. The 180 ° C. hot elongation at this time was 25 and 7%, respectively. When the concentration of glue is reduced in this way, the 180 ° C. hot elongation greatly improves.
【0030】(比較例1及び2)実施例1において、タ
ングステンを添加しない場合及びタングステン酸ナトリ
ウムをタングステン濃度として1ng/l添加した場
合、前者の180℃熱間伸び率は2.1%でありそして
後者のそれは、2.9%であった。また、タングステン
ンを添加しない場合の粗面粗さは、Ra=0.28μm
であった。(Comparative Examples 1 and 2) In Example 1, when no tungsten was added and when sodium ungstate was added at a concentration of 1 ng / l as a tungsten concentration, the former hot elongation at 180 ° C. was 2.1%. And that of the latter was 2.9%. Further, when no tungsten is added, the rough surface roughness is Ra = 0.28 μm.
Met.
【0031】なお、実施例1〜11におけるピンホール
発生は、比較例1との差が認められなかった。The occurrence of pinholes in Examples 1 to 11 was not different from Comparative Example 1.
【0032】以上、本発明を主に通常の担体を使用しな
い銅箔について記述したが、本発明は通常の金属箔に限
定するものではなく、アルミニウム又は他の担体上に形
成された銅箔を包含するものである。Although the present invention has been described mainly with respect to a copper foil which does not use a normal carrier, the present invention is not limited to a normal metal foil, but is applicable to a copper foil formed on aluminum or another carrier. Includes
【0033】[0033]
【発明の効果】本発明を用いれば、180℃における熱
間伸び率が3%以上であり、銅箔粗面の粗さが大きく、
そしてピンホール発生の少ない銅箔を製造可能である。
近年、電算機を始めとする電子工業の分野において、装
置の小型化、軽量化が進んでおり、このため回路の高密
度化、多層化が図られている。高密度化、多層化に適す
るプリント回路を得るために、銅箔に要求される特性は
幾つかあるが、特に、ピンホールが少なく、基体に確実
に接着し、180℃における熱間時の伸び率が3%以上
であることが重要である。本発明は、こうした要求に対
応する。According to the present invention, the hot elongation at 180 ° C. is 3% or more, the roughness of the copper foil rough surface is large,
And a copper foil with few pinholes can be manufactured.
2. Description of the Related Art In recent years, in the field of the electronics industry such as a computer, the size and weight of devices have been reduced, and accordingly, higher density and multilayer circuits have been achieved. In order to obtain a printed circuit suitable for high-density and multi-layering, there are several characteristics required for copper foil, but in particular, there are few pinholes, it adheres firmly to the substrate, and the elongation during hot at 180 ° C It is important that the rate is 3% or more. The present invention addresses these needs.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶浦 幸生 茨城県日立市白銀町3丁目3番1号日鉱 グールド・フォイル株式会社日立工場内 (72)発明者 黒沢 俊雄 茨城県日立市白銀町3丁目3番1号日鉱 グールド・フォイル株式会社日立工場内 (56)参考文献 特開 昭63−310989(JP,A) 特開 昭61−52387(JP,A) 特開 昭63−310990(JP,A) 特開 平4−88185(JP,A) 特開 平7−202367(JP,A) 特開 平6−169169(JP,A) 特公 昭49−31415(JP,B1) 特公 平2−24037(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C25D 1/04 C25D 3/38 H05K 1/09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukio Kajiura 3-3-1 Shiroganecho, Hitachi City, Ibaraki Prefecture Nikko Gould Foil Co., Ltd. Hitachi Plant (72) Inventor Toshio Kurosawa 3-chome, Shiroganecho, Hitachi City, Ibaraki Prefecture No.3-1 Nikko Gould Foil Co., Ltd. Hitachi Plant (56) References JP-A-63-310989 (JP, A) JP-A-61-52387 (JP, A) JP-A-63-310990 (JP, A) JP-A-4-88185 (JP, A) JP-A-7-202367 (JP, A) JP-A-6-169169 (JP, A) JP-B-49-31415 (JP, B1) JP-B-2-2 24037 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C25D 1/04 C25D 3/38 H05K 1/09
Claims (8)
銅箔を製造する方法において、該電解液にタングステン
若しくはタングステン化合物をタングステンとして0.
1μg/l〜250mg/l添加することを特徴とする
電解銅箔の製造方法。1. A method for producing an electrolytic copper foil using a sulfuric acid-acidic copper sulfate solution as an electrolytic solution, wherein tungsten or a tungsten compound is added to the electrolytic solution as tungsten.
A method for producing an electrolytic copper foil, comprising adding 1 μg / l to 250 mg / l.
オン:20〜100mg/lを含む硫酸酸性硫酸銅溶液
を電解液として電解銅箔を製造する方法において、該電
解液にタングステン若しくはタングステン化合物をタン
グステンとして0.1μg/l〜250mg/l添加す
ることを特徴とする電解銅箔の製造方法。2. A method for producing an electrolytic copper foil using a sulfuric acid acidic copper sulfate solution containing not more than 10 mg / l glue and 20 to 100 mg / l chloride ions as an electrolytic solution, wherein tungsten or a tungsten compound is added to the electrolytic solution. A method for producing an electrolytic copper foil, comprising adding 0.1 μg / l to 250 mg / l as tungsten.
テン化合物をタングステンとして0.1mg/l〜50
mg/l添加することを特徴とする請求項1乃至2の電
解銅箔の製造方法。3. An electrolytic solution comprising tungsten or a tungsten compound in the range of 0.1 mg / l to 50% as tungsten.
The method for producing an electrolytic copper foil according to any one of claims 1 to 2, wherein mg / l is added.
物がタングステン金属、タングステン酸塩、タングステ
ン−銅合金から選ばれる1つ以上の形態で電解液中に添
加されることを特徴とする請求項1〜3項のうちいずれ
か一項の電解銅箔の製造方法。4. The method according to claim 1, wherein the tungsten or the tungsten compound is added to the electrolyte in one or more forms selected from tungsten metal, tungstate, and tungsten-copper alloy. A method for producing the electrolytic copper foil according to any one of the above.
銅箔を製造する方法において、該電解液にタングステン
若しくはタングステン化合物をタングステンとして0.
1μg/l〜250mg/l添加し、併せて亜リン酸、
リン酸、ピロリン酸、ポリリン酸、亜ヒ酸、ヒ酸、メタ
バナジン酸から選ばれる1種以上の酸或いは塩の形態の
化合物を添加することを特徴とする電解銅箔の製造方
法。5. A method for producing an electrolytic copper foil using a sulfuric acid-acidic copper sulfate solution as an electrolytic solution, wherein tungsten or a tungsten compound is added to the electrolytic solution as tungsten.
1 μg / l to 250 mg / l are added together with phosphorous acid,
A method for producing an electrolytic copper foil, comprising adding at least one compound in the form of an acid or salt selected from phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenous acid, arsenic acid, and metavanadic acid.
オン:20〜100mg/lを含む硫酸酸性硫酸銅溶液
を電解液として電解銅箔を製造する方法において、該電
解液にタングステン若しくはタングステン化合物をタン
グステンとして0.1μg/l〜250mg/l添加
し、併せて亜リン酸、リン酸、ピロリン酸、ポリリン
酸、亜ヒ酸、ヒ酸、メタバナジン酸から選ばれる1種以
上の酸或いは塩の形態の化合物を添加することを特徴と
する電解銅箔の製造方法。6. A method for producing an electrolytic copper foil using a sulfuric acid-acidic copper sulfate solution containing not more than 10 mg / l of glue and 20 to 100 mg / l of chloride ions as an electrolytic solution, wherein tungsten or a tungsten compound is added to the electrolytic solution. Tungsten is added in an amount of 0.1 μg / l to 250 mg / l, and at least one form of an acid or salt selected from phosphorous acid, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, arsenous acid, arsenic acid, and metavanadic acid A method for producing an electrolytic copper foil, characterized by adding a compound of the formula (1).
テン化合物をタングステンとして0.1mg/l〜50
mg/l添加することを特徴とする請求項5乃至6の電
解銅箔の製造方法。7. An electrolytic solution containing tungsten or a tungsten compound in the form of tungsten in the range of 0.1 mg / l to 50 mg / l.
7. The method for producing an electrolytic copper foil according to claim 5, wherein mg / l is added.
物がタングステン金属、タングステン酸塩、タングステ
ン−銅合金から選ばれる1つ以上の形態で電解液中に添
加されることを特徴とする請求項5〜7項のうちいずれ
か一項の電解銅箔の製造方法。8. The method according to claim 5, wherein the tungsten or the tungsten compound is added to the electrolyte in one or more forms selected from tungsten metal, tungstate, and tungsten-copper alloy. A method for producing the electrolytic copper foil according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09702694A JP3238278B2 (en) | 1994-04-12 | 1994-04-12 | Manufacturing method of electrolytic copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09702694A JP3238278B2 (en) | 1994-04-12 | 1994-04-12 | Manufacturing method of electrolytic copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07278867A JPH07278867A (en) | 1995-10-24 |
JP3238278B2 true JP3238278B2 (en) | 2001-12-10 |
Family
ID=14180926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09702694A Expired - Lifetime JP3238278B2 (en) | 1994-04-12 | 1994-04-12 | Manufacturing method of electrolytic copper foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3238278B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018773A1 (en) | 2011-07-29 | 2013-02-07 | 古河電気工業株式会社 | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
JP2014111827A (en) * | 2012-10-31 | 2014-06-19 | Furukawa Electric Co Ltd:The | Copper foil, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
WO2014119583A1 (en) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | Electrolytic copper foil, battery current collector comprising said electrolytic copper foil, electrode obtained using said current collector for secondary battery, and secondary battery obtained using said electrode |
KR20150107735A (en) | 2013-01-24 | 2015-09-23 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil and method for producing same |
KR20150114459A (en) | 2013-01-29 | 2015-10-12 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, electrode obtained using said electrolytic copper foil for lithium-ion secondary battery, and lithium-ion secondary battery obtained using said electrode |
KR101779653B1 (en) * | 2011-10-31 | 2017-09-18 | 후루카와 덴키 고교 가부시키가이샤 | High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100553840B1 (en) * | 2003-05-29 | 2006-02-24 | 일진소재산업주식회사 | Method for manufacturing thin copper film for printed circuit board |
JP5697051B2 (en) * | 2012-11-14 | 2015-04-08 | 古河電気工業株式会社 | Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof |
JP2014101581A (en) * | 2013-12-25 | 2014-06-05 | Furukawa Electric Co Ltd:The | Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode |
KR102433032B1 (en) * | 2017-07-31 | 2022-08-16 | 에스케이넥실리스 주식회사 | Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same |
-
1994
- 1994-04-12 JP JP09702694A patent/JP3238278B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018773A1 (en) | 2011-07-29 | 2013-02-07 | 古河電気工業株式会社 | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
CN103348041A (en) * | 2011-07-29 | 2013-10-09 | 古河电气工业株式会社 | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
EP2660359A4 (en) * | 2011-07-29 | 2015-08-05 | Furukawa Electric Co Ltd | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
US9890463B2 (en) | 2011-07-29 | 2018-02-13 | Furukawa Electric Co., Ltd. | Electrolysis copper-alloy foil, method of the same, electrolytic-solution using the production, negative electrode aggregation used the same, secondary battery, and electrode of the same |
KR101779653B1 (en) * | 2011-10-31 | 2017-09-18 | 후루카와 덴키 고교 가부시키가이샤 | High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same |
JP2014111827A (en) * | 2012-10-31 | 2014-06-19 | Furukawa Electric Co Ltd:The | Copper foil, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
KR20150107735A (en) | 2013-01-24 | 2015-09-23 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil and method for producing same |
KR101660201B1 (en) | 2013-01-24 | 2016-09-26 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil and method for producing same |
WO2014119583A1 (en) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | Electrolytic copper foil, battery current collector comprising said electrolytic copper foil, electrode obtained using said current collector for secondary battery, and secondary battery obtained using said electrode |
JP5579350B1 (en) * | 2013-01-29 | 2014-08-27 | 古河電気工業株式会社 | Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode |
KR20150114459A (en) | 2013-01-29 | 2015-10-12 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, electrode obtained using said electrolytic copper foil for lithium-ion secondary battery, and lithium-ion secondary battery obtained using said electrode |
KR101787513B1 (en) * | 2013-01-29 | 2017-10-18 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, battery current collector comprising said electrolytic copper foil, electrode obtained using said current collector for secondary battery, and secondary battery obtained using said electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH07278867A (en) | 1995-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7153590B2 (en) | Composite copper foil and manufacturing method thereof | |
JP3058445B2 (en) | Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions | |
KR101090199B1 (en) | Copper foil for fine printed circuit and method for manufacturing the same | |
KR101154203B1 (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
EP0649917A1 (en) | Electrodeposited copper foil and process for making same | |
US6132887A (en) | High fatigue ductility electrodeposited copper foil | |
EP1182278A2 (en) | Manufacturing method of electrodeposited copper foil and electrodeposited copper foil | |
US20020015833A1 (en) | Manufacturing method of electrodeposited copper foil and electrodeposited copper foil | |
EP1152069B1 (en) | Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil | |
KR20170061717A (en) | High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same | |
JP3238278B2 (en) | Manufacturing method of electrolytic copper foil | |
US5762778A (en) | Non-cyanide brass plating bath and a method of making metallic foil having a brass layer using the non-cyanide brass plating bath | |
KR20150003854A (en) | Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same | |
JPH1018075A (en) | Electrolytic copper foil | |
EP1065298A2 (en) | Method of manfacturing electrodeposited copper foil and electrodeposited copper foil | |
US6372113B2 (en) | Copper foil and copper clad laminates for fabrication of multi-layer printed circuit boards and process for producing same | |
US6479170B2 (en) | Electrodeposited copper foil, method of inspecting physical properties thereof, and copper-clad laminate employing the electrodeposited copper foil | |
EP2620530A1 (en) | Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board | |
US5171417A (en) | Copper foils for printed circuit board applications and procedures and electrolyte bath solutions for electrodepositing the same | |
EP0495468B1 (en) | Method of producing treated copper foil, products thereof and electrolyte useful in such method | |
EP1424407B1 (en) | Method of formation of a NiP resistance layer by electroplating | |
JPH0967693A (en) | Production of electrolytic copper foil | |
EP0250195A2 (en) | Double matte finish copper foil | |
KR100684812B1 (en) | Novel composite foil, process for producing the same and copper-clad laminate | |
EP0520640A1 (en) | Metal foil with improved peel strength and method for making said foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010918 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |