JP2007335601A - レーザ媒質およびレーザ装置 - Google Patents

レーザ媒質およびレーザ装置 Download PDF

Info

Publication number
JP2007335601A
JP2007335601A JP2006165178A JP2006165178A JP2007335601A JP 2007335601 A JP2007335601 A JP 2007335601A JP 2006165178 A JP2006165178 A JP 2006165178A JP 2006165178 A JP2006165178 A JP 2006165178A JP 2007335601 A JP2007335601 A JP 2007335601A
Authority
JP
Japan
Prior art keywords
medium
laser
refractive index
compensation
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006165178A
Other languages
English (en)
Other versions
JP5014680B2 (ja
Inventor
Takashi Sekine
尊史 関根
Akira Yasuhara
亮 安原
Toshiyuki Kawashima
利幸 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006165178A priority Critical patent/JP5014680B2/ja
Publication of JP2007335601A publication Critical patent/JP2007335601A/ja
Application granted granted Critical
Publication of JP5014680B2 publication Critical patent/JP5014680B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】熱レンズ効果に起因するレーザ光の品質の低下を効果的に抑制することが可能なレーザ媒質を提供する。
【解決手段】本発明の一実施形態に係るレーザ媒質10は、第1主面11aおよび第2主面11bを有するスラブ形状を成す活性媒質11と、スラブ形状を成し、活性媒質11の第1主面11aと接合する主面12aを有する第1補償媒質12と、スラブ形状を成し、活性媒質11の第2主面11bと接合する主面13aを有する第2補償媒質13とを備える。第1補償媒質12および第2補償媒質13は、活性媒質11の屈折率の温度依存性に対して逆極性の屈折率の温度依存性を有する。
【選択図】図2

Description

本発明は、レーザ媒質およびレーザ装置に関するものである。
固体レーザ媒質を備え、固体レーザ媒質中を伝播するレーザ光を増幅する固体レーザ装置が知られている。この固体レーザ装置では、内部で発生する熱によって固体レーザ媒質に熱分布が生じ、固体レーザ媒質が屈折率分布を有する。その結果、固体レーザ媒質では熱レンズ効果が発生し、固体レーザ装置から出力されるレーザ光の品質が低下してしまう。例えば、レーザ光の光軸がずれたり(指向性の低下)、レーザ光が発散または収束したりしてしまう(集光性の低下)。
特許文献1には、固体レーザ媒質中の熱レンズ効果に起因するレーザ光の品質の低下を軽減する固体レーザ装置が記載されている。特許文献1に記載の固体レーザ装置は、レーザ光軸方向に接続して配置された活性媒質および非活性媒質から成る固体レーザ媒質を有しており、非活性媒質は、活性媒質の屈折率が有する温度による変化特性に対して逆の温度による変化特性を有する。
特開平10−284775号公報
ところで、固体レーザ媒質が平板(スラブ)状を成しており、この固体レーザ媒質中にレーザ光をジグザグ伝播させるスラブ型固体レーザ装置が知られている。ここで、熱効果の影響を低減するために、このスラブ型固体レーザ装置に特許文献1の発明を適用すると、活性媒質と非活性媒質の接続体をジグザグ伝播させる際に、接続面における反射や全反射面における臨界角の変化、接続体の熱分布の不均一性などが生じるため、レーザ光の指向性や集光性が低下してしまう可能性があり、さらにそれらの影響を軽減しつつ熱効果の影響を補償することは非常に困難である。
そこで、本発明は、熱レンズ効果に起因するレーザ光の品質の低下を効果的に抑制することが可能なレーザ媒質およびレーザ装置を提供することを目的としている。
本発明のレーザ媒質は、(a)第1主面および第2主面を有するスラブ形状を成す活性媒質と、(b)スラブ形状を成し、活性媒質の第1主面と接合する主面を有する第1補償媒質と、(c)スラブ形状を成し、活性媒質の第2主面と接合する主面を有する第2補償媒質とを備える。(d)第1補償媒質および第2補償媒質は、活性媒質の屈折率の温度依存性に対して逆極性の屈折率の温度依存性を有する。
ここで、説明の簡単化のために、3つの軸線を仮定する。互いに直交する第1軸線および第2軸線は活性媒質の第1主面および第2主面に沿っており、第3軸線は第1軸線および第2軸線に直交する。また、レーザ光は、第1軸線および第3軸線に平行な面に沿って第1軸線方向にジグザグ伝播するものとする。
このレーザ媒質によれば、第1補償媒質および第2補償媒質が、第3軸線方向に活性媒質を挟んでおり、活性媒質の屈折率の温度依存性に対して逆極性の屈折率の温度依存性を有する。レーザ光が、第1軸線および第3軸線に平行な面に沿って第1軸線方向にジグザグ伝播すると、第1補償媒質および第2補償媒質と活性媒質とを交互に通過するので、レーザ光に対する活性媒質の熱レンズ効果が、レーザ光に対する第1補償媒質の熱レンズ効果およびレーザ光に対する第2補償媒質の熱レンズ効果によって低減される。したがって、このレーザ媒質によれば、熱レンズ効果に起因するレーザ光の品質の低下を効果的に抑制することができる。
上記したレーザ媒質は、(a)第1補償媒質の熱伝導率、第1補償媒質の屈折率の温度依存性、および第1補償媒質における一方の主面から他方の主面までの厚さに基づく第1補償媒質における屈折率の変化量が、活性媒質の熱伝導率、活性媒質の屈折率の温度依存性、および活性媒質における第1主面と第2主面との中心から第1主面までの厚さに基づく活性媒質における屈折率の変化量に等しいことが好ましく、(b)第2補償媒質の熱伝導率、第2補償媒質の屈折率の温度依存性、および第2補償媒質における一方の主面から他方の主面までの厚さに基づく第2補償媒質における屈折率の変化量が、活性媒質の熱伝導率、活性媒質の屈折率の温度依存性、および活性媒質における第1主面と第2主面との中心から第2主面までの厚さに基づく活性媒質における屈折率の変化量に等しいことが好ましい。
このレーザ媒質によれば、第1補償媒質における一方の主面位置から他方の主面位置までの屈折率の変化量と、第2補償媒質における一方の主面位置から他方の主面位置までの屈折率の変化量との総和が、活性媒質における第1主面位置から第2主面位置までの屈折率の変化量と等しいので、レーザ光に対する活性媒質の熱レンズ効果が、レーザ光に対する第1補償媒質の熱レンズ効果およびレーザ光に対する第2補償媒質の熱レンズ効果によって打ち消される。したがって、このレーザ媒質によれば、熱レンズ効果に起因するレーザ光の品質の低下を補償することができる。
本発明のレーザ装置は、上記したレーザ媒質と、レーザ媒質に励起光を照射する励起光発生部とを備える。
このレーザ装置によれば、上記したレーザ媒質を有しているので、レーザ光が、第1軸線および第3軸線に平行な面に沿って第1軸線方向にジグザグ伝播すると、レーザ光に対するレーザ媒質の熱レンズ効果が低減される。したがって、このレーザ装置によれば、熱レンズ効果に起因するレーザ光の品質の低下を効果的に抑制することができる。
本発明によれば、熱レンズ効果に起因するレーザ光の品質の低下を効果的に抑制することが可能なレーザ媒質およびレーザ装置が提供される。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1は、本発明の実施形態に係るレーザ装置を示す斜視図である。レーザ装置1は、レーザ媒質10、断熱部材20、ウインドウガラス30、および励起光発生部40を備えている。
レーザ媒質10は、固体レーザ媒質であり、互いに直交する第1軸線Zおよび第2軸線Yに沿った主面10a、10bを有する平板(スラブ)状を成している。レーザ媒質10は、活性媒質11、第1補償媒質12および第2補償媒質13から構成されている。レーザ媒質10の詳細は後述する。レーザ媒質10に対して第2軸線Y方向には断熱部材20が設けられている。断熱部材20は、レーザ媒質10の第2軸線Y方向の熱分布を一様にするために、レーザ媒質10を挟み込むように設けられている。レーザ媒質10および断熱部材20に対して第3軸線X方向にはウインドウガラス30が設けられている。
ウインドウガラス30は、レーザ媒質10および断熱部材20を挟み込むように、レーザ媒質10および断熱部材20と離間して設けられている。ウインドウガラス30とレーザ媒質10および断熱部材20との間には、レーザ媒質10の温度上昇を抑制するために、冷却媒体が流れる。本実施形態では、冷却媒体は、屈折率1.33を有する水である。ウインドウガラス30のレーザ媒質10と反対側には、励起光発生部40が設けられている。励起光発生部40は、レーザ媒質10およびウインドウガラス30を挟み込むように設けられており、レーザ媒質10に励起光を供給する。
次に、本発明の実施形態に係るレーザ媒質10について詳細に説明する。図2は、本発明の実施形態に係るレーザ媒質を示す斜視図である。
活性媒質11は、第1軸線Zおよび第2軸線Yに沿った第1主面11aおよび第2主面11bを有するスラブ形状を成している。本実施形態では、活性媒質11は、ネオジウム添加リン酸ガラス(HAP−4)である。HAP−4の諸特性を以下に示す。
熱伝導率:κHAP=1.02[W/mK]
屈折率:nHAP=1.53
屈折率の温度依存性:dn/dtHAP=1.8×10−6[K−1
このように、活性媒質11の屈折率の温度依存性は正である。屈折率の温度依存性とは、温度が変化したときに屈折率の変化量をその温度の変化量で除した値を表す。活性媒質11に対して第3軸線方向の両側にはそれぞれ第1補償媒質12および第2補償媒質13が設けられている。第1補償媒質12および第2補償媒質13は、活性媒質11を挟み込むように設けられている。
第1補償媒質12は、第1軸線Zおよび第2軸線Yに沿った主面12aおよび主面12bを有するスラブ形状を成している。第1補償媒質12の主面12aは、熱伝導や光の伝播を支障なく行うために、オプティカルコンタクトや拡散接着などによって活性媒質11の第1主面11aと接合している。同様に、第2補償媒質13は、第1軸線Zおよび第2軸線Yに沿った主面13aおよび主面13bを有するスラブ形状を成しており、第2補償媒質13の主面13aと活性媒質11の第2主面11bとは、オプティカルコンタクトや拡散接着などによって接合している。
本実施形態では、第1補償媒質12および第2補償媒質13は、それぞれ、リン酸ガラス(Q−98)である。Q−98の諸特性を以下に示す。
熱伝導率:κQ98=0.82[W/mK]
屈折率:nQ98=1.56
屈折率の温度依存性:dn/dtQ98=−4.8×10−6[K−1]、
このように、第1補償媒質12の屈折率の温度依存性および第2補償媒質13の屈折率の温度依存性は、それぞれ負であり、活性媒質11の屈折率の温度依存性とは逆極性(逆符号)である。換言すれば、第1補償媒質12および第2補償媒質13は、それぞれ、活性媒質11の屈折率の温度係数dn/dtHAPに対して逆極性の屈折率の温度係数dn/dtQ98を有する。
図2に示すように、レーザ光がレーザ媒質10の第1軸線Zに直交する一端面に斜め方向から入射すると、レーザ媒質10を光路Lに沿ってジグザグに伝播し、他端面から斜め方向に出射する。詳説すれば、レーザ光は、活性媒質11に入射した後、光路Lに沿って伝播し、第1補償媒質12に入射する。活性媒質11の屈折率と第1補償媒質12の屈折率との差は小さく、活性媒質11と第1補償媒質12との界面におけるフレネル反射が小さいので、レーザ光は、活性媒質11と第1補償媒質12との界面をほぼ全透過し、その後、第1補償媒質12を伝播する。冷却媒体の屈折率は第1補償媒質12の屈折率に比べて小さいので、レーザ光は、第1補償媒質12と冷却媒体との界面においてほぼ全反射する。
すると、レーザ光は、再び活性媒質11へ入射した後、第2補償媒質13に入射する。活性媒質11の屈折率と第2補償媒質13の屈折率との差は小さく、活性媒質11と第2補償媒質13との界面におけるフレネル反射が小さいので、レーザ光は、活性媒質11と第2補償媒質13との界面をほぼ全透過した後、第2補償媒質12を伝播する。冷却媒体の屈折率は第2補償媒質13の屈折率に比べて小さいので、レーザ光は第2補償媒質13と冷却媒体との界面において全反射し、再び活性媒質11へ入射する。このように、レーザ光は、レーザ媒質10を光路Lに沿ってジグザグに伝播する。
図1に示すように、レーザ媒質10には励起光発生部40から励起光が供給されるので、レーザ光の強度が増幅される。その際、レーザ媒質10は励起光を吸収し、レーザ媒質10内には熱が発生する。その結果、レーザ媒質10には熱分布が生じ、この熱分布に応じた屈折率分布が発生する。
図3は、図2に示すレーザ媒質の第2軸線Yと第3軸線Xとに平行な面における熱分布を示す図である。曲線Aは活性媒質11における第2軸線Y方向の熱分布を相対的に表しており、曲線B,Cはそれぞれ第1補償媒質12、第2補償媒質13における第2軸線Y方向の熱分布を相対的に表している。また、曲線Dは活性媒質11、第1補償媒質12および第2補償媒質13における第3軸線X方向の熱分布を相対的に表している。
曲線Dによれば、冷却媒体の冷却作用によって、第1補償媒質12の主面12bおよび第2補償媒質13の主面13bの温度が低く、レーザ媒質10の中心に向けて温度が高くなることがわかる。すなわち、レーザ媒質10の第3軸線X方向には、熱分布が発生している。一方、曲線A,B,Cによれば、断熱部材20の断熱作用によって、活性媒質11、第1補償媒質12および第2補償媒質13の各々における第2軸線Y方向の熱分布が一様とされるが、それぞれの第2軸線Y方向の熱分布が低減しきれていないことがわかる。すなわち、活性媒質11、第1補償媒質12および第2補償媒質13の各々における第2軸線Y方向にも、熱分布が発生している。
次に、図4は、図2に示すレーザ媒質の第2軸線Yと第3軸線Xとに平行な平面における屈折率分布を示す図である。曲線Eは活性媒質11における第2軸線Y方向の屈折率分布を相対的に表しており、曲線F,Gはそれぞれ第1補償媒質12、第2補償媒質13における第2軸線Y方向の屈折率分布を相対的に表している。また、曲線Hは活性媒質11、第1補償媒質12および第2補償媒質13における第3軸線X方向の屈折率分布を相対的に表している。
曲線E,F,Gによれば、活性媒質11、第1補償媒質12および第2補償媒質13の各々には、第2軸線Y方向の熱分布に起因して屈折率分布が発生していることがわかる。具体的には、活性媒質11は正の屈折率の温度特性dn/dtHAPを有しているので、端面から中心へ向けて屈折率が大きくなっている。一方、第1補償媒質12および第2補償媒質13の各々は負の屈折率の温度特性dn/dtQ98を有しているので、端面から中心へ向けて屈折率が小さくなっている。
一方、曲線Hによれば、第3軸線X方向にも、熱分布に起因して屈折率分布が発生していることがわかる。具体的には、活性媒質11における屈折率は、第1主面11aおよび第2主面11bから中心へ向けて大きくなっている。一方、第1補償媒質12における屈折率は、活性媒質11の屈折率より小さく、主面12bから主面12aへ向けて小さくなるように分布している。同様に、第2補償媒質13における屈折率は、活性媒質11の屈折率より小さく、主面13bから主面13aに向けて小さくなるように分布している。
ここで、従来の活性媒質11のみを有するレーザ媒質10では、レーザ光が活性媒質11を第1軸線Zおよび第3軸線Xに平行な面に沿って第1軸線Z方向にジグザグ伝播すると、レーザ光に対する第3軸線X方向の熱特性が平均化され、その結果、レーザ光に対する第3軸線X方向の熱レンズ効果を無視することができる。このように、従来の活性媒質11のみを有するレーザ媒質10では、レーザ光に対する第3軸線X方向の熱特性を平均化するだけであるので、第2軸線Y方向の熱分布に起因する熱レンズ効果が発生する。その結果、レーザ光の品質が低下していた。具体的には、レーザ光の指向性や集光性が低下していた。
しかしながら、本実施形態のレーザ媒質10では、活性媒質11の屈折率の温度依存性に対して逆極性の屈折率の温度依存性を有する第1補償媒質12および第2補償媒質13を備えているので、レーザ光が活性媒質11、第1補償媒質12および第2補償媒質13を交互に通過しながら、光路Lに沿ってジグザグに伝播すると、レーザ光に対する第3軸線X方向の熱レンズ効果が低減される。この低減効果は第2軸線Y方向のあらゆる位置における第3軸線X方向で奏されるので、第2軸線Y方向の熱レンズ効果も低減される。その結果、レーザ光の品質の低下が抑制される。
更に、本実施形態では、活性媒質11における屈折率の変化量と、第1補償媒質12および第2補償媒質13における屈折率の変化量とを等しくすることによって、レーザ光に対する活性媒質11の熱レンズ効果を第1補償媒質12および第2補償媒質13の熱レンズ効果によって補償することができる。
図5は、図2に示すレーザ媒質の第1軸線Zと第3軸線Xとに平行な平面における光路を示す図である。図5では、第3軸線Xにおけるレーザ媒質10の中心位置をx0とし、活性媒質11と第1補償媒質12との界面位置および活性媒質11と第2補償媒質13との界面位置をそれぞれx1,−x1とする。また、第1補償媒質12と冷却媒体との界面位置および第2補償媒質13と冷却媒体との界面位置をそれぞれx2,−x2とする。
本実施形態では、活性媒質11における屈折率の変化量と、第1補償媒質12および第2補償媒質13における屈折率の変化量とを等しくするために、活性媒質11における位置x0から位置x1までの屈折率の変化量と第1補償媒質12における位置x1から位置x2までの屈折率の変化量とを等しくすると共に、活性媒質11における位置x0から位置−x1までの屈折率の変化量と第1補償媒質12における位置−x1から位置−x2までの屈折率の変化量とを等しくする。
なお、説明の簡単化のために、すべての熱伝達係数は無限大であり、熱発生分布は均一であるとする。また、活性媒質11の屈折率と第1補償媒質12の屈折率および第2補償媒質13の屈折率とがほぼ等しいことから、活性媒質11中のレーザ光の第3軸線Xに対する伝播角θ1と第1補償媒質12および第2補償媒質13各々の中のレーザ光の第3軸線Xに対する伝播角θ2とは同一であるとする。
活性媒質11における位置x0から位置x1までの温度差ΔTHAPは、下式(1)によって求められ、活性媒質11における位置x0から位置x1までの屈折率の変化量ΔnHAPは、下式(2)によって求められる。
Figure 2007335601

Q:活性媒質11内に発生する単位体積あたりの熱量
HAP:活性媒質11の第3軸線X方向の厚さ
Figure 2007335601
一方、第1補償媒質12における位置x1から位置x2までの温度差ΔTQ98は、下式(3)によって求められ、第1補償媒質12における位置x1から位置x2までの屈折率の変化量ΔnQ98は、下式(4)によって求められる。
Figure 2007335601

q:第1補償媒質12における位置x1と位置x2との間の熱流
A:第1補償媒質12の第3軸線X方向の断面積
Q98:第1補償媒質12の第3軸線X方向の厚さ
Figure 2007335601
上記(2)式によって求められる屈折率の変化量ΔnHAPと上記(4)式によって求められる屈折率の変化量ΔnQ98とが下式(5)を満たせば、活性媒質11における位置x0から位置x1までの屈折率の変化量ΔnHAPと第1補償媒質12における位置x1から位置x2までの屈折率の変化量ΔnQ98とを等しくすることができる。
Figure 2007335601
なお、活性媒質11における位置x0から位置−x1までの屈折率の変化量ΔnHAPと第2補償媒質13における位置−x1から位置−x2までの屈折率の変化量ΔnQ98との設定も同様であるので、説明を省略する。
このように、位置x0から位置x1までの屈折率の変化量ΔnHAPは、活性媒質11の熱伝導率κHAP、活性媒質11の屈折率の温度依存性dn/dtHAP、活性媒質11の厚さtHAPに基づいて定まり、位置x1から位置x2までの屈折率の変化量ΔnQ98は、第1補償媒質12の熱伝導率κQ98、第1補償媒質12の屈折率の温度依存性dn/dtQ98、第1補償媒質12の厚さtQ98に基づいて定まる。
熱伝導率κHAP、屈折率の温度依存性dn/dtHAP、熱伝導率κQ98、屈折率の温度依存性dn/dtQ98は、活性媒質11の材料および第1補償媒質12の材料によって定まる値であるので、本実施形態では、屈折率の変化量ΔnHAPの絶対値と屈折率の変化量ΔnQ98の絶対値とが等しくなるように、厚さtHAPおよび厚さtQ98を調節する。一例を示すと、厚さ10mmの活性媒質11にQ=1W/mmの熱量が発生した場合、第1補償媒質12の厚さは2.5mmとなる。ここで、q=1W、A=100mmである。なお、第2補償媒質13の厚さも同様に設定する。
このように、本実施形態のレーザ媒質10によれば、第1補償媒質12における主面12aから主面12bまでの屈折率の変化量と、第2補償媒質13における主面13aから主面13bまでの屈折率の変化量との総和が、活性媒質11における第1主面11aから第2主面11bまでの屈折率の変化量と等しいので、レーザ光に対する活性媒質11の熱レンズ効果が、レーザ光に対する第1補償媒質12の熱レンズ効果およびレーザ光に対する第2補償媒質13の熱レンズ効果によって打ち消される。したがって、このレーザ媒質10によれば、熱レンズ効果に起因するレーザ光の品質の低下を補償することができる。
本実施形態のレーザ装置1によれば、このレーザ媒質10を備えているので、熱レンズ効果に起因するレーザ光の品質の低下を抑制または補償することができる。
このように、本実施形態のレーザ装置1によれば、第1補償媒質12の厚さおよび第2補償媒質13の厚さを設計することによって、熱分布に依存しない屈折率マネージメントが自動的に行われるので、熱レンズ焦点距離のためのレンズの位置調整や励起光発生部の位置調整が不要である。また、高頻度で活性媒質11と第1補償媒質12および第2補償媒質13(非活性媒質)とを通過するため熱レンズ効果を精度良く補償することが可能であるので、従来よりも品質のよい出力エネルギーを得ることができる。また、第1補償媒質12および第2補償媒質13の界面において全反射させる構造上、第1補償媒質12および第2補償媒質13を往復し2度通過するため、倍の効率で熱効果を補償することができる。また、例示したような構造では熱レンズ効果や最大熱温度差に起因するレーザ媒質の破壊が低減されるので、従来よりも高エネルギー化や高平均出力化を図ることができる。
なお、本発明は上記した本実施形態に限定されることなく単層化、多層化など種々の変形が可能である。
本実施形態では、活性媒質11、第1補償媒質12および第2補償媒質13の具体材料を例示したが、第1補償媒質12および第2補償媒質13は、活性媒質11と逆極性の屈折率の温度依存性を有しており、且つ活性媒質11と近い屈折率を有していれば、活性媒質11、第1補償媒質12および第2補償媒質13には様々な材料が適用可能である。
また、本実施形態では、レーザ増幅装置を例示したが、本発明はレーザ発振器にも適用可能である。
本発明の実施形態に係るレーザ装置を示す斜視図である。 本発明の実施形態に係るレーザ媒質を示す斜視図である。 図2に示すレーザ媒質の第2軸線Yと第3軸線Xとに平行な面における熱分布を示す図である。 図2に示すレーザ媒質の第2軸線Yと第3軸線Xとに平行な平面における屈折率分布を示す図である。 図2に示すレーザ媒質の第1軸線Zと第3軸線Xとに平行な平面における光路を示す図である。
符号の説明
1…レーザ装置、10…レーザ媒質、11…活性媒質、11a…第1主面、11b…第2主面、12…第1補償媒質、12a,12b…主面、13…第2補償媒質、13a,13b…主面、20…断熱部材、30…ウインドウガラス、40…励起光発生部、L…光路。

Claims (3)

  1. 第1主面および第2主面を有するスラブ形状を成す活性媒質と、
    スラブ形状を成し、前記活性媒質の前記第1主面と接合する主面を有する第1補償媒質と、
    スラブ形状を成し、前記活性媒質の前記第2主面と接合する主面を有する第2補償媒質と、
    を備え、
    前記第1補償媒質および前記第2補償媒質は、前記活性媒質の屈折率の温度依存性に対して逆極性の屈折率の温度依存性を有する、
    レーザ媒質。
  2. 前記第1補償媒質の熱伝導率、前記第1補償媒質の屈折率の温度依存性、および前記第1補償媒質における一方の主面から他方の主面までの厚さに基づく前記第1補償媒質における屈折率の変化量は、前記活性媒質の熱伝導率、前記活性媒質の屈折率の温度依存性、および前記活性媒質における前記第1主面と前記第2主面との中心から前記第1主面までの厚さに基づく前記活性媒質における屈折率の変化量に等しく、
    前記第2補償媒質の熱伝導率、前記第2補償媒質の屈折率の温度依存性、および前記第2補償媒質における一方の主面から他方の主面までの厚さに基づく前記第2補償媒質における屈折率の変化量は、前記活性媒質の熱伝導率、前記活性媒質の屈折率の温度依存性、および前記活性媒質における前記第1主面と前記第2主面との中心から前記第2主面までの厚さに基づく前記活性媒質における屈折率の変化量に等しい、
    請求項1に記載のレーザ媒質。
  3. 請求項1または2に記載のレーザ媒質と、
    前記レーザ媒質に励起光を照射する励起光発生部と、
    を備える、レーザ装置。
JP2006165178A 2006-06-14 2006-06-14 レーザ媒質およびレーザ装置 Expired - Fee Related JP5014680B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165178A JP5014680B2 (ja) 2006-06-14 2006-06-14 レーザ媒質およびレーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165178A JP5014680B2 (ja) 2006-06-14 2006-06-14 レーザ媒質およびレーザ装置

Publications (2)

Publication Number Publication Date
JP2007335601A true JP2007335601A (ja) 2007-12-27
JP5014680B2 JP5014680B2 (ja) 2012-08-29

Family

ID=38934788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165178A Expired - Fee Related JP5014680B2 (ja) 2006-06-14 2006-06-14 レーザ媒質およびレーザ装置

Country Status (1)

Country Link
JP (1) JP5014680B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160009735A (ko) * 2014-07-16 2016-01-27 한국원자력연구원 열렌즈 효과를 보상하기 위한 고체 레이저 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198281A (ja) * 1987-06-22 1989-04-17 Lasag Ag 改良された冷却システムを有するレーザー
JP2007128964A (ja) * 2005-11-01 2007-05-24 Shibaura Mechatronics Corp 固体レーザ媒体並びにそれを用いた固体レーザ装置及びレーザ応用装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198281A (ja) * 1987-06-22 1989-04-17 Lasag Ag 改良された冷却システムを有するレーザー
JP2007128964A (ja) * 2005-11-01 2007-05-24 Shibaura Mechatronics Corp 固体レーザ媒体並びにそれを用いた固体レーザ装置及びレーザ応用装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160009735A (ko) * 2014-07-16 2016-01-27 한국원자력연구원 열렌즈 효과를 보상하기 위한 고체 레이저 장치
KR101626931B1 (ko) * 2014-07-16 2016-06-03 한국원자력연구원 열렌즈 효과를 보상하기 위한 고체 레이저 장치

Also Published As

Publication number Publication date
JP5014680B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
EP2182598B1 (en) Laser gain medium and laser oscillator using the same
US6134258A (en) Transverse-pumped sLAB laser/amplifier
JP3155132B2 (ja) 固体レーザ装置及びレーザ加工装置
JP2008521257A (ja) 拡張可能なジグザグレーザ増幅器
WO2011027731A1 (ja) 平面導波路型レーザ装置
JP5208118B2 (ja) 固体レーザ素子
JP2004128139A (ja) レーザ光発生装置及びその製造方法
JP2010199288A (ja) パルスレーザ装置
JP5389277B2 (ja) モード制御導波路型レーザ装置
JP2010034413A (ja) 固体レーザ装置
JP2007110039A (ja) 固体レーザ励起モジュール
JP2008016833A (ja) 光学部材の接合方法及び光学部材一体構造及びレーザ発振装置
JP5014680B2 (ja) レーザ媒質およびレーザ装置
JP2013038096A (ja) 平面導波路型レーザ装置
KR20150079675A (ko) 개선된 시간적 콘트라스트를 갖는 레이저 펄스를 증폭시키기 위한 디바이스
JP5645753B2 (ja) 平面導波路型レーザ装置
JP2004296671A (ja) 固体レーザ装置
JP6124683B2 (ja) 平面導波路型レーザ装置
KR20120068742A (ko) 레이저 빔을 방출하기 위해 종방향 냉각하는 안티-횡단 레이징 디바이스
JP2006196882A (ja) 光増幅器、レーザ発振器およびmopaレーザ装置
JP2006526283A (ja) レーザーのポンピング方法とレーザー装置
US10116113B2 (en) Planar waveguide laser apparatus
JPH088477A (ja) 固体レーザ装置
JP6210732B2 (ja) レーザ増幅器及びレーザ発振器
JP2008153462A (ja) 固体レーザ増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees