JP2007333644A - 位置検出システム - Google Patents

位置検出システム Download PDF

Info

Publication number
JP2007333644A
JP2007333644A JP2006167821A JP2006167821A JP2007333644A JP 2007333644 A JP2007333644 A JP 2007333644A JP 2006167821 A JP2006167821 A JP 2006167821A JP 2006167821 A JP2006167821 A JP 2006167821A JP 2007333644 A JP2007333644 A JP 2007333644A
Authority
JP
Japan
Prior art keywords
light
position detection
optical
light emission
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167821A
Other languages
English (en)
Inventor
Takeshi Takanose
剛 高野瀬
Masahito Sano
雅仁 佐野
Akiko Numata
亜紀子 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2006167821A priority Critical patent/JP2007333644A/ja
Publication of JP2007333644A publication Critical patent/JP2007333644A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】移動体に対する面倒な校正登録作業を不要にするとともに移動体を小型化し、しかも、消費電力の低減化、位置検出精度の向上を図る。
【解決手段】移動体の移動空間に分散して設けられ、自己の識別情報と位置検出信号を含む発光パターンに基づいて所定の発光順序で発光する複数の光学ビーコン#0〜#6と、移動体に設けられ、各光学ビーコンからの光の発光パターンに含まれる識別情報から少なくとも3つの光学ビーコンを識別するとともに、この識別した各光学ビーコンからの光の発光パターンに含まれる位置検出信号から光の方向を検出し、この検出結果に基づいて移動体の位置を検出する検出手段を備え、各光学ビーコンは、位置検出信号の発光エネルギーを自己の識別情報の発光エネルギーに比べて高めている。
【選択図】図5

Description

この発明は、建物内など移動空間における移動体の位置を検出する位置検出システムに関する。
従来、移動体の位置を知るための手段として、移動体に回転式のレーザレーダを設けるとともに、移動体の周りの空間に少なくとも3つの反射器を固定し、レーザレーダから発せられるレーザ光により移動体の周囲を走査するシステムが知られている。このシステムでは、レーザ光の走査に伴う各反射器からの反射光の有無、およびレーザ光の走査角度情報に基づいて、移動体から見た各反射器の方向を検知することができる。また、各反射器で反射した光が戻ってくるまでの時間を計ることにより、移動体と各反射器との間の距離を検知することができる。そして、検知した方向および距離に基づいて、移動体の位置を特定することができる(例えば、特許文献1参照)。
特開2003−302469号公報
特許文献1記載のシステムでは、初期設定として敷設後に移動体を定点に置いて校正登録作業を行う必要があることから、多数の移動体を用いるような場合には移動体毎に校正登録作業を行わねばならず面倒であるため、このような用途には向いていなかった。また、それ以降も移動体の移動データを継続的に取得しながら各反射器の位置を監視し続け、場合によっては移動体の自律移動の制御データとの比較をしなければならず、この点からも、多数の移動体が出入りするなどの自由な移動を行うような用途には向いていなかった。また、回転式のレーザレーダのような可動式の走査器を設けねばならないために、移動体が大型化するとともに、故障の可能性やコストが高くなるという問題がある。
これに対し、移動体の移動空間に複数の発光手段を設け、これら発光手段から発せられる光の方向を検出し、この検出結果に基づいて移動体の位置を検出するシステムが考えられる。このシステムによれば、移動体に可動式の走査器を設けることなく移動体の位置を検出することが可能である。しかし、このシステムにおいては、発光手段からの発光に対し、その光を受光する移動体側の受光手段の受光強度が十分でない場合には、高い精度での位置検出ができなくなるという問題が発生する。
この発明は、このような点に考慮して為されたもので、移動体に対する面倒な校正登録作業を不要にできるとともに移動体を小型化でき、しかも、消費電力の低減化、位置検出精度の向上を図ることができる位置検出システムを提供する。
本発明の一態様は、移動体の移動空間に分散して設けられ、自己の識別情報と位置検出信号を含む発光パターンに基づいて所定の発光順序で発光する複数の光学ビーコンと、移動体に設けられ、各光学ビーコンからの光の発光パターンに含まれる識別情報から少なくとも3つの光学ビーコンを識別するとともに、この識別した各光学ビーコンからの光の発光パターンに含まれる位置検出信号から光の方向を検出し、この検出結果に基づいて移動体の位置を検出する検出手段を備え、各光学ビーコンは、位置検出信号の発光エネルギーを自己の識別情報の発光エネルギーに比べて高めたことにある。
本発明によれば、移動体に対する面倒な校正登録作業を不要にできるとともに移動体を小型化でき、しかも、消費電力の低減化、位置検出精度の向上を図ることができる位置検出システムを提供できる。
以下、本発明の実施の形態を、図面を参照して説明する。
(第1の実施の形態)
図1に示すように、1は大型商店などの建物で、床、壁、天井で覆われ移動空間を形成している。この建物1の床面に移動体2が移動自在に配置されている。
前記建物1の内壁上部や天井に、少なくとも3つの光学ビーコン、例えば、7個の光学ビーコン♯0〜♯6を分散して取付けている。これらの光学ビーコン♯0〜♯6は、発光素子として、例えば、赤外線光を発する発光ダイオードを用いており、それぞれの取付け位置を平面座標で表している。そして、前記移動体2に設けられた後述する検出ユニットの位置データメモリに各光学ビーコン♯0〜♯6の取付け位置を表す平面座標を記憶するようにしている。
前記各光学ビーコン♯0〜♯6から発せられる赤外線光は、壁面の平坦部に取付けられている場合には、同一平面上で最大180度の範囲で左右方向に拡がり、かつ、下方向にも一定の角度で拡がるようになっている。また、壁面の角部に取付けられている場合には、同一平面上で90度あるいは270度の範囲で左右方向に拡がり、かつ、下方向にも一定の角度で拡がるようになっている。また、天井に取付けられている場合には、同一平面上で最大360度の範囲で左右方向に拡がり、かつ、下方向にも一定の角度で拡がるようになっている。
前記各光学ビーコン♯0〜♯6には、符号(♯0〜♯6)順にそのまま対応する発光順位が予め定められている。そして、各光学ビーコン♯0〜♯6のうち、発光順位が1番目の光学ビーコン♯0を除く残りの光学ビーコン♯1〜♯6は、自己以外の複数の光学ビーコン、例えば発光順位が1つ前の光学ビーコンから発せられる光の到達領域に存在している。そして、前記各光学ビーコン♯1〜♯6は、発光順序が1つ前の光学ビーコンから発せられる光を受けることにより発光を開始することで、順次発光動作をリレー形式で引き継いで行うようになっている。
発光順位が1番目の光学ビーコン♯0は、基準光学ビーコンとして、一定周期で発光を繰返すもので、図2に示すように、発光パターン生成部10、タイマ11、ID設定部12及び発光ダイオード13により構成されている。前記発光パターン生成部10及びタイマ11は発光制御部を構成している。
前記タイマ11は、前記光学ビーコン♯0の発光の繰返しの基準となる一定周期、すなわち、一定時間t1をカウントする。この一定周期は、残りの従属光学ビーコンである光学ビーコン♯1〜♯6の発光パターンに要する時間の総和よりも長く設定されている。前記ID設定部12は、光学ビーコン♯0に固有の識別情報であるIDコードを設定するもので、操作者による操作により可変できるようになっている。
前記発光パターン生成部10は、タイマ11が一定時間t1をカウントする毎に、第1の所定周波数f1のキャリア信号を変調し、その変調信号(パルス信号)により、先頭の起動情報として特定の発光パターンを有する開始信号を生成し、続いて、前記ID設定部12の設定に応じたIDコードを生成し、更に、第1の周波数f1とは異なる第2の所定周波数f2のキャリア信号を変調した位置検出信号を生成し、これら開始信号、IDコード及び位置検出信号に応じて発光ダイオード13を発光させる。そして、開始信号の立ち上がりから位置情報信号の終了(立ち下がり)までに所要最大時間taが確保されている。
前記第1の周波数f1のキャリア信号は、後述の光学ビーコン#1〜#6及び移動体2に設けられた受光素子の応答周波数帯域に適した値になっている。また、前記第2の周波数f2のキャリア信号は、後述の移動体2に設けられた二次元光学センサの応答周波数帯域に適した値になっている。
前記ID設定部12で設定されるIDコードは3ビットの2進数値であり、前記光学ビーコン♯0用として“0(000)”が設定されている。前記位置情報信号は、前記移動体2に設けられた後述する検出ユニットの受光部で光学ビーコンの方向を検出するために使用され、第2の周波数f2のキャリア信号(直流を含む)を変調した信号である。
前記各光学ビーコン♯1〜♯6は、自己以外の光学ビーコンから発せられる光のうち、予め定められている発光順位が1つ前の光学ビーコンから発せられる光をその光に含まれているIDコードからそれぞれ判別し、その判別した光を受けることにより動作して発光するようになっている。
前記光学ビーコン♯1〜♯6の制御回路はそれぞれ同じ構成になっている。前記光学ビーコン♯1の制御回路は、図3に示すように、自己以外の光学ビーコンから発せられる光を受けるフォトダイオード等の受光素子20、この受光素子20の受光信号に含まれている開始信号及びIDコードを判別する信号判別部21、この信号判別部21で開始信号及びIDコードが判別された場合に、この判別されたIDコードとIDメモリ23内の特定IDコード(発光順位が1つ前の光学ビーコン#0のIDコード)を比較する比較部22を設けている。
前記比較部22の比較結果を発光パターン生成部24に供給している。前記発光パターン生成部24には、タイマ25、ID設定部26及び発光素子である発光ダイオード27が接続されている。前記タイマ25は、発光パターン生成部24による発光動作開始までの所定時間t2をカウントするようになっている。
前記信号判別部21、比較部22、IDメモリ23、発光パターン生成部24及びタイマ25は発光制御部を構成している。
前記ID設定部26は、光学ビーコン♯1に固有の識別情報であるIDコードを設定するもので、操作者による操作により可変できるようになっている。前記発光パターン生成部24は、前記比較部22の比較において、信号判別部21で判別されるIDコードとIDメモリ23内のIDコードとが一致した場合にタイマ25を動作させ、このタイマ25が所定時間t2をカウントすると、第1の所定周波数f1のキャリア信号を変調し、その変調信号(パルス信号)により特定の発光パターンを有する開始信号を生成し、続いて、ID設定部26の設定に応じたIDコードを生成し、更に、第2の所定周波数f2のキャリア信号を変調し、その変調信号(パルス信号)により位置検出信号を生成し、これら開始信号、IDコード及び位置検出信号に応じて発光ダイオード27を発光させる。そして、開始信号の立ち上がりから位置情報信号の終了(立ち下がり)までに所要最大時間taが確保されている。
前記ID設定部26で設定されるIDコードは3ビットの2進数値であり、前記光学ビーコン♯1用として“1(001)”が設定されている。なお、光学ビーコン♯2〜♯6のIDコードとしては、“2(010)”“3(011)”“4(100)”“5(101)”“6(110)”がそれぞれ設定されている。
前記各光学ビーコン♯0〜♯6のそれぞれのIDコードとIDメモリ23内の特定IDコード(発光順位が1つ前の光学ビーコンのIDコード)との対応関係は図4に示すようになっている。
図5は光学ビーコン♯0〜♯6の発光動作タイミングを示すタイミング図である。
前記光学ビーコン♯0は、一定時間t1毎に発光して開始信号、IDコード及び位置検出信号を発する。
前記光学ビーコン♯1は、他の光学ビーコンから受ける光のIDコードを監視し、発光順序が1つ前の光学ビーコン♯0のIDコードを認識した場合に、光学ビーコン♯0の位置検出信号が終了した(T0,T1,T2,…T5のタイミング)から一定時間t2後に発光を開始して開始信号、IDコード及び位置検出信号を発する。他の光学ビーコン♯2〜♯6も、前記光学ビーコン♯1と同様の動作を行う。
前記開始信号及びIDコードは、図6の(a)に示すような第1の所定周波数f1のキャリア信号を変調したものであり、前記位置検出信号は、図6の(b)に示すような第2の所定周波数f2のキャリア信号を変調したものであり、周波数f1は周波数f2に比べて高くなっている。前記位置検出信号は、図6の(b)に点線で示すようにオンデューティを大きくすることで発光エネルギーを高くすることができる。
全ての光学ビーコン♯0〜♯6の発光が終了するタイミングT6は、一定時間t1のカウントが終了するタイミングの前である。これにより、一定時間t1毎に光学ビーコン♯0〜♯6の順繰りの発光が繰返される。
一方、前記移動体2は、光学ビーコン♯0〜♯6からの入射光に含まれているIDコード及び位置検出信号から少なくとも3つの光学ビーコンを識別し、識別した各光学ビーコンからの光の方向を検出し、この検出結果に基づく演算により自己の位置を検出する機能を有する。
前記移動体2の制御部は、図7に示す構成になっている。すなわち、受光部30、受光素子31、光点位置計測部32、入射角度計算部33、自己位置演算部34、コード検知部35、位置データメモリ36を有する検出手段を設けている。
受光部30は、光学ビーコン♯0〜♯6から発せられた光を入射部37に入射し、二次元光学センサ38に集光する。入射部37は、図8に示すように、絞り板37aを有し、その絞り板37aの開口(絞り)に入射する光をレンズ37bにより二次元光学センサ38に集光して、二次元光学センサ38の上面に集光点を形成する。
前記光点位置計測部32は、前記二次元光学センサ38における各集光点を計測する。前記入射角度計算部33は、前記光点位置計測部32で計測される各集光点と二次元光学センサ38の上面の中心位置に立つ中心軸との間の距離に基づいて、前記入射部37への該当する光学ビーコンからの入射光の入射角度をそれぞれ計算する。
前記二次元光学センサ38としては、例えばPSD(Position Sensitive Detector)と称される位置センサが採用される。この位置センサは、集光点の受光強度の重心位置を検知するもので、その重心位置に応じた電圧レベルの信号を出力する。すなわち、集光点の受光強度の重心位置のX,Y座標がXc,Ycであれば、電圧レベルVXc,VYcの信号が位置センサから出力される。そして、この重心位置Xc,Ycを用いた下式で得られる角度の方向に、発光元の光学ビーコンが存在することが分かる。
tan−1(Yc/Xc)±π
ここで、二次元光学センサ38における集光点は、特にビーコンより発せられる光において、位置検出信号による光を基に計算される。これは、位置検出信号が二次元光学センサ38に対して応答特性の良い第2の周波数f2のキャリア信号を変調した信号になっているためである。
前記受光素子31は、例えば、二次元光学センサ38よりも応答性の良好な、例えばフォトダイオードなどの受光素子で、光学ビーコン♯0〜♯6から発せられる光を受光する。前記コード検知部35は、前記入射部37への各入射光に含まれている開始信号及びIDコードを前記受光素子31の出力により検知する。前記コード検知部35は、受光素子31で受ける各光に含まれている開始信号及びIDコードを応答性よく検知できる。これは、開始信号及びIDコードが受光素子31に対して応答特性の良い第1の周波数f1のキャリア信号を変調した信号になっているためである。
前記位置データメモリ36は、前記光学ビーコン♯0〜♯6の位置データをその光学ビーコン♯0〜♯6のIDコードに対応付けて記憶している。前記自己位置演算部34は、コード検知部35で開始信号が検知される毎に、同コード検知部35で検知されるIDコードに基づいて前記位置データメモリ36を参照し、この参照により前記入射部37へ入射する3つの光の発光元である3つの光学ビーコンを識別し、この識別結果及び前記入射角度計算部33の算出結果から前記入射部37へ入射する3つの光の方向を検出し、この検出結果に基づいて、例えば、三角測量の一種である後方交会法を使用して演算を行い、当該移動体2の位置を検出する。
前記移動体2は、自己位置演算部34で検出される位置を蓄積して記憶するための蓄積メモリ39を有している。この蓄積メモリ39の記憶内容に基づき、前記移動体2の移動経路を解析することが可能になる。
また、前記移動体2は、例えば、自律走行可能な移動ロボットとしての使用を可能にするため、コントローラ40、走行ユニット41、マップデータメモリ42、移動ルートプログラムメモリ43を有している。
前記マップデータメモリ42は、建物1内の移動空間のマップデータを記憶している。前記移動ルートプログラムメモリ43は、当該移動体2の移動ルートを指定するための移動ルートプログラムを記憶している。前記コントローラ40は、前記移動ルートプログラムメモリ43内の移動ルートプログラムに従い、かつ前記自己位置演算部34の検出位置と前記マップデータメモリ42内のマップデータとの照合により、走行ユニット41を駆動制御する。
このように、IDコードを含む発光パターンで発光する複数の光学ビーコン♯0〜♯6を移動体2の移動空間に分散して設け、移動体2では、光学ビーコン♯0〜♯6から到達して入射する光のIDコードから少なくとも3つの光学ビーコンを識別するとともに、識別した各光学ビーコンからの入射光の入射角度を算出し、これら識別結果及び算出結果から入射光の方向を検出する。そして、検出結果に基づく演算によって移動体2の位置を検出する。
このような方式で移動体2の位置を検出するので、従来のような敷設後に移動体を所定の位置に置いて校正登録作業などの初期設定を行う必要はなく、面倒な作業を不要にできる。また、移動体2に可動式の走査器を設ける必要がないので移動体2の小型化を図ることができる。また、IDコードとは別に位置検出信号を付加しているので移動体2の位置検出に関して高い信頼性を確保することができる。
各光学ビーコン♯0〜♯6の発光については、常に発光させることなく、所定の順序で一定期間のみ発光動作させるので、光学ビーコン♯0〜♯6の発光に要する消費電力が少なくてすみ、省エネルギー効果が得られる。しかも、光学ビーコン♯0〜♯6が同時に発光しないので、移動体2側の受光システムが複雑化することはない。
光学ビーコン♯0は定期的に発光し、かつ光学ビーコン♯1〜♯6は自己以外の光学ビーコン(発光順序が1つ前の光学ビーコン)から発せられる光を受けて順に発光するので、光学ビーコン♯0〜♯6の相互を配線接続する必要がない。よって、構成の簡略化およびコストの低減が図れる。
光学ビーコン♯0が発光する周期を他の光学ビーコン♯1〜♯6の発光パターンの総和より長くしているので、複数の光学ビーコンが同時に発光することが抑制される。このため、移動体2および光学ビーコン♯1〜♯6の受光部での検出精度を向上させることができる。
また、ID設定部12,26によって光学ビーコン♯0〜♯6のIDコードを可変設定できるので、光学ビーコン♯0〜♯6の構成を共通化することができる。すなわち、光学ビーコン♯0は図2の構成を有し、光学ビーコン♯1〜♯6は図3の構成を有しているが、両者は部品数、制御機能、符合が異なるだけで、基本的なハードウェアは同じである。このように、光学ビーコン♯0〜♯6の基本的なハードウェアを共通化できることにより、コストの低減が図れる。
光学ビーコン♯0〜♯6から発せられる光の最初に、起動情報として特定の発光パターンを有する開始信号が含まれている。移動体2の自己位置演算部34は、その開始信号に応じてIDコードの認識態勢に入り、IDコードを的確に認識することができる。この点でも、位置検出の精度および信頼性が向上する。
光学ビーコン♯0〜♯6から発せられる光に、位置検出信号として特定の発光パターンを有する信号が含まれている。移動体2の二次元光学センサ38は、その位置検出信号によって、精度よく、光学ビーコンの方向を的確に認識することができる。この点でも、位置検出の精度および信頼性が向上する。受光素子31の採用に伴い、二次元光学センサ38の構成にかかわらず、コード検知部35は、受光素子31で受ける各光に含まれている開始信号及びIDコードを応答性よく検知できる。このように、発光パターン中の開始信号及びIDコードのキャリア周波数と位置検出信号のキャリア周波数をそれぞれ受光、認識する素子の応答帯域に合わせることで受信感度を高めることができ、システムの位置検出精度をさらに高めることができる。
ところで、本発明においては、位置検出信号のオンデューティ幅を大きくすることで位置検出信号の発光エネルギーをIDコードの発光エネルギーより大きくしている。そのため、移動体2による位置検出機能をさらに高めることができ、しかも、消費電力の低減化を図ることができる。以下、この点につき詳細に説明する。
各光学ビーコンから発光されるIDコードは、移動体2の受光素子31に届けば、自己位置演算部34でそのIDコードを認識することができる。一方、各光学ビーコンから発光される位置検出信号は、受光部30の入射部37に届いただけでは、必ずしも二次元光学センサ38上に明確な集光点が現れるとは限らず、それにより検出誤差が生じる可能性がある。
そこで、本発明は、位置検出信号の発光エネルギーを大きくすることで、二次元光学センサ38上の集光点を明確にして検出誤差を低減し精度を向上させるとともに、IDコードの発光エネルギーを位置検出信号の発光エネルギーよりも小さくして消費電力を抑えたものである。
なお、この実施の形態では、光学ビーコン♯1〜♯6において、特定IDコード(発光順位が1つ前の光学ビーコンのIDコード)を保存するIDメモリ23を設けたが、比較部22にID設定部26の設定情報を与えることで、特定IDコードを比較部22内で計算により容易に算出できる場合はIDメモリ23を省略してもよい。また、この実施の形態では、IDコードの符号化や特別な変調を特に行っていないがこれに限ったもので無く、PCM方式などを適用してもなんら問題はない。
(第2の実施の形態)
なお、前述した実施の形態と同一の部分には同一の符号を付し、詳細な説明は省略する。この実施の形態における光学ビーコン#0、光学ビーコン#1〜#6、移動体2の制御部の構成は、図2、図3、図7と同じである。前述した第1の実施の形態と異なる点は、光学ビーコン♯0〜♯6から発せられる光の位置検出信号の発光エネルギーを、オンデューティを大きくする代わりに、発光強度を高めた点にある。
すなわち、光学ビーコン♯1の場合の発光パターンを図9に示すように、位置検出信号の発光強度を開始信号及びIDコードの発光強度に比較して大きくしている。なお、他の光学ビーコン♯0、#2〜♯6についても同様である。
位置検出信号の発光強度を高める方法としては、発光ダイオード13,27に流れる電流値を多くすれば良いが、発光ダイオードに流れる電流値には限界があるため、光学ビーコン♯1〜♯6においては、図10に示すように、発光パターン生成部24に、例えば、2個の発光ダイオード素子27a,27bを接続するなど、接続する発光ダイオードの個数を増加すればよい。なお、光学ビーコン♯0においては、発光パターン生成部10に接続する発光ダイオードの数を増やすことになる。
このような場合、発光パターン生成部24は、各発光ダイオード素子27a,27bに対して、例えば、光学ビーコン#1は、図11の(a)、(b)に示すような制御を行う。すなわち、発光ダイオード27aは、(a)に示すように、開始信号、IDコード及び位置検出信号に対して同一発光強度で発光させる。また、発光ダイオード27bは、(b)に示すように、発光ダイオード27aの位置検出信号と同一のタイミング、同一発光強度で位置検出信号のみの発光を行う。
このような発光制御を行うことにより、光学ビーコン#1の発光強度としては、発光ダイオード27aと発光ダイオード27bの発光強度を加算したものとなり、位置検出信号の発光強度のみを開始信号及びIDコードの発光強度に比べ2倍にできる。なお、このような発光制御は、他の光学ビーコン♯0、#2〜♯6についても同様である。
このように、位置検出信号の発光強度のみを開始信号及びIDコードの発光強度よりも高くすることで、光学ビーコンの省エネルギー化及び発光ダイオードの長寿命化を図りつつ、移動体2の二次元光学センサ38の信号受光強度を向上でき、各光学ビーコンの方向をより精度よく的確に認識することができる。
なお、この発明は、前述した各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施の形態に開示されている複数の構成要素を適宜組み合わせてもよい。
本発明の第1の実施の形態に係るシステム全体の概略構成を示す図。 同実施の形態における発光順位が1番目の光学ビーコンの制御部の構成を示すブロック図。 同実施の形態における発光順位が2番目の光学ビーコンの制御部の構成を示すブロック図。 同実施の形態における各光学ビーコンのIDコードと特定IDコードとの対応関係を示す図。 同実施の形態における各光学ビーコンの発光動作タイミングを示すタイミング図。 同実施の形態において変調に使用するキャリア信号を示し、(a)は開始信号及びIDコードが使用するキャリア信号を示す波形図、(b)は位置検出信号が使用するキャリア信号を示す波形図。 同実施の形態における移動体の制御部の構成を示すブロック図。 図7の入射部の構成を示す図。 本発明の第2の実施形態における光学ビーコンの発光パターンを示す図。 同実施の形態における光学ビーコンの発光部の構成例を示す図。 同実施の形態における光学ビーコンの発光パターンの形成例を示す図。
符号の説明
1…建物、2…移動体、♯0〜♯6…光学ビーコン、10,24…発光パターン生成部、12,26…ID設定部、13,27…発光ダイオード、20…受光素子、30…受光部、31…受光素子、32…光点位置計測部、33…入射角度計算部、34…自己位置演算部、35…コード検知部、36…位置データメモリ。

Claims (2)

  1. 移動体の移動空間に分散して設けられ、自己の識別情報と位置検出信号を含む発光パターンに基づいて所定の発光順序で発光する複数の光学ビーコンと、
    前記移動体に設けられ、前記各光学ビーコンからの光の発光パターンに含まれる識別情報から少なくとも3つの光学ビーコンを識別するとともに、この識別した各光学ビーコンからの光の発光パターンに含まれる位置検出信号から光の方向を検出し、この検出結果に基づいて前記移動体の位置を検出する検出手段を備え、
    前記各光学ビーコンは、位置検出信号の発光エネルギーを自己の識別情報の発光エネルギーに比べて高めたことを特徴とする位置検出システム。
  2. 前記各光学ビーコンは、自己の識別情報と位置検出信号の発光時におけるキャリア周波数を異ならせたことを特徴とする請求項1に記載の位置検出システム。
JP2006167821A 2006-06-16 2006-06-16 位置検出システム Pending JP2007333644A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167821A JP2007333644A (ja) 2006-06-16 2006-06-16 位置検出システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167821A JP2007333644A (ja) 2006-06-16 2006-06-16 位置検出システム

Publications (1)

Publication Number Publication Date
JP2007333644A true JP2007333644A (ja) 2007-12-27

Family

ID=38933247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167821A Pending JP2007333644A (ja) 2006-06-16 2006-06-16 位置検出システム

Country Status (1)

Country Link
JP (1) JP2007333644A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119395A1 (ja) * 2021-12-21 2023-06-29 日本電信電話株式会社 通信システム、制御装置、制御方法、及びプログラム
WO2023119397A1 (ja) * 2021-12-21 2023-06-29 日本電信電話株式会社 位置推定システム、制御装置、位置推定方法、およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119395A1 (ja) * 2021-12-21 2023-06-29 日本電信電話株式会社 通信システム、制御装置、制御方法、及びプログラム
WO2023119397A1 (ja) * 2021-12-21 2023-06-29 日本電信電話株式会社 位置推定システム、制御装置、位置推定方法、およびプログラム

Similar Documents

Publication Publication Date Title
US8735824B2 (en) Infrared sensor module
US10114110B2 (en) Object detecting device, sensing device, and mobile object device
JP6819098B2 (ja) 物体検出装置、センシング装置及び移動体装置
US7158217B2 (en) Vehicle radar device
KR102518450B1 (ko) 비행 시간을 감지하기 위한 펄스 반복 주기의 선택
JP2017219502A (ja) 物体検出装置、センシング装置及び移動体装置
US11453123B2 (en) Robotic device with time-of-flight proximity sensing system
US20150204977A1 (en) Object detection device and sensing apparatus
US10596964B2 (en) Distance measurement device, moveable device, and distance measuring method
WO2017060965A1 (ja) 光制御装置、制御方法、プログラム及び記憶媒体
JP5570715B2 (ja) 物体検出装置
US10132926B2 (en) Range finder, mobile object and range-finding method
US10481263B2 (en) Range finding apparatus, moveable apparatus, robot, three dimensional measurement apparatus, method of measuring three dimensional information, and storage medium
US20170199272A1 (en) Optical reflection sensor and electronic device
JP2017015448A (ja) 光飛行型測距装置
JP2021182009A (ja) 光制御装置、制御方法、プログラム及び記憶媒体
CN113484869A (zh) 探测装置及方法
CN111323787A (zh) 探测装置及方法
JP2006021720A (ja) 距離計測機能付きランプ装置
JP2007333644A (ja) 位置検出システム
JP4755886B2 (ja) 位置検出システムおよび位置検出方法
CN112105944A (zh) 具有使用短脉冲和长脉冲的多模式操作的光学测距系统
JP2014219250A (ja) 測距装置及びプログラム
CN114518568A (zh) 激光雷达的控制方法及激光雷达
JP2021063808A (ja) 距離測定型光電センサ及び目標物の検出方法