JP2007332932A - Abnormality diagnosis device for internal combustion engine - Google Patents

Abnormality diagnosis device for internal combustion engine Download PDF

Info

Publication number
JP2007332932A
JP2007332932A JP2006168847A JP2006168847A JP2007332932A JP 2007332932 A JP2007332932 A JP 2007332932A JP 2006168847 A JP2006168847 A JP 2006168847A JP 2006168847 A JP2006168847 A JP 2006168847A JP 2007332932 A JP2007332932 A JP 2007332932A
Authority
JP
Japan
Prior art keywords
value
abnormality
bed temperature
learning value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006168847A
Other languages
Japanese (ja)
Inventor
Atsushi Tawara
淳 田原
Shogo Kanazawa
省吾 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006168847A priority Critical patent/JP2007332932A/en
Priority to US11/808,289 priority patent/US20070289287A1/en
Priority to DE102007027560A priority patent/DE102007027560A1/en
Priority to FR0704327A priority patent/FR2902460A1/en
Publication of JP2007332932A publication Critical patent/JP2007332932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0421Methods of control or diagnosing using an increment counter when a predetermined event occurs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent erroneous determination of existence of abnormality when transient abnormality occurs. <P>SOLUTION: There occurs abnormality which interferes with adjustment of a catalyst bed temperature average value Tave to a target bed temperature Tt during temperature rising control for filter regeneration. There exist some cases where such abnormality is caused permanently and the other where the abnormality is caused transiently. If the abnormality determination is made immediately after a learning value K updated to be a value corresponding to a deviation between the catalyst bed temperature average value Tave and target bed temperature Tt becomes a value out of an appropriate range even once, the determination results in an error even when the device is recovered from the abnormality thereafter and the learning value K falls within the appropriate range again. In order to prevent such occurrence, the count-up performed when the learning value K at update is a value out of the appropriate range is utilized to determine the occurrence of the abnormality. The determination of the abnormality occurrence is made if a counter value of a counter C for resetting the learning value K to an initial value "0" when the learning value K is within the appropriate range reaches the determination value of "2" or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の異常診断装置に関するものである。   The present invention relates to an abnormality diagnosis device for an internal combustion engine.

従来より、車載用ディーゼルエンジン等の内燃機関に適用される排気浄化装置として煤を主成分とする微粒子(PM:ParticulateMatter)を捕集するPMフィルタや、窒素酸化物(NOx)に関する排気浄化を行う吸蔵還元型のNOx触媒を担持した触媒コンバータを排気系に設けたものが知られている。こうした排気浄化装置では、排気浄化能力を回復させることを目的として、触媒への未燃燃料成分の供給を通じて触媒を目標床温まで昇温させる昇温制御が実施される。   Conventionally, as an exhaust gas purification device applied to an internal combustion engine such as a vehicle-mounted diesel engine, a PM filter that collects particulates (PM) mainly containing soot and exhaust gas purification related to nitrogen oxide (NOx) are performed. 2. Description of the Related Art An exhaust system provided with a catalytic converter that supports an NOx storage reduction catalyst is known. In such an exhaust purification device, temperature increase control is performed to raise the temperature of the catalyst to a target bed temperature through the supply of unburned fuel components to the catalyst for the purpose of recovering the exhaust purification capability.

例えば、PMフィルタ及び触媒コンバータでは微粒子の堆積による目詰まりが生じるため、その微粒子を燃焼(酸化)させて同目詰まりを解消するフィルタ再生が行われ、同フィルタ再生の実現のために上記昇温制御が実施される。そして、この昇温制御では、触媒への未燃燃料成分の供給により、炭化水素(HC)や一酸化炭素(CO)等の成分が排気中や触媒上で酸化反応され、その酸化反応に伴う発熱で触媒床温が目標床温まで昇温される。このように触媒床温が高温化することにより、PMフィルタ及び触媒コンバータが高温環境下におかれて堆積する微粒子が除去され、同PMフィルタにおける微粒子の捕集能力の回復が図られる。   For example, in the PM filter and the catalytic converter, clogging due to accumulation of fine particles occurs, so that the fine particles are burned (oxidized) to perform filter regeneration to eliminate the clogging. Control is implemented. In this temperature rise control, components such as hydrocarbons (HC) and carbon monoxide (CO) are oxidized in the exhaust or on the catalyst by supplying unburned fuel components to the catalyst, and accompanying the oxidation reaction. The catalyst bed temperature is raised to the target bed temperature by heat generation. As the catalyst bed temperature rises in this way, the particulates deposited when the PM filter and the catalytic converter are placed in a high temperature environment are removed, and the particulate collection ability of the PM filter is recovered.

ところで、昇温制御の実行時、触媒への未燃燃料成分の供給により触媒床温を目標床温へと昇温させようとしても、その触媒床温が目標床温に達しないことがある。例えば、触媒への未燃燃料成分を供給するための燃料供給系に詰まりが生じているような場合には、触媒への未燃燃料成分の供給量が適正値からずれて少なくなり、そのずれが触媒床温と目標床温との間のずれとして現れる。   By the way, when the temperature increase control is executed, even if an attempt is made to raise the catalyst bed temperature to the target bed temperature by supplying the unburned fuel component to the catalyst, the catalyst bed temperature may not reach the target bed temperature. For example, when the fuel supply system for supplying the unburned fuel component to the catalyst is clogged, the supply amount of the unburned fuel component to the catalyst is deviated from the appropriate value and the deviation is reduced. Appears as a deviation between the catalyst bed temperature and the target bed temperature.

こうした異常が発生しているか否かを判断すべく、特許文献1では、以下のような異常診断が行われる。すなわち、フィルタ再生のための昇温制御中、触媒床温とその目標値とに基づき両者のずれに対応する値となるよう学習値の更新が行われ、その学習値が触媒への未燃燃料成分の供給量に反映されるとともに、当該学習値が所定範囲内にあるか否かによって異常の有無が判断される。ここで、上述したような異常が発生している場合、学習値が適正範囲外の値になるため、そのことに基づき異常有りの旨判断することができるようになる。
特開2003−172185公報(段落[0065]〜[0068])
In order to determine whether or not such an abnormality has occurred, in Patent Document 1, the following abnormality diagnosis is performed. That is, during the temperature rise control for filter regeneration, the learning value is updated based on the catalyst bed temperature and the target value so that the learning value becomes a value corresponding to the difference between the two, and the learned value is not burned into the catalyst. Whether or not there is an abnormality is determined based on whether the learning value is within a predetermined range as well as being reflected in the component supply amount. Here, when the abnormality as described above has occurred, the learning value becomes a value outside the appropriate range, so that it can be determined that there is an abnormality based on the learned value.
JP 2003-172185 A (paragraphs [0065] to [0068])

ところで、排気系への未燃燃料成分の供給により触媒床温を目標床温へと昇温させようとしても、その触媒床温が目標床温に達しないという異常に関しては、必ずしも恒久的に生じるものではなく一時的に生じることもある。そして、触媒床温と目標床温とのずれに対応した値となるよう更新される学習値は、上記異常が生じている間、上記所定範囲外の値となる。   By the way, even if an attempt is made to raise the catalyst bed temperature to the target bed temperature by supplying the unburned fuel component to the exhaust system, the abnormality that the catalyst bed temperature does not reach the target bed temperature does not always occur permanently. It may occur temporarily instead of something. The learning value that is updated to be a value corresponding to the difference between the catalyst bed temperature and the target bed temperature is outside the predetermined range while the abnormality occurs.

こうした一時的な異常が発生する状況としては、例えば、触媒への未燃燃料成分の供給に排気系への燃料添加を行う添加弁を用いている場合であって、粗悪燃料の使用により上記添加弁の噴孔周りにデポジットが付着したという状況をあげることができる。この場合、添加弁の噴孔周りへのデポジットの付着に伴い触媒への未燃燃料成分の供給量が少なくなり、添加弁からの燃料添加により触媒床温を目標床温へと昇温させようとしても、その触媒床温が目標床温に達しないという異常が生じる。しかし、粗悪燃料の使用に伴い添加弁の噴孔周りにデポジットが付着したとしても、こうしたデポジットは燃料を消費してゆく過程で噴孔周りからとれる可能性が高いことから、同デポジットの付着に伴う上述した異常の発生は一時的なものとなる。   Such a temporary abnormality occurs when, for example, an addition valve that adds fuel to the exhaust system is used to supply unburned fuel components to the catalyst. A situation where deposits are attached around the nozzle hole of the valve can be mentioned. In this case, the amount of unburned fuel components supplied to the catalyst decreases as deposits adhere around the nozzle holes of the addition valve, and the catalyst bed temperature is raised to the target bed temperature by adding fuel from the addition valve. However, an abnormality that the catalyst bed temperature does not reach the target bed temperature occurs. However, even if deposits deposit around the nozzle hole of the addition valve due to the use of poor fuel, the deposit is likely to be removed from the nozzle hole in the process of consuming fuel. The occurrence of the abnormalities described above is temporary.

しかし、特許文献1の異常診断では、上述した一時的な異常による影響が触媒床温に現れ、その触媒床温と目標床温とのずれに対応した値となるよう更新される学習値が上記所定範囲外の値になると、そのことに基づいて直ちに異常有りの旨の判断がなされるため、異常有りの旨の誤判断を招くことは避けられない。すなわち、異常有りの旨の判断がなされた後、その異常が解消するような場合には、上記異常有りの旨の判断が誤ったものとなる。   However, in the abnormality diagnosis of Patent Document 1, the learning value updated so that the influence due to the temporary abnormality described above appears in the catalyst bed temperature and becomes a value corresponding to the difference between the catalyst bed temperature and the target bed temperature. If the value is out of the predetermined range, it is determined immediately that there is an abnormality based on that value, and therefore it is unavoidable to make an erroneous determination that there is an abnormality. That is, after the determination of the presence of abnormality is made, if the abnormality is resolved, the determination of the presence of abnormality is incorrect.

本発明はこのような実情に鑑みてなされたものであって、その目的は、一時的な異常が生じたときに誤って異常有りの旨判断してしまうことを抑制できる内燃機関の異常診断装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to detect an abnormality in an internal combustion engine that can suppress erroneous determination of the presence of an abnormality when a temporary abnormality occurs. Is to provide.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、排気系に設けられた触媒への未燃燃料成分の供給により前記触媒を目標床温まで昇温させる昇温制御を実施し、その昇温制御中の触媒床温と前記目標床温とに基づき両者のずれに対応する値となるよう学習値の更新を行い、更新時の同学習値に基づき異常の有無を判断する内燃機関の異常診断装置において、前記学習値の更新毎に同学習値が適正範囲外の値であるか否かを判定する学習値判定手段と、前記学習値判定手段による前記学習値の適正範囲外の値である旨の判定が前記学習値の更新毎に複数回続けて行われたとき、異常有りの旨判断する異常判断手段とを備えた。
In the following, means for achieving the above object and its effects are described.
In order to achieve the above object, according to the first aspect of the present invention, temperature increase control is performed to raise the temperature of the catalyst to the target bed temperature by supplying unburned fuel components to the catalyst provided in the exhaust system. An internal combustion engine abnormality that updates the learning value based on the catalyst bed temperature during temperature control and the target bed temperature so that the value corresponds to the difference between the two and determines whether there is an abnormality based on the learning value at the time of the update In the diagnostic device, every time the learning value is updated, a learning value determination unit that determines whether or not the learning value is a value outside the proper range, and a value outside the proper range of the learning value by the learning value determination unit And an abnormality determining means for determining that there is an abnormality when a determination that there is an abnormality is made a plurality of times each time the learning value is updated.

排気系への未燃燃料成分の供給により触媒床温を目標床温に制御しようとしても、その触媒床温が目標床温に到達せずに両者がずれた状態になる、という異常は必ずしも恒久的に生じるものではなく、一時的に生じることがある。こうした一時的な上記触媒床温と目標床温とのずれが生じたときにも、そのずれに対応する値となるよう学習値の更新が行われ、同学習値が適正範囲外の値になることがある。ここで、仮に上記学習値が適正範囲外の値になったときに直ちに異常有りの旨判断したとすると、その後に一時的な異常が解消した場合に、上記異常有りの旨の判断が誤ったものとなる。しかし、上記構成によれば、学習値がその更新時に適正範囲外の値になったとしても、それが更新毎に複数回続けて生じたものでないと、異常有りの旨の判断がなされない。従って、上記触媒床温と目標床温とが一時的にずれるという異常が生じたとき、誤って異常有りの旨判断してしまうことを抑制できる。   Even if an attempt is made to control the catalyst bed temperature to the target bed temperature by supplying the unburned fuel component to the exhaust system, the abnormality that the catalyst bed temperature does not reach the target bed temperature and both are shifted is not necessarily permanent. It does not occur in a temporary manner and may occur temporarily. When such a temporary deviation between the catalyst bed temperature and the target bed temperature occurs, the learning value is updated so as to be a value corresponding to the deviation, and the learning value becomes a value outside the appropriate range. Sometimes. Here, if it is immediately determined that there is an abnormality when the learning value is outside the appropriate range, the determination that there is an abnormality will be incorrect if the temporary abnormality is resolved thereafter. It will be a thing. However, according to the above configuration, even if the learning value becomes a value out of the proper range at the time of updating, it is not determined that there is an abnormality unless it has occurred a plurality of times for each updating. Therefore, it is possible to suppress erroneously determining that there is an abnormality when an abnormality in which the catalyst bed temperature and the target bed temperature are temporarily shifted occurs.

請求項2記載の発明では、請求項1記載の発明において、前記内燃機関においては、その排気系の前記触媒よりも上流に燃料を添加する添加弁が設けられるものとした。
上記構成によれば、排気系に設けられた触媒への未燃燃料成分の供給が上記添加弁からの燃料添加によって行われる。この場合、粗悪燃料が使用されたときに添加弁の噴孔周りにデポジットが付着しやすくなり、そのデポジットの付着により添加弁からの燃料添加量が適正値よりも少なくなって触媒床温が目標床温に対し低下側にずれる。しかし、上記のように添加弁の噴孔周りに付着したデポジットは、燃料を添加してゆく過程で噴孔周りからとれる可能性が高いことから、触媒床温が目標床温からずれるという異常が一時的なものになる。こうした一時的な異常の発生に基づき異常有りの旨判断してしまうことを抑制できる。
According to a second aspect of the invention, in the first aspect of the invention, the internal combustion engine is provided with an addition valve for adding fuel upstream of the catalyst in the exhaust system.
According to the above configuration, the unburned fuel component is supplied to the catalyst provided in the exhaust system by adding the fuel from the addition valve. In this case, when poor fuel is used, deposits are likely to adhere around the nozzle hole of the addition valve, and the amount of fuel added from the addition valve is less than the appropriate value due to the adhesion of the deposit. Shifts to the lower side of the bed temperature. However, as described above, the deposit adhering around the nozzle hole of the addition valve is likely to be removed from the nozzle hole in the process of adding fuel, so there is an abnormality that the catalyst bed temperature deviates from the target bed temperature. It will be temporary. It can be suppressed that there is an abnormality based on the occurrence of such a temporary abnormality.

請求項3記載の発明では、請求項1又は2記載の発明において、前記内燃機関においては、その排気系に微粒子を捕集するためのフィルタが設けられており、そのフィルタに捕集された微粒子の堆積量を所定値未満とすべく同微粒子を燃焼させるフィルタ再生を行う際、前記触媒への未燃燃料成分の供給により同触媒を目標床温まで昇温させる昇温制御が実施されるものとした。   According to a third aspect of the invention, in the first or second aspect of the invention, the internal combustion engine is provided with a filter for collecting fine particles in an exhaust system thereof, and the fine particles collected by the filter When the filter is regenerated to burn the same particulates so that the amount of deposits is less than a predetermined value, temperature increase control is performed to raise the catalyst to the target bed temperature by supplying unburned fuel components to the catalyst. It was.

上記構成によれば、触媒に堆積した微粒子を所定値以下とすべくフィルタ再生が定期的に行われる。そして、上記フィルタ再生のための昇温制御が実施されるとき、それと同時に異常の有無を判断することができるため、その異常の有無を判断する機会が少なくなることを抑制できる。   According to the above configuration, the filter regeneration is periodically performed so that the fine particles deposited on the catalyst are not more than a predetermined value. When the temperature increase control for filter regeneration is performed, the presence / absence of an abnormality can be determined at the same time, so that the chance of determining the presence / absence of the abnormality can be suppressed.

請求項4記載の発明では、請求項3記載の発明において、前記学習値判定手段によって前記学習値が適正範囲外の値である旨判定されたときにカウント値をカウントアップし、前記学習値が適正範囲内の値である旨判定されたときに前記カウント値を「0」にリセットするカウント手段を備え、前記異常判断手段は、前記カウント値が「2」以上の値に定められる判定値以上になったとき、異常有りの旨判断するものであって、前記カウント手段は、前記フィルタ再生が完了したときにも、前記カウント値を「0」にリセットするものとした。   According to a fourth aspect of the present invention, in the third aspect of the present invention, when the learning value determining means determines that the learning value is outside the proper range, the count value is counted up, and the learning value is Counting means for resetting the count value to “0” when it is determined that the value is within an appropriate range, and the abnormality judging means is a judgment value that is set to a value equal to or greater than “2”. In this case, it is determined that there is an abnormality, and the counting means resets the count value to “0” even when the filter regeneration is completed.

フィルタ再生のための昇温制御中、一時的に触媒床温が目標床温に達しなくなるという異常が生じたときには、更新された学習値が適正範囲外の値になってカウント手段によりカウント値がカウントアップされる。しかし、上記一時的な異常がフィルタ再生にあまり影響を及ぼさない場合には、カウント値が判定値以上になる前に触媒での微粒子の堆積量が所定値未満になってフィルタ再生が完了することがある。この場合、カウント値が「0」よりも大きい値に保持されたままだと、次回のフィルタ再生のための昇温制御中に再び一時的な異常が生じて学習値が適正範囲外の値になったとき、早期にカウント値が判定値以上になり、誤って異常有りの旨判断されるおそれがある。しかし、上記構成によれば、フィルタ再生が完了したときには上記カウント値が「0」にリセットされるため、上述したような誤判断の発生を回避することができる。   During the temperature rise control for filter regeneration, if an abnormality occurs in which the catalyst bed temperature temporarily does not reach the target bed temperature, the updated learning value becomes a value outside the appropriate range, and the count value is set by the counting means. Count up. However, if the temporary abnormality does not significantly affect the filter regeneration, the amount of accumulated particulates on the catalyst becomes less than the predetermined value before the count value exceeds the judgment value, and the filter regeneration is completed. There is. In this case, if the count value is kept at a value larger than “0”, a temporary abnormality occurs again during the temperature rise control for the next filter regeneration, and the learning value becomes out of the appropriate range. If this happens, the count value becomes equal to or greater than the determination value at an early stage, and it may be erroneously determined that there is an abnormality. However, according to the above configuration, since the count value is reset to “0” when the filter regeneration is completed, it is possible to avoid the occurrence of erroneous determination as described above.

請求項5記載の発明では、請求項3又は4記載の発明において、前記学習値判定手段によって前記学習値が適正範囲外の値である旨判定されたときにカウント値をカウントアップし、前記学習値が適正範囲内の値である旨判定されたときに前記カウント値を「0」にリセットするカウント手段を備え、前記学習値は、触媒床温の前記微粒子の燃焼可能な値以上での安定を条件に更新されるものであり、前記異常判断手段は、前記カウント手段によるカウント値が「2」以上の値に定められる判定値以上になったときに異常有りの旨判断するとともに、前記フィルタ再生の開始時点からの経過時間が許容時間以上経過しても同フィルタ再生が完了しないときには前記カウント値に関係なく異常有りの旨判断するものとした。   According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, when the learning value determination means determines that the learning value is outside the proper range, the count value is counted up, and the learning A counter that resets the count value to “0” when it is determined that the value is within a proper range, and the learning value is stable when the catalyst bed temperature is equal to or greater than a combustible value of the particulates. The abnormality determining means determines that there is an abnormality when the count value by the counting means is equal to or greater than a determination value set to a value of “2” or more, and the filter If the filter regeneration is not completed even if the elapsed time from the start of regeneration has exceeded the allowable time, it is determined that there is an abnormality regardless of the count value.

フィルタ再生のための昇温制御中、触媒床温が目標床温に達しなくなるという異常が生じたとき、学習値が適正範囲外の値へと更新される可能性があるとしても、触媒床温が触媒に堆積した微粒子の燃焼可能な値以上で安定していなければ、上記学習値の更新が行われることはない。このような状況のもとでは、異常が発生しているにもかかわらず、カウント値が判定値以上にならないまま、言い換えれば異常有りの旨判断されないまま、フィルタ再生が続けられることとなる。また、このような状況のもとでのフィルタ再生では、触媒に堆積した微粒子の燃焼が進みにくいことから、フィルタ再生を完了させられない可能性が高い。上記構成によれば、フィルタ再生の開始時点からの経過時間が許容時間以上経過しても同フィルタ再生が完了しないときには、カウント値が判定値未満であったとしても異常有りの旨判断されるため、実際には異常が発生しているにもかかわらず、異常有りの旨判断されないという状況の発生を回避することができる。   During an increase in temperature control for filter regeneration, if an abnormality occurs in which the catalyst bed temperature does not reach the target bed temperature, the learned value may be updated to a value outside the appropriate range. The learning value is not updated unless the particle is stable at or above the combustible value of the fine particles deposited on the catalyst. Under such circumstances, the filter regeneration is continued while the count value does not exceed the determination value, in other words, it is not determined that there is an abnormality, even though an abnormality has occurred. Further, in the filter regeneration under such circumstances, it is highly possible that the filter regeneration cannot be completed because the combustion of the fine particles accumulated on the catalyst is difficult to proceed. According to the above configuration, if the filter regeneration is not completed even if the elapsed time from the filter regeneration start time has exceeded the allowable time, it is determined that there is an abnormality even if the count value is less than the determination value. Thus, it is possible to avoid the occurrence of a situation in which it is not determined that there is an abnormality even though an abnormality has actually occurred.

以下、本発明を具体化した一実施形態を図1〜図14に従って説明する。
図1は、本実施形態の異常診断装置が適用される内燃機関10の構成を示している。この内燃機関10は、コモンレール方式の燃料噴射装置を備える自動車用のディーゼル機関となっている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
FIG. 1 shows a configuration of an internal combustion engine 10 to which the abnormality diagnosis device of the present embodiment is applied. The internal combustion engine 10 is a diesel engine for automobiles equipped with a common rail fuel injection device.

内燃機関10の吸気系を構成する吸気通路12、及び同機関10の排気系を構成する排気通路14はそれぞれ、内燃機関10の気筒の燃焼室13に接続されている。そして、吸気通路12にはエアフローメータ16及び吸気絞り弁19が設けられている。また、排気通路14には上流側から順に、NOx触媒コンバータ25、PMフィルタ26、酸化触媒コンバータ27が設けられている。   An intake passage 12 constituting the intake system of the internal combustion engine 10 and an exhaust passage 14 constituting the exhaust system of the engine 10 are each connected to a combustion chamber 13 of a cylinder of the internal combustion engine 10. An air flow meter 16 and an intake throttle valve 19 are provided in the intake passage 12. The exhaust passage 14 is provided with a NOx catalytic converter 25, a PM filter 26, and an oxidation catalytic converter 27 in order from the upstream side.

NOx触媒コンバータ25には、吸蔵還元型のNOx触媒が担持されている。このNOx触媒は、排気の酸素濃度が高いときに排気中のNOxを吸蔵し、排気の酸素濃度が低いときにその吸蔵したNOxを放出する。またNOx触媒は、上記NOx放出時に、還元剤となる未燃燃料成分がその周囲に十分存在していれば、その放出されたNOxを還元して浄化する。   The NOx catalytic converter 25 carries an NOx storage reduction catalyst. The NOx catalyst stores NOx in the exhaust when the oxygen concentration of the exhaust is high, and releases the stored NOx when the oxygen concentration of the exhaust is low. Further, the NOx catalyst reduces and purifies the released NOx if there is sufficient unburned fuel component as a reducing agent at the time of releasing the NOx.

PMフィルタ26は、多孔質材料によって形成されており、排気中の煤を主成分とする微粒子(PM)が捕集されるようになっている。このPMフィルタ26にも、上記NOx触媒コンバータ25と同様に、吸蔵還元型のNOx触媒が担持されており、排気中のNOxの浄化が行われるようになっている。またこのNOx触媒によって触発される反応により、上記捕集されたPMが燃焼(酸化)されて除去されるようにもなっている。   The PM filter 26 is made of a porous material and collects fine particles (PM) mainly composed of soot in the exhaust gas. Similarly to the NOx catalytic converter 25, the PM filter 26 also carries an NOx storage reduction catalyst so that NOx in the exhaust gas can be purified. Further, the collected PM is burned (oxidized) and removed by a reaction triggered by the NOx catalyst.

酸化触媒コンバータ27には、酸化触媒が担持されている。この酸化触媒は、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する。
なお排気通路14の上記PMフィルタ26の上流側及び下流側には、PMフィルタ26に流入する排気の温度である入ガス温度を検出する入ガス温度センサ28、及びPMフィルタ26通過後の排気の温度である出ガス温度を検出する出ガス温度センサ29がそれぞれ配設されている。また排気通路14には、上記PMフィルタ26の排気上流側とその排気下流側との差圧を検出する差圧センサ30が配設されている。更に排気通路14の上記NOx触媒コンバータ25の排気上流側、及び上記PMフィルタ26と上記酸化触媒コンバータ27との間には、排気の空燃比を検出する2つの空燃比センサ31、32がそれぞれ配設されている。
The oxidation catalyst converter 27 carries an oxidation catalyst. This oxidation catalyst oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust.
In addition, on the upstream side and the downstream side of the PM filter 26 in the exhaust passage 14, an inlet gas temperature sensor 28 that detects the inlet gas temperature that is the temperature of the exhaust gas flowing into the PM filter 26, and the exhaust gas after passing through the PM filter 26. An outgas temperature sensor 29 for detecting an outgas temperature, which is a temperature, is provided. The exhaust passage 14 is provided with a differential pressure sensor 30 for detecting a differential pressure between the exhaust upstream side of the PM filter 26 and the exhaust downstream side thereof. Further, two air-fuel ratio sensors 31 and 32 for detecting the air-fuel ratio of the exhaust are arranged on the exhaust gas upstream side of the NOx catalytic converter 25 and between the PM filter 26 and the oxidation catalytic converter 27, respectively. It is installed.

更にこの内燃機関10には、排気の一部を吸気通路12内の空気に再循環させる排気再循環(以下、EGRと記載する)装置が設けられている。EGR装置は、排気通路14と吸気通路12とを連通するEGR通路33を備えて構成されている。EGR通路33の最上流部は排気通路14に接続されている。またEGR通路33にはEGR弁36が設けられている。そしてEGR通路33の最下流部は、吸気通路12の上記吸気絞り弁19の下流側に接続されている。   Further, the internal combustion engine 10 is provided with an exhaust gas recirculation (hereinafter referred to as EGR) device that recirculates a part of the exhaust gas to the air in the intake passage 12. The EGR device includes an EGR passage 33 that allows the exhaust passage 14 and the intake passage 12 to communicate with each other. The most upstream part of the EGR passage 33 is connected to the exhaust passage 14. An EGR valve 36 is provided in the EGR passage 33. The most downstream portion of the EGR passage 33 is connected to the downstream side of the intake throttle valve 19 in the intake passage 12.

一方、内燃機関10の各気筒の燃焼室13には、同燃焼室13内での燃焼に供される燃料を噴射するインジェクタ40がそれぞれ配設されている。各気筒のインジェクタ40は、高圧燃料供給管41を介してコモンレール42に接続されている。コモンレール42には、燃料ポンプ43を通じて高圧燃料が供給される。コモンレール42内の高圧燃料の圧力は、同コモンレール42に取り付けられたレール圧センサ44によって検出されるようになっている。更に燃料ポンプ43からは、低圧燃料供給管45を通じて、低圧燃料が添加弁46に供給されるようになっている。   On the other hand, an injector 40 for injecting fuel to be used for combustion in the combustion chamber 13 is disposed in the combustion chamber 13 of each cylinder of the internal combustion engine 10. The injector 40 of each cylinder is connected to a common rail 42 via a high pressure fuel supply pipe 41. High pressure fuel is supplied to the common rail 42 through a fuel pump 43. The pressure of the high-pressure fuel in the common rail 42 is detected by a rail pressure sensor 44 attached to the common rail 42. Further, low pressure fuel is supplied from the fuel pump 43 to the addition valve 46 through the low pressure fuel supply pipe 45.

こうした内燃機関10の各種制御は、電子制御装置50により実施されている。電子制御装置50は、機関制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。   Various controls of the internal combustion engine 10 are performed by the electronic control unit 50. The electronic control unit 50 includes a CPU that executes various arithmetic processes related to engine control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU arithmetic results, and signals between the outside The input / output port for inputting / outputting is provided.

電子制御装置50の入力ポートには、上述した各センサに加え、機関回転速度を検出するNEセンサ51、アクセル操作量を検出するアクセルセンサ52、吸気絞り弁19の開度を検出する絞り弁センサ53、内燃機関10の吸気温度を検出する吸気温センサ54、及び、同機関10の冷却水温を検出する水温センサ55等が接続されている。また電子制御装置50の出力ポートには、上記吸気絞り弁19やEGR弁36、インジェクタ40、燃料ポンプ43、添加弁46等の駆動回路が接続されている。   In addition to the above-described sensors, the input port of the electronic control unit 50 includes an NE sensor 51 that detects the engine speed, an accelerator sensor 52 that detects the accelerator operation amount, and a throttle valve sensor that detects the opening of the intake throttle valve 19. 53, an intake air temperature sensor 54 for detecting the intake air temperature of the internal combustion engine 10, a water temperature sensor 55 for detecting the cooling water temperature of the engine 10, and the like are connected. The output port of the electronic control unit 50 is connected to drive circuits such as the intake throttle valve 19, the EGR valve 36, the injector 40, the fuel pump 43, and the addition valve 46.

電子制御装置50は、上記各センサから入力される検出信号より把握される機関運転状態に応じて、上記出力ポートに接続された各機器類の駆動回路に指令信号を出力する。こうして上記吸気絞り弁19の開度制御、上記EGR弁36の開度制御に基づくEGR制御、上記インジェクタ40からの燃料噴射量、燃料噴射時期、及び燃料噴射圧の制御、上記添加弁46からの燃料添加の制御等の各種制御が電子制御装置50により実施されている。   The electronic control unit 50 outputs a command signal to the drive circuit of each device connected to the output port according to the engine operating state grasped from the detection signal input from each sensor. Thus, the opening control of the intake throttle valve 19, EGR control based on the opening control of the EGR valve 36, control of the fuel injection amount, fuel injection timing, and fuel injection pressure from the injector 40, Various controls such as fuel addition control are performed by the electronic control unit 50.

以上の如く構成された本実施形態では、上記NOx触媒コンバータ25及びPMフィルタ26でのPMによる目詰まりを防止すべく、それらNOx触媒コンバータ25及びPMフィルタ26など排気系に堆積したPMを燃焼(酸化)させて浄化するフィルタ再生が実施される。こうしたフィルタ再生を行うには、上記NOx触媒コンバータ25やPMフィルタ26を十分に高温化する必要がある。このため、フィルタ再生の実行時には、上記NOx触媒コンバータ25やPMフィルタ26のNOx触媒に未燃燃料成分を供給することで、触媒床温を上記PMの燃焼に必要な値(例えば600〜700℃)まで上昇させる昇温制御が実行される。なお、昇温制御での触媒への未燃燃料成分の供給は、添加弁46からの排気に対する燃料添加等によって行われる。   In the present embodiment configured as described above, in order to prevent clogging due to PM in the NOx catalytic converter 25 and the PM filter 26, PM accumulated in the exhaust system such as the NOx catalytic converter 25 and the PM filter 26 is burned ( Filter regeneration is performed by oxidizing and purifying. In order to perform such filter regeneration, it is necessary to sufficiently raise the temperature of the NOx catalytic converter 25 and the PM filter 26. For this reason, when filter regeneration is performed, the unburnt fuel component is supplied to the NOx catalyst of the NOx catalytic converter 25 and the PM filter 26, so that the catalyst bed temperature is a value necessary for the combustion of the PM (for example, 600 to 700 ° C.). The temperature raising control is performed to raise the temperature to. Note that the supply of the unburned fuel component to the catalyst in the temperature rise control is performed by adding fuel to the exhaust from the addition valve 46 or the like.

ちなみに本実施形態では、フィルタ再生のための昇温制御は、以下に示される条件すべての成立をもって開始される。
・フィルタ再生の要求時である。ここでのフィルタ再生要求は、機関運転状態から推定される排気系でのPM堆積量が許容値以上になって同PMフィルタ26等での目詰りの発生が確認されたときになされる。
Incidentally, in the present embodiment, the temperature increase control for filter regeneration is started when all of the following conditions are satisfied.
-When filter regeneration is requested. The filter regeneration request here is made when the PM accumulation amount in the exhaust system estimated from the engine operating state exceeds an allowable value and the occurrence of clogging in the PM filter 26 or the like is confirmed.

・上記入ガス温度センサ28の検出値(入ガス温度thci)が昇温制御実施の下限温度(例えば150℃)以上である。また機関運転状態の履歴、入ガス温度センサ28の検出値、及び、出ガス温度センサ29の検出値から推定されるNOx触媒の触媒床温が、昇温制御実施の下限温度以上である。これら下限温度には、未燃燃料成分の供給に伴って触媒床温を上昇させられるだけの酸化反応を生じさせることのできる排気温度及び触媒床温の下限値がそれぞれ設定されている。   -The detection value (input gas temperature thci) of the said input gas temperature sensor 28 is more than the minimum temperature (for example, 150 degreeC) of temperature rise control implementation. Further, the catalyst bed temperature of the NOx catalyst estimated from the history of the engine operation state, the detected value of the inlet gas temperature sensor 28, and the detected value of the outlet gas temperature sensor 29 is equal to or higher than the lower limit temperature of the temperature increase control. These lower limit temperatures are respectively set to an exhaust temperature and a lower limit value of the catalyst bed temperature that can cause an oxidation reaction sufficient to raise the catalyst bed temperature with the supply of the unburned fuel component.

・入ガス温度センサ28の検出値が、昇温制御に伴う発熱による触媒の過昇温を回避し得る温度範囲の上限値C未満である。
・出ガス温度センサ29の検出値が、同じく昇温制御に伴う発熱による触媒の過昇温を回避し得る温度範囲の上限値D未満である。
The detection value of the inlet gas temperature sensor 28 is less than the upper limit value C of the temperature range in which the catalyst can be prevented from being overheated due to heat generation accompanying the temperature rise control.
The detection value of the outgas temperature sensor 29 is less than the upper limit value D of the temperature range that can avoid the excessive temperature rise of the catalyst due to the heat generation accompanying the temperature rise control.

・排気に対する燃料添加の実施が許可されている。すなわち、排気燃料添加の実施を許容できる機関運転状態にある。この内燃機関10では、エンジンストール中でなく、気筒判別が終了しており、且つ出力の制限がなされていないのであれば、排気燃料添加が許可されるようになっている。   ・ Addition of fuel to the exhaust is permitted. In other words, the engine is in an operating state in which exhaust fuel addition can be allowed. In this internal combustion engine 10, addition of exhaust fuel is permitted if the cylinder discrimination is completed and the output is not limited when the engine is not stalling.

そして、上記昇温制御を通じてのフィルタ再生の実行により、PM堆積量が所定値(例えば「0」)まで減少すると、フィルタ再生が完了した旨判断され、同フィルタ再生のための昇温制御が終了させられる。   When the PM regeneration amount is reduced to a predetermined value (for example, “0”) by executing the filter regeneration through the temperature increase control, it is determined that the filter regeneration is completed, and the temperature increase control for the filter regeneration is completed. Be made.

次に、上記昇温制御の概要について図2のタイムチャートを参照して説明する。
昇温制御中の触媒床温Tは、NOx触媒コンバータ25上流の排気温度である触媒入口排気温Tbに対し、添加弁46からの燃料添加に基づく酸化反応による発熱量の分だけ上昇した値ということになる。そして、昇温制御では、触媒の目標床温Ttが例えば600、630、650と段階的に増大させられ、その目標床温Ttに向けて触媒床温Tが上昇するよう、添加弁46からの燃料添加を通じて触媒への未燃燃料成分の供給が行われる。ただし、内燃機関10の排気温度が低く排気流量も少ないようなときには、添加弁46からの燃料添加を多くしても未燃燃料成分の酸化反応が進まず、触媒床温Tを上昇させることができないため、目標床温Ttを一時的に低下させて添加弁46からの無駄な燃料添加が行われないようにすることもある。
Next, an outline of the temperature rise control will be described with reference to the time chart of FIG.
The catalyst bed temperature T during the temperature rise control is a value that is increased by the amount of heat generated by the oxidation reaction based on the fuel addition from the addition valve 46 with respect to the catalyst inlet exhaust temperature Tb that is the exhaust temperature upstream of the NOx catalytic converter 25. It will be. In the temperature increase control, the target bed temperature Tt of the catalyst is increased stepwise, for example, 600, 630, and 650, and the catalyst from the addition valve 46 is increased so that the catalyst bed temperature T increases toward the target bed temperature Tt. An unburned fuel component is supplied to the catalyst through fuel addition. However, when the exhaust temperature of the internal combustion engine 10 is low and the exhaust flow rate is small, the oxidation reaction of the unburned fuel component does not proceed even if the fuel addition from the addition valve 46 is increased, and the catalyst bed temperature T may be raised. Therefore, the target bed temperature Tt may be temporarily lowered to prevent unnecessary fuel addition from the addition valve 46.

添加弁46からの燃料添加は、図2(d)に示される添加許可フラグF1の「1(許可)」への変化(タイミングT1)に基づき開始される。この添加許可フラグF1は、「1」になった後、「0」に戻されるようになっている。そして、添加弁46からの燃料添加が開始されると、図2(a)に示される添加パルスに従って添加弁46からの間欠的な燃料添加が実施される。こうした間欠的な燃料添加における燃料の添加時間a、及び、燃料添加の休止時間bは、目標床温Ttと触媒入口排気温Tbとの温度差ΔTb、及び、エアフローメータ16によって検出される内燃機関10のガス流量Ga(内燃機関10の排気流量に相当)に基づいて設定される。なお、上記触媒入口排気温Tbとしては、例えば入りガス温度センサ28及び出ガス温度センサ29の検出値等に基づき推定される値を用いることが可能である。そして、上記のように開始された間欠的な燃料添加に関しては、予め定められた回数の燃料添加が実行されるまで継続され、その回数だけ燃料添加がなされた後に停止される(タイミングT2)。   Fuel addition from the addition valve 46 is started based on a change (timing T1) of the addition permission flag F1 to “1 (permitted)” shown in FIG. The addition permission flag F1 is set to “0” after being set to “1”. When fuel addition from the addition valve 46 is started, intermittent fuel addition from the addition valve 46 is performed according to the addition pulse shown in FIG. The fuel addition time a and the fuel addition stop time b in such intermittent fuel addition are the temperature difference ΔTb between the target bed temperature Tt and the catalyst inlet exhaust temperature Tb and the internal combustion engine detected by the air flow meter 16. 10 gas flow rate Ga (corresponding to the exhaust flow rate of the internal combustion engine 10). As the catalyst inlet exhaust temperature Tb, for example, a value estimated based on the detection values of the inlet gas temperature sensor 28 and the outlet gas temperature sensor 29 can be used. The intermittent fuel addition started as described above is continued until a predetermined number of times of fuel addition is executed, and is stopped after the fuel addition is performed for that number of times (timing T2).

添加弁46からの燃料添加の開始後、添加弁46の駆動状態に基づいて所定時間、例えば16msが経過する毎に、当該16ms中に添加弁46から添加される燃料の量である16ms発熱燃料量Qが算出される。この16ms発熱燃料量Qを算出毎に「ΣQ←前回のΣQ+Q …(1)」という式に基づいて累積することにより、燃料添加開始時点(T1)からの添加弁46からの総添加量、言い換えれば酸化反応による発熱に寄与する総燃料量を表す発熱燃料量積算値ΣQが算出される。こうして算出される発熱燃料量積算値ΣQに関しては、図2(c)に実線で示されるように、燃料添加の開始から終了までの期間である添加期間Aにて急速に増加し、それ以後の燃料添加の休止期間Bには増加が抑えられる。   After the start of fuel addition from the addition valve 46, every time a predetermined time, for example, 16 ms elapses based on the drive state of the addition valve 46, 16 ms exothermic fuel that is the amount of fuel added from the addition valve 46 during the 16 ms. A quantity Q is calculated. By accumulating this 16 ms exothermic fuel amount Q based on the equation “ΣQ ← previous ΣQ + Q (1)” for each calculation, the total addition amount from the addition valve 46 from the fuel addition start time (T1), in other words, For example, an exothermic fuel amount integrated value ΣQ representing the total fuel amount contributing to the heat generation due to the oxidation reaction is calculated. The exothermic fuel amount integrated value ΣQ calculated in this way increases rapidly during the addition period A, which is the period from the start to the end of fuel addition, as shown by the solid line in FIG. The increase during the fuel addition suspension period B is suppressed.

一方、添加弁46からの燃料添加の開始後、上記所定時間(16ms)毎に、当該16ms中に添加弁46から添加すべき燃料の量、言い換えれば触媒床温Tを目標床温Ttに到達させるために必要な燃料の添加量である16ms要求燃料量Qrが算出される。この16ms要求燃料量Qrの算出は、目標床温Ttと触媒入口排気温Tbとの温度差ΔTb、及び、内燃機関10のガス流量Gaを用いて行われる。こうして算出される16ms要求燃料量Qrは、図2(b)に実線L2で示される触媒入口排気温Tbが目標床温Ttに対し低い状態にあるほど大となる。そして、上記16ms要求燃料量Qrを算出毎に「ΣQr←前回のΣQr+Qr …(2)」という式に基づき累積することで、触媒床温Tの平均値を目標床温Ttとするために必要な燃料添加開始時点(T1)からの燃料量を表す要求燃料量積算値ΣQrが算出される。こうして算出される要求燃料量積算値ΣQrに関しては、図2(c)に破線で示されるように、発熱燃料量積算値ΣQの増加(実線)と比較して緩やかに増加する。   On the other hand, after the start of fuel addition from the addition valve 46, the amount of fuel to be added from the addition valve 46 during the predetermined time (16 ms), in other words, the catalyst bed temperature T reaches the target bed temperature Tt. A required fuel amount Qr of 16 ms, which is the amount of fuel added necessary for the control, is calculated. This 16 ms required fuel amount Qr is calculated using the temperature difference ΔTb between the target bed temperature Tt and the catalyst inlet exhaust temperature Tb and the gas flow rate Ga of the internal combustion engine 10. The calculated 16 ms required fuel amount Qr increases as the catalyst inlet exhaust temperature Tb indicated by the solid line L2 in FIG. 2B is lower than the target bed temperature Tt. Then, the 16 ms required fuel amount Qr is accumulated every calculation based on the formula “ΣQr ← previous ΣQr + Qr (2)”, so that the average value of the catalyst bed temperature T is required to be the target bed temperature Tt. A required fuel amount integrated value ΣQr representing the fuel amount from the fuel addition start time (T1) is calculated. The calculated required fuel amount integrated value ΣQr increases gradually as compared with the increase (solid line) of the exothermic fuel amount integrated value ΣQ, as indicated by a broken line in FIG.

そして、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になると(タイミングT3)、添加許可フラグF1が「1(許可)」へと変化し、添加弁46からの間欠的な燃料添加が開始される。このとき、タイミングT1以降の発熱燃料量積算値ΣQ分の燃料に関しては添加弁46から添加完了しているため、要求燃料量積算値ΣQrから上記発熱燃料量積算値ΣQが減算される。更に、発熱燃料量積算値ΣQはクリアされて「0」になる。そして、添加弁46からの間欠的な燃料添加の開始に伴い、再び添加期間Aへと移行することになり、同添加期間Aが終了すると休止期間Bへと移行する。従って、昇温制御中には添加期間Aと休止期間Bとが繰り返されるようになる。   When the required fuel amount integrated value ΣQr becomes equal to or greater than the exothermic fuel amount integrated value ΣQ (timing T3), the addition permission flag F1 changes to “1 (permission)”, and intermittent fuel addition from the addition valve 46 is performed. Be started. At this time, since the addition of the fuel for the heat generation fuel amount integrated value ΣQ after the timing T1 has been completed from the addition valve 46, the heat generation fuel amount integration value ΣQ is subtracted from the required fuel amount integration value ΣQr. Furthermore, the exothermic fuel amount integrated value ΣQ is cleared and becomes “0”. Then, along with the start of intermittent fuel addition from the addition valve 46, the process shifts again to the addition period A. When the addition period A ends, the process shifts to the pause period B. Therefore, the addition period A and the pause period B are repeated during the temperature rise control.

なお、昇温制御中においては、触媒入口排気温Tbが目標床温Ttに対し低下側に離れた状態となっているほど、16ms要求燃料量Qrが大となるように算出され、要求燃料量積算値ΣQrが速やかに増加する。その結果、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるために要する時間が短くなり、休止期間Bが短くなる。また、触媒入口排気温Tbが目標床温Ttに近づくほど、16ms要求燃料量Qrが小となるように算出され、要求燃料量積算値ΣQrの増加が緩やかにされる。その結果、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるために要する時間が長くなり、休止期間Bが長くなる。   During the temperature increase control, the 16 ms required fuel amount Qr is calculated to be larger as the catalyst inlet exhaust temperature Tb is further away from the target bed temperature Tt. The integrated value ΣQr increases rapidly. As a result, the time required for the required fuel amount integrated value ΣQr to be equal to or greater than the exothermic fuel amount integrated value ΣQ is shortened, and the suspension period B is shortened. Further, the 16 ms required fuel amount Qr is calculated to be smaller as the catalyst inlet exhaust temperature Tb approaches the target bed temperature Tt, and the increase in the required fuel amount integrated value ΣQr is moderated. As a result, the time required for the required fuel amount integrated value ΣQr to be equal to or greater than the exothermic fuel amount integrated value ΣQ becomes longer, and the suspension period B becomes longer.

以上のように、触媒入口排気温Tbの目標床温Ttに対する乖離状態に応じて休止期間Bの長さを変化させることで、それに応じて単位時間あたりの添加弁46からの燃料添加量の平均値が変化する。これにより、触媒床温Tが例えば図2(b)に実線L1で示されるように推移し、増減する触媒床温Tの変動中心が目標床温Ttに制御されるようになる。   As described above, by changing the length of the suspension period B according to the deviation state of the catalyst inlet exhaust temperature Tb from the target bed temperature Tt, the average amount of fuel added from the addition valve 46 per unit time is changed accordingly. The value changes. As a result, the catalyst bed temperature T changes, for example, as indicated by the solid line L1 in FIG. 2B, and the fluctuation center of the catalyst bed temperature T that increases or decreases is controlled to the target bed temperature Tt.

次に、昇温制御中の添加弁46による燃料添加の制御手順について、燃料添加制御ルーチンを示す図3及び図4のフローチャートを参照して説明する。この燃料添加制御ルーチンは、電子制御装置50を通じて、例えば所定時間(本実施形態では16ms)毎の時間割り込みにて周期的に実行される。   Next, the fuel addition control procedure by the addition valve 46 during the temperature rise control will be described with reference to the flowcharts of FIGS. 3 and 4 showing the fuel addition control routine. This fuel addition control routine is periodically executed through the electronic control unit 50, for example, with a time interruption every predetermined time (in this embodiment, 16 ms).

同ルーチンにおいては、まず図3のステップS101の処理で、昇温制御中であるか否かが判断される。ここで肯定判定であれば、ステップS102に進んで、目標床温Ttと触媒入口排気温Tbとの温度差ΔTb、及び、ガス流量Gaに基づき、16ms要求燃料量Qrが算出される。続くステップS103、S104の処理は、16ms要求燃料量Qrに対し、触媒床温Tと目標床温Ttとの定常的なずれを解消するための学習値Kによる補正を施すためのものである。   In this routine, it is first determined in step S101 in FIG. 3 whether or not the temperature raising control is being performed. If the determination is affirmative, the routine proceeds to step S102, where the 16 ms required fuel amount Qr is calculated based on the temperature difference ΔTb between the target bed temperature Tt and the catalyst inlet exhaust temperature Tb and the gas flow rate Ga. The subsequent processes in steps S103 and S104 are for correcting the 16 ms required fuel amount Qr by the learned value K for eliminating the steady deviation between the catalyst bed temperature T and the target bed temperature Tt.

具体的には、ステップS103の処理として、電子制御装置50の不揮発性のRAMに記憶された学習値Kが読み出される。この学習値Kは、別のルーチンによって、触媒床温Tと目標床温Ttとの定常的なずれに対応する値として算出され、不揮発性のRAMに記憶されたものである。そして、ステップS104の処理では、16ms要求燃料量Qrに上記学習値Kを乗算した値が新たな16ms要求燃料量Qrとして設定される。   Specifically, as the process of step S103, the learning value K stored in the nonvolatile RAM of the electronic control device 50 is read. This learning value K is calculated as a value corresponding to a steady deviation between the catalyst bed temperature T and the target bed temperature Tt by another routine, and is stored in the nonvolatile RAM. In the process of step S104, a value obtained by multiplying the 16 ms required fuel amount Qr by the learning value K is set as a new 16 ms required fuel amount Qr.

上記ステップS102〜S104の処理によって算出された16ms要求燃料量Qrは、ステップS105において「ΣQr←前回のΣQr+Qr …(2)」という式に基づき累積される。この累積によって上述した要求燃料量積算値ΣQrが得られるようになる。その後、図4のステップS106に進む。   The 16 ms required fuel amount Qr calculated by the processing of steps S102 to S104 is accumulated based on the equation “ΣQr ← previous ΣQr + Qr (2)” in step S105. By this accumulation, the required fuel amount integrated value ΣQr described above can be obtained. Then, it progresses to step S106 of FIG.

ステップS106の処理では、添加弁46の駆動状態に基づき16ms発熱燃料量Qが算出される。続いてステップS107の処理として、算出された16ms発熱燃料量Qが「ΣQ←前回のΣQ+Q …(1)」という式に基づき累積される。この累積によって上述した発熱燃料量積算値ΣQが得られるようになる。   In the process of step S106, the 16 ms exothermic fuel amount Q is calculated based on the driving state of the addition valve 46. Subsequently, as the processing of step S107, the calculated 16 ms exothermic fuel amount Q is accumulated based on the formula “ΣQ ← previous ΣQ + Q (1)”. As a result of this accumulation, the above-mentioned heat generating fuel amount integrated value ΣQ can be obtained.

そして、ステップS108の処理では、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になったか否かが判断される。ここで肯定判定であれば、ステップS109に進んで、添加許可フラグF1が「1(許可)」に設定される。その結果、添加弁46からの間欠的な燃料添加が開始されることとなる。その後、ステップS110の処理として、要求燃料量積算値ΣQrから発熱燃料量積算値ΣQを減算した値が新たな要求燃料量積算値ΣQrとして設定される。更に、ステップS111の処理で発熱燃料量積算値ΣQがクリアされて「0」とされる。   In the process of step S108, it is determined whether or not the required fuel amount integrated value ΣQr is equal to or greater than the exothermic fuel amount integrated value ΣQ. If the determination is affirmative, the process proceeds to step S109, and the addition permission flag F1 is set to “1 (permitted)”. As a result, intermittent fuel addition from the addition valve 46 is started. Thereafter, as a process of step S110, a value obtained by subtracting the exothermic fuel amount integrated value ΣQ from the required fuel amount integrated value ΣQr is set as a new required fuel amount integrated value ΣQr. Furthermore, the heat generation fuel amount integrated value ΣQ is cleared and set to “0” in the process of step S111.

次に、図3のステップS103で用いられる学習値Kの算出手順の概要について、図5〜図7を併せ参照して説明する。
図5は、昇温制御中における触媒床温Tと目標床温Ttとの間に定常的なずれが生じ、触媒床温T(実線)が目標床温Tt(破線)まで上昇しない状態を示している。このような定常的なずれが生じる理由としては、例えば添加弁46の詰まりといった異常に伴う燃料添加量の適正値からのずれや、エアフローメータ16の異常によるガス流量Gaの適正値からのずれがあげられる。
Next, an outline of a procedure for calculating the learning value K used in step S103 of FIG. 3 will be described with reference to FIGS.
FIG. 5 shows a state in which a steady deviation occurs between the catalyst bed temperature T and the target bed temperature Tt during the temperature rise control, and the catalyst bed temperature T (solid line) does not rise to the target bed temperature Tt (broken line). ing. The reason why such a steady deviation occurs is, for example, a deviation from an appropriate value of the fuel addition amount due to an abnormality such as clogging of the addition valve 46, or a deviation from an appropriate value of the gas flow rate Ga due to an abnormality in the air flow meter 16. can give.

学習値Kは、触媒床温T(触媒床温平均値Tave)と目標床温Ttとの間の定常的なずれに対応する値として算出され、16ms要求燃料量Qrを補正するために用いられる。そして、学習値Kを用いて16ms要求燃料量Qrを補正すると、要求燃料量積算値ΣQrの増加が早められたり遅くされたりして、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるタイミングが変化する。その結果、休止期間Bが増減して単位時間当たりに添加弁46から添加される燃料量の平均値が変化する。こうして触媒への未燃燃料成分への供給に学習値Kが反映されるようになる。   The learning value K is calculated as a value corresponding to a steady deviation between the catalyst bed temperature T (catalyst bed temperature average value Tave) and the target bed temperature Tt, and is used to correct the 16 ms required fuel amount Qr. . When the 16 ms required fuel amount Qr is corrected using the learning value K, the increase in the required fuel amount integrated value ΣQr is accelerated or delayed, so that the required fuel amount integrated value ΣQr becomes greater than or equal to the exothermic fuel amount integrated value ΣQ. The timing that changes. As a result, the pause period B increases and decreases, and the average value of the amount of fuel added from the addition valve 46 per unit time changes. Thus, the learning value K is reflected in the supply of unburned fuel components to the catalyst.

ここで、図5に示されるような触媒床温平均値Taveと目標床温Ttとの間の定常的なずれが生じる場合、そのずれに対応する学習値Kを触媒への未燃燃料成分への供給に反映させない場合と反映させた場合との違いを図6及び図7に示す。   Here, when a steady shift between the catalyst bed temperature average value Tave and the target bed temperature Tt as shown in FIG. 5 occurs, the learning value K corresponding to the shift is used as an unburned fuel component for the catalyst. FIG. 6 and FIG. 7 show the difference between the case where it is not reflected and the case where it is reflected.

図6の破線は、学習値Kを反映させない場合の要求燃料量積算値ΣQrの推移を示している。この場合、16ms要求燃料量Qrに学習値Kが乗算されず、16ms要求燃料量Qrには添加弁46の詰まりやエアフローメータ16の異常に起因した適正値からのずれが含まれた状態になる。その結果、16ms要求燃料量Qrの適正値からのずれの分だけ、要求燃料量積算値ΣQrが緩やかに増加することになり、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるタイミングが遅れぎみになる。以上により、休止期間Bが長くなって単位時間当たりに添加弁46から添加される燃料量の平均値が小となり、図5に示されるような触媒床温平均値Taveと目標床温Ttとの間の定常的なずれが生じることとなる。   The broken line in FIG. 6 shows the transition of the required fuel amount integrated value ΣQr when the learned value K is not reflected. In this case, the learning value K is not multiplied by the 16 ms required fuel amount Qr, and the 16 ms required fuel amount Qr includes a deviation from an appropriate value due to clogging of the addition valve 46 or an abnormality of the air flow meter 16. . As a result, the required fuel amount integrated value ΣQr gradually increases by the amount of deviation from the appropriate value of the 16 ms required fuel amount Qr, and the required fuel amount integrated value ΣQr becomes equal to or greater than the exothermic fuel amount integrated value ΣQ. Will be late. As described above, the pause period B becomes longer and the average value of the amount of fuel added from the addition valve 46 per unit time becomes smaller, and the catalyst bed temperature average value Tave and the target bed temperature Tt as shown in FIG. There will be a steady shift between the two.

一方、図7の破線は、学習値Kを反映させた場合の要求燃料量積算値ΣQrの推移を示している。この場合、16ms要求燃料量Qrに学習値Kが乗算され、16ms要求燃料量Qrから添加弁46の詰まりやエアフローメータ16の異常に起因した適正値からのずれが取り除かれた状態になる。その結果、16ms要求燃料量Qrの適正値からのずれの分だけ要求燃料量積算値ΣQrが緩やかに増加するということはなくなって図6の破線より速やかに増加するため、要求燃料量積算値ΣQrが発熱燃料量積算値ΣQ以上になるタイミングが早められる。以上により、休止期間Bが短くされて単位時間当たりに添加弁46から添加される燃料量の平均値が大となり、触媒床温平均値Taveが高くなって当該触媒床温平均値Taveと目標床温Ttとの間の定常的なずれが解消される。   On the other hand, the broken line in FIG. 7 shows the transition of the required fuel amount integrated value ΣQr when the learned value K is reflected. In this case, the learning value K is multiplied by the 16 ms required fuel amount Qr, and the deviation from the appropriate value due to the clogging of the addition valve 46 or the abnormality of the air flow meter 16 is removed from the 16 ms required fuel amount Qr. As a result, the required fuel amount integrated value ΣQr does not gradually increase by the amount of deviation from the appropriate value of the 16 ms required fuel amount Qr, and increases more rapidly than the broken line in FIG. The timing at which becomes the heat generation fuel amount integrated value ΣQ or more is advanced. As described above, the pause period B is shortened, the average value of the amount of fuel added from the addition valve 46 per unit time is increased, the catalyst bed temperature average value Tave is increased, and the catalyst bed temperature average value Tave and the target bed are increased. The steady deviation from the temperature Tt is eliminated.

図8は、触媒床温平均値Taveと目標床温Ttとの間の定常的なずれを解消する際の学習値Kの変化態様を示すタイムチャートである。今、図8(a)の破線及び一点鎖線で示されるように、目標床温Ttに対し触媒床温平均値Taveが低下側の値になるという定常的なずれが生じているとする。   FIG. 8 is a time chart showing how the learning value K changes when the steady deviation between the catalyst bed temperature average value Tave and the target bed temperature Tt is eliminated. Now, as indicated by the broken line and the alternate long and short dash line in FIG. 8A, it is assumed that there is a steady deviation that the catalyst bed temperature average value Tave becomes a lower value with respect to the target bed temperature Tt.

こうしたずれに対応する値としての学習値Kは、16ms要求燃料量Qr(図2(c)参照)、及び、16ms推定発熱燃料量Q’を利用して算出される。
ここで、16ms推定発熱燃料量Q’は、16ms毎に算出されるものであって、触媒床温Tの触媒入口排気温Tbからの上昇量ΔT’を得るために16ms中に添加弁46から添加された燃料量の推定値、言い換えれば上昇量ΔT’を得るための16ms中の発熱に寄与した燃料量の推定値である。この16ms推定発熱燃料量Q’は、触媒床温Tと触媒入口排気温Tbとの差である上昇量ΔT’、及びガス流量Gaに基づき算出される。なお、上記触媒床温Tとしては、例えば入りガス温度センサ28及び出ガス温度センサ29の検出値等に基づき推定される値を用いることが可能である。また、上記16ms要求燃料量Qrに関しては、触媒床温Tを触媒入口排気温Tbから目標床温Ttまで上昇させるために16msの間に添加弁46から添加すべき燃料量を表しており、目標床温Ttと触媒入口排気温Tbとの温度差ΔTb、及びガス流量Gaに基づき算出されるものであることは上述したとおりである。
The learning value K as a value corresponding to such a deviation is calculated using the 16 ms required fuel amount Qr (see FIG. 2C) and the 16 ms estimated heat generation fuel amount Q ′.
Here, the 16 ms estimated exothermic fuel amount Q ′ is calculated every 16 ms, and is obtained from the addition valve 46 during 16 ms in order to obtain the increase amount ΔT ′ of the catalyst bed temperature T from the catalyst inlet exhaust temperature Tb. This is an estimated value of the added fuel amount, in other words, an estimated value of the fuel amount that contributed to the heat generation in 16 ms for obtaining the increase amount ΔT ′. The 16 ms estimated exothermic fuel amount Q ′ is calculated based on the increase amount ΔT ′ that is the difference between the catalyst bed temperature T and the catalyst inlet exhaust temperature Tb, and the gas flow rate Ga. As the catalyst bed temperature T, for example, a value estimated based on detection values of the incoming gas temperature sensor 28 and the outgoing gas temperature sensor 29 can be used. The 16 ms required fuel amount Qr represents the amount of fuel to be added from the addition valve 46 during 16 ms in order to raise the catalyst bed temperature T from the catalyst inlet exhaust temperature Tb to the target bed temperature Tt. As described above, it is calculated based on the temperature difference ΔTb between the bed temperature Tt and the catalyst inlet exhaust temperature Tb and the gas flow rate Ga.

上述した16ms要求燃料量Qrと16ms推定発熱燃料量Q’との比Qr/Q’は、それら16ms要求燃料量Qr及び16ms推定発熱燃料量Q’の算出時点での目標床温Ttに対する触媒床温Tのずれに対応する値になる。従って、上記比Qr/Q’の所定期間に亘る平均値を算出することで、その平均値が目標床温Ttに対する触媒床温平均値Taveの定常的なずれに対応した値となる。そして、こうした比Qr/Q’の所定期間に亘る平均値が学習値Kとして算出され、目標床温TtがPM燃焼可能な値での安定状態にあることに基づき上記学習値Kが不揮発性のRAMに記憶(更新)される。   The ratio Qr / Q ′ between the 16 ms required fuel amount Qr and the 16 ms estimated exothermic fuel amount Q ′ is the catalyst bed relative to the target bed temperature Tt at the time of calculation of the 16 ms required fuel amount Qr and the 16 ms estimated exothermic fuel amount Q ′. The value corresponds to the temperature T shift. Therefore, by calculating an average value of the ratio Qr / Q 'over a predetermined period, the average value becomes a value corresponding to a steady deviation of the catalyst bed temperature average value Tave from the target bed temperature Tt. An average value of the ratio Qr / Q ′ over a predetermined period is calculated as a learned value K, and the learned value K is non-volatile based on the target bed temperature Tt being in a stable state at a value that allows PM combustion. Stored (updated) in RAM.

以上の手順で例えば図中のタイミングT4、T5、T6毎に学習値Kの更新が行われたとすると、不揮発性のRAMに記憶された学習値Kが図8(b)に示されるように推移し、昇温制御における休止期間Bが徐々に短縮される。その結果、添加弁46から添加される燃料量の平均値が大となり、図8(a)に示されるように触媒床温平均値Taveが目標床温Ttまで上昇して両者の間の定常的なずれが解消される。   If the learning value K is updated at the timings T4, T5, and T6 in the drawing, for example, the learning value K stored in the non-volatile RAM changes as shown in FIG. 8B. In addition, the pause period B in the temperature rise control is gradually shortened. As a result, the average value of the amount of fuel added from the addition valve 46 becomes large, and the catalyst bed temperature average value Tave rises to the target bed temperature Tt as shown in FIG. The gap is resolved.

次に、学習値Kの算出及び更新の詳細な手順について、学習値更新ルーチンを示す図9のフローチャートを参照して説明する。この学習値更新ルーチンは、電子制御装置50を通じて、例えば所定時間(本実施形態では16ms)毎の時間割り込みにて周期的に実行される。   Next, a detailed procedure for calculating and updating the learning value K will be described with reference to a flowchart of FIG. 9 showing a learning value updating routine. This learning value update routine is periodically executed through the electronic control unit 50, for example, with a time interrupt every predetermined time (16 ms in the present embodiment).

同ルーチンにおいては、まず学習値Kの算出が許可されているか否かが判断される(S201)。なお、学習値Kの算出に関しては、例えば以下に示される各条件すべてがある程度長い時間にわたって成立しているとき、許可される。   In this routine, it is first determined whether or not the calculation of the learning value K is permitted (S201). Note that calculation of the learning value K is permitted when, for example, all of the following conditions are satisfied over a long period of time.

・昇温制御中であること
・ガス流量Gaの少ない状態が50s間などの長い間続いていないこと
・目標床温Ttがそれまでよりも大となった直後ではないこと。
-Temperature rise control is in progress.-A state where the gas flow rate Ga is low has not continued for a long time such as 50 s.-It is not immediately after the target bed temperature Tt becomes higher than before.

・学習値Kの更新直後、言い換えれば新たな学習値Kの燃料添加への反映直後ではないこと。
・目標床温Ttの低下が継続していない、例えば目標床温Ttの低下の継続が15s未満であること。
-Immediately after updating the learning value K, in other words, not immediately after reflecting the new learning value K in the fuel addition.
The decrease in the target bed temperature Tt is not continued, for example, the decrease in the target bed temperature Tt is less than 15 s.

・添加弁46からの燃料添加の禁止中ではないこと。なお、燃料添加の禁止は、例えば触媒床温Tが過上昇したときなどになされる。
・入ガス温度センサ28及び出ガス温度センサ29が異常ではないこと。
-Fuel addition from the addition valve 46 is not prohibited. The fuel addition is prohibited, for example, when the catalyst bed temperature T is excessively increased.
-The inlet gas temperature sensor 28 and the outlet gas temperature sensor 29 are not abnormal.

このステップS201において、否定判定であれば学習値Kの算出が禁止される(S206)。また、肯定判定であれば、16ms毎に算出される16ms要求燃料量Qr及び16ms推定発熱燃料量Q’に基づき両者の比Qr/Q’が求められ、当該比Qr/Q’の所定期間に亘る平均値が学習値Kとして算出される(S202)。そして、学習値Kの算出が所定時間以上続き(S203:YES)、且つ、目標床温TtがPMの燃焼可能な値以上(例えば600℃以上)での安定状態にある場合には(S204:YES)、算出された学習値Kが電子制御装置50に設けられた不揮発性のRAMに記憶(更新)される。こうして不揮発性のRAMに記憶された学習値Kが添加弁46からの燃料添加に反映されることとなる。   If a negative determination is made in step S201, calculation of the learning value K is prohibited (S206). If the determination is affirmative, the ratio Qr / Q ′ of both is obtained based on the 16 ms required fuel amount Qr and the 16 ms estimated heat generation fuel amount Q ′ calculated every 16 ms, and the ratio Qr / Q ′ is determined within a predetermined period. The average value is calculated as the learning value K (S202). When the calculation of the learning value K continues for a predetermined time or longer (S203: YES), and the target bed temperature Tt is in a stable state at a value not lower than the combustible value of PM (for example, 600 ° C. or higher) (S204: YES), the calculated learning value K is stored (updated) in a non-volatile RAM provided in the electronic control unit 50. Thus, the learning value K stored in the nonvolatile RAM is reflected in the fuel addition from the addition valve 46.

ところで、上記学習値Kは、添加弁46からの燃料添加によって変化するパラメータである触媒床温T(触媒床温平均値Tave)と、その目標値である目標床温Ttとのずれに対応した値になる。このため、学習値Kにおいては、触媒床温平均値Taveが目標床温Ttよりも低いほど「1.0」から増加側に離れた値になり、触媒床温平均値Taveが目標床温Ttよりも高いほど「1.0」から減少側に離れた値になる。   By the way, the learning value K corresponds to a deviation between the catalyst bed temperature T (catalyst bed temperature average value Tave) that is a parameter that is changed by addition of fuel from the addition valve 46 and the target bed temperature Tt that is the target value. Value. For this reason, in the learning value K, the lower the catalyst bed temperature average value Tave is, the further away from “1.0” is, the more the catalyst bed temperature average value Tave is lower than the target bed temperature Tt. The higher the value, the farther away from “1.0”.

ここで、昇温制御中に触媒床温平均値Taveを目標床温Ttへと調整できないという異常が発生すると、学習値Kは過度に大きくなったり小さくなったりする。例えば、上記燃料添加のための燃料供給系に詰まりが生じているような場合には、添加弁46からの燃料の添加量が少なくなって触媒床温平均値Taveが目標床温Ttよりも小さい値になることから、学習値Kが「1.0」よりも過度に大きい値になるという状況が生じ得る。このため、上述したような異常発生に伴う学習値Kの変化を利用した異常の有無の判断を行うこと、より詳しくは学習値Kの更新時に当該学習値Kが予め定められた適正範囲、例えば「0.90〜1.4」という範囲外の値であるか否かに基づき異常の有無を判断することが考えられる。   Here, if an abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt occurs during the temperature rise control, the learning value K becomes excessively large or small. For example, when the fuel supply system for fuel addition is clogged, the amount of fuel added from the addition valve 46 is reduced and the catalyst bed temperature average value Tave is smaller than the target bed temperature Tt. Therefore, a situation may occur in which the learning value K is excessively larger than “1.0”. For this reason, it is determined whether or not there is an abnormality using the change in the learning value K accompanying the occurrence of the abnormality as described above. More specifically, when the learning value K is updated, the learning value K is determined in a predetermined range, for example, It may be possible to determine whether there is an abnormality based on whether the value is out of the range of “0.90 to 1.4”.

ただし、触媒床温平均値Taveを目標床温Ttに調整できないという異常は、必ずしも恒久的に生じるものではなく、一時的に生じるだけの場合もある。
ちなみに、粗悪燃料の使用に伴い添加弁46の噴孔周りにデポジットが付着したような場合には、添加弁46の燃料添加量が適正値よりも少なくなるため、触媒床温平均値Taveが目標床温Ttよりも低くなって、同触媒床温平均値Taveを目標床温Ttに調整できないという異常が生じる。しかし、この場合には添加弁46から燃料を添加してゆく過程で上記デポジットが噴孔周りからとれる場合もあることから、上述した異常が発生したとしてもそれは一時的なものとなる。
However, the abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt does not necessarily occur permanently, and may occur only temporarily.
Incidentally, when deposits are attached around the nozzle hole of the addition valve 46 due to the use of poor fuel, the fuel addition amount of the addition valve 46 becomes smaller than the appropriate value, so the catalyst bed temperature average value Tave is the target. The temperature becomes lower than the bed temperature Tt, and an abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt occurs. However, in this case, the deposit may be taken from around the nozzle hole in the process of adding fuel from the addition valve 46, so that even if the above-described abnormality occurs, it is temporary.

また、エアフローメータ16の検出部への異物の付着に伴い、エアフローメータ16によって検出されるガス流量Gaが実際のガス流量に対しずれた値になる場合には、それに起因してガス流量Gaに基づき算出される16ms要求燃料量Qrが適正値よりも大となることがある。このように16ms要求燃料量Qrが適正値よりも大になると、昇温制御中の休止期間Bが適正よりも短くされるため、触媒床温平均値Taveが目標床温Ttよりも高くなって、同触媒床温平均値Taveを目標床温Ttに調整できないという異常が生じる。しかし、この場合にはエアフローメータ16の検出部近傍を空気が流れてゆく過程で、その検出部に付着した異物が当該検出周りからとれる場合もあることから、上述した異常が発生したとしてもそれは一時的なものとなる。   In addition, when the gas flow rate Ga detected by the air flow meter 16 becomes a value deviated from the actual gas flow rate due to the adhesion of foreign matter to the detection unit of the air flow meter 16, the gas flow rate Ga is caused accordingly. The 16 ms required fuel amount Qr calculated based on the value may be larger than an appropriate value. When the 16 ms required fuel amount Qr becomes larger than the appropriate value in this way, the suspension period B during the temperature increase control is made shorter than the appropriate value, so the catalyst bed temperature average value Tave becomes higher than the target bed temperature Tt, An abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt occurs. However, in this case, in the process in which air flows in the vicinity of the detection unit of the air flow meter 16, foreign matter attached to the detection unit may be taken from around the detection, so even if the above-described abnormality occurs, It will be temporary.

これらのことを考慮せず、更新時の学習値Kが一度でも適正範囲外の値になったとき(図10のタイミングT7)、直ちに異常有りの旨判断してしまうと、異常が一時的なものであって、後に当該異常が解消して学習値Kの更新時に当該学習値Kが適正範囲内に戻ったとき(タイミングT8)には、上記異常有りの旨の判断が誤ったものとなる。   Without considering these things, if the learning value K at the time of updating once falls outside the appropriate range (timing T7 in FIG. 10), if it is immediately determined that there is an abnormality, the abnormality is temporarily If the learning value K returns to within the appropriate range when the learning value K is later updated and the learning value K is updated (timing T8), the determination that there is an abnormality is incorrect. .

そこで本実施形態では、学習値Kの更新毎に当該学習値Kが適正範囲外の値であるか否かを判断し、学習値Kが適正範囲外の値であればカウンタCのカウント値を「1」だけカウントアップし、学習値Kが適正範囲内の値であればカウンタCのカウント値を初期値「0」にリセットする。図11の(a)及(b)は、上記学習値Kの更新毎の推移と、それに伴うカウンタCのカウンタ値の推移を示している。このカウンタCにおいては、カウンタ値の初期値が「0」とされており、学習値Kが更新毎に適正範囲外の値となる場合にはカウント値が初期値「0」から「1」ずつ増加してゆく。そして、上記カウンタCのカウンタ値が「2」以上の値である判定値(例えば「3」)以上になったとき(タイミングT10)、言い換えれば学習値Kが適正範囲外の値になった旨の判断が学習値Kの更新毎に複数回(この実施形態では3回)続いたとき、異常ありの旨判断するようにしている。   Therefore, in this embodiment, each time the learning value K is updated, it is determined whether or not the learning value K is outside the appropriate range. If the learning value K is outside the appropriate range, the count value of the counter C is set. The count value of the counter C is reset to the initial value “0” if the learning value K is a value within the appropriate range. (A) and (b) of FIG. 11 show the transition of the learning value K for each update, and the transition of the counter value of the counter C associated therewith. In this counter C, the initial value of the counter value is “0”, and when the learning value K becomes a value outside the appropriate range for each update, the count value is incremented from the initial value “0” to “1”. It will increase. When the counter value of the counter C is equal to or greater than a determination value (for example, “3”) that is a value equal to or greater than “2” (timing T10), in other words, the learning value K is outside the proper range. Is continued for a plurality of times (three times in this embodiment) every time the learning value K is updated, it is determined that there is an abnormality.

この場合、カウンタCのカウント値が判定値以上になる前に、異常が解消して図11(a)に二点鎖線で示されるように学習値Kが適正範囲内の値に戻ると(タイミングT9)、カウント値が図11(b)に二点鎖線で示されるように初期値「0」にリセットされるため、異常有りの旨判断されることはない。すなわち、更新時の学習値Kが適正範囲外の値になったとしても、それが更新毎に3回続いて生じたものでないと、異常有りの旨判断されない。従って、触媒床温平均値Taveを目標床温Ttに調整できないという異常が一時的に生じたとき、誤って異常有りの旨判断してしまうことを抑制できる。   In this case, before the count value of the counter C becomes equal to or greater than the determination value, the abnormality is resolved and the learning value K returns to a value within the appropriate range as shown by a two-dot chain line in FIG. T9) Since the count value is reset to the initial value “0” as indicated by a two-dot chain line in FIG. 11B, it is not determined that there is an abnormality. That is, even if the learning value K at the time of updating becomes a value outside the appropriate range, it is not determined that there is an abnormality unless it has occurred three times after each updating. Therefore, when an abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt temporarily occurs, it is possible to suppress erroneously determining that there is an abnormality.

次に、上記異常の有無を判断する手順について、異常診断ルーチンを示す図12のフローチャートを参照して説明する。この異常診断ルーチンは、電子制御装置50を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, the procedure for determining the presence or absence of the abnormality will be described with reference to the flowchart of FIG. 12 showing the abnormality diagnosis routine. This abnormality diagnosis routine is periodically executed through the electronic control unit 50, for example, with a time interruption every predetermined time.

同ルーチンにおいては、昇温制御中であり(S301:YES)、かつ学習値Kの更新時(S302:YES)であることを条件に、学習値Kの大きさに基づきカウンタCのカウント値を変更するための処理(ステップS303〜S305)が実行される。詳しくは、まず学習値Kが適正範囲外の値であるか否かが判断される(S303)。そして、ここで肯定判定であればカウンタCのカウント値が「1」だけカウントアップされ(S304)、否定判定であれば当該カウント値が初期値「0」にリセットされる(S305)。なお、このカウンタCのカウント値は、学習値Kの更新毎に電子制御装置50の不揮発性RAMに記憶され、次回の内燃機関10の運転開始時には当該不揮発性RAMに記憶された値が初期値として設定される。   In this routine, the count value of the counter C is set based on the magnitude of the learning value K on condition that the temperature rise control is being performed (S301: YES) and the learning value K is being updated (S302: YES). Processing for changing (steps S303 to S305) is executed. Specifically, it is first determined whether or not the learning value K is outside the appropriate range (S303). If the determination is affirmative, the count value of the counter C is incremented by “1” (S304). If the determination is negative, the count value is reset to the initial value “0” (S305). The count value of the counter C is stored in the non-volatile RAM of the electronic control unit 50 every time the learning value K is updated, and the value stored in the non-volatile RAM when the operation of the internal combustion engine 10 is started next time is the initial value. Set as

続いて、カウンタCのカウント値が判定値(この実施形態では「3」)以上であるか否かが判断される(S306)。ここで肯定判定であれば、異常有りの旨判断され、異常フラグF2として「1(異常有り)」が電子制御装置50の不揮発性RAMの所定領域に記憶される(S307)。更に、内燃機関10が搭載される自動車の運転席等に設けられた警告ランプが点灯され(S308)、運転者に対し異常が発生している旨の警告が行われる。   Subsequently, it is determined whether or not the count value of the counter C is equal to or larger than a determination value (“3” in this embodiment) (S306). If the determination is affirmative, it is determined that there is an abnormality, and “1 (abnormal)” is stored as an abnormality flag F2 in a predetermined area of the nonvolatile RAM of the electronic control unit 50 (S307). Further, a warning lamp provided in a driver's seat of an automobile on which the internal combustion engine 10 is mounted is turned on (S308), and a warning that an abnormality has occurred is given to the driver.

一方、ステップS306で否定判定がなされると、フィルタ再生が未完であるか否かが判断され(S309)、このステップS309で否定判定(フィルタ再生完了)がなされると、カウンタCのカウント値が初期値「0」にリセットされる(S310)。ここで、異常により更新時の学習値Kが図13(a)に示されるように適正範囲外の値になったとしても、その異常がフィルタ再生にあまり影響を及ぼさない場合には、図13(b)に示されるようにカウンタCのカウント値が判定値(「3」)に達する前の例えば「2」となった段階で、フィルタ再生が完了することがある(タイミングT11)。このような場合に、カウンタCのカウント値が初期値「0」にリセットされる。   On the other hand, if a negative determination is made in step S306, it is determined whether or not the filter regeneration is incomplete (S309), and if a negative determination (filter regeneration complete) is made in step S309, the count value of the counter C is increased. The initial value is reset to “0” (S310). Here, even if the learning value K at the time of update becomes a value outside the proper range as shown in FIG. 13A due to the abnormality, if the abnormality does not affect the filter regeneration so much, FIG. As shown in (b), when the count value of the counter C reaches, for example, “2” before reaching the determination value (“3”), the filter regeneration may be completed (timing T11). In such a case, the count value of the counter C is reset to the initial value “0”.

また、図12のステップS309で肯定判定がなされてフィルタ再生未完である旨判断されると、フィルタ再生開始からの経過時間が許容時間(例えば1時間)が経過しているか否かが判断される(S311)。このステップS311で肯定判定がなされると、異常有りの旨判断されてステップS307,S308の処理が順に実行される。ここで、異常により図14(a)に示されるように学習値Kが適正範囲外の値に更新された場合、その後も学習値Kが適正範囲外の値へと更新される可能性があるものの、目標床温TtがPM燃焼可能な値以上で安定していなければ、学習値Kの上記適正範囲外の値への更新が行われることはない。そして、このような状況のもとでは、フィルタ再生でのPM燃焼が進みにくいことから、PM堆積量が「0」まで減少せず、フィルタ再生が完了しない可能性が高い。その結果、図14(b)に示されるようにカウンタCのカウント値が判定値に達しないまま、フィルタ再生開始からの経過時間が許容時間以上になる(タイミングT12)。このことに基づき異常有りの旨判断され、異常フラグF2として「1(異常あり)」が電子制御装置50の不揮発性RAMに記憶されるとともに、警告ランプが点灯される。   Further, when an affirmative determination is made in step S309 in FIG. 12 and it is determined that the filter regeneration is incomplete, it is determined whether or not an allowable time (for example, 1 hour) has elapsed since the start of the filter regeneration. (S311). If an affirmative determination is made in step S311, it is determined that there is an abnormality, and the processes in steps S307 and S308 are executed in order. Here, when the learning value K is updated to a value outside the proper range as shown in FIG. 14A due to an abnormality, the learning value K may be updated to a value outside the proper range thereafter. However, if the target bed temperature Tt is not stable beyond the value at which PM combustion is possible, the learning value K is not updated to a value outside the appropriate range. Under such circumstances, the PM combustion during the filter regeneration is difficult to proceed, so the PM accumulation amount does not decrease to “0”, and there is a high possibility that the filter regeneration will not be completed. As a result, as shown in FIG. 14B, the elapsed time from the start of filter regeneration becomes equal to or longer than the allowable time without the count value of the counter C reaching the determination value (timing T12). Based on this, it is determined that there is an abnormality, “1 (abnormal)” is stored as an abnormality flag F2 in the nonvolatile RAM of the electronic control unit 50, and a warning lamp is lit.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)フィルタ再生のための昇温制御中には、触媒床温平均値Taveを目標床温Ttへと調整できないという異常が発生する。ただし、こうした異常においては、必ずしも恒久的に生じるものではなく、一時的に生じるだけのこともある。ここで、更新時の学習値Kが一度でも適正範囲外の値になったとき、直ちに異常有りの旨判断してしまうと、異常が一時的なものであって、後に当該異常が解消して学習値Kの更新時に当該学習値Kが適正範囲内に戻ったときには、上記異常有りの旨の判断が誤ったものとなる。しかし、この実施形態での異常有りの旨の判断は、更新時の学習値Kが適正範囲外の値になった旨の判断が更新毎に3回続いたときに限ってなされる。より詳しくは、更新時の学習値Kが適正範囲外の値であればカウントアップされるとともに上記学習値Kが適正範囲内の値であれば初期値「0」にリセットされるカウンタCのカウンタ値が、判定値(この実施形態では「3」)に達したとき、異常有りの旨判断される。従って、触媒床温平均値Taveを目標床温Ttに調整できないという異常が一時的に生じたとき、誤って異常有りの旨判断してしまうことを抑制できる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) During the temperature increase control for filter regeneration, an abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt occurs. However, such abnormalities do not always occur permanently, but may occur only temporarily. Here, when the learning value K at the time of updating once falls outside the appropriate range, if it is immediately determined that there is an abnormality, the abnormality is temporary and the abnormality is resolved later. If the learned value K returns to the appropriate range when the learned value K is updated, the determination that there is an abnormality is incorrect. However, the determination that there is an abnormality in this embodiment is made only when the determination that the learning value K at the time of updating has become a value outside the appropriate range continues three times for each update. More specifically, if the learning value K at the time of updating is a value outside the proper range, the counter C is incremented, and if the learned value K is within the proper range, the counter C is reset to the initial value “0”. When the value reaches the determination value (“3” in this embodiment), it is determined that there is an abnormality. Therefore, when an abnormality that the catalyst bed temperature average value Tave cannot be adjusted to the target bed temperature Tt temporarily occurs, it is possible to suppress erroneously determining that there is an abnormality.

(2)異常の有無を判断するために必要な学習値Kの更新は、フィルタ再生のための昇温制御中に行われる。このフィルタ再生においては、内燃機関10の運転に伴いPM堆積量が許容値以上に増加する毎に定期的に実施される。従って、定期的にフィルタ再生のための昇温制御が行われる毎に、学習値Kの更新も行うことが可能になるため、その更新時に異常の有無を判断することができ、その判断を行う機会が少なくなることを抑制できる。   (2) The learning value K necessary for determining the presence or absence of abnormality is updated during the temperature increase control for filter regeneration. This filter regeneration is periodically performed every time the PM accumulation amount increases to an allowable value or more with the operation of the internal combustion engine 10. Therefore, the learning value K can be updated each time the temperature increase control for filter regeneration is performed periodically, so that it is possible to determine whether there is an abnormality at the time of the update, and to make the determination. It is possible to suppress a decrease in opportunities.

(3)フィルタ再生のための昇温制御中、一時的に触媒床温平均値Taveが目標床温Ttに達しなくなるという異常が生じたときには、更新された学習値Kが適正範囲外の値になってカウンタCのカウント値がカウントアップされる。しかし、上記一時的な異常がフィルタ再生にあまり影響を及ぼさない場合には、カウンタ値が判定値以上になる前にPM堆積量が「0」になってフィルタ再生が完了することがある。この場合、カウント値が「0」よりも大きい値(例えば「2」)に保持されたままだと、次回のフィルタ再生のための昇温制御中に再び一時的な異常が生じて学習値Kが適正範囲外の値になったとき、早期にカウント値が判定値以上になり、誤って異常有りの旨判断されるおそれがある。しかし、フィルタ再生の完了時にはカウンタCのカウンタ値が初期値「0」にリセットされるため、上述したような誤判断の発生を回避することができる。   (3) During the temperature increase control for filter regeneration, when an abnormality occurs in which the catalyst bed temperature average value Tave temporarily does not reach the target bed temperature Tt, the updated learned value K becomes a value outside the appropriate range. Thus, the count value of the counter C is counted up. However, if the temporary abnormality does not significantly affect the filter regeneration, the PM accumulation amount may become “0” before the counter value becomes equal to or greater than the determination value, and the filter regeneration may be completed. In this case, if the count value is kept at a value larger than “0” (for example, “2”), a temporary abnormality occurs again during the temperature rise control for the next filter regeneration, and the learning value K becomes smaller. When the value is out of the proper range, the count value becomes equal to or higher than the determination value at an early stage, and there is a possibility that it is erroneously determined that there is an abnormality. However, since the counter value of the counter C is reset to the initial value “0” when the filter regeneration is completed, it is possible to avoid the occurrence of the erroneous determination as described above.

(4)フィルタ再生のための昇温制御中、一時的に触媒床温平均値Taveが目標床温Ttに達しなくなるという異常が生じたとき、学習値Kが適正範囲外の値へと更新される可能性があるとしても、目標床温TtがPM燃焼可能な値以上で安定していなければ、学習値Kの上記適正範囲外の値への更新が行われることはない。このような状況のもとでは、異常が発生しているにもかかわらず、カウンタCのカウント値が判定値以上にならないまま、言い換えれば異常有りの旨判断されないまま、フィルタ再生が続けられることとなる。また、このような状況のもとでのフィルタ再生では、堆積したPMの燃焼が進みにくいことからPM堆積量が「0」まで減少せず、フィルタ再生を完了させられない可能性が高い。しかし、フィルタ再生開始からの経過時間が許容時間以上になってもフィルタ再生が完了しないときには、カウンタCのカウント値が判定値に達していなくても異常有りの旨判断されるため、実際には異常が発生しているにもかかわらず、異常有りの旨判断されないという状況の発生を回避することができる。   (4) During the temperature increase control for filter regeneration, when an abnormality occurs in which the catalyst bed temperature average value Tave temporarily does not reach the target bed temperature Tt, the learning value K is updated to a value outside the appropriate range. Even if there is a possibility that the target bed temperature Tt is not stable above the value that allows PM combustion, the learning value K is not updated to a value outside the appropriate range. Under such circumstances, despite the occurrence of an abnormality, the filter regeneration is continued without the count value of the counter C being equal to or higher than the determination value, in other words, the determination that there is an abnormality is not made. Become. Further, in the filter regeneration under such a situation, the accumulated PM does not easily burn, so the PM accumulation amount does not decrease to “0”, and there is a high possibility that the filter regeneration cannot be completed. However, if the filter regeneration is not completed even if the elapsed time from the start of the filter regeneration exceeds the allowable time, it is determined that there is an abnormality even if the count value of the counter C does not reach the determination value. It is possible to avoid the occurrence of a situation in which it is not determined that there is an abnormality despite the occurrence of an abnormality.

(5)カウンタCのカウンタ値は、電子制御装置50の不揮発性RAMに記憶され、次回の内燃機関10の運転開始時には当該不揮発性RAMに記憶された値が初期値として設定される。仮に、内燃機関10の停止毎にカウンタCのカウンタ値が初期値「0」にリセットされるとすると、頻繁に内燃機関10の停止・始動が繰り返されるような運転状況のときには、異常の有無を判断する機会が少なくなり、実際には異常が発生していても異常有りの旨判断できないおそれがある。更に、こうした異常有りの旨の判断の遅れに伴い、異常によってフィルタ再生が好適に行われないことによるPMの過剰堆積が生じ、PMフィルタ等の交換を余儀なくされるおそれもある。しかし、これらの不具合に関しては、上述した内燃機関10の始動時のカウンタCのカウンタ値の処理によって抑制される。   (5) The counter value of the counter C is stored in the non-volatile RAM of the electronic control unit 50, and the value stored in the non-volatile RAM is set as the initial value when the internal combustion engine 10 is started next time. Assuming that the counter value of the counter C is reset to the initial value “0” every time the internal combustion engine 10 is stopped, it is determined whether there is an abnormality in an operating situation in which the internal combustion engine 10 is repeatedly stopped and started frequently. There are fewer opportunities to make a determination, and even if an abnormality actually occurs, it may not be possible to determine that there is an abnormality. Further, along with the delay in determining whether there is an abnormality, PM may be excessively accumulated due to filter regeneration not being properly performed due to the abnormality, and the PM filter or the like may be replaced. However, these problems are suppressed by the processing of the counter value of the counter C when the internal combustion engine 10 is started.

なお、上記実施形態は、例えば以下のように変更することもできる。
・フィルタ再生開始からの経過時間が許容時間以上になったとき、カウンタCのカウント値にかかわらず異常有りの旨判断したが、こうした判断を必ずしも行う必要はない。
In addition, the said embodiment can also be changed as follows, for example.
When the elapsed time from the start of filter regeneration is equal to or greater than the allowable time, it is determined that there is an abnormality regardless of the count value of the counter C, but such a determination is not necessarily required.

・フィルタ再生完了時にカウンタCのカウント値を初期値「0」にリセットしたが、こうしたリセットを必ずしも行う必要はない。
・添加弁46からの燃料添加によって昇温制御を行う内燃機関にあっては、一時的な異常の発生原因として最も多いのは、添加弁46の噴孔への一時的なデポジットの付着であると推測される。このことを考慮して、更新時の学習値Kが適正範囲に対し増大側に外れたときのみ、カウンタCのカウント値をカウントアップするようにしてもよい。
Although the count value of the counter C is reset to the initial value “0” when the filter regeneration is completed, such reset is not necessarily performed.
In an internal combustion engine that controls the temperature rise by adding fuel from the addition valve 46, the most frequent cause of temporary abnormality is temporary deposits on the nozzle holes of the addition valve 46. It is guessed. In consideration of this, the count value of the counter C may be counted up only when the learning value K at the time of update deviates from the appropriate range.

・NOx触媒を備える内燃機関においては、そのNOx触媒に吸蔵された硫黄成分の放出するS被毒回復が行われ、同S被毒回復の実現のためにも昇温制御が行われる。こうしたS被毒回復のための昇温制御中に異常の有無を判断することも可能である。   In an internal combustion engine equipped with a NOx catalyst, recovery of S poisoning released from sulfur components stored in the NOx catalyst is performed, and temperature rise control is also performed to realize the recovery of S poisoning. It is also possible to determine whether or not there is an abnormality during temperature increase control for such S poison recovery.

・異常の有無の判断に用いられる判定値として、上記実施形態の「3」という値の代わりに、「2」という値や、「4」以上の整数値を用いてもよい。
・排気系への未燃燃料成分の供給を、インジェクタ40から燃焼室13内での燃焼に供される燃料の噴射後に排気行程や膨張行程で行われる副噴射(アフター噴射)によって行ってもよい。この場合、添加弁46を省略してもよい。
As a determination value used for determining whether there is an abnormality, a value of “2” or an integer value of “4” or more may be used instead of the value of “3” in the above embodiment.
The unburned fuel component may be supplied to the exhaust system by sub-injection (after-injection) performed in the exhaust stroke or the expansion stroke after the fuel supplied from the injector 40 for combustion in the combustion chamber 13 is injected. . In this case, the addition valve 46 may be omitted.

本実施形態の異常診断装置が適用される内燃機関全体を示す略図。1 is a schematic diagram showing an entire internal combustion engine to which an abnormality diagnosis device of an embodiment is applied. (a)〜(d)は、フィルタ再生のための昇温制御中における添加弁を駆動するための添加パルスの変化、触媒床温T及び触媒入口排気温Tbの変化、積算値ΣQr,ΣQの推移、並びに、添加許可フラグF1の設定態様を示すタイムチャート。(A)-(d) are the change of the addition pulse for driving the addition valve during the temperature rise control for filter regeneration, the change of the catalyst bed temperature T and the catalyst inlet exhaust temperature Tb, and the integrated values ΣQr and ΣQ. The time chart which shows transition and the setting aspect of the addition permission flag F1. 昇温制御中の添加弁による燃料添加の制御手順を示すフローチャート。The flowchart which shows the control procedure of the fuel addition by the addition valve in temperature rising control. 昇温制御中の添加弁による燃料添加の制御手順を示すフローチャート。The flowchart which shows the control procedure of the fuel addition by the addition valve in temperature rising control. 昇温制御中に触媒床温T(触媒床温平均値Tave)と目標床温Ttとの間に定常的なずれが生じた状態を示すタイムチャート。4 is a time chart showing a state in which a steady deviation occurs between a catalyst bed temperature T (catalyst bed temperature average value Tave) and a target bed temperature Tt during temperature rise control. 学習値Kが反映されていない場合の積算値ΣQr,ΣQの推移を示すタイムチャート。The time chart which shows transition of integrated value (SIGMA) Qr and (SIGMA) Q when the learning value K is not reflected. 学習値Kが反映されている場合の積算値ΣQr,ΣQの推移を示すタイムチャート。The time chart which shows transition of integrated value (SIGMA) Qr and (SIGMA) Q when the learning value K is reflected. (a)は学習値Kによって触媒床温平均値Taveと目標床温Ttとの間の定常的なずれが解消されるときの両者の推移及び触媒入口排気温Tbの推移を示すタイムチャートであり、(b)はそのときの学習値Kの変化態様を示すタイムチャートである。(A) is a time chart showing the transition of both the catalyst bed temperature average value Tave and the target bed temperature Tt by the learning value K and the transition of the catalyst inlet exhaust temperature Tb when the steady deviation is eliminated. (B) is a time chart which shows the change mode of the learning value K at that time. 学習値Kを不揮発性のRAMに記憶するための学習値更新ルーチンを示すフローチャート。The flowchart which shows the learning value update routine for memorize | storing the learning value K in non-volatile RAM. 一時的な異常が発生しているときの学習値Kの更新毎の推移を示すタイムチャート。The time chart which shows transition for every update of the learning value K when temporary abnormality has generate | occur | produced. (a)及び(b)は、学習値Kの更新毎の推移及びカウンタCのカウンタ値の推移を示すタイムチャート。(A) And (b) is a time chart which shows transition for every update of the learning value K, and transition of the counter value of the counter C. FIG. 本実施形態の異常診断手順を示すフローチャート。The flowchart which shows the abnormality diagnosis procedure of this embodiment. (a)及び(b)は、学習値Kの更新毎の推移及びカウンタCのカウンタ値の推移を示すタイムチャート。(A) And (b) is a time chart which shows transition for every update of the learning value K, and transition of the counter value of the counter C. FIG. (a)〜(c)は、学習値Kの更新毎の推移、カウンタCのカウンタ値の推移、及び異常フラグの変化態様を示すタイムチャート。(A)-(c) is a time chart which shows the transition for every update of the learning value K, the transition of the counter value of the counter C, and the change aspect of an abnormality flag.

符号の説明Explanation of symbols

10…内燃機関、12…吸気通路、13…燃焼室、14…排気通路、16…エアフローメータ、19…吸気絞り弁、25…NOx触媒コンバータ、26…PMフィルタ、27…酸化触媒コンバータ、28…入ガス温度センサ、29…出ガス温度センサ、30…差圧センサ、31,32…空燃比センサ、33…EGR通路、36…EGR弁、40…インジェクタ、41…高圧燃料供給管、42…コモンレール、43…燃料ポンプ、44…レール圧センサ、45…低圧燃料供給管、46…添加弁、50…電子制御装置(学習値判定手段、カウント手段、異常判断手段)、51…NEセンサ、52…アクセルセンサ、53…絞り弁センサ、54…吸気温センサ、55…水温センサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 12 ... Intake passage, 13 ... Combustion chamber, 14 ... Exhaust passage, 16 ... Air flow meter, 19 ... Intake throttle valve, 25 ... NOx catalytic converter, 26 ... PM filter, 27 ... Oxidation catalytic converter, 28 ... Inlet gas temperature sensor, 29 ... Outlet gas temperature sensor, 30 ... Differential pressure sensor, 31, 32 ... Air-fuel ratio sensor, 33 ... EGR passage, 36 ... EGR valve, 40 ... Injector, 41 ... High pressure fuel supply pipe, 42 ... Common rail , 43 ... Fuel pump, 44 ... Rail pressure sensor, 45 ... Low pressure fuel supply pipe, 46 ... Addition valve, 50 ... Electronic control device (learning value judging means, counting means, abnormality judging means), 51 ... NE sensor, 52 ... Accelerator sensor, 53 ... throttle valve sensor, 54 ... intake air temperature sensor, 55 ... water temperature sensor.

Claims (5)

排気系に設けられた触媒への未燃燃料成分の供給により前記触媒を目標床温まで昇温させる昇温制御を実施し、その昇温制御中の触媒床温と前記目標床温とに基づき両者のずれに対応する値となるよう学習値の更新を行い、更新時の同学習値に基づき異常の有無を判断する内燃機関の異常診断装置において、
前記学習値の更新毎に同学習値が適正範囲外の値であるか否かを判定する学習値判定手段と、
前記学習値判定手段による前記学習値の適正範囲外の値である旨の判定が前記学習値の更新毎に複数回続けて行われたとき、異常有りの旨判断する異常判断手段と、
を備えることを特徴とする内燃機関の異常診断装置。
A temperature increase control is performed to raise the temperature of the catalyst to a target bed temperature by supplying an unburned fuel component to a catalyst provided in an exhaust system, and based on the catalyst bed temperature during the temperature increase control and the target bed temperature In the abnormality diagnosis device for an internal combustion engine that updates the learning value so as to be a value corresponding to the difference between the two, and determines whether there is an abnormality based on the learning value at the time of the update,
Learning value determination means for determining whether or not the learning value is outside the appropriate range every time the learning value is updated;
An abnormality determining means for determining that there is an abnormality when the learning value determining means determines that the value is outside the appropriate range of the learning value, and is continuously performed a plurality of times for each update of the learning value;
An abnormality diagnosis device for an internal combustion engine, comprising:
前記内燃機関においては、その排気系の前記触媒よりも上流に燃料を添加する添加弁が設けられる
請求項1記載の内燃機関の異常診断装置。
The abnormality diagnosis apparatus for an internal combustion engine according to claim 1, wherein the internal combustion engine is provided with an addition valve for adding fuel upstream of the catalyst in the exhaust system.
前記内燃機関においては、その排気系に微粒子を捕集するためのフィルタが設けられており、そのフィルタに捕集された微粒子の堆積量を所定値未満とすべく同微粒子を燃焼させるフィルタ再生を行う際、前記触媒への未燃燃料成分の供給により同触媒を目標床温まで昇温させる昇温制御が実施される
請求項1又は2記載の内燃機関の異常診断装置。
In the internal combustion engine, a filter for collecting particulates is provided in the exhaust system, and filter regeneration is performed by burning the particulates so that the amount of particulates collected in the filter is less than a predetermined value. 3. The abnormality diagnosis device for an internal combustion engine according to claim 1, wherein when performing, temperature increase control is performed to raise the temperature of the catalyst to a target bed temperature by supplying an unburned fuel component to the catalyst.
請求項3記載の内燃機関の異常診断装置において、
前記学習値判定手段によって前記学習値が適正範囲外の値である旨判定されたときにカウント値をカウントアップし、前記学習値が適正範囲内の値である旨判定されたときに前記カウント値を「0」にリセットするカウント手段を備え、
前記異常判断手段は、前記カウント値が「2」以上の値に定められる判定値以上になったとき、異常有りの旨判断するものであって、
前記カウント手段は、前記フィルタ再生が完了したときにも、前記カウント値を「0」にリセットする
ことを特徴とする内燃機関の異常診断装置。
The abnormality diagnosis device for an internal combustion engine according to claim 3,
When the learning value determining means determines that the learning value is outside the proper range, the count value is counted up. When the learning value is determined to be within the proper range, the count value is counted up. Is provided with a counting means for resetting to “0”,
The abnormality determination means determines that there is an abnormality when the count value is equal to or greater than a determination value set to a value of “2” or more,
The abnormality diagnosis apparatus for an internal combustion engine, wherein the count unit resets the count value to “0” even when the filter regeneration is completed.
請求項3又は4記載の内燃機関の異常診断装置において、
前記学習値判定手段によって前記学習値が適正範囲外の値である旨判定されたときにカウント値をカウントアップし、前記学習値が適正範囲内の値である旨判定されたときに前記カウント値を「0」にリセットするカウント手段を備え、
前記学習値は、触媒床温の前記微粒子の燃焼可能な値以上での安定を条件に更新されるものであり、
前記異常判断手段は、前記カウント手段によるカウント値が「2」以上の値に定められる判定値以上になったときに異常有りの旨判断するとともに、前記フィルタ再生の開始時点からの経過時間が許容時間以上経過しても同フィルタ再生が完了しないときには前記カウント値に関係なく異常有りの旨判断する
ことを特徴とする内燃機関の異常診断装置。
The abnormality diagnosis device for an internal combustion engine according to claim 3 or 4,
When the learning value determining means determines that the learning value is outside the proper range, the count value is counted up. When the learning value is determined to be within the proper range, the count value is counted up. Is provided with a counting means for resetting to “0”,
The learning value is updated on condition that the catalyst bed temperature is stable at a value equal to or higher than the combustible value of the fine particles,
The abnormality determining means determines that there is an abnormality when the count value by the counting means is equal to or greater than a determination value determined to be “2” or more, and allows an elapsed time from the start point of the filter regeneration. An abnormality diagnosing device for an internal combustion engine, characterized in that, when the filter regeneration is not completed even after a lapse of time, an abnormality is determined regardless of the count value.
JP2006168847A 2006-06-19 2006-06-19 Abnormality diagnosis device for internal combustion engine Pending JP2007332932A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006168847A JP2007332932A (en) 2006-06-19 2006-06-19 Abnormality diagnosis device for internal combustion engine
US11/808,289 US20070289287A1 (en) 2006-06-19 2007-06-08 Abnormality diagnosing device for internal combustion engine and abnormality diagnosing method therefor
DE102007027560A DE102007027560A1 (en) 2006-06-19 2007-06-15 Anomaly diagnostic apparatus for an internal combustion engine and anomaly diagnostic method for the same
FR0704327A FR2902460A1 (en) 2006-06-19 2007-06-18 Abnormality diagnosing device for vehicle, has abnormality determining section determining abnormality present when learned value determining section determines that learned value falls outside of proper range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168847A JP2007332932A (en) 2006-06-19 2006-06-19 Abnormality diagnosis device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007332932A true JP2007332932A (en) 2007-12-27

Family

ID=38769967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168847A Pending JP2007332932A (en) 2006-06-19 2006-06-19 Abnormality diagnosis device for internal combustion engine

Country Status (4)

Country Link
US (1) US20070289287A1 (en)
JP (1) JP2007332932A (en)
DE (1) DE102007027560A1 (en)
FR (1) FR2902460A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140101A1 (en) * 2007-05-15 2008-11-20 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification controller of internal combustion engine
US8087234B2 (en) 2007-02-21 2012-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification control device for internal combustion engine
CN102477888A (en) * 2010-11-30 2012-05-30 现代自动车株式会社 Exhaust gas post processing method
JP2012117397A (en) * 2010-11-29 2012-06-21 Toyota Industries Corp Exhaust emission control device
US8601793B2 (en) 2008-08-20 2013-12-10 Toyota Jidosha Kabushiki Kaisha Malfunction diagnostic device for exhaust gas control device
JP2020020293A (en) * 2018-07-31 2020-02-06 いすゞ自動車株式会社 Diagnostic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007076A1 (en) * 2006-02-15 2007-08-16 Siemens Ag Injection system for an internal combustion engine and internal combustion engine
JP4428361B2 (en) * 2006-05-24 2010-03-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4665924B2 (en) * 2007-03-16 2011-04-06 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4325704B2 (en) * 2007-06-06 2009-09-02 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP5024066B2 (en) * 2008-01-16 2012-09-12 株式会社デンソー Exhaust gas purification device for internal combustion engine
FR2928969B1 (en) * 2008-03-20 2010-09-10 Renault Sas METHOD FOR DETECTING FAILURE OF AN INJECTION SOLENOID VALVE FOR THE EXHAUST OF A COMBUSTION ENGINE
FR2935439B1 (en) * 2008-08-29 2010-08-27 Renault Sas METHOD AND DEVICE FOR DETECTING THE PRESENCE OF A DEPOLLUTION MEMBER INSTALLED IN AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
US8745970B2 (en) * 2010-04-27 2014-06-10 GM Global Technology Operations LLC Ammonia slip catalyst diagnostic methods and systems
US9453472B2 (en) * 2013-11-08 2016-09-27 GM Global Technology Operations LLC System and method for diagnosing a fault in an oxygen sensor based on ambient temperature
US9657680B2 (en) * 2014-12-30 2017-05-23 Ford Global Technologies, Llc Zero flow lubrication for a high pressure fuel pump
US9909482B2 (en) * 2016-07-18 2018-03-06 GM Global Technology Operations LLC System and method for vehicle oxidation catalyst monitoring
JP2018131991A (en) * 2017-02-16 2018-08-23 トヨタ自動車株式会社 Abnormality diagnosis device of exhaust emission control device
CN117189328B (en) * 2019-06-10 2024-07-26 康明斯排放处理公司 Fuel analysis system and method
CN112431655A (en) * 2019-08-26 2021-03-02 北汽福田汽车股份有限公司 Vehicle aftertreatment system abnormality determination method and device, storage medium and vehicle
US10920695B1 (en) * 2019-09-05 2021-02-16 Ford Global Technologies, Llc Methods and systems for regeneration of an exhaust aftertreatment device
CN114483271B (en) * 2021-12-30 2022-09-30 特斯联科技集团有限公司 Vehicle exhaust waste heat recovery system based on artificial intelligence

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087234B2 (en) 2007-02-21 2012-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification control device for internal combustion engine
WO2008140101A1 (en) * 2007-05-15 2008-11-20 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification controller of internal combustion engine
JP2008286027A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4697182B2 (en) * 2007-05-15 2011-06-08 トヨタ自動車株式会社 Exhaust gas purification control device for internal combustion engine
US8209959B2 (en) 2007-05-15 2012-07-03 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification controller of internal combustion engine
US8601793B2 (en) 2008-08-20 2013-12-10 Toyota Jidosha Kabushiki Kaisha Malfunction diagnostic device for exhaust gas control device
JP2012117397A (en) * 2010-11-29 2012-06-21 Toyota Industries Corp Exhaust emission control device
CN102477888A (en) * 2010-11-30 2012-05-30 现代自动车株式会社 Exhaust gas post processing method
JP2012117512A (en) * 2010-11-30 2012-06-21 Hyundai Motor Co Ltd After-treatment method for exhaust gas
JP2020020293A (en) * 2018-07-31 2020-02-06 いすゞ自動車株式会社 Diagnostic device
JP7103034B2 (en) 2018-07-31 2022-07-20 いすゞ自動車株式会社 Diagnostic device

Also Published As

Publication number Publication date
DE102007027560A1 (en) 2008-01-10
US20070289287A1 (en) 2007-12-20
FR2902460A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
JP2007332932A (en) Abnormality diagnosis device for internal combustion engine
EP2410142B1 (en) Exhaust purification device for internal combustion engine
US7797930B2 (en) Exhaust gas purification device of internal combustion engine
JP4694402B2 (en) Diesel engine exhaust purification system
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
JP2010150936A (en) Method for diagnosing regeneration failure of exhaust emission control device
JP2007247550A (en) Exhaust emission control device for internal combustion engine
JP2012117512A (en) After-treatment method for exhaust gas
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP4618350B2 (en) Abnormality diagnosis equipment for exhaust purification equipment
JP4428974B2 (en) Exhaust gas purification device for internal combustion engine
JP2009203898A (en) Exhaust emission control system
JP2017082674A (en) Exhaust emission control device of internal combustion engine
JP2008121455A (en) Control device of internal combustion engine
JP2005083196A (en) Exhaust emission control device of internal combustion engine
JP4636278B2 (en) Exhaust gas purification device for internal combustion engine
JP2008196443A (en) Exhaust emission control device for internal combustion engine
JP4170935B2 (en) Exhaust gas purification device for internal combustion engine
JP4730198B2 (en) Exhaust gas purification device for internal combustion engine
JP4780335B2 (en) Exhaust gas purification device for internal combustion engine
JP2010150979A (en) Exhaust emission control device for engine
JP2007224742A (en) Exhaust emission control device of internal combustion engine
JP2005256714A (en) Exhaust emission control device for internal combustion engine
JP2006291827A (en) Controller of internal combustion engine
JP2006009675A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203