JP2008121455A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2008121455A
JP2008121455A JP2006303876A JP2006303876A JP2008121455A JP 2008121455 A JP2008121455 A JP 2008121455A JP 2006303876 A JP2006303876 A JP 2006303876A JP 2006303876 A JP2006303876 A JP 2006303876A JP 2008121455 A JP2008121455 A JP 2008121455A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303876A
Other languages
Japanese (ja)
Other versions
JP4640318B2 (en
Inventor
Hideshi Kusaji
英志 草次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006303876A priority Critical patent/JP4640318B2/en
Publication of JP2008121455A publication Critical patent/JP2008121455A/en
Application granted granted Critical
Publication of JP4640318B2 publication Critical patent/JP4640318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of various types of control of an internal combustion based on sensor output by quickly detecting wrong attachment of a plurality of air-fuel ratio sensors installed in an exhaust passage of an exhaust gas post-processing device to make an operator recognize it. <P>SOLUTION: The exhaust gas post-processing device 2 having an LNT 21 and a DPF 22 is installed in an exhaust passage 12 of an engine 1; and air-fuel ratio sensors 71 and 72 are arranged on its upper stream side and lower stream side, respectively; and control is executed by an ECU 6 based on output values thereof. The ECU 6 determines wrong attachment of the air-fuel ratio sensor when a heater current deviation of the air-fuel ratio sensors 71 and 72 in acceleration, or a sensor value deviation in rich spike control of the LNT 21deviates from a preset normal range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気通路に排気後処理装置と複数の空燃比センサを設けた制御装置において、複数の空燃比センサの誤取り付け検出に関するものである。   The present invention relates to detection of erroneous attachment of a plurality of air-fuel ratio sensors in a control device provided with an exhaust aftertreatment device and a plurality of air-fuel ratio sensors in an exhaust passage of an internal combustion engine.

ディーゼルエンジンは、CO2 削減に有効である一方で、リーン空燃比で運転されるためNOxの浄化や、固体状の粒子状物質(パティキュレート:PM)の排出といった問題があり、これら有害物質の低減が大きな課題となっている。その対策としては、燃焼制御技術の改善に加えて、NOxやPMを浄化するための排気後処理技術の開発が進められている。 Diesel engines are effective in reducing CO 2 , but are operated at a lean air-fuel ratio, so there are problems such as purification of NOx and emission of solid particulate matter (particulates: PM). Reduction has become a major issue. As countermeasures, in addition to improvements in combustion control technology, development of exhaust aftertreatment technology for purifying NOx and PM is being promoted.

内燃機関の排気通路に設置される排気後処理装置としては、NOx吸蔵還元触媒(リーンNOxトラップ:LNT)と、ディーゼルパティキュレートフィルタ(DPF)を組み合わせて使用することが検討されている(例えば特許文献1、2参照)。LNTは、リーン運転時にNOxを吸蔵し、リッチ運転時にNOxを還元浄化する装置であり、ディーゼルエンジンに適用するには、一時的にリッチ雰囲気を作る技術が必要となる。このため、リーン運転中に所定周期でポスト噴射を行って、あるいは排気に燃料を添加して瞬間的にリッチ空燃比運転を行い、NOxを還元浄化するリッチスパイク制御が知られている。
特開2006−144659号公報 特開2004−36552号公報
As an exhaust aftertreatment device installed in an exhaust passage of an internal combustion engine, use of a combination of a NOx storage reduction catalyst (lean NOx trap: LNT) and a diesel particulate filter (DPF) has been studied (for example, patents). References 1 and 2). LNT is a device that occludes NOx during lean operation and reduces and purifies NOx during rich operation. To apply it to a diesel engine, a technology that temporarily creates a rich atmosphere is required. For this reason, rich spike control is known in which post-injection is performed at a predetermined cycle during lean operation, or fuel is added to exhaust gas and instantaneous rich air-fuel ratio operation is performed to reduce and purify NOx.
JP 2006-144659 A JP 2004-36552 A

排気通路には、通常、排気後処理装置の上流側および下流側に2つの空燃比センサが取り付けられる。上流側の空燃比センサは、燃料噴射量の補正用であり、検出された実空燃比がエンジンの運転状態に応じて算出された理論空燃比となるように、空燃比を制御して、スモーク等の低減を図っている(例えば特許文献1、3参照)。下流側の空燃比センサは、LNTの再生制御用であり、検出された空燃比に基づいてリッチスパイク制御による燃費悪化や白煙防止を図っている(例えば特許文献2参照)。さらに、例えばLNTの脱硫とDPFの再生とを調和させるため、DPFの下流にLNTを配置するとともに、LNTおよびDPFの上下流にそれぞれ空燃比センサを配置して、各空燃比センサの検出値が所定範囲となるように制御するシステムも知られている(例えば特許文献4参照)。
特開2002−130009号公報 特開2005−133721号公報
Two air-fuel ratio sensors are usually attached to the exhaust passage upstream and downstream of the exhaust aftertreatment device. The upstream air-fuel ratio sensor is for correcting the fuel injection amount, and controls the air-fuel ratio so that the detected actual air-fuel ratio becomes the stoichiometric air-fuel ratio calculated according to the operating state of the engine. Etc. (see, for example, Patent Documents 1 and 3). The downstream air-fuel ratio sensor is used for LNT regeneration control, and is intended to prevent fuel consumption deterioration and white smoke by rich spike control based on the detected air-fuel ratio (see, for example, Patent Document 2). Further, for example, in order to harmonize desulfurization of LNT and regeneration of DPF, an LNT is disposed downstream of the DPF, and an air-fuel ratio sensor is disposed upstream and downstream of the LNT and DPF, respectively. There is also known a system for controlling to be within a predetermined range (see, for example, Patent Document 4).
Japanese Patent Laid-Open No. 2002-130009 JP 2005-133721 A

ところで、排気後処理装置の前後に取り付けられる複数の空燃比センサは、コネクタ形状を含むセンサ構造やセンサ特性が同一仕様となっており、かつ取り付け位置が近接している。そのために、空燃比センサの位置を前後逆に取り付けてしまう懸念がある。   By the way, the plurality of air-fuel ratio sensors attached before and after the exhaust aftertreatment device have the same specifications for the sensor structure including the connector shape and the sensor characteristics, and the attachment positions are close. For this reason, there is a concern that the position of the air-fuel ratio sensor is attached in the reverse direction.

複数の空燃比センサを逆に取り付けると、ECUにて認識される空燃比が取り違えられることになり、それに基づく上記制御が適切に行われなくなる。その結果、排気エミッションが悪化するのみならず、空燃比センサの温度制御用ヒータへの通電開始時期が早すぎることによるセンサ素子の被水割れといった不具合が生じるおそれがある。   If a plurality of air-fuel ratio sensors are attached in reverse, the air-fuel ratio recognized by the ECU will be mistaken, and the control based on that will not be performed properly. As a result, exhaust emission not only deteriorates, but there is a possibility that problems such as water cracking of the sensor element due to the start of energization of the temperature control heater of the air-fuel ratio sensor being too early may occur.

そこで、本願発明は、排気後処理装置の排気通路に設置される複数の空燃比センサの誤取り付けを速やかに検出して運転者に認知させることができ、センサ出力に基づく内燃機関の各種制御の信頼性を向上させて、排ガス悪化やセンサ素子の被水割れといった不具合を防止することを目的とするものである。   Accordingly, the present invention can quickly detect erroneous attachment of a plurality of air-fuel ratio sensors installed in the exhaust passage of the exhaust aftertreatment device and allow the driver to recognize the various control of the internal combustion engine based on the sensor output. The object is to improve the reliability and prevent problems such as deterioration of exhaust gas and moisture cracking of sensor elements.

本発明請求項1の内燃機関の制御装置は、車両内燃機関の排気通路に設置した排気後処理装置と、該排気後処理装置の上流側および下流側にそれぞれ設置した複数の空燃比センサを備え、上記複数の空燃比センサの出力値に基づく制御を行うものであり、上記複数の空燃比センサの誤取り付けを検出する誤取り付け検出手段を設けている。この誤取り付け検出手段は、排気流量が急増する運転状態において、上記複数の空燃比センサに設けた温度制御用ヒータの電流値をそれぞれ検出し、上流側の空燃比センサのヒータ電流値から下流側のヒータ電流値を減じたセンサ電流値偏差が、予め設定した正常範囲から外れた時に、上記複数の空燃比センサの誤取り付けと判定する。   An internal combustion engine control apparatus according to a first aspect of the present invention includes an exhaust aftertreatment device installed in an exhaust passage of a vehicle internal combustion engine, and a plurality of air-fuel ratio sensors respectively installed on an upstream side and a downstream side of the exhaust aftertreatment device. The control unit performs control based on the output values of the plurality of air-fuel ratio sensors, and is provided with erroneous attachment detection means for detecting erroneous attachment of the plurality of air-fuel ratio sensors. The erroneous attachment detection means detects the current values of the temperature control heaters provided in the plurality of air-fuel ratio sensors in an operating state in which the exhaust flow rate increases rapidly, and downstream from the heater current values of the upstream air-fuel ratio sensors. When the sensor current value deviation obtained by subtracting the heater current value deviates from the preset normal range, it is determined that the plurality of air-fuel ratio sensors are erroneously attached.

排気流量が急増すると、まず上流側の空燃比センサが冷却されて温度低下し、次いで下流側の空燃比センサが温度低下する。制御装置は、センサ素子が目標温度となるようにヒータ通電量を増加させるので、これらセンサのヒータ電流値は遅れて変化することになる。従って、この時のヒータ電流値変化を予め知り、検出されるヒータ電流値の偏差を正常値と比較することで、誤取り付けを検出することができる。よって、空燃比に基づく各種制御への影響を小さくし、誤検出による制御性や排気エミッションの悪化、センサの被水割れ等を防止して、信頼性を高めることができる。   When the exhaust gas flow rate rapidly increases, the upstream air-fuel ratio sensor is first cooled to lower the temperature, and then the downstream air-fuel ratio sensor lowers in temperature. Since the control device increases the heater energization amount so that the sensor elements reach the target temperature, the heater current values of these sensors change with a delay. Therefore, by knowing in advance the heater current value change at this time, and comparing the deviation of the detected heater current value with the normal value, it is possible to detect erroneous attachment. Therefore, it is possible to reduce the influence on various controls based on the air-fuel ratio, to prevent controllability due to erroneous detection, deterioration of exhaust emission, cracking of the sensor, etc., and to improve reliability.

本発明の請求項2の制御装置において、上記誤取り付け検出手段における上記排気流量が急増する運転状態は、上記内燃機関の加速運転状態とする。   In the control device according to claim 2 of the present invention, the operating state in which the exhaust flow rate in the erroneous attachment detecting means increases rapidly is the accelerated operating state of the internal combustion engine.

加速運転時には、排気流量が急増するので空燃比センサの素子温度に差が生じやすい。従って、温度制御用のヒータ電流値の偏差を算出することにより、容易に誤取り付けを検出することができる。   During acceleration operation, the exhaust gas flow rate increases rapidly, so that a difference in the element temperature of the air-fuel ratio sensor tends to occur. Accordingly, it is possible to easily detect erroneous attachment by calculating the deviation of the heater current value for temperature control.

本発明の請求項3の発明は、本発明の課題を解決するための他の装置構成を開示するものであり、上記誤取り付け検出手段は、空燃比が急変する運転状態において、上記複数の空燃比センサにて検出される上流側の空燃比から下流側の空燃比を減じたセンサ値偏差が、予め設定した正常範囲から外れた時に、上記複数の空燃比センサの誤取り付けと判定する。   The invention of claim 3 of the present invention discloses another device configuration for solving the problems of the present invention, wherein the erroneous attachment detecting means is configured to detect the plurality of empty air-fuel ratios in an operating state in which the air-fuel ratio changes suddenly. When the sensor value deviation obtained by subtracting the downstream air-fuel ratio from the upstream air-fuel ratio detected by the fuel ratio sensor deviates from the preset normal range, it is determined that the plurality of air-fuel ratio sensors are erroneously attached.

例えば排気中に燃料を添加すると、まず上流側の空燃比センサにおいて検出される空燃比が急減し、次いで下流側の空燃比センサの検出値が急減する。従って、この時のセンサ検出値変化の遅れを予め知り、検出されるセンサ値の偏差を正常値と比較することで、誤取り付けを検出することができる。このようにしても、空燃比に基づく各種制御への影響を小さくし、誤検出による制御性や排気エミッションの悪化、センサの被水割れ等を防止して、信頼性を高めることができる。   For example, when fuel is added to the exhaust gas, first, the air-fuel ratio detected by the upstream air-fuel ratio sensor rapidly decreases, and then the detection value of the downstream air-fuel ratio sensor rapidly decreases. Therefore, it is possible to detect erroneous attachment by knowing in advance the delay of the sensor detection value change at this time and comparing the deviation of the detected sensor value with the normal value. Even in this case, it is possible to reduce the influence on various controls based on the air-fuel ratio, to prevent controllability due to erroneous detection, deterioration of exhaust emission, sensor water cracking, and the like, and to improve reliability.

本発明の請求項4の制御装置において、上記誤取り付け検出手段における上記排気流量が急増する運転状態は、リーン運転中に一時的に理論空燃比またはリッチ空燃比にするリッチスパイク制御運転状態とする。   In the control device according to claim 4 of the present invention, the operation state in which the exhaust flow rate in the erroneous attachment detection means increases rapidly is a rich spike control operation state in which the stoichiometric air-fuel ratio or the rich air-fuel ratio is temporarily set during the lean operation. .

リッチスパイク制御を実施すると、排気中に燃料が添加されて空燃比が急減し、空燃比センサの検出値に差が生じる。従って、センサ検出値の偏差を算出することにより、容易に誤取り付けを検出することができる。   When rich spike control is performed, fuel is added to the exhaust gas, and the air-fuel ratio is rapidly reduced, resulting in a difference in the detected value of the air-fuel ratio sensor. Therefore, it is possible to easily detect erroneous attachment by calculating the deviation of the sensor detection value.

本発明の請求項5の制御装置において、上記リッチスパイク制御は、ポスト噴射または排気通路に設けた燃料添加弁からの燃料添加によって空燃比をリッチにする。   In the control device according to claim 5 of the present invention, the rich spike control makes the air-fuel ratio rich by post-injection or fuel addition from a fuel addition valve provided in the exhaust passage.

具体的には、周期的にポスト噴射を実施して、または排気通路に燃料添加弁を設けて燃料を添加することによって空燃比をリッチにすることができる。   Specifically, the air-fuel ratio can be made rich by periodically performing post injection or by adding fuel by providing a fuel addition valve in the exhaust passage.

本発明の請求項6の制御装置は、上記排気後処理装置として、NOx吸蔵還元触媒またはパティキュレートフィルタを備える。   The control device according to claim 6 of the present invention includes a NOx occlusion reduction catalyst or a particulate filter as the exhaust aftertreatment device.

例えばNOx吸蔵還元触媒を備える装置では、その上流側に配した空燃比センサにより燃料噴射を制御するととも、再生時には、後流側に搭載した空燃比センサ値に基づいてリッチスパイク制御を実施するので、本発明を適用する効果が高い。また、パティキュレートフィルタを併設してその後流に空燃比センサを設置したり、パティキュレートフィルタ前後に設置した空燃比センサの検出値を基に制御を行う装置においても、本発明により誤取り付けを検出することができる。   For example, in an apparatus equipped with a NOx occlusion reduction catalyst, fuel injection is controlled by an air-fuel ratio sensor arranged upstream thereof, and at the time of regeneration, rich spike control is performed based on an air-fuel ratio sensor value mounted on the downstream side. The effect of applying the present invention is high. In addition, the present invention also detects erroneous attachment in devices that are equipped with a particulate filter and an air-fuel ratio sensor is installed downstream of the particulate filter, or in a device that performs control based on the detection value of the air-fuel ratio sensor installed before and after the particulate filter. can do.

本発明の請求項7の制御装置は、上記上流側の空燃比センサの検出値に基づいて燃料噴射量の補正を行う。   The control device according to claim 7 of the present invention corrects the fuel injection amount based on the detection value of the upstream air-fuel ratio sensor.

例えば排気後処理装置の上流側に配した空燃比センサの検出値から、内燃機関燃焼時の酸素濃度を推定し、最適な酸素濃度となるように燃料噴射量を補正することで、スモーク低減効果が得られる。   For example, by estimating the oxygen concentration during combustion of the internal combustion engine from the detection value of the air-fuel ratio sensor arranged upstream of the exhaust aftertreatment device, and correcting the fuel injection amount so that the optimum oxygen concentration is achieved, the smoke reduction effect Is obtained.

本発明の請求項8の制御装置は、上記下流側の空燃比センサの検出値に基づいて上記排気後処理装置の再生制御を行う。   The control device according to claim 8 of the present invention performs regeneration control of the exhaust aftertreatment device based on a detection value of the downstream air-fuel ratio sensor.

例えばNOx吸蔵還元触媒を備える装置は、再生時に理論空燃比またはリッチ雰囲気とする必要があり、下流側の空燃比センサ値に基づいて燃料添加量を制御することで、燃費の悪化や白煙を防止する効果が得られる。   For example, an apparatus equipped with a NOx occlusion reduction catalyst needs to have a stoichiometric air-fuel ratio or a rich atmosphere during regeneration. By controlling the amount of fuel added based on the downstream air-fuel ratio sensor value, fuel consumption deterioration and white smoke can be reduced. The effect of preventing is obtained.

本発明の請求項9の装置では、上記誤取り付け検出手段にて誤取り付けと判定された時に、上記上流側空燃比および下流側空燃比の認識値を入れ替える認識値切替手段とを備える。   According to a ninth aspect of the present invention, the apparatus includes a recognition value switching means for switching the recognition values of the upstream air-fuel ratio and the downstream air-fuel ratio when the erroneous attachment detection means determines that the attachment is incorrect.

誤取り付け検出後は、取り付け位置を直ちに正常に戻すことが望ましいが、それまでの間の処置として、制御装置内部で認識値を入れ替え、自己正常化して疑似的に制御可能とする。これにより、誤取り付けの影響を小さくして制御性の悪化を防止できる。   It is desirable to immediately return the attachment position to normal after detection of erroneous attachment. However, as a measure up to that time, the recognition value is exchanged inside the control device to make it self-normalized and controllable in a pseudo manner. Thereby, the influence of incorrect attachment can be reduced and deterioration of controllability can be prevented.

以下、本発明の第1の実施形態を図面に基づいて説明する。図1は本発明を適用した内燃機関の制御装置の全体構成を示すもので、本実施形態では4気筒ディーゼルエンジン1への適用例として説明する。エンジン1の各気筒にはインジェクタ11が設けられ、排気マニホールドに続く排気通路12には、排気後処理装置2が設置されている。図2(a)に示すように、排気後処理装置2としては、NOx吸蔵還元触媒(以下、LNTと称する)21とディーゼルパティキュレートフィルタ(以下、DPFと称する)22が、この順で直列に設置されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a control device for an internal combustion engine to which the present invention is applied. In the present embodiment, an example of application to a four-cylinder diesel engine 1 will be described. Each cylinder of the engine 1 is provided with an injector 11, and an exhaust aftertreatment device 2 is installed in an exhaust passage 12 following the exhaust manifold. As shown in FIG. 2A, the exhaust aftertreatment device 2 includes a NOx storage reduction catalyst (hereinafter referred to as LNT) 21 and a diesel particulate filter (hereinafter referred to as DPF) 22 in series in this order. is set up.

吸気は吸気通路13から吸気マニホールドを経て各気筒燃焼室に導入される。インジェクタ11へ燃料を供給するコモンレール3には、燃料タンク4から調量弁41およびポンプ31を経て燃料が圧送され、圧力センサ5にて検出されるコモンレール3の圧力が所定の圧力となるように、ECU6にて制御している。
エンジン1の吸気通路13には、エアフローメータ14が設置され、吸入空気量を検出してECU6に出力するようになっている。
Intake is introduced into each cylinder combustion chamber from the intake passage 13 through the intake manifold. The fuel is pumped from the fuel tank 4 to the common rail 3 that supplies fuel to the injector 11 via the metering valve 41 and the pump 31 so that the pressure of the common rail 3 detected by the pressure sensor 5 becomes a predetermined pressure. The ECU 6 is controlling.
An air flow meter 14 is installed in the intake passage 13 of the engine 1 to detect the amount of intake air and output it to the ECU 6.

LNTは、通常公知の構造で、例えばハニカム構造の触媒担体に触媒とNOx吸蔵材を担持してなる。NOxはリーン雰囲気の通常運転時において、硝酸塩の形でNOx吸蔵材に一旦吸蔵され、その後理論空燃比またはリッチ雰囲気下となった時に放出されて触媒により無害なN2 等に還元浄化される。ディーゼルエンジンはリーン雰囲気で運転されるため、排気燃料を添加して一時的にリッチ雰囲気を作るリッチスパイク制御を行って、NOxを浄化し、LNTを再生させる。 LNT has a generally known structure. For example, the catalyst and NOx storage material are supported on a catalyst support having a honeycomb structure. During normal operation in a lean atmosphere, NOx is temporarily stored in the NOx storage material in the form of nitrate, and then released when it becomes a stoichiometric air-fuel ratio or rich atmosphere, and is reduced and purified to harmless N 2 or the like by the catalyst. Since the diesel engine is operated in a lean atmosphere, rich spike control that temporarily creates a rich atmosphere by adding exhaust fuel is performed to purify NOx and regenerate LNT.

DPF22は、通常公知の構造で、多孔質セラミックスハニカム構造体の多数のセル内をガス流路とし、その上流側または下流側を互い違いとなるように目封じしてなる。燃焼後の排気には、煤(炭素)とSOF(可溶性有機成分)を主成分とする粒子状のPM(パティキュレート)が含まれており、排気通路12へ排出されるPMは、排出ガスがDPF22を流通する間に、各セルを区画する多孔質隔壁に捕集されて、次第に堆積する。捕集されたPMは、周期的にDPF22を昇温再生させることにより、燃焼除去される。   The DPF 22 has a generally known structure, and has a large number of cells in the porous ceramic honeycomb structure as gas flow paths and is sealed so that the upstream side or the downstream side are staggered. The exhaust after combustion contains particulate PM (particulates) mainly composed of soot (carbon) and SOF (soluble organic component), and the PM discharged into the exhaust passage 12 is exhaust gas. While flowing through the DPF 22, it is collected by the porous partition walls that partition each cell and gradually accumulates. The collected PM is burned and removed by periodically heating and regenerating the DPF 22.

DPF22は、例えば、酸化触媒を担持させた触媒付DPFとすることもできる。酸化触媒は、DPF2の内表面(多孔質隔壁表面)に塗布されて、捕集したPMの酸化を促進する。このように触媒反応を利用するとDPF2の再生温度を低くし安定した燃焼を実現できる。   For example, the DPF 22 may be a DPF with a catalyst carrying an oxidation catalyst. The oxidation catalyst is applied to the inner surface (porous partition wall surface) of the DPF 2 and promotes the oxidation of the collected PM. If the catalytic reaction is used in this way, the regeneration temperature of the DPF 2 can be lowered and stable combustion can be realized.

排気通路12には、排気後処理装置2の直上流に空燃比センサ71が、直下流に空燃比センサ72がそれぞれ設置される。これら空燃比センサ71、72は、通常公知の構造で、空燃比をリニアに検出可能なセンサ素子と発熱体を有する温度制御用ヒータを備えている。空燃比センサ71、72はECU6に接続されており、排気後処理装置2の直上流および直下流の空燃比を検出して、ECU6に出力する。上流側の空燃比センサ71の検出値は、上流側センサ値、下流側の空燃比センサ72の検出値は、下流側センサ値として認識される。また、排気通路12の最上流位置にはリッチスパイク制御用の燃料添加弁73が設置されている。あるいは、インジェクタ11からのポスト噴射によって、リッチスパイク制御を行う構成としてもよい。   In the exhaust passage 12, an air-fuel ratio sensor 71 is installed immediately upstream of the exhaust aftertreatment device 2, and an air-fuel ratio sensor 72 is installed immediately downstream. These air-fuel ratio sensors 71 and 72 have a generally known structure and include a sensor element capable of linearly detecting the air-fuel ratio and a temperature control heater having a heating element. The air-fuel ratio sensors 71 and 72 are connected to the ECU 6, detect the air-fuel ratios immediately upstream and immediately downstream of the exhaust aftertreatment device 2, and output them to the ECU 6. The detection value of the upstream air-fuel ratio sensor 71 is recognized as an upstream sensor value, and the detection value of the downstream air-fuel ratio sensor 72 is recognized as a downstream sensor value. A rich spike control fuel addition valve 73 is installed at the most upstream position of the exhaust passage 12. Or it is good also as a structure which performs rich spike control by the post injection from the injector 11. FIG.

また、排気通路12には、DPF2の前後差圧を知るための差圧センサ8が設置される。差圧センサ8の一端側は圧力導入通路81にてDPF2の直上流の排気通路12に、他端側は圧力導入通路82にてDPF2の直下流の排気通路12にそれぞれ接続しており、差圧センサ8はDPF2の前後差圧に応じた信号をECU6に出力する。   Further, a differential pressure sensor 8 is installed in the exhaust passage 12 to know the differential pressure across the DPF 2. One end of the differential pressure sensor 8 is connected to the exhaust passage 12 immediately upstream of the DPF 2 via the pressure introduction passage 81, and the other end is connected to the exhaust passage 12 immediately downstream of the DPF 2 via the pressure introduction passage 82. The pressure sensor 8 outputs a signal corresponding to the differential pressure across the DPF 2 to the ECU 6.

ECU6には、さらに、図示しないアクセル開度センサや回転数センサ、排気温センサといった各種センサが接続されている。ECU6は、これらセンサからの検出信号を基に運転状態に応じた最適な燃料噴射量、噴射時期、噴射圧等を算出し、圧力センサ5にて検出されるコモンレール3が所定の噴射圧となるように調量弁41を制御して、コモンレール3へ高圧燃料を圧送するとともに、インジェクタ11を所定タイミングで駆動して、エンジン1への燃料噴射を実施する。   Further, various sensors such as an accelerator opening sensor, a rotation speed sensor, and an exhaust temperature sensor (not shown) are connected to the ECU 6. The ECU 6 calculates the optimum fuel injection amount, injection timing, injection pressure, etc. according to the operating state based on the detection signals from these sensors, and the common rail 3 detected by the pressure sensor 5 becomes a predetermined injection pressure. In this manner, the metering valve 41 is controlled so that high-pressure fuel is fed to the common rail 3 and the injector 11 is driven at a predetermined timing to inject fuel into the engine 1.

この時、ECU6は、上流側の空燃比センサ71の検出値に基づいて、燃料噴射量を補正するフィードバック制御を行う。まず、ECU6は、上記各種センサの検出結果を読み込み、予め記憶されているマップ値と比較して、現在のエンジン運転状態に応じた基本燃料噴射量を算出する。また、上流側の空燃比センサ71による検出値からエンジン燃焼室内のO2 濃度を推定し、この推定値と目標とするO2 濃度との偏差に基づいて基本燃料噴射量の補正量を算出し、燃料噴射量を設定する。このように実際の空燃比に応じた燃料噴射量へ補正することで、スモークを低減することができる。 At this time, the ECU 6 performs feedback control for correcting the fuel injection amount based on the detection value of the upstream air-fuel ratio sensor 71. First, the ECU 6 reads the detection results of the various sensors and compares them with map values stored in advance to calculate a basic fuel injection amount corresponding to the current engine operating state. Further, the O 2 concentration in the engine combustion chamber is estimated from the value detected by the upstream air-fuel ratio sensor 71, and the correction amount of the basic fuel injection amount is calculated based on the deviation between this estimated value and the target O 2 concentration. Set the fuel injection amount. By correcting the fuel injection amount according to the actual air-fuel ratio in this way, smoke can be reduced.

ECU6は、また、LNT21およびDPF22の再生を制御する。
LNTに吸蔵されたNOxは、リーン運転中に所定周期で一時的にリッチ運転するリッチスパイク制御を実施することによって還元浄化される。ECU6は、例えばリーン運転時間とリッチ運転時間を所定比率に設定し、それぞれの運転時における目標空燃比を算出して、所定の空燃比でリーン運転を開始する。所定のリーン運転期間に達したらリッチスパイク制御を行うための実行フラグをセットして、リッチ時の目標空燃比に設定し、燃料添加弁73を駆動して排気通路12に燃料を添加する。あるいは、燃料添加弁73を備えない構成において、インジェクタ11からの燃料噴射をメイン噴射とポスト噴射の2段噴射として、排気に燃料を添加することもできる。
The ECU 6 also controls regeneration of the LNT 21 and the DPF 22.
The NOx occluded in the LNT is reduced and purified by performing rich spike control that temporarily performs rich operation at a predetermined cycle during lean operation. For example, the ECU 6 sets the lean operation time and the rich operation time to a predetermined ratio, calculates the target air-fuel ratio at each operation, and starts the lean operation at the predetermined air-fuel ratio. When a predetermined lean operation period is reached, an execution flag for performing rich spike control is set, the target air-fuel ratio at the time of rich is set, and the fuel addition valve 73 is driven to add fuel to the exhaust passage 12. Alternatively, in a configuration that does not include the fuel addition valve 73, fuel can be added to the exhaust gas by using the fuel injection from the injector 11 as two-stage injection of main injection and post injection.

この時、リッチスパイク制御を適正に行うために、下流側の空燃比センサ72の検出値に基づいて、燃料添加量(リッチスパイク量)をフィードバック制御する。リッチスパイク制御は、燃料消費を伴うため排気に過剰な燃料が添加されることによる燃費の悪化が懸念されるが、空燃比センサ72にて検出される下流側空燃比からNOxの還元浄化に必要な還元剤量(燃料量)を算出し、最適量のリッチスパイク量を使用することで、燃費の悪化を防止することができる。また、未燃燃料による白煙の防止効果も得られる。   At this time, in order to perform the rich spike control appropriately, the fuel addition amount (rich spike amount) is feedback controlled based on the detection value of the downstream air-fuel ratio sensor 72. Since the rich spike control involves fuel consumption, there is a concern that fuel consumption may deteriorate due to excessive fuel being added to the exhaust, but it is necessary for the reduction purification of NOx from the downstream air-fuel ratio detected by the air-fuel ratio sensor 72. By calculating an appropriate amount of reducing agent (fuel amount) and using the optimal amount of rich spike, it is possible to prevent deterioration of fuel consumption. Moreover, the white smoke prevention effect by unburned fuel is also acquired.

また、ECU6は、差圧センサ8によって検出されるDPF前後差圧に基づいてDPF22へのPM堆積状態を監視する。これは、PM堆積量の増加に伴いDPF22における圧力損失が増大することを利用するもので、DPF前後差圧とPM堆積量の関係を排気流量に関して予めモデル化しておくことで、PM堆積量を算出することができる。そして、ECU6は、PM堆積量の算出値をDPF22の再生を開始する基準値と比較して、再生が必要かどうかを判断する。   Further, the ECU 6 monitors the PM accumulation state on the DPF 22 based on the differential pressure across the DPF detected by the differential pressure sensor 8. This utilizes the fact that the pressure loss in the DPF 22 increases as the PM deposition amount increases. By modeling the relationship between the differential pressure across the DPF and the PM deposition amount in advance with respect to the exhaust flow rate, the PM deposition amount is reduced. Can be calculated. Then, the ECU 6 compares the calculated value of the PM accumulation amount with a reference value for starting the regeneration of the DPF 22, and determines whether regeneration is necessary.

PM堆積量の算出値が基準値を超えると、ECU6は昇温手段を操作して、DPF22を所定の目標再生温度(例えば600℃±50℃)まで上昇させ、PMを燃焼除去する。昇温手段としては、例えば、ポスト噴射、吸気絞り、燃料噴射時期遅角等が用いられ、未燃燃料を酸化反応させてその反応熱により排気温度を上昇させる。ECU6は、DPF22が目標再生温度に維持されるように、DPF温度をフィードバック制御する。   When the calculated value of the PM accumulation amount exceeds the reference value, the ECU 6 operates the temperature raising means to raise the DPF 22 to a predetermined target regeneration temperature (for example, 600 ° C. ± 50 ° C.) and burn and remove the PM. As the temperature raising means, for example, post-injection, intake throttle, fuel injection timing retardation, etc. are used, and the unburnt fuel is oxidized and the exhaust temperature is raised by the reaction heat. The ECU 6 feedback-controls the DPF temperature so that the DPF 22 is maintained at the target regeneration temperature.

この時、DPF22基材の溶損等を防止するために、再生を判定する基準値は、PMの燃焼によりDPF22の温度が過度に上昇するおそれがない堆積量に設定される。また、高負荷時のように排気が高温となって自然燃焼する運転状態において、PMが一気に燃焼して過昇温とならないよう、排気の空燃比を所定値以下に制御することもできる。例えば、空燃比センサ72にて検出される下流側空燃比を基に吸入空気量をフィードバック制御する。   At this time, in order to prevent melting of the DPF 22 base material and the like, the reference value for determining regeneration is set to an accumulation amount that does not cause the temperature of the DPF 22 to rise excessively due to PM combustion. Further, in an operation state where the exhaust gas is naturally burned at a high temperature as in a high load, the air-fuel ratio of the exhaust gas can be controlled to a predetermined value or less so that the PM does not burn at once and the temperature rises excessively. For example, the intake air amount is feedback controlled based on the downstream air-fuel ratio detected by the air-fuel ratio sensor 72.

排気後処理装置2としては、図2(a)のように、LNT21とDPF22を一体化した構成の他、図2(b)〜(d)に示す種々の構成とすることができる。図2(b)は、LNT21とDPF22を独立に設けて、空燃比センサ71、72をLNT21の前後に配置した例であり、さらに、図2(c)のように、LNT21の上流に酸化触媒(DOC)23を設けることもできる。あるいは、図2(d)のように、DOC23とDPF22を一体化した排気後処理装置2’を設け、その上流にLNT21を配置した構成としてもよい。また、これらの例では、2つの空燃比センサ71、72をLNT21の前後に配置しているが、必要な制御に応じて、例えばDPF22の下流に、さらに空燃比センサを配置してもよい。   As shown in FIG. 2A, the exhaust aftertreatment device 2 may have various configurations shown in FIGS. 2B to 2D in addition to the configuration in which the LNT 21 and the DPF 22 are integrated. FIG. 2B shows an example in which the LNT 21 and the DPF 22 are provided independently, and the air-fuel ratio sensors 71 and 72 are arranged before and after the LNT 21. Further, as shown in FIG. (DOC) 23 can also be provided. Alternatively, as shown in FIG. 2D, an exhaust aftertreatment device 2 'in which the DOC 23 and the DPF 22 are integrated may be provided, and the LNT 21 may be disposed upstream thereof. In these examples, the two air-fuel ratio sensors 71 and 72 are arranged before and after the LNT 21, but an air-fuel ratio sensor may be further arranged, for example, downstream of the DPF 22 according to necessary control.

次に、本発明の特徴である空燃比センサ71、72の誤取り付け検出手段について説明する。上述したように、空燃比センサ71、72により検出される上流側空燃比および下流側空燃比は、燃料噴射量の補正や排気後処理装置2の再生といった各種制御に用いられており、空燃比センサ71、72の検出値が、ECU6に正しく認識される必要がある。特に、DPF22を有する場合には、DPF22において、PMが酸化したり、酸素がパージされている場合があり、このような状態においては、図3(b)に示すように、上流側空燃比センサ71の検出値(上流側センサ値)に対して下流側空燃比センサ71の検出値(下流側センサ値)がリッチ側にずれることになる。また、上述のように、スモーク低減目的で、上流側空燃比センサ71を用いる場合、エンジン燃焼室内と上流側空燃比センサ71の搭載位置での空燃比の遅れ分(時定数)を考慮しており、燃焼室内の空燃比を正確に推定するために、正しい位置に搭載される必要がある。   Next, the erroneous attachment detection means for the air-fuel ratio sensors 71 and 72, which is a feature of the present invention, will be described. As described above, the upstream air-fuel ratio and the downstream air-fuel ratio detected by the air-fuel ratio sensors 71 and 72 are used for various controls such as correction of the fuel injection amount and regeneration of the exhaust aftertreatment device 2. The detection values of the sensors 71 and 72 need to be correctly recognized by the ECU 6. In particular, when the DPF 22 is provided, PM may be oxidized or oxygen may be purged in the DPF 22, and in such a state, as shown in FIG. The detected value (downstream sensor value) of the downstream air-fuel ratio sensor 71 shifts to the rich side with respect to the detected value of 71 (upstream sensor value). As described above, when the upstream air-fuel ratio sensor 71 is used for smoke reduction, the air-fuel ratio delay (time constant) between the engine combustion chamber and the upstream air-fuel ratio sensor 71 is taken into consideration. Therefore, in order to accurately estimate the air-fuel ratio in the combustion chamber, it must be mounted at the correct position.

ところが、空燃比センサ71、72はセンサ構造やセンサ特性が同一仕様であることから、取り付け時に前後逆になるおそれがあり、その場合には、リッチスパイク制御や空燃比推定の基準となる空燃比センサ値、さらには空燃比推定のための時定数にずれが生じてしまうことになる。このため、リッチスパイク制御時の燃費悪化や白煙の問題、あるいは燃料噴射量の補正量ずれにより排ガスが悪化するおそれがある。   However, since the air-fuel ratio sensors 71 and 72 have the same sensor structure and sensor characteristics, the air-fuel ratio sensors 71 and 72 may be reversed when they are installed. In this case, the air-fuel ratio used as a reference for rich spike control or air-fuel ratio estimation There will be a shift in the sensor value and also in the time constant for air-fuel ratio estimation. For this reason, there is a risk that exhaust gas may deteriorate due to fuel consumption deterioration or white smoke problems during rich spike control, or due to a deviation in the correction amount of the fuel injection amount.

そこで、本発明では、ECU6に誤取り付け検出手段を設け、誤取り付けの発生を速やかに運転者へ警告できるようにする。具体的には、誤取り付け検出手段は、排気流量が急増する運転状態において、空燃比センサ71、72に設けた温度制御用ヒータの電流値をそれぞれ検出する。誤取り付け検出手段は、上流側の空燃比センサのヒータ電流値から下流側のヒータ電流値を減じたセンサ電流値偏差が、予め設定した正常範囲にあるかどうかで、誤取り付けを判定する。排気流量が急増する運転状態は、例えば、内燃機関の加速運転状態である。   Therefore, in the present invention, erroneous attachment detection means is provided in the ECU 6 so that the driver can be warned promptly of the occurrence of erroneous attachment. Specifically, the erroneous attachment detection means detects the current values of the temperature control heaters provided in the air-fuel ratio sensors 71 and 72, respectively, in an operating state where the exhaust flow rate increases rapidly. The erroneous attachment detection means determines erroneous attachment depending on whether or not the sensor current value deviation obtained by subtracting the downstream heater current value from the heater current value of the upstream air-fuel ratio sensor is within a preset normal range. The operating state in which the exhaust flow rate increases rapidly is, for example, an acceleration operating state of the internal combustion engine.

あるいは、誤取り付け検出手段は、空燃比が急変する運転状態において、空燃比センサ71、72にて検出される上流側空燃比から下流側空燃比を減じたセンサ値偏差が、予め設定した正常範囲にあるかどうかで、誤取り付けを判定することもできる。排気流量が急増する運転状態は、例えば、リッチスパイク制御運転状態である。   Alternatively, the erroneous attachment detection means is configured so that a sensor value deviation obtained by subtracting the downstream air-fuel ratio from the upstream air-fuel ratio detected by the air-fuel ratio sensors 71 and 72 in a driving state where the air-fuel ratio changes suddenly is a preset normal range. It is also possible to determine erroneous attachment depending on whether or not The operation state in which the exhaust flow rate increases rapidly is, for example, a rich spike control operation state.

次に、ECU6にて実行される誤取り付け検出制御の詳細を説明する。図3(a)は誤取り付け検出制御のフローチャートであり、ステップS1、2は、空燃比センサ71、72のヒータ電流値に基づく誤取り付け判定手順を、ステップS3、4は、空燃比センサ71、72の検出値に基づく誤取り付け判定手順を示すものである。まず、ステップS1で、加速中であるかどうかを判定する。加速中の判定は、例えばエアフローメータ14で検出される吸入空気量の増加分(Δ空気量)を、所定値A(g/s)と比較することによって行い、Δ空気量>A(g/s)であれば、加速中と判定してステップS2へ進む。   Next, details of the erroneous attachment detection control executed by the ECU 6 will be described. FIG. 3A is a flowchart of erroneous attachment detection control. Steps S1 and S2 are erroneous attachment determination procedures based on the heater current values of the air-fuel ratio sensors 71 and 72. Steps S3 and S4 are air-fuel ratio sensors 71 and 72, respectively. 7 shows an erroneous attachment determination procedure based on 72 detection values. First, in step S1, it is determined whether or not acceleration is being performed. The determination during acceleration is performed by, for example, comparing an increase in the intake air amount (Δ air amount) detected by the air flow meter 14 with a predetermined value A (g / s), and Δ air amount> A (g / If s), it is determined that the vehicle is accelerating, and the process proceeds to step S2.

ステップS2では、空燃比センサ71、72のヒータ電流値をそれぞれ検出してその偏差(前後センサ電流偏差)を算出し、逆取り付け判定値αと比較する。
前後センサ電流偏差=上流側のヒータ電流値−下流側のヒータ電流値
図4にタイムチャートを示すように、加速時には、エンジン回転数の上昇とともに排気流量が増大し、空燃比センサ71、72は流入する空気によってセンサ素子が冷やされることにより表面温度が低下する。ここで、空燃比センサ71、72は、温度制御用ヒータを用いてセンサ素子の表面温度が活性温度(例えば約700℃)となるようにフィードバック制御を行っている。センサ素子の表面温度は検出部のインピーダンスと相関関係があることが知られており、表面温度(インピーダンス)が目標温度(インピーダンス)となるように温度制御用ヒータへの通電を制御することにより、表面温度は再び上昇する。また、これに伴いヒータ電流値も上昇する。
In step S2, the heater current values of the air-fuel ratio sensors 71 and 72 are detected, their deviations (front and rear sensor current deviations) are calculated, and compared with the reverse attachment determination value α.
Front / rear sensor current deviation = upstream heater current value−downstream heater current value As shown in the time chart of FIG. 4, during acceleration, the exhaust flow rate increases as the engine speed increases, and the air-fuel ratio sensors 71 and 72 The sensor element is cooled by the inflowing air, so that the surface temperature is lowered. Here, the air-fuel ratio sensors 71 and 72 perform feedback control using a temperature control heater so that the surface temperature of the sensor element becomes an active temperature (for example, about 700 ° C.). It is known that the surface temperature of the sensor element has a correlation with the impedance of the detection unit, and by controlling the energization to the temperature control heater so that the surface temperature (impedance) becomes the target temperature (impedance), The surface temperature rises again. Along with this, the heater current value also increases.

この際、取り付け位置の違いにより、LNT21上流側の空燃比センサ71と下流側の空燃比センサ72とで、図示するようにヒータ電流値の変化にずれが生ずる。すなわち、上流側の空燃比センサ71のヒータ電流値が先に変化し、下流側の空燃比センサ72のヒータ電流値が遅れて変化する。したがって、図に実線で示すように、正規取り付けされている場合、加速初期の前後センサ電流偏差は、+(プラス)の値が一定期間継続する。   At this time, due to the difference in the mounting position, a difference occurs in the change in the heater current value between the air-fuel ratio sensor 71 on the upstream side of the LNT 21 and the air-fuel ratio sensor 72 on the downstream side as shown in the figure. That is, the heater current value of the upstream air-fuel ratio sensor 71 changes first, and the heater current value of the downstream air-fuel ratio sensor 72 changes with a delay. Therefore, as indicated by the solid line in the figure, when the sensor is normally mounted, the value of the sensor current deviation before and after the acceleration continues to be + (plus) for a certain period.

ところが、空燃比センサ71、72が逆に取り付けされると、上流側のヒータ電流値と下流側のヒータ電流値が入れ替わる。このために、図に点線で示すように、加速初期の前後センサ電流偏差が、−(マイナス)の値となる。本発明は、このヒータ電流値の立ち上がりの差を利用するもので、前後センサ電流偏差を、誤取り付けを検出するための指標として、予め設定した逆取り付け判定値α(<0)を下回ったかどうかを判定する。そして、下記式が肯定判定されたら、
前後センサ電流偏差<逆取り付け判定値α(mA/s)
逆取り付けと判定してステップ5へ進む。この時、逆取り付け判定値αを下回った状態が、逆取り付け継続時間T(s)以上継続したかどうかによって、誤取り付けを判定するようにしてもよい。
However, when the air-fuel ratio sensors 71 and 72 are attached in reverse, the upstream heater current value and the downstream heater current value are switched. For this reason, as shown by a dotted line in the figure, the sensor current deviation before and after the acceleration is a negative value. The present invention uses the difference in the rise of the heater current value, and whether the front-rear sensor current deviation is less than a preset reverse attachment determination value α (<0) as an index for detecting erroneous attachment. Determine. And if the following formula is affirmed,
Front-rear sensor current deviation <reverse mounting judgment value α (mA / s)
It determines with reverse attachment, and progresses to step 5. At this time, the incorrect attachment may be determined depending on whether or not the state where the reverse attachment determination value α is lower than the reverse attachment continuation time T (s).

ステップS1、2が否定判定されたら、ステップS3へ進む。ステップS3では、LNT21のリッチスパイク制御のための燃料添加実行フラグがOFFからONに切り替えられ、かつ時間B(s)以内であるかどうかを判定する。ステップS3が肯定判定されたら、ステップS4へ進んで、空燃比センサ71の検出値と空燃比センサ72の検出値との偏差(前後センサ値偏差)を算出し、逆取り付け判定値βと比較する。
前後センサ値偏差=上流側のセンサ値−下流側のセンサ値
図5に示すように、ECU6は、周期的にリッチスパイク制御を実施して、燃料添加弁73から排気への燃料添加を行っているので、これに伴い、排気中の空燃比が周期的に変化する。すなわち、燃料添加によって、まず上流側の空燃比センサ71により検出される空燃比(センサ値)が一旦急減し、その後急増する。下流側の空燃比センサ72により検出される空燃比(センサ値)は、これに遅れて同様に急減した後、急増し、これを繰り返す。
If a negative determination is made in steps S1 and 2, the process proceeds to step S3. In step S3, it is determined whether the fuel addition execution flag for the rich spike control of the LNT 21 is switched from OFF to ON and within the time B (s). If an affirmative determination is made in step S3, the process proceeds to step S4, where a deviation (front-rear sensor value deviation) between the detection value of the air-fuel ratio sensor 71 and the detection value of the air-fuel ratio sensor 72 is calculated and compared with the reverse attachment determination value β. .
Front and rear sensor value deviation = upstream sensor value−downstream sensor value As shown in FIG. 5, the ECU 6 periodically performs rich spike control to add fuel from the fuel addition valve 73 to the exhaust. As a result, the air-fuel ratio in the exhaust gas periodically changes accordingly. That is, by adding fuel, first, the air-fuel ratio (sensor value) detected by the upstream air-fuel ratio sensor 71 is suddenly decreased and then rapidly increased. The air-fuel ratio (sensor value) detected by the downstream-side air-fuel ratio sensor 72 decreases rapidly in the same manner and then increases rapidly and repeats this.

したがって、図に実線で示すように、正規取り付けされている場合、添加初期の前後センサ値偏差は、−(マイナス)となり、ある値まで減少した後、上昇に転じ、さらに+(プラス)の値となった後、減少してゼロ点に収束する。逆取り付けされた場合には、図に点線で示すように、正常時と正負が反転した偏差値曲線を辿ることになる。したがって、燃料添加からある一定時間B(s)以内の前後センサ値偏差を算出し、予め設定した逆取り付け判定値β(>0)を上回っているかどうかを判定することによっても、誤取り付けを検出できる。そして、下記式が肯定判定されたら、
前後センサ値偏差>逆取り付け判定値β
逆取り付けと判定してステップ5へ進む。
Therefore, as shown by the solid line in the figure, the sensor value deviation at the beginning and after the addition becomes − (minus) when it is normally attached, decreases to a certain value, then starts to rise, and further + (plus) value After that, it decreases and converges to the zero point. In the case of reverse attachment, as shown by the dotted line in the figure, the deviation value curve in which the positive and negative signs are reversed is followed. Therefore, it is also possible to detect erroneous attachment by calculating the front / rear sensor value deviation within a certain time B (s) from the fuel addition and determining whether or not the predetermined reverse attachment determination value β (> 0) is exceeded. it can. And if the following formula is affirmed,
Front / rear sensor value deviation> Reverse mounting judgment value β
It determines with reverse attachment, and progresses to step 5.

ステップ5では、誤取り付け判定フラグをオンし、故障警告灯(MIL)を点灯させて運転者に認知させる。誤取り付け検出後は、速やかに車両をディーラー等へ移動させて、空燃比センサ71、72の取り付けを正規位置とすることが望ましいが、それまでの処置として、空燃比センサ71、72の検出値を使用する各学習値をクリアし、誤った学習値による制御性の悪化を防止する。あるいは、ECU6内部における認識値を入れ替えて、疑似的に正規値となるように変更し、自己正常化して使用することも可能であり、誤取り付けの影響を最小限とすることができる。この際、例えば、検出値を入れ替えることにより、制御値が大きく変化してしまう場合には、正規値となるまで、徐々に検出値を変化させるようにしてもよい。これにより、直ちに切り替えることで生じる不具合を解消することができる。   In step 5, an erroneous attachment determination flag is turned on, and a failure warning lamp (MIL) is turned on to allow the driver to recognize it. After detecting the erroneous attachment, it is desirable to quickly move the vehicle to a dealer or the like so that the attachment of the air-fuel ratio sensors 71 and 72 is set to the normal position. Each learning value that uses is cleared, and deterioration of controllability due to an incorrect learning value is prevented. Alternatively, the recognition value in the ECU 6 can be changed so that it becomes a pseudo-normal value and can be self-normalized and used, and the influence of erroneous mounting can be minimized. At this time, for example, when the control value changes greatly by exchanging the detection value, the detection value may be gradually changed until it becomes a normal value. Thereby, the malfunction which arises by switching immediately can be eliminated.

以上のように、本発明によれば、空燃比センサ71、72の誤取り付けを容易に検出し、運転者へ認知させることができるので、空燃比に基づくリッチスパイク制御や燃料噴射量補正の制御性が低下することによる燃費悪化や排気エミッションの悪化、センサ素子の被水割れ等の不具合を防止することができる。   As described above, according to the present invention, erroneous attachment of the air-fuel ratio sensors 71 and 72 can be easily detected and recognized by the driver. Therefore, rich spike control based on the air-fuel ratio and control of fuel injection amount correction are performed. It is possible to prevent problems such as deterioration of fuel consumption, exhaust emission, and water cracking of the sensor element due to deterioration in performance.

本発明を適用した内燃機関の制御装置の全体概略構成図である。1 is an overall schematic configuration diagram of an internal combustion engine control apparatus to which the present invention is applied. (a)〜(d)は排気後処理装置の構成と空燃比センサの取り付け位置の例を示す図である。(A)-(d) is a figure which shows the example of a structure of an exhaust-gas aftertreatment apparatus, and the attachment position of an air fuel ratio sensor. (a)はECUにおいて実行される誤取付け検出制御のフローチャート図、(b)は上流側の下流側の空燃比センサ値のずれを示す図である。(A) is a flowchart of the erroneous attachment detection control executed in the ECU, and (b) is a diagram showing the deviation of the downstream air-fuel ratio sensor value. センサ電流偏差による誤取付け検出を説明するためのタイムチャート図である。It is a time chart for demonstrating the erroneous attachment detection by a sensor electric current deviation. 空燃比センサ値偏差による誤取付け検出を説明するためのタイムチャート図である。It is a time chart for demonstrating the erroneous attachment detection by an air fuel ratio sensor value deviation.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
11 インジェクタ
12 排気管
13 吸気管
14 エアフローメータ
2 排気後処理装置
21 DPF(パティキュレートフィルタ)
22 LNT(NOx吸蔵還元触媒)
3 コモンレール
4 燃料タンク
5 圧力センサ
6 ECU
71 空燃比センサ
72 空燃比センサ
73 燃料添加弁
8 差圧センサ
1 engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Injector 12 Exhaust pipe 13 Intake pipe 14 Air flow meter 2 Exhaust post-processing apparatus 21 DPF (particulate filter)
22 LNT (NOx storage reduction catalyst)
3 Common rail 4 Fuel tank 5 Pressure sensor 6 ECU
71 Air-fuel ratio sensor 72 Air-fuel ratio sensor 73 Fuel addition valve 8 Differential pressure sensor

Claims (9)

車両内燃機関の排気通路に設置した排気後処理装置と、
該排気後処理装置の上流側および下流側にそれぞれ設置した複数の空燃比センサを備え、
上記複数の空燃比センサの出力値に基づく制御を行う内燃機関の制御装置において、
上記複数の空燃比センサの誤取り付けを検出する誤取り付け検出手段を設け、
該誤取り付け検出手段は、排気流量が急増する運転状態において、上記複数の空燃比センサに設けた温度制御用ヒータの電流値をそれぞれ検出し、上流側の空燃比センサのヒータ電流値から下流側のヒータ電流値を減じたセンサ電流値偏差が、予め設定した正常範囲から外れた時に、上記複数の空燃比センサの誤取り付けと判定することを特徴とする内燃機関の制御装置。
An exhaust aftertreatment device installed in an exhaust passage of a vehicle internal combustion engine;
A plurality of air-fuel ratio sensors respectively installed on the upstream side and downstream side of the exhaust aftertreatment device;
In a control device for an internal combustion engine that performs control based on output values of the plurality of air-fuel ratio sensors,
Providing erroneous attachment detection means for detecting erroneous attachment of the plurality of air-fuel ratio sensors,
The erroneous attachment detection means detects the current values of the temperature control heaters provided in the plurality of air-fuel ratio sensors in an operating state in which the exhaust gas flow rate rapidly increases, and downstream from the heater current values of the upstream air-fuel ratio sensors. A control apparatus for an internal combustion engine, wherein when the sensor current value deviation obtained by subtracting the heater current value deviates from a preset normal range, it is determined that the plurality of air-fuel ratio sensors are erroneously attached.
上記誤取り付け検出手段における上記排気流量が急増する運転状態は、上記内燃機関の加速運転状態である請求項1記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the operation state in which the exhaust flow rate in the erroneous attachment detection means increases rapidly is an acceleration operation state of the internal combustion engine. 車両内燃機関の排気通路に設置した排気後処理装置と、
該排気後処理装置の上流側および下流側にそれぞれ設置した複数の空燃比センサを備え、
上記複数の空燃比センサの出力値に基づく制御を行う内燃機関の制御装置において、
上記複数の空燃比センサの誤取り付けを検出する誤取り付け検出手段を設け、
上記誤取り付け検出手段は、空燃比が急変する運転状態において、上記複数の空燃比センサにて検出される上流側の空燃比から下流側の空燃比を減じたセンサ値偏差が、予め設定した正常範囲から外れた時に、上記複数の空燃比センサの誤取り付けと判定することを特徴とする内燃機関の制御装置。
An exhaust aftertreatment device installed in an exhaust passage of a vehicle internal combustion engine;
A plurality of air-fuel ratio sensors respectively installed on the upstream side and downstream side of the exhaust aftertreatment device;
In a control device for an internal combustion engine that performs control based on output values of the plurality of air-fuel ratio sensors,
Providing erroneous attachment detection means for detecting erroneous attachment of the plurality of air-fuel ratio sensors,
In the operation state where the air-fuel ratio changes abruptly, the erroneous attachment detection means has a preset normal sensor value deviation obtained by subtracting the downstream air-fuel ratio from the upstream air-fuel ratio detected by the plurality of air-fuel ratio sensors. A control device for an internal combustion engine, characterized in that, when out of range, it is determined that the plurality of air-fuel ratio sensors are erroneously attached.
上記誤取り付け検出手段における上記排気流量が急増する運転状態は、リーン運転中に一時的に理論空燃比またはリッチ空燃比にするリッチスパイク制御運転状態である請求項3記載の内燃機関の制御装置。   4. The control device for an internal combustion engine according to claim 3, wherein the operating state in which the exhaust flow rate suddenly increases in the erroneous attachment detecting means is a rich spike control operating state in which a stoichiometric air-fuel ratio or a rich air-fuel ratio is temporarily set during lean operation. 上記リッチスパイク制御は、ポスト噴射または排気通路に設けた燃料添加弁からの燃料添加によって空燃比を制御する請求項4記載の内燃機関の制御装置。   5. The control device for an internal combustion engine according to claim 4, wherein the rich spike control controls the air-fuel ratio by post injection or fuel addition from a fuel addition valve provided in an exhaust passage. 上記排気後処理装置としてNOx吸蔵還元触媒またはパティキュレートフィルタを備える請求項1ないし5のいずれか一項に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to any one of claims 1 to 5, further comprising a NOx occlusion reduction catalyst or a particulate filter as the exhaust aftertreatment device. 上記上流側の空燃比センサの検出値に基づいて燃料噴射量の補正を行う請求項6記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 6, wherein the fuel injection amount is corrected based on a detection value of the upstream air-fuel ratio sensor. 上記下流側の空燃比センサの検出値に基づいて上記排気後処理装置の再生制御を行う請求項6記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 6, wherein regeneration control of the exhaust aftertreatment device is performed based on a detection value of the downstream air-fuel ratio sensor. 上記誤取り付け検出手段にて誤取り付けと判定された時に、上記上流側空燃比および下流側空燃比の認識値を入れ替える認識値切替手段とを備える請求項1ないし8のいずれか1項に記載の内燃機関の排気浄化装置。   The recognition value switching means according to any one of claims 1 to 8, further comprising recognition value switching means for exchanging recognition values of the upstream air-fuel ratio and the downstream air-fuel ratio when the erroneous attachment detection means determines that the attachment is incorrect. An exhaust purification device for an internal combustion engine.
JP2006303876A 2006-11-09 2006-11-09 Control device for internal combustion engine Expired - Fee Related JP4640318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303876A JP4640318B2 (en) 2006-11-09 2006-11-09 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303876A JP4640318B2 (en) 2006-11-09 2006-11-09 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008121455A true JP2008121455A (en) 2008-05-29
JP4640318B2 JP4640318B2 (en) 2011-03-02

Family

ID=39506496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303876A Expired - Fee Related JP4640318B2 (en) 2006-11-09 2006-11-09 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4640318B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249096A (en) * 2009-04-20 2010-11-04 Toyota Motor Corp Control device of internal combustion engine
JP2013234643A (en) * 2012-05-11 2013-11-21 Denso Corp Diagnosis method
JP2014527592A (en) * 2011-08-04 2014-10-16 テネコ・オートモーティヴ・オペレーティング・カンパニー・インコーポレーテッド Exhaust treatment system with hydrocarbon lean NOx catalyst
JP2017066951A (en) * 2015-09-30 2017-04-06 ヤンマー株式会社 diesel engine
DE102016222009A1 (en) 2015-12-22 2017-06-22 Ford Global Technologies, Llc Monitoring the aging state of a catalyst
JP2021099056A (en) * 2019-12-23 2021-07-01 ダイハツ工業株式会社 Internal combustion engine control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101807139B1 (en) 2016-03-14 2018-01-10 현대자동차 주식회사 Device for purifying exhaust of vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842386A (en) * 1994-07-04 1996-02-13 Bayerische Motoren Werke Ag Discriminating method of lambda-sonde,left and right of which are connected reversely

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842386A (en) * 1994-07-04 1996-02-13 Bayerische Motoren Werke Ag Discriminating method of lambda-sonde,left and right of which are connected reversely

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249096A (en) * 2009-04-20 2010-11-04 Toyota Motor Corp Control device of internal combustion engine
JP2014527592A (en) * 2011-08-04 2014-10-16 テネコ・オートモーティヴ・オペレーティング・カンパニー・インコーポレーテッド Exhaust treatment system with hydrocarbon lean NOx catalyst
JP2013234643A (en) * 2012-05-11 2013-11-21 Denso Corp Diagnosis method
US9074539B2 (en) 2012-05-11 2015-07-07 Denso Corporation Diagnosis method for determining the condition of an exhaust sensor
JP2017066951A (en) * 2015-09-30 2017-04-06 ヤンマー株式会社 diesel engine
DE102016222009A1 (en) 2015-12-22 2017-06-22 Ford Global Technologies, Llc Monitoring the aging state of a catalyst
DE102016222009B4 (en) 2015-12-22 2021-09-30 Ford Global Technologies, Llc Monitoring of the aging condition of a catalytic converter
JP2021099056A (en) * 2019-12-23 2021-07-01 ダイハツ工業株式会社 Internal combustion engine control device
JP7123512B2 (en) 2019-12-23 2022-08-23 ダイハツ工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP4640318B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US8266893B2 (en) Exhaust gas purification apparatus of internal combustion engine
US7797930B2 (en) Exhaust gas purification device of internal combustion engine
KR100658818B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US7849677B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP6582409B2 (en) Exhaust purification system
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP4640318B2 (en) Control device for internal combustion engine
JP2008057364A (en) Exhaust emission control system of internal combustion engine
JP4692436B2 (en) Exhaust gas purification system for internal combustion engine
JP4544011B2 (en) Internal combustion engine exhaust purification system
JP2010112220A (en) Catalyst diagnostic device
JP6384196B2 (en) Exhaust purification device regenerator
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP2010265844A (en) Exhaust emission control device for internal combustion engine
WO2016140134A1 (en) Exhaust purification system and catalyst regeneration method
JP2005201119A (en) Exhaust emission control device of internal combustion engine
JP4276472B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2009203898A (en) Exhaust emission control system
CN107407175B (en) Exhaust gas purification system and catalyst regeneration method
JP5699922B2 (en) Exhaust gas purification device for internal combustion engine
JP2019167919A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
CN110945218B (en) Exhaust gas purification system
JP2009299597A (en) Exhaust emission control device for vehicular internal combustion engine
JP6589372B2 (en) Exhaust purification device
JP2019167918A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4640318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees