JP4170935B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4170935B2
JP4170935B2 JP2004068995A JP2004068995A JP4170935B2 JP 4170935 B2 JP4170935 B2 JP 4170935B2 JP 2004068995 A JP2004068995 A JP 2004068995A JP 2004068995 A JP2004068995 A JP 2004068995A JP 4170935 B2 JP4170935 B2 JP 4170935B2
Authority
JP
Japan
Prior art keywords
catalyst
regeneration control
control
amount
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004068995A
Other languages
Japanese (ja)
Other versions
JP2005256720A (en
Inventor
康彦 大坪
辰久 横井
繁洋 松野
広樹 松岡
孝好 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2004068995A priority Critical patent/JP4170935B2/en
Priority to CNA2005800010303A priority patent/CN1842643A/en
Priority to KR1020057023870A priority patent/KR100683267B1/en
Priority to EP05720974A priority patent/EP1723324A1/en
Priority to PCT/JP2005/004739 priority patent/WO2005088097A1/en
Priority to US10/559,826 priority patent/US20060168939A1/en
Publication of JP2005256720A publication Critical patent/JP2005256720A/en
Application granted granted Critical
Publication of JP4170935B2 publication Critical patent/JP4170935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device for an internal combustion engine.

従来、特許文献1にみられるように、車載用ディーゼルエンジン等の内燃機関に適用される排気浄化装置として、排気中に含まれる煤を主成分とする微粒子を捕集するPMフィルタを排気系に設けたものが知られている。   Conventionally, as seen in Patent Document 1, as an exhaust purification device applied to an internal combustion engine such as a vehicle-mounted diesel engine, a PM filter that collects particulates mainly composed of soot contained in the exhaust is used as an exhaust system. What is provided is known.

こうした排気浄化装置が設けられた内燃機関では、例えば、機関運転状態等から推定されるPMフィルタでの微粒子の堆積量が許容値以上であることに基づき、微粒子によるPMフィルタの詰まりを回避するためのPM再生制御が行われる。このPM再生制御は、PMフィルタの排気上流側の排気に対し燃料添加を行い、同PMフィルタの触媒上での未燃燃料成分の酸化反応に伴う発熱により触媒を昇温させるとともにPMフィルタの微粒子を燃焼させるものである。そして、PMフィルタに堆積する微粒子が燃焼しきったと判断されると、上記推定されるPMフィルタでの微粒子の堆積量を「0」にセットしてPM再生制御を完了する。
特開平5−44434公報
In an internal combustion engine provided with such an exhaust purification device, for example, in order to avoid clogging of the PM filter with fine particles based on the fact that the amount of accumulated fine particles on the PM filter estimated from the engine operating state or the like is greater than an allowable value. PM regeneration control is performed. In this PM regeneration control, fuel is added to the exhaust gas upstream of the PM filter, and the temperature of the catalyst is raised by the heat generated by the oxidation reaction of the unburned fuel component on the catalyst of the PM filter and the particulate matter of the PM filter Is to burn. When it is determined that the particulates deposited on the PM filter have been burned, the estimated amount of particulates deposited on the PM filter is set to “0” and PM regeneration control is completed.
JP-A-5-44434

ところで、PM再生制御は、同制御実行中での機関停止といった理由により中断されることがある。この場合、中断時点での微粒子の堆積量が許容値未満であれば、後に機関再始動によってPM再生制御が実行可能になったとしてもPM再生制御が再開されることはない。しかし、このようなPM再生制御の中断により同制御が完了しないことが何回か続くと、推定される微粒子の堆積量に関係して以下のような問題が生じるおそれがある。   By the way, the PM regeneration control may be interrupted due to an engine stop during the execution of the control. In this case, if the amount of accumulated particulates at the time of interruption is less than the allowable value, the PM regeneration control will not be resumed even if the PM regeneration control can be executed later by restarting the engine. However, if the PM regeneration control is not completed several times due to the interruption of the PM regeneration control, the following problems may occur in relation to the estimated amount of accumulated particulate matter.

推定される微粒子の堆積量には実際の堆積量に対し誤差が生じる可能性があるが、こうした誤差についてはPMフィルタに堆積した微粒子が燃焼しきるPM再生制御の完了時点で上記推定される微粒子の堆積量を「0」にセットすることで解消するようにしている。しかし、PM再生制御の実行・中断が何回か続くと、推定される微粒子の堆積量を「0」にセットすることがないまま、通常の機関運転でのPMフィルタへの微粒子の堆積と、中断までのPM再生制御での同微粒子の燃焼とが繰り返される。そして、このように微粒子の堆積量が増減している間に、推定される堆積量が実際の堆積量に対して大きくずれるようになる可能性がある。   There is a possibility that an error occurs in the estimated accumulation amount of the fine particles with respect to the actual accumulation amount. However, regarding such an error, the estimated fine particles are accumulated at the time of completion of the PM regeneration control in which the fine particles accumulated on the PM filter are completely combusted. This is solved by setting the deposition amount to “0”. However, if execution / interruption of PM regeneration control continues several times, the accumulation of fine particles on the PM filter in normal engine operation without setting the estimated accumulation amount of fine particles to “0”, The combustion of the fine particles in the PM regeneration control until the interruption is repeated. In addition, while the amount of deposited fine particles is increasing or decreasing in this way, the estimated amount of deposition may be greatly deviated from the actual amount of deposition.

そして、例えば上記推定される微粒子の堆積量が実際の堆積量よりも大幅に少なくなっているような場合、その推定される微粒子の堆積量に基づき排気空燃比がリッチとされるような制御が実行されると、PMフィルタの触媒床温が過上昇するおそれがある。これは、同制御に基づきPMフィルタに未燃燃料成分が供給され、その未燃成分の酸化反応に伴いPMフィルタに堆積した微粒子が燃焼する際、微粒子が想定されるよりも多く堆積しており、同微粒子が燃焼する際の発熱量も多くなるためである。   For example, when the estimated accumulation amount of fine particles is significantly smaller than the actual accumulation amount, control is performed to make the exhaust air-fuel ratio rich based on the estimated accumulation amount of fine particles. If executed, the catalyst bed temperature of the PM filter may be excessively increased. This is because when the unburned fuel component is supplied to the PM filter based on the same control and the particulates deposited on the PM filter are burned due to the oxidation reaction of the unburned components, more particulates are deposited than expected. This is because the amount of heat generated when the fine particles are burned increases.

本発明はこのような実情に鑑みてなされたものであって、その目的は、PM再生制御の中断に起因して、推定される触媒周りの微粒子の堆積量と実際の堆積量との間の誤差が大きくなるのを抑制できる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is between the estimated deposition amount of fine particles around the catalyst and the actual deposition amount due to the suspension of PM regeneration control. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress an increase in error.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、排気系の触媒周りに捕集された微粒子の堆積量を推定し、その推定される微粒子の堆積量が許容値以上であることに基づき、前記触媒に未燃燃料成分を供給して同触媒を昇温させるとともに前記捕集された微粒子を燃焼させるPM再生制御を行い、同制御の完了時に前記推定される微粒子の堆積量を「0」にセットする内燃機関の排気浄化装置において、前記PM再生制御の終期には、前記排気系の触媒の排気上流端に残った微粒子を燃焼させることを可能とするために、前記触媒上流への集中的な間欠燃料添加及び同燃料添加の停止を所定回数繰り返すバーンアップ制御が実行されるものとした。
触媒の排気上流端周りには微粒子が堆積し易いが、PM再生制御の終期に行われるバーンアップ制御では、集中的な間欠燃料添加を通じて、触媒への未燃燃料成分及び酸素の単位時間当たりの供給量を、通常のPM再生制御では燃焼しきれずに同触媒の排気上流端の周りに残った微粒子を燃焼させることの可能な値まで引き上げることができる。従って、こうした集中的な間欠燃料添加及び同燃料添加の停止を所定回数繰り返すことで、触媒の排気上流端の周りの微粒子を燃焼しきることができ、PM再生制御完了後における触媒周りの微粒子の実際の堆積量を確実に「0」とすることができる。このため、PM再生制御完了時に、上記推定される触媒周りの微粒子の堆積量を「0」にセットしたとき、触媒周りに微粒子が残っており、上記推定される堆積量が実際の堆積量に対応しないという状況が生じるのを回避することができる。
請求項2記載の発明では、請求項1記載の発明において、前記PM再生制御が中断されたときには、後に前記内燃機関が運転中であって且つ前記触媒の失活が解消している状態になった際、前記触媒周りの微粒子の堆積量が許容値未満であっても前記PM再生制御を再開するものとした。
In the following, means for achieving the above object and its effects are described.
In order to achieve the above object, according to the first aspect of the present invention, the accumulation amount of fine particles collected around the exhaust system catalyst is estimated, and the estimated accumulation amount of fine particles is above an allowable value. Then, PM regeneration control for supplying unburned fuel components to the catalyst to raise the temperature of the catalyst and combusting the collected fine particles is performed, and when the control is completed, the estimated accumulation amount of fine particles is set to “0”. In the exhaust gas purification apparatus for an internal combustion engine set to ”, at the end of the PM regeneration control, in order to make it possible to burn fine particles remaining at the exhaust upstream end of the exhaust system catalyst, It is assumed that burn-up control is performed in which intensive intermittent fuel addition and stop of the fuel addition are repeated a predetermined number of times.
Fine particles are likely to accumulate around the upstream end of the exhaust of the catalyst. However, in burn-up control performed at the end of PM regeneration control, unburned fuel components and oxygen per unit time are added to the catalyst through concentrated intermittent fuel addition. The supply amount can be increased to a value at which fine particles remaining around the exhaust upstream end of the catalyst can be burned without being burned by normal PM regeneration control. Therefore, by repeating this intensive intermittent fuel addition and stoppage of the fuel addition a predetermined number of times, the fine particles around the exhaust upstream end of the catalyst can be burned, and the actual fine particles around the catalyst after the PM regeneration control is completed. Can be reliably set to “0”. For this reason, when the estimated amount of particulate deposition around the catalyst is set to “0” upon completion of PM regeneration control, particulates remain around the catalyst, and the estimated deposition amount becomes the actual deposition amount. It is possible to avoid the situation of not responding.
According to a second aspect of the present invention, in the first aspect of the invention, when the PM regeneration control is interrupted, the internal combustion engine is in operation later and the deactivation of the catalyst is eliminated. In this case, the PM regeneration control is resumed even if the amount of fine particles deposited around the catalyst is less than the allowable value.

PM再生制御の中断後に内燃機関が運転中であって且つ触媒の失活が解消している状態になると、推定される触媒周りの微粒子の堆積量が許容値未満であってもPM再生制御が再開され、同制御を完了するまで続けることで触媒周りの微粒子を燃焼しきることができるようになる。そして、同微粒子が燃焼しきってPM再生制御が完了したときには上記推定される微粒子の堆積量が「0」にセットされ、その推定される微粒子の堆積量と実際の堆積量との誤差が解消される。従って、PM制御が完了しきらないまま、同制御の実行・中断が繰り返されのを抑制し、その繰り返しの間に上記推定される微粒子の堆積量と実際の堆積量との間の誤差が大きくなるのを抑制することができる。 When the internal combustion engine is in operation after the PM regeneration control is interrupted and the deactivation of the catalyst has been eliminated, the PM regeneration control is performed even if the estimated amount of deposited fine particles around the catalyst is less than the allowable value. The process is resumed until the control is completed, so that the fine particles around the catalyst can be combusted. When the particulate regeneration is completed and PM regeneration control is completed, the estimated particulate deposition amount is set to “0”, and the error between the estimated particulate deposition amount and the actual deposition amount is eliminated. The Accordingly, it is possible to suppress repeated execution / interruption of the control without completing the PM control, and an error between the estimated amount of deposited fine particles and the actual amount of accumulation during the repetition is large. It can be suppressed.

請求項記載の発明では、請求項記載の発明において、前記PM再生制御の再開時には、前記触媒周りの微粒子の堆積量が少ないと推定されるときほど、そのPM再生制御の実行時間が短く設定されるものとした。 According to a third aspect of the invention, in the second aspect of the invention, when the PM regeneration control is resumed, the execution time of the PM regeneration control is shorter as the amount of accumulated particulates around the catalyst is estimated to be smaller. It was supposed to be set.

PM再生制御の中断時には、それまでに触媒周りに堆積した微粒子の燃焼がある程度進んでおり、その時点での微粒子の堆積量が少ないほどPM再生制御再開後の同制御の実行時間を短くしても同微粒子を燃焼しきることが可能になる。上記構成によれば、中断したPM再生制御の再開時には、推定される触媒周りの微粒子の堆積量が少ないほど、PM再生制御の実行時間が短く設定されるため、同制御の実行完了までの時間短縮と同制御が無駄に長く続けられることに基づく燃費悪化の抑制とが図られるようになる。   When the PM regeneration control is interrupted, the combustion of the particulates that have accumulated around the catalyst has progressed to some extent. The smaller the amount of particulates accumulated at that time, the shorter the execution time of the control after restarting the PM regeneration control. Can also burn the fine particles. According to the above configuration, when the suspended PM regeneration control is resumed, the smaller the estimated accumulation amount of fine particles around the catalyst, the shorter the execution time of the PM regeneration control is set. The shortening and suppression of the deterioration of fuel consumption based on the fact that the control is continued unnecessarily for a long time can be achieved.

以下、本発明の内燃機関の排気浄化装置を具体化した一実施形態を図1〜図10に従って説明する。
図1は、本実施形態の排気浄化装置が適用される内燃機関10の構成を示している。この内燃機関10は、コモンレール方式の燃料噴射装置、及びターボチャージャ11を備えるディーゼル機関となっており、大きくは吸気通路12、燃焼室13、及び排気通路14を備えて構成されている。
Hereinafter, an embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIGS.
FIG. 1 shows the configuration of an internal combustion engine 10 to which the exhaust purification system of this embodiment is applied. The internal combustion engine 10 is a diesel engine including a common rail fuel injection device and a turbocharger 11, and mainly includes an intake passage 12, a combustion chamber 13, and an exhaust passage 14.

内燃機関10の吸気系を構成する吸気通路12には、その最上流部に配設されたエアクリーナ15から下流側に向けて順に、エアフローメータ16、上記ターボチャージャ11のコンプレッサ17、インタークーラ18、及び吸気絞り弁19が配設されている。また吸気通路12は、吸気絞り弁19の下流側に設けられた吸気マニホールド20において分岐され、吸気ポート21を介して内燃機関10の各気筒の燃焼室13に接続されている。   In an intake passage 12 constituting the intake system of the internal combustion engine 10, an air flow meter 16, a compressor 17 of the turbocharger 11, an intercooler 18, And an intake throttle valve 19 is provided. The intake passage 12 is branched at an intake manifold 20 provided on the downstream side of the intake throttle valve 19 and connected to the combustion chamber 13 of each cylinder of the internal combustion engine 10 via an intake port 21.

一方、内燃機関10の排気系を構成する排気通路14では、各気筒の燃焼室13にそれぞれ接続された排気ポート22は、排気マニホールド23を介して上記ターボチャージャ11の排気タービン24に接続されている。また排気通路14の排気タービン24下流には、上流側から順に、NOx触媒コンバータ25、PMフィルタ26、酸化触媒コンバータ27が配設されている。   On the other hand, in the exhaust passage 14 constituting the exhaust system of the internal combustion engine 10, the exhaust port 22 connected to the combustion chamber 13 of each cylinder is connected to the exhaust turbine 24 of the turbocharger 11 via the exhaust manifold 23. Yes. In addition, a NOx catalytic converter 25, a PM filter 26, and an oxidation catalytic converter 27 are disposed downstream from the exhaust turbine 24 in the exhaust passage 14 in order from the upstream side.

NOx触媒コンバータ25には、吸蔵還元型のNOx触媒が担持されている。このNOx触媒は、排気の酸素濃度が高いときに排気中のNOxを吸蔵し、排気の酸素濃度が低いときにその吸蔵したNOxを放出する。またNOx触媒は、上記NOx放出時に、還元剤となる未燃燃料成分がその周囲に十分存在していれば、その放出されたNOxを還元して浄化する。   The NOx catalytic converter 25 carries an NOx storage reduction catalyst. The NOx catalyst stores NOx in the exhaust when the oxygen concentration of the exhaust is high, and releases the stored NOx when the oxygen concentration of the exhaust is low. Further, the NOx catalyst reduces and purifies the released NOx if there is sufficient unburned fuel component as a reducing agent at the time of releasing the NOx.

PMフィルタ26は、多孔質材料によって形成されており、排気中の煤を主成分とする微粒子(PM)が捕集されるようになっている。このPMフィルタ26にも、上記NOx触媒コンバータ25と同様に、吸蔵還元型のNOx触媒が担持されており、排気中のNOxの浄化が行われるようになっている。またこのNOx触媒によって触発される反応により、上記捕集されたPMが燃焼(酸化)されて除去されるようにもなっている。   The PM filter 26 is made of a porous material and collects fine particles (PM) mainly composed of soot in the exhaust gas. Similarly to the NOx catalytic converter 25, the PM filter 26 also carries an NOx storage reduction catalyst so that NOx in the exhaust gas can be purified. Further, the collected PM is burned (oxidized) and removed by a reaction triggered by the NOx catalyst.

酸化触媒コンバータ27には、酸化触媒が担持されている。この酸化触媒は、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する。
なお排気通路14の上記PMフィルタ26の上流側及び下流側には、PMフィルタ26に流入する排気の温度である入ガス温度を検出する入ガス温度センサ28、及びPMフィルタ26通過後の排気の温度である出ガス温度を検出する出ガス温度センサ29がそれぞれ配設されている。また排気通路14には、上記PMフィルタ26の排気上流側とその排気下流側との差圧を検出する差圧センサ30が配設されている。更に排気通路14の上記NOx触媒コンバータ25の排気上流側、及び上記PMフィルタ26と上記酸化触媒コンバータ27との間には、排気中の酸素濃度を検出する2つの酸素センサ31、32がそれぞれ配設されている。
The oxidation catalyst converter 27 carries an oxidation catalyst. This oxidation catalyst oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust.
In addition, on the upstream side and the downstream side of the PM filter 26 in the exhaust passage 14, an inlet gas temperature sensor 28 that detects the inlet gas temperature that is the temperature of the exhaust gas flowing into the PM filter 26, and the exhaust gas after passing through the PM filter 26. An outgas temperature sensor 29 for detecting an outgas temperature, which is a temperature, is provided. The exhaust passage 14 is provided with a differential pressure sensor 30 for detecting a differential pressure between the exhaust upstream side of the PM filter 26 and the exhaust downstream side thereof. Further, two oxygen sensors 31 and 32 for detecting the oxygen concentration in the exhaust gas are arranged on the exhaust gas upstream side of the NOx catalytic converter 25 in the exhaust passage 14 and between the PM filter 26 and the oxidation catalytic converter 27, respectively. It is installed.

更にこの内燃機関10には、排気の一部を吸気通路12内の空気に再循環させる排気再循環(以下、EGRと記載する)装置が設けられている。EGR装置は、排気通路14と吸気通路12とを連通するEGR通路33を備えて構成されている。EGR通路33の最上流部は、排気通路14の上記排気タービン24の排気上流側に接続されている。EGR通路33には、その上流側から、再循環される排気を改質するEGR触媒34、その排気を冷却するEGRクーラ35、その排気の流量を調整するEGR弁36が配設されている。そしてEGR通路33の最下流部は、吸気通路12の上記吸気絞り弁19の下流側に接続されている。   Further, the internal combustion engine 10 is provided with an exhaust gas recirculation (hereinafter referred to as EGR) device that recirculates a part of the exhaust gas to the air in the intake passage 12. The EGR device includes an EGR passage 33 that allows the exhaust passage 14 and the intake passage 12 to communicate with each other. The most upstream portion of the EGR passage 33 is connected to the exhaust upstream side of the exhaust turbine 24 in the exhaust passage 14. The EGR passage 33 is provided with an EGR catalyst 34 for reforming the recirculated exhaust, an EGR cooler 35 for cooling the exhaust, and an EGR valve 36 for adjusting the flow rate of the exhaust from the upstream side. The most downstream portion of the EGR passage 33 is connected to the downstream side of the intake throttle valve 19 in the intake passage 12.

一方、内燃機関10の各気筒の燃焼室13には、同燃焼室13内での燃焼に供される燃料を噴射するインジェクタ40がそれぞれ配設されている。各気筒のインジェクタ40は、高圧燃料供給管41を介してコモンレール42に接続されている。コモンレール42には、燃料ポンプ43を通じて高圧燃料が供給される。コモンレール42内の高圧燃料の圧力は、同コモンレール42に取り付けられたレール圧センサ44によって検出されるようになっている。更に燃料ポンプ43からは、低圧燃料供給管45を通じて、低圧燃料が添加弁46に供給されるようになっている。   On the other hand, an injector 40 for injecting fuel to be used for combustion in the combustion chamber 13 is disposed in the combustion chamber 13 of each cylinder of the internal combustion engine 10. The injector 40 of each cylinder is connected to a common rail 42 via a high pressure fuel supply pipe 41. High pressure fuel is supplied to the common rail 42 through a fuel pump 43. The pressure of the high-pressure fuel in the common rail 42 is detected by a rail pressure sensor 44 attached to the common rail 42. Further, low pressure fuel is supplied from the fuel pump 43 to the addition valve 46 through the low pressure fuel supply pipe 45.

こうした内燃機関10の各種制御は、電子制御装置50により実施されている。電子制御装置50は、機関制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。   Various controls of the internal combustion engine 10 are performed by the electronic control unit 50. The electronic control unit 50 includes a CPU that executes various arithmetic processes related to engine control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU arithmetic results, and signals between the outside The input / output port for inputting / outputting is provided.

電子制御装置50の入力ポートには、上述した各センサに加え、機関回転速度を検出するNEセンサ51やアクセル操作量を検出するアクセルセンサ52、吸気絞り弁19の開度を検出する絞り弁センサ53等が接続されている。また電子制御装置50の出力ポートには、上記吸気絞り弁19やEGR弁36、インジェクタ40、燃料ポンプ43、添加弁46等の駆動回路が接続されている。   In addition to the sensors described above, the input port of the electronic control unit 50 includes an NE sensor 51 that detects the engine speed, an accelerator sensor 52 that detects the accelerator operation amount, and a throttle valve sensor that detects the opening of the intake throttle valve 19. 53 etc. are connected. The output port of the electronic control unit 50 is connected to drive circuits such as the intake throttle valve 19, the EGR valve 36, the injector 40, the fuel pump 43, and the addition valve 46.

電子制御装置50は、上記各センサから入力される検出信号より把握される機関運転状態に応じて、上記出力ポートに接続された各機器類の駆動回路に指令信号を出力する。こうして上記吸気絞り弁19の開度制御、上記EGR弁36の開度制御に基づくEGR制御、上記インジェクタ40からの燃料噴射量、燃料噴射時期、及び燃料噴射圧の制御、上記添加弁46からの燃料添加の制御等の各種制御が電子制御装置50により実施されている。   The electronic control unit 50 outputs a command signal to the drive circuit of each device connected to the output port according to the engine operating state grasped from the detection signal input from each sensor. Thus, the opening control of the intake throttle valve 19, EGR control based on the opening control of the EGR valve 36, control of the fuel injection amount, fuel injection timing, and fuel injection pressure from the injector 40, Various controls such as fuel addition control are performed by the electronic control unit 50.

以上の如く構成された本実施形態では、上記NOx触媒コンバータ25及びPMフィルタ26でのPMによる目詰まりを防止すべく、それらNOx触媒コンバータ25及びPMフィルタ26に捕集されたPMを燃焼させて浄化するPM再生制御が実施されている。こうしたPM制御では、上記NOx触媒コンバータ25やPMフィルタ26のNOx触媒に未燃燃料成分を供給することで、その未燃燃料成分の排気中や触媒上での酸化に伴う発熱により触媒を例えば600〜700℃程度まで昇温させるとともに触媒周りのPMを燃焼させている。   In the present embodiment configured as described above, PM trapped in the NOx catalytic converter 25 and the PM filter 26 is burned in order to prevent clogging due to PM in the NOx catalytic converter 25 and the PM filter 26. PM regeneration control for purification is performed. In such PM control, an unburned fuel component is supplied to the NOx catalyst of the NOx catalytic converter 25 and the PM filter 26, so that the catalyst is generated by heat generated by oxidation of the unburned fuel component in the exhaust or on the catalyst, for example, 600. While raising the temperature to about ˜700 ° C., PM around the catalyst is combusted.

なお、PM再生制御での触媒への未燃燃料成分の供給は、インジェクタ40から燃焼室13内での燃焼に供される燃料の噴射後に排気行程や膨張行程で行われる副噴射(アフター噴射)や、添加弁46からの排気に対する燃料添加等によって行われる。また、PM再生制御での触媒への未燃燃料成分の供給量は、同制御の実行に伴う余分な燃料消費を極力抑えるため、必要な触媒床温の上昇を図り得る最小限の値にとどめられる。   The unburned fuel component is supplied to the catalyst in the PM regeneration control by sub-injection (after-injection) performed in the exhaust stroke or the expansion stroke after the fuel supplied from the injector 40 for combustion in the combustion chamber 13 is injected. Alternatively, the fuel is added to the exhaust from the addition valve 46. In addition, the amount of unburned fuel components supplied to the catalyst in PM regeneration control is kept to a minimum value that can increase the required catalyst bed temperature in order to suppress excessive fuel consumption associated with the execution of the control as much as possible. It is done.

ちなみに本実施形態では、PM再生制御は、下記条件すべての成立をもって実施される。
・PM再生の要求時である。ここでのPM再生要求は、機関運転状態から推定されるPMフィルタ26等でのPM堆積量が許容値以上になることに基づき、上記PMフィルタ26の詰りの発生が確認されたときになされる。
・上記入ガス温度センサ28の検出値(入ガス温度thci)がPM再生制御実施の下限温度A(例えば150℃)以上である。また機関運転状態の履歴から推定されるNOx触媒の触媒床温が、PM再生制御実施の下限温度B以上である。これら下限温度A、Bには、未燃燃料成分の供給に伴って触媒床温を上昇させられるだけの酸化反応を生じさせることのできる排気温度及び触媒床温の下限値がそれぞれ設定されている。
・入ガス温度センサ28の検出値が、PM再生制御に伴う発熱による触媒の過昇温を回避し得る温度範囲の上限値C未満である。
・出ガス温度センサ29の検出値が、同じくPM再生制御に伴う発熱による触媒の過昇温を回避し得る温度範囲の上限値D未満である。
・排気に対する燃料添加の実施が許可されている。すなわち、排気燃料添加の実施を許容できる機関運転状態にある。この内燃機関10では、エンジンストール中でなく、気筒判別が終了しており、且つアクセル開度の制限がなされていないのであれば、排気燃料添加が許可されるようになっている。
Incidentally, in the present embodiment, the PM regeneration control is performed when all of the following conditions are satisfied.
・ When PM regeneration is requested. The PM regeneration request here is made when the occurrence of clogging of the PM filter 26 is confirmed based on the fact that the PM accumulation amount in the PM filter 26 or the like estimated from the engine operating state exceeds an allowable value. .
The detected value (input gas temperature thci) of the input gas temperature sensor 28 is equal to or higher than the lower limit temperature A (for example, 150 ° C.) of the PM regeneration control. Further, the catalyst bed temperature of the NOx catalyst estimated from the history of the engine operation state is equal to or higher than the lower limit temperature B of the PM regeneration control. These lower limit temperatures A and B are respectively set to an exhaust temperature and a lower limit value of the catalyst bed temperature that can cause an oxidation reaction sufficient to raise the catalyst bed temperature with the supply of unburned fuel components. .
-The detection value of the inlet gas temperature sensor 28 is less than the upper limit C of the temperature range in which excessive temperature rise of the catalyst due to heat generation accompanying PM regeneration control can be avoided.
The detection value of the outgas temperature sensor 29 is less than the upper limit value D of the temperature range that can avoid the excessive temperature rise of the catalyst due to the heat generation accompanying the PM regeneration control.
・ Addition of fuel to the exhaust is permitted. In other words, the engine is in an operating state in which exhaust fuel addition can be allowed. In the internal combustion engine 10, addition of exhaust fuel is permitted if the cylinder determination is not completed and the accelerator opening is not limited, while the engine is not stalling.

ここで、PM再生制御の制御内容の詳細を図2〜図6に基づき説明する。
図2は、NOx触媒コンバータ25やPMフィルタ26での触媒昇温の上昇に伴い、触媒の表面に付着した未燃燃料(HC)及びPMの燃焼率がどのように推移するかを示すグラフである。同図から分かるように、触媒に付着した未燃燃料は触媒床温が比較的低い温度(300℃前後)で燃焼し、触媒に付着したPMは触媒床温を上述したように600〜700℃といった温度まで昇温することで燃焼するようになる。従って、PM再生制御において、触媒床温をいきなり700℃近い温度まで上昇させると、触媒に付着した未燃燃料やPMが大量に燃焼し、その際の熱を触媒が受けて触媒床温の過上昇に繋がるおそれがある。
Here, details of the control content of the PM regeneration control will be described with reference to FIGS.
FIG. 2 is a graph showing how the combustion rate of unburned fuel (HC) and PM adhering to the catalyst surface changes as the catalyst temperature rises in the NOx catalytic converter 25 and the PM filter 26. is there. As can be seen from the figure, the unburned fuel adhering to the catalyst burns at a relatively low catalyst bed temperature (around 300 ° C.), and the PM adhering to the catalyst has a catalyst bed temperature of 600 to 700 ° C. as described above. Combustion occurs when the temperature is raised to such a temperature. Therefore, in PM regeneration control, when the catalyst bed temperature is suddenly raised to a temperature close to 700 ° C., a large amount of unburned fuel and PM adhering to the catalyst burns, and the catalyst receives heat at that time and the catalyst bed temperature is excessively exceeded. There is a risk of rising.

このため、PM再生制御では、触媒の表面に付着した未燃燃料(HC)及びPMを段階的に燃焼すべく、触媒床温を図3(b)に示されるように例えば300、600、630、650℃の順に段階的に昇温させ、上記のような触媒床温の過上昇を抑制するようにしている。具体的には、まず触媒床温を300℃まで昇温すべく必要最小限の未燃燃料成分が触媒に供給される。こうした300℃に向けての触媒床温の上昇により、同触媒に付着している未燃燃料の燃焼が図られる。そして、触媒床温が300℃に達すると、触媒床温を600℃まで上昇させてその状態を保持時間t2だけ保持し、続いて触媒床温を630℃まで上昇させてその状態を保持時間t3だけ保持してから、触媒床温を650℃まで上昇させる。   For this reason, in the PM regeneration control, the catalyst bed temperature is set to 300, 600, 630, for example, as shown in FIG. 3B in order to burn the unburned fuel (HC) and PM adhering to the catalyst surface stepwise. The temperature is raised stepwise in the order of 650 ° C. to suppress the excessive increase in the catalyst bed temperature as described above. Specifically, first, the minimum necessary unburned fuel component is supplied to the catalyst in order to raise the catalyst bed temperature to 300 ° C. By such an increase in the catalyst bed temperature toward 300 ° C., the unburned fuel adhering to the catalyst is combusted. When the catalyst bed temperature reaches 300 ° C., the catalyst bed temperature is raised to 600 ° C. and maintained for the holding time t2, and then the catalyst bed temperature is raised to 630 ° C. and the state is held for holding time t3. The catalyst bed temperature is increased to 650 ° C.

なお、触媒床温を600℃に保持する保持時間t2は、触媒床温を300℃から600℃に切り換える時点(タイミングTc)のPM堆積量cが少ないほど、図4に示されるように短くされる。また、触媒床温を630℃に保持する保持時間t3は、触媒床温を600℃から630℃に切り換える時点(タイミングTb)のPM堆積量bが少ないほど、図5に示されるように短くされる。このように保持時間t2,t3をPM堆積量c,bに応じて可変とするのは、PM再生制御の実行時間をPMを燃焼させる上で必要最小限にとどめるとともに、同制御で用いられる燃料分の燃費悪化を極力抑制するためである。   The holding time t2 for maintaining the catalyst bed temperature at 600 ° C. is shortened as shown in FIG. 4 as the PM deposition amount c at the time of switching the catalyst bed temperature from 300 ° C. to 600 ° C. (timing Tc) is smaller. . In addition, the holding time t3 for maintaining the catalyst bed temperature at 630 ° C. is shortened as shown in FIG. 5 as the PM deposition amount b at the time of switching the catalyst bed temperature from 600 ° C. to 630 ° C. (timing Tb) decreases. . The reason for making the holding times t2 and t3 variable in accordance with the PM accumulation amounts c and b is to keep the execution time of the PM regeneration control to the minimum necessary for burning PM and to use the fuel used in the control. This is to suppress the deterioration of the fuel consumption of the minute as much as possible.

上記のようにPM再生制御において、触媒床温を段階的に昇温させることに伴い触媒周りに堆積したPMが燃焼し、PM堆積量は図3(a)に示されるように減少してゆく。ただし、NOx触媒コンバータ25の排気上流端、及びPMフィルタ26の排気上流端には、上記のようにPM再生制御を行ったとしても、それだけでは燃焼しきらないPMが残ることになる。このようにPMが残るのは、NOx触媒コンバータ25の排気上流端、及びPMフィルタ26の排気上流端がPMの堆積し易い部分であり、PM再生制御での触媒への未燃燃料成分の供給では単位時間当たりの未燃燃料成分の供給量が上記PMを全て燃焼させるのには足りないためと考えられる。特に、PMフィルタ26よりも排気上流側に位置するNOx触媒コンバータ25においては、その排気上流端にPM再生制御では燃焼しきらないPMが多く残ることになる。   As described above, in the PM regeneration control, the PM deposited around the catalyst is combusted as the catalyst bed temperature is raised stepwise, and the PM deposition amount decreases as shown in FIG. . However, even if PM regeneration control is performed as described above, PM that cannot be combusted by itself remains at the exhaust upstream end of the NOx catalytic converter 25 and the exhaust upstream end of the PM filter 26. Thus, PM remains in the exhaust upstream end of the NOx catalytic converter 25 and the exhaust upstream end of the PM filter 26 where PM is likely to accumulate, and supply of unburned fuel components to the catalyst in PM regeneration control. Then, it is considered that the supply amount of the unburned fuel component per unit time is not sufficient to burn all the PM. In particular, in the NOx catalytic converter 25 located upstream of the PM filter 26, a large amount of PM that cannot be combusted by PM regeneration control remains at the exhaust upstream end.

このため、PM再生制御の終期、即ちPM堆積量がごく「0」に近い判定値a(例えば0.3g)まで減少したときには、上述したPM再生制御だけでは燃焼しきらないPMを燃焼させるためのバーンアップ制御が実施される。以下、バーンアップ制御の概要を図6のタイムチャートを参照して説明する。なお、図6において、(a)は添加弁46の燃料添加態様を示し、(b)は排気空燃比の推移を示している。   Therefore, at the end of the PM regeneration control, that is, when the PM accumulation amount decreases to a determination value a (eg, 0.3 g) that is very close to “0”, PM that cannot be combusted only by the PM regeneration control described above is burned. Burn-up control is performed. Hereinafter, the outline of the burn-up control will be described with reference to the time chart of FIG. In FIG. 6, (a) shows the fuel addition mode of the addition valve 46, and (b) shows the transition of the exhaust air-fuel ratio.

同図から分かるように、バーンアップ制御では、添加弁46からの集中的な間欠燃料添加、及び同燃料添加の停止を繰り返すようにしている。こうした集中的な間欠燃料添加では、NOx触媒コンバータ25及びPMフィルタ26の触媒への未燃燃料成分及び酸素の単位時間当たりの供給量を、PM再生制御だけでは燃焼しきらない上記PMを燃焼させることの可能な値まで引き上げることができる。従って、上記集中的な間欠燃料添加によって上記PMが燃焼するようになる。   As can be seen from the figure, in the burn-up control, intensive intermittent fuel addition from the addition valve 46 and stop of the fuel addition are repeated. In such intensive intermittent fuel addition, the amount of unburned fuel components and oxygen supplied to the catalyst of the NOx catalytic converter 25 and the PM filter 26 per unit time is burned with the PM that cannot be burned only by PM regeneration control. Can be raised to a possible value. Therefore, the PM is combusted by the concentrated intermittent fuel addition.

上記のように集中的な間欠燃料添加を行うと、触媒床温の上昇が顕著になることは避けられないため、触媒床温の過上昇を抑制すべく、その燃料添加を定期的に停止するようにしている。その結果、集中的な間欠燃料添加及び同燃料添加の停止が繰り返され、図6(b)に示されるように排気空燃比がリッチとリーンとの間で反転するようになる。そして、バーンアップ制御は、集中的な間欠燃料添加及び同燃料添加の停止の繰り返し回数がNOx触媒コンバータ25及びPMフィルタ26に残ったPMを全て燃焼させ得る回数(本実施形態では三回)に達したことに基づき終了される。   If intensive intermittent fuel addition is performed as described above, it is inevitable that the catalyst bed temperature will rise significantly. Therefore, in order to suppress an excessive increase in the catalyst bed temperature, the fuel addition is periodically stopped. I am doing so. As a result, intensive intermittent fuel addition and stop of the fuel addition are repeated, and the exhaust air-fuel ratio is reversed between rich and lean as shown in FIG. 6B. In the burn-up control, the number of repetitions of intensive intermittent fuel addition and stop of the fuel addition is set to the number of times (three times in the present embodiment) that PM remaining in the NOx catalytic converter 25 and the PM filter 26 can be burned. It is terminated based on what has been reached.

なお、PM再生制御は上記バーンアップ制御の終了に基づき完了することとなる。こうしてPM再生制御が完了したときには、機関運転状態から推定される触媒周りに堆積したPMの堆積量が「0」になる。言い換えれば、上記PM再生制御が完了されたときには、PM堆積量が「0」にセットされることとなる。   The PM regeneration control is completed based on the end of the burn-up control. When the PM regeneration control is thus completed, the amount of PM deposited around the catalyst estimated from the engine operating state becomes “0”. In other words, when the PM regeneration control is completed, the PM accumulation amount is set to “0”.

ところで、上述したPM再生制御は、同制御の実行中に中断されることがある。例えば、内燃機関10の運転が停止されたときには、PM再生制御の実行中であったとしても同制御が中断されることになる。また、PM再生制御中に排気温度の低下といった原因により、未燃燃料成分が供給されているにもかかわらず触媒床温が低下する触媒の失活現象が発生したときにもPM再生制御が中断される。   By the way, the PM regeneration control described above may be interrupted during the execution of the control. For example, when the operation of the internal combustion engine 10 is stopped, the control is interrupted even if PM regeneration control is being executed. Also, PM regeneration control is interrupted when a catalyst deactivation phenomenon occurs in which the catalyst bed temperature decreases due to a decrease in exhaust temperature during PM regeneration control, even though unburned fuel components are supplied. Is done.

なお、こうした触媒の失活現象は、PM再生制御中に排気温度の低下等により触媒が不活性状態となって未燃燃料成分の酸化反応が一時的に滞ること、及び、それに伴い触媒上に未燃燃料が付着したまま残留して排気に曝される触媒の表面積が減少することから触媒の活性度合いが一層低下すること、という悪循環によって引き起こされる。そして、触媒の失活現象が生じた状態で同触媒へのPM再生制御での未燃燃料成分の供給が行われると、その未燃燃料成分が不完全燃焼の状態のまま外気に放出されてしまうため、スモークの多量発生といった排気エミッションの悪化を招くおそれがある。このため、触媒の失活現象が発生したときにはPM再生制御が中断されるのである。   The catalyst deactivation phenomenon is caused by the catalyst becoming inactive due to a decrease in exhaust temperature during PM regeneration control, and the oxidation reaction of the unburned fuel component is temporarily delayed. This is caused by a vicious cycle in which the degree of activity of the catalyst is further reduced because the surface area of the catalyst that remains with unburned fuel remaining and exposed to the exhaust gas is reduced. Then, when the unburned fuel component is supplied to the catalyst in the PM regeneration control in a state where the deactivation phenomenon of the catalyst has occurred, the unburned fuel component is released to the outside air in a state of incomplete combustion. As a result, exhaust emissions such as a large amount of smoke may be deteriorated. For this reason, PM regeneration control is interrupted when a catalyst deactivation phenomenon occurs.

しかし、以上のようにPM再生制御の中断により同制御が完了しないことが何回か続くと、推定されるPM堆積量の実際の堆積量に対するずれが大きくなり、そのことが問題になってくる。ここで、PM再生制御の実行・中断の繰り返しにより、推定されるPM堆積量の実際の堆積量に対するずれが大きくなる理由について、図7及び図8を併せ参照して説明する。   However, if the PM regeneration control is not completed several times due to the interruption of the PM regeneration control as described above, the deviation of the estimated PM deposition amount from the actual deposition amount becomes large, which becomes a problem. . Here, the reason why the deviation of the estimated PM deposition amount from the actual deposition amount becomes larger due to repeated execution / interruption of PM regeneration control will be described with reference to FIGS.

PM再生制御で用いられるPM堆積量については、機関運転状態に基づき推定される値であることから、実際の堆積量に対して誤差が生じる可能性がある。例えば、図7(a)に示されるように、推定されるPM堆積量(実線L1)が実際の堆積量(破線L2)に対し図示のごとくずれることがある。通常、こうした誤差は、触媒周りに堆積したPMが燃焼しきるPM再生制御の完了時に、推定されるPM堆積量を「0」にセットすることで解消される。即ち、図7(b)に示されるように、推定されるPM堆積量が許容値以上になった時点(タイミングT1)で開始されたPM再生制御が完了すると(タイミングT2)、触媒周りに堆積したPMが燃焼しきった状態になるとともに、推定されるPM堆積量が「0」にセッットされる。これにより、推定されるPM堆積量と実際の堆積量が一致した状態となり、それら両者の誤差が解消されることとなる。   Since the PM accumulation amount used in the PM regeneration control is a value estimated based on the engine operating state, an error may occur with respect to the actual accumulation amount. For example, as shown in FIG. 7A, the estimated PM deposition amount (solid line L1) may deviate from the actual deposition amount (broken line L2) as illustrated. Normally, such an error is eliminated by setting the estimated PM accumulation amount to “0” at the completion of PM regeneration control in which PM accumulated around the catalyst is completely combusted. That is, as shown in FIG. 7B, when the PM regeneration control started at the time point (timing T1) when the estimated amount of PM deposition exceeds the allowable value (timing T2) is completed (timing T2), it accumulates around the catalyst. As a result, the estimated PM accumulation amount is set to “0”. As a result, the estimated PM accumulation amount and the actual accumulation amount coincide with each other, and the error between them is eliminated.

以上のようにPM再生制御を完了させることができれば、推定されるPM堆積量と実際の堆積量との間の誤差が解消されるが、PM再生制御が完了される前に中断されるような場合には上記誤差は解消されないままになる。例えば、図8(a)に示されるように、PM再生制御中のタイミングT3で機関運転停止や触媒の失活といった理由で同制御が中断されると、その中断時点でPM堆積量が許容値未満に低下していれば、後に機関運転が開始されたり触媒が活性化したりしてPM再生制御を実行可能になったとしても、同制御が再開されることはない。この場合、PM再生制御が完了しないことからPM堆積量を「0」にセットすることでの上記誤差の解消もなされない。そして、PM堆積量が再び許容値以上になったときにPM再生制御が改めて実行されることとなる(タイミングT4)。   If the PM regeneration control can be completed as described above, the error between the estimated PM accumulation amount and the actual accumulation amount is eliminated, but the PM regeneration control is interrupted before the PM regeneration control is completed. In some cases, the error remains unresolved. For example, as shown in FIG. 8 (a), if the control is interrupted at the timing T3 during PM regeneration control due to engine stoppage or catalyst deactivation, the PM accumulation amount is allowed at the time of the interruption. If it falls below, even if the engine operation is started later or the catalyst is activated and the PM regeneration control can be executed, the control is not resumed. In this case, since the PM regeneration control is not completed, the above error is not eliminated by setting the PM accumulation amount to “0”. Then, when the PM accumulation amount becomes equal to or greater than the allowable value again, PM regeneration control is executed again (timing T4).

こうしたPM再生制御の実行・中断が図8(b)に示されるように何回か続くと(図中のT4〜T7等)、PM堆積量を「0」にセットする機会がないまま、通常の機関運転での触媒周りへのPMの堆積と、中断までのPM再生制御での同PMの燃焼とが繰り返されるようになる。その結果、上記推定されるPM堆積量が図8(a)に示されるように増減し、そのように増減している間に上記PM堆積量が実際の堆積量に対して大きくずれる可能性がある。そして、PM堆積量が実際の堆積量よりも大幅に少なくなっているような場合、例えば図7(a)の実線L1で示される状態のPM堆積量に対して実際の堆積量が破線L3で示される状態にある場合には、PM再生制御の終期に以下のような状況が生じる。   When the execution / interruption of such PM regeneration control continues several times as shown in FIG. 8B (T4 to T7 in the figure), there is no chance to set the PM accumulation amount to “0”. The PM accumulation around the catalyst in the engine operation and the combustion of the PM in the PM regeneration control until the interruption are repeated. As a result, the estimated PM deposition amount increases or decreases as shown in FIG. 8A, and the PM deposition amount may greatly deviate from the actual deposition amount while increasing or decreasing as shown in FIG. is there. When the PM deposition amount is significantly smaller than the actual deposition amount, for example, the actual deposition amount is indicated by a broken line L3 with respect to the PM deposition amount in the state indicated by the solid line L1 in FIG. In the state shown, the following situation occurs at the end of the PM regeneration control.

即ち、推定されるPM堆積量(L1)が判定値a(0.3g)まで低減することに基づき開始されるバーンアップ制御が、実際には触媒周りに判定値aよりも大幅に多い量(図中「X」)のPMが堆積した状態で開始される。そして、同制御により触媒に未燃燃料成分が供給されると、その未燃燃料成分の酸化反応に伴いPMが燃焼するが、同PMの堆積量は想定している値(0.3g)よりも多いことから、PM燃焼時の発熱量も大となりNOx触媒コンバータ25及びPMフィルタ26の触媒床温が過上昇するおそれがある。   That is, the burn-up control started based on the estimated PM accumulation amount (L1) being reduced to the determination value a (0.3 g) is actually much larger than the determination value a around the catalyst ( The process starts with PM accumulated in “X” in the figure. When unburned fuel components are supplied to the catalyst by the same control, PM burns with the oxidation reaction of the unburned fuel components, but the amount of accumulated PM is from an assumed value (0.3 g). Therefore, the amount of heat generated during PM combustion also increases, and the catalyst bed temperatures of the NOx catalytic converter 25 and the PM filter 26 may excessively rise.

このような不具合を回避すべく、本実施形態では、PM再生制御の中断後の同制御を実行可能な状態となったとき、PM堆積量が許容値未満であるか否かに関係なくPM再生制御を再開し、同制御を完了させるPM再生再開処理を実行する。このPM再生再開処理が行われる場合のPM堆積量の推移、及びPM再生制御の実行態様の一例を図9に示す。   In order to avoid such a problem, in this embodiment, when the PM regeneration control can be executed after the interruption, the PM regeneration is performed regardless of whether or not the PM accumulation amount is less than the allowable value. Control is resumed, and PM regeneration restart processing for completing the control is executed. FIG. 9 shows an example of the transition of the PM accumulation amount and the execution mode of the PM regeneration control when the PM regeneration restart process is performed.

同図において、再生制御の中断後、タイミングT8で同制御を実行可能な状態になったとすると、PM堆積量が許容値未満であったとしてもPM再生制御が再開され、同制御がタイミングT9で完了することとなる。このようにPM再生制御を完了させることで、触媒周りに堆積したPMを燃焼しきるとともにPM堆積量が「0」にセットされるため、そのPM堆積量と実際の堆積量との誤差が解消される。従って、当該誤差が解消されないことによる上述した不具合の発生を回避することができる。   In the figure, if the regeneration control is interrupted and the control can be executed at the timing T8, the PM regeneration control is resumed even if the PM accumulation amount is less than the allowable value, and the control is performed at the timing T9. It will be completed. By completing the PM regeneration control in this way, the PM accumulated around the catalyst is combusted and the PM accumulation amount is set to “0”, so the error between the PM accumulation amount and the actual accumulation amount is eliminated. The Therefore, it is possible to avoid the occurrence of the above-described problem due to the error not being eliminated.

次に、上記PM再生制御再開処理の実行手順について、再開処理ルーチンを示す図10のフローチャートを参照して詳しく説明する。この再開処理ルーチンは、電子制御装置50を通じて、例えば所定時間毎の時間割り込みにて実行される。   Next, the execution procedure of the PM regeneration control restart process will be described in detail with reference to the flowchart of FIG. 10 showing the restart process routine. This restart processing routine is executed through the electronic control unit 50 by, for example, a time interruption every predetermined time.

同ルーチンにおいては、まず機関運転状態の履歴から、前回のPM再生制御が完了する前に中断しているか否かが判断される(S101)。ここで肯定判定であれば、現在PM再生制御を実行可能な状態であるか否か、例えば機関運転中であって且つ触媒の失活が解消しているか否かが判断される(S102)。なお、触媒の失活が解消しているか否かは、例えば触媒床温が触媒に付着した未燃燃料を燃焼可能な値(例えば300℃)になっているか否か、或いは機関高負荷が所定時間継続された後のような触媒床温が上記値になり得る状態にあるか否かに基づき判断される。   In this routine, it is first determined from the history of the engine operation state whether or not the previous PM regeneration control is interrupted (S101). If the determination is affirmative, it is determined whether or not the PM regeneration control can be executed at present, for example, whether or not the engine is in operation and the deactivation of the catalyst has been resolved (S102). Note that whether or not the deactivation of the catalyst has been resolved is, for example, whether or not the catalyst bed temperature is a value at which unburned fuel adhering to the catalyst can be burned (for example, 300 ° C.) Judgment is made based on whether or not the catalyst bed temperature after being continued for a period of time can reach the above value.

ステップS102で肯定判定がなされると、そのときのPM堆積量に関係なくPM再生制御が実行され(S103)、同制御が完了するまで続けられることになる。なお、このステップS103の処理に基づきPM再生制御が再開された後、仮に再び同制御が中断されたとしてもステップS101〜S103の処理に基づく同制御の再開が繰り返されるため、PM再生制御は完了するまで続けられる。   If an affirmative determination is made in step S102, PM regeneration control is executed regardless of the PM accumulation amount at that time (S103), and the control is continued until the control is completed. After the PM regeneration control is resumed based on the process in step S103, the PM regeneration control is completed because the same control is resumed based on the processes in steps S101 to S103 even if the control is interrupted again. Continue until you do.

中断後に再開したPM再生制御でも、触媒床温の段階的な昇温が行われるとともに、その際の触媒床温600℃、630℃の保持時間t3,t4については、PM堆積量c,bが少なくなるほど短くされる。また、再開されたPM再生制御においても、その終期に触媒周りに堆積したPMを燃焼しきるためのバーンアップ制御が実行されるようになる。   Even in the PM regeneration control restarted after the interruption, the catalyst bed temperature is gradually raised, and the PM deposition amounts c and b are about the retention times t3 and t4 at the catalyst bed temperature 600 ° C. and 630 ° C. at that time. The shorter it is, the shorter it is. Also in the restarted PM regeneration control, burn-up control is performed to burn up PM accumulated around the catalyst at the end thereof.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)PM再生制御の中断後に同制御を実行可能な状態になると、そのときのPM堆積量が許容値未満であったとしてもPM再生制御が再開されるため、同制御を完了するまで続けて触媒周りに堆積したPMを燃焼しきることができる。そして、PMが燃焼しきってPM再生制御が完了したときには、推定されるPM堆積量が「0」にセットされ、そのPM堆積量と実際の堆積量との誤差が解消される。従って、PM再生制御が完了しきらないまま、同制御の実行・中断が繰り返されるのを抑制し、その繰り返しの間にPM堆積量と実際の堆積量との間の誤差が大きくなるのを抑制することができる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) When the PM regeneration control becomes executable after the PM regeneration control is interrupted, the PM regeneration control is resumed even if the PM accumulation amount at that time is less than the allowable value. Thus, the PM deposited around the catalyst can be burned out. When PM is completely burned and PM regeneration control is completed, the estimated PM accumulation amount is set to “0”, and the error between the PM accumulation amount and the actual accumulation amount is eliminated. Therefore, it is possible to suppress repeated execution / interruption of the control without completing the PM regeneration control, and to prevent an error between the PM accumulation amount and the actual accumulation amount from increasing during the repetition. can do.

(2)PM再生制御の中断時には、それまでに触媒周りに堆積したPMの燃焼がある程度進んでおり、その時点でのPM堆積量が少ないほどPM再生制御再開後の同制御の実行時間を短くしても、触媒周りに堆積したPMを燃焼しきることが可能になる。このことを考慮して、再開後のPM再生制御においても、PM堆積量c,bが少ないほど保持時間t2,t3,t4が短くされ、こうして同制御の実行時間がPM堆積量の少なさに応じて短く設定される。このため、再開後の同制御の実行完了までの時間短縮と同制御が無駄に長く続けられることに基づく燃費悪化の抑制とが図られるようになる。   (2) When the PM regeneration control is interrupted, the combustion of the PM accumulated around the catalyst has progressed to some extent, and the smaller the amount of PM accumulated at that time, the shorter the execution time of the control after the PM regeneration control is resumed. Even so, it is possible to completely burn PM deposited around the catalyst. In consideration of this, also in the PM regeneration control after restart, the holding times t2, t3, and t4 are shortened as the PM accumulation amounts c and b are reduced, and thus the execution time of the control is reduced to a small amount of PM accumulation. The length is set accordingly. For this reason, it is possible to reduce the time until the completion of the execution of the control after the restart and to suppress the deterioration of the fuel consumption based on the control being continued for a long time.

(3)中断後に再開されたPM再生制御においても、その終期にはバーンアップ制御が行われ、これにより触媒周りに堆積したPMを燃焼しきって実際のPMの堆積量が「0」とされる。このため、再開されたPM再生制御の完了時に、推定されるPM堆積量を「0」にセットしたときに触媒周りにPMが残っており、上記PM堆積量が実際の堆積量に対応しないという状況が生じるのを回避することができる。   (3) In the PM regeneration control restarted after the interruption, burn-up control is performed at the end of the PM regeneration control, whereby the PM accumulated around the catalyst is completely burned and the actual PM accumulation amount is set to “0”. . For this reason, when the estimated PM accumulation amount is set to “0” when the resumed PM regeneration control is completed, PM remains around the catalyst, and the PM accumulation amount does not correspond to the actual accumulation amount. The situation can be avoided.

なお、上記実施形態は、例えば以下のように変更することもできる。
・PM再生制御の実行時間を必ずしもPM堆積量に応じて可変とする必要はなく、その実行時間を触媒周りに堆積したPMをPM再生制御によって燃焼しきるのに十分な時間に固定してもよい。
In addition, the said embodiment can also be changed as follows, for example.
-The execution time of PM regeneration control does not necessarily need to be variable according to the amount of accumulated PM, and the execution time may be fixed to a time sufficient for burning PM deposited around the catalyst by PM regeneration control. .

・また、上記のように実行時間を固定とすることを、中断後に再開されたPM再生制御では実施せず、中断することなく完了するようなPM再生制御に際してのみ実施するようにしてもよい。   Further, fixing the execution time as described above may not be performed in the PM regeneration control restarted after the interruption, but only in the PM regeneration control that is completed without interruption.

本実施形態の排気浄化装置が適用される内燃機関の全体構成を示す略図。1 is a schematic diagram showing the overall configuration of an internal combustion engine to which an exhaust emission control device of the present embodiment is applied. 触媒床温の変化に対する触媒周りでの未燃燃料(HC)及びPMの燃焼率の変化を示すグラフ。The graph which shows the change of the combustion rate of unburned fuel (HC) and PM around a catalyst with respect to the change of a catalyst bed temperature. (a)及び(b)は、PM再生制御でのPM堆積量及び触媒床温の推移を示すタイムチャート。(A) And (b) is a time chart which shows transition of PM deposit amount and catalyst bed temperature in PM regeneration control. PM堆積量cと保持時間t2との関係を示すグラフ。The graph which shows the relationship between PM deposition amount c and holding time t2. PM堆積量bと保持時間t3との関係を示すグラフ。The graph which shows the relationship between PM deposition amount b and holding time t3. (a)及び(b)は、バーンアップ制御における燃料添加態様、及びその燃料添加に伴う排気空燃比の推移を示すタイムチャート。(A) And (b) is a time chart which shows the transition of the fuel addition aspect in burn-up control, and the exhaust air-fuel ratio accompanying the fuel addition. (a)及び(b)は、推定されるPM堆積量と実際の堆積量とがずれた状態でPM再生制御が行われ、完了するときの同制御の実行態様、及びそれら堆積量の推移を示すタイムチャート。In (a) and (b), PM regeneration control is performed in a state in which the estimated PM accumulation amount and the actual accumulation amount are deviated, and the execution mode of the control when completed and the transition of the accumulation amount are shown. Time chart shown. (a)及び(b)は、PM再生制御の実行・中断が繰り返される場合のPM堆積量の推移、及び同制御の実行態様を示すタイムチャート。(A) And (b) is a time chart which shows transition of PM accumulation amount when execution and interruption of PM regeneration control are repeated, and an execution mode of the control. (a)及び(b)は、PM再生制御の中断後、PM再生再開処理により同制御を再開させて完了させる際のPM堆積量の推移、及び同制御の実行態様を示すタイムチャート。(A) And (b) is a time chart which shows the transition of PM deposition amount at the time of resuming and completing the control by the PM regeneration resuming process after the PM regeneration control is interrupted, and the execution mode of the control. PM再生再開処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of PM reproduction | regeneration restart processing.

符号の説明Explanation of symbols

10…内燃機関、11…ターボチャージャ、12…吸気通路、13…燃焼室、14…排気通路、15…エアクリーナ、16…エアフローメータ、17…コンプレッサ、18…インタークーラ、19…吸気絞り弁、20…吸気マニホールド、21…吸気ポート、22…排気ポート、23…排気マニホールド、24…排気タービン、25…NOx触媒コンバータ、26…PMフィルタ、27…酸化触媒コンバータ、28…入ガス温度センサ、29…出ガス温度センサ、30…差圧センサ、31…酸素センサ、32…酸素センサ、33…EGR通路、34…EGR触媒、35…EGRクーラ、36…EGR弁、40…インジェクタ、41…高圧燃料供給管、42…コモンレール、43…燃料ポンプ、44…レール圧センサ、45…低圧燃料供給管、46…添加弁、50…電子制御装置、51…NEセンサ、52…アクセルセンサ、53…絞り弁センサ。
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Turbocharger, 12 ... Intake passage, 13 ... Combustion chamber, 14 ... Exhaust passage, 15 ... Air cleaner, 16 ... Air flow meter, 17 ... Compressor, 18 ... Intercooler, 19 ... Intake throttle valve, 20 DESCRIPTION OF SYMBOLS ... Intake manifold, 21 ... Intake port, 22 ... Exhaust port, 23 ... Exhaust manifold, 24 ... Exhaust turbine, 25 ... NOx catalytic converter, 26 ... PM filter, 27 ... Oxidation catalytic converter, 28 ... Incoming gas temperature sensor, 29 ... Outgas temperature sensor, 30 ... Differential pressure sensor, 31 ... Oxygen sensor, 32 ... Oxygen sensor, 33 ... EGR passage, 34 ... EGR catalyst, 35 ... EGR cooler, 36 ... EGR valve, 40 ... Injector, 41 ... High pressure fuel supply Pipe 42. Common rail 43 Fuel pump 44 Rail pressure sensor 45 Low pressure fuel supply pipe 6 ... addition valve, 50 ... electronic control unit, 51 ... NE sensor 52: accelerator sensor, 53 ... throttle valve sensor.

Claims (3)

排気系の触媒周りに捕集された微粒子の堆積量を推定し、その推定される微粒子の堆積量が許容値以上であることに基づき、前記触媒に未燃燃料成分を供給して同触媒を昇温させるとともに前記捕集された微粒子を燃焼させるPM再生制御を行い、同制御の完了時に前記推定される微粒子の堆積量を「0」にセットする内燃機関の排気浄化装置において、
前記PM再生制御の終期には、前記排気系の触媒の排気上流端に残った微粒子を燃焼させることを可能とするために、前記触媒上流への集中的な間欠燃料添加及び同燃料添加の停止を所定回数繰り返すバーンアップ制御が実行される
ことを特徴とする内燃機関の排気浄化装置。
The amount of particulates collected around the exhaust system catalyst is estimated, and based on the estimated amount of particulates being accumulated above an allowable value, unburned fuel components are supplied to the catalyst. In an exhaust gas purification apparatus for an internal combustion engine that performs PM regeneration control for raising the temperature and burning the collected fine particles, and sets the estimated amount of accumulated fine particles to “0” when the control is completed,
At the end of the PM regeneration control, in order to make it possible to burn fine particles remaining at the exhaust upstream end of the exhaust system catalyst, concentrated intermittent fuel addition to the catalyst upstream and stop of the fuel addition An exhaust emission control device for an internal combustion engine, wherein burn-up control is performed that repeats a predetermined number of times .
前記PM再生制御が中断されたときには、後に前記内燃機関が運転中であって且つ前記触媒の失活が解消している状態になった際、前記触媒周りの微粒子の堆積量が許容値未満であっても前記PM再生制御を再開する
請求項1記載の内燃機関の排気浄化装置。
When the PM regeneration control is interrupted, the accumulated amount of fine particles around the catalyst is less than an allowable value when the internal combustion engine is in operation and the deactivation of the catalyst is eliminated. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the PM regeneration control is resumed even if there is .
前記PM再生制御の再開時には、前記触媒周りの微粒子の堆積量が少ないと推定されるときほど、そのPM再生制御の実行時間が短く設定される
請求項2記載の内燃機関の排気浄化装置。
3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2 , wherein when the PM regeneration control is restarted, the execution time of the PM regeneration control is set to be shorter as the amount of accumulated particulates around the catalyst is estimated to be smaller .
JP2004068995A 2004-03-11 2004-03-11 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4170935B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004068995A JP4170935B2 (en) 2004-03-11 2004-03-11 Exhaust gas purification device for internal combustion engine
CNA2005800010303A CN1842643A (en) 2004-03-11 2005-03-10 Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
KR1020057023870A KR100683267B1 (en) 2004-03-11 2005-03-10 Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
EP05720974A EP1723324A1 (en) 2004-03-11 2005-03-10 Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
PCT/JP2005/004739 WO2005088097A1 (en) 2004-03-11 2005-03-10 Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US10/559,826 US20060168939A1 (en) 2004-03-11 2005-03-10 Exhaust purifying apparatus and exhaust purifying method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068995A JP4170935B2 (en) 2004-03-11 2004-03-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005256720A JP2005256720A (en) 2005-09-22
JP4170935B2 true JP4170935B2 (en) 2008-10-22

Family

ID=34962352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068995A Expired - Fee Related JP4170935B2 (en) 2004-03-11 2004-03-11 Exhaust gas purification device for internal combustion engine

Country Status (6)

Country Link
US (1) US20060168939A1 (en)
EP (1) EP1723324A1 (en)
JP (1) JP4170935B2 (en)
KR (1) KR100683267B1 (en)
CN (1) CN1842643A (en)
WO (1) WO2005088097A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677028B2 (en) * 2006-02-28 2010-03-16 Caterpillar Inc. Particulate trap regeneration temperature control system
DE102007004602B4 (en) * 2007-01-30 2009-05-28 Continental Automotive Gmbh A heating device for heating a complex salt storage
JP4803107B2 (en) 2007-05-15 2011-10-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5251711B2 (en) * 2009-04-30 2013-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5863731B2 (en) * 2013-08-30 2016-02-17 日立建機株式会社 Construction machinery
JP6380029B2 (en) * 2014-11-14 2018-08-29 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
WO2017002463A1 (en) * 2015-06-30 2017-01-05 株式会社デンソー Particulate matter detection system
WO2020014060A1 (en) * 2018-07-12 2020-01-16 Exxonmobil Research And Engineering Company Vehicle powertrain with on-board catalytic reformer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597720A (en) * 1982-07-06 1984-01-14 Mitsubishi Motors Corp Diesel particulate filter system
JPS5918222A (en) * 1982-07-22 1984-01-30 Mazda Motor Corp Exhaust gas purification device for diesel engine
JPH0544434A (en) 1991-08-08 1993-02-23 Nissan Motor Co Ltd Exhaust gas treating device for internal combustion engine
JP3558022B2 (en) * 2000-01-11 2004-08-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
FR2804718B1 (en) * 2000-02-09 2002-05-03 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF A PARTICLE FILTER INTEGRATED IN AN EXHAUST LINE OF A MOTOR VEHICLE DIESSEL ENGINE
EP1203869B1 (en) * 2000-11-03 2002-08-21 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Control apparatus and method for interrupting regeneration of a particle filter of a Diesel engine
DE10056016A1 (en) * 2000-11-11 2002-05-16 Bosch Gmbh Robert Method of controlling emission control for motor vehicle internal combustion engine involves special operating condition with unburnt fuel injected into exhaust gases
DE10062270A1 (en) * 2000-12-14 2002-06-20 Bosch Gmbh Robert Particle filter regeneration process
US6497095B2 (en) * 2000-12-21 2002-12-24 Ford Global Technologies, Inc. Regeneration of diesel engine particulate filter only above low fuel levels
US6622480B2 (en) * 2001-02-21 2003-09-23 Isuzu Motors Limited Diesel particulate filter unit and regeneration control method of the same
FR2833310B1 (en) * 2001-12-07 2006-09-22 Renault EXHAUST GAS POST-PROCESSING DEVICE AND DEVICE REGENERATING METHOD
ITTO20020072A1 (en) * 2002-01-25 2003-07-25 Fiat Ricerche METHOD FOR DETERMINING THE QUANTITY OF PARTICULATE ACCUMULATED IN A FILTER BY PARTICULATE.
JP4042476B2 (en) * 2002-06-14 2008-02-06 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4092464B2 (en) * 2002-06-28 2008-05-28 日産自動車株式会社 Exhaust purification device
US6931842B2 (en) * 2002-11-29 2005-08-23 Nissan Motor Co., Ltd. Regeneration of diesel particulate filter

Also Published As

Publication number Publication date
US20060168939A1 (en) 2006-08-03
EP1723324A1 (en) 2006-11-22
KR100683267B1 (en) 2007-02-15
KR20060031623A (en) 2006-04-12
CN1842643A (en) 2006-10-04
JP2005256720A (en) 2005-09-22
WO2005088097A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
JP2007040221A (en) Exhaust emission control device
KR100683267B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4428974B2 (en) Exhaust gas purification device for internal combustion engine
US20110146242A1 (en) Malfunction diagnostic device for exhaust gas control device
JP2010261320A (en) Exhaust emission control device of internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274907A (en) Exhaust emission control device
JP2005090274A (en) Emission control device of internal combustion engine
JP3633365B2 (en) Exhaust gas purification device
JP6070941B2 (en) Exhaust gas purification device for internal combustion engine
JP4357241B2 (en) Exhaust purification equipment
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP4139356B2 (en) Exhaust gas aftertreatment device
JP2005256714A (en) Exhaust emission control device for internal combustion engine
JP2010150979A (en) Exhaust emission control device for engine
JP2007224742A (en) Exhaust emission control device of internal combustion engine
JP4523317B2 (en) Diesel engine exhaust purification system
JP5151959B2 (en) Exhaust gas purification system and exhaust gas purification method
JP7211756B2 (en) Control device for internal combustion engine
JP2006291827A (en) Controller of internal combustion engine
JP4325580B2 (en) Control device for internal combustion engine
WO2009130800A1 (en) Exhaust purification system for internal combustion engine
JP2016173037A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees