JP4780335B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4780335B2
JP4780335B2 JP2007194495A JP2007194495A JP4780335B2 JP 4780335 B2 JP4780335 B2 JP 4780335B2 JP 2007194495 A JP2007194495 A JP 2007194495A JP 2007194495 A JP2007194495 A JP 2007194495A JP 4780335 B2 JP4780335 B2 JP 4780335B2
Authority
JP
Japan
Prior art keywords
fuel injection
exhaust
fuel
exhaust passage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007194495A
Other languages
Japanese (ja)
Other versions
JP2009030509A (en
Inventor
訓己 金山
道博 畠
聡 中澤
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007194495A priority Critical patent/JP4780335B2/en
Publication of JP2009030509A publication Critical patent/JP2009030509A/en
Application granted granted Critical
Publication of JP4780335B2 publication Critical patent/JP4780335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、排気通路に還元剤を噴射して排気浄化触媒に還元剤を供給する技術に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a technique for injecting a reducing agent into an exhaust passage and supplying the reducing agent to an exhaust purification catalyst.

ディーゼルエンジンの排気を浄化する装置として、NOx(窒素酸化物)吸蔵触媒が知られている。
NOx吸蔵触媒は、リーン雰囲気において排気中のNOxを吸蔵する。そして、NOx吸蔵触媒に燃料等の還元剤を供給することで、NOx吸蔵触媒に吸蔵されたNOxを還元、無害化して放出させるNOx吸蔵触媒の再生方法が知られている。NOx吸蔵触媒に燃料等を供給する装置として、NOx吸蔵触媒の上流側に燃料噴射弁を設け、排気通路内に燃料を直接噴射する方法(パージ処理)が知られている。
A NOx (nitrogen oxide) storage catalyst is known as a device for purifying exhaust gas from a diesel engine.
The NOx storage catalyst stores NOx in the exhaust gas in a lean atmosphere. A method of regenerating a NOx storage catalyst is known in which NOx stored in the NOx storage catalyst is reduced, detoxified and released by supplying a reducing agent such as fuel to the NOx storage catalyst. As a device for supplying fuel or the like to the NOx storage catalyst, a method (purge process) in which a fuel injection valve is provided upstream of the NOx storage catalyst and fuel is directly injected into the exhaust passage is known.

ここで、排気通路に設けられた燃料噴射弁からの燃料噴射量は、通常、エンジンの回転速度等の運転状態に基づいて設定される。しかしながら、排気中のすすによる燃料噴射弁の噴孔のつまりや経時劣化を原因として、エンジンの運転状態から設定された目標燃料噴射量に対して実燃料噴射量に誤差が生じる場合がある。そこで、更に、燃料噴射弁の下流側の排気通路に空燃比検出手段を設け、この空燃比センサにより検出した排気の実空燃比をフィードバックすることで、排気の実空燃比を目標空燃比に近づけるとともに、排気通路内への燃料噴射の終了時でのフィードバック量を学習値として記憶し、以降のパージ処理時に利用する方法が知られている(特許文献1)。更に、この特許文献1では、NOx吸蔵触媒でのOストレージ機能を原因とする学習精度の低下を防止するために、排気通路に燃料を噴射してからOストレージが解消するまで待機した後に学習を行う。
特開2004−316604号公報
Here, the fuel injection amount from the fuel injection valve provided in the exhaust passage is normally set based on the operating state such as the engine speed. However, there is a case where an error occurs in the actual fuel injection amount with respect to the target fuel injection amount set from the operating state of the engine due to clogging of the injection hole of the fuel injection valve due to soot in the exhaust gas or deterioration with time. Therefore, air-fuel ratio detection means is further provided in the exhaust passage downstream of the fuel injection valve, and the actual air-fuel ratio of the exhaust detected by this air-fuel ratio sensor is fed back, thereby bringing the actual air-fuel ratio of the exhaust closer to the target air-fuel ratio. At the same time, a method is known in which the feedback amount at the end of fuel injection into the exhaust passage is stored as a learned value and used in the subsequent purge process (Patent Document 1). Furthermore, in this patent document 1, in order to prevent the learning accuracy from being lowered due to the O 2 storage function in the NOx storage catalyst, after waiting for the O 2 storage to disappear after injecting fuel into the exhaust passage. Do learning.
JP 2004-316604 A

しかしながら、上記の特許文献1では、学習機会がパージ処理時に限られるとともに、Oストレージが解消した後に学習することから、学習頻度の確保が困難であり、学習精度が想定するほど確保できない虞がある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、触媒でのOストレージ機能を原因とする燃料噴射量の学習精度の低下を回避した上で学習頻度を十分に確保可能な内燃機関の排気浄化装置を提供することにある。
However, in Patent Document 1 described above, learning opportunities are limited to the purge process, and learning is performed after the O 2 storage is eliminated. Therefore, it is difficult to secure the learning frequency, and there is a possibility that the learning accuracy cannot be ensured as expected. is there.
The present invention has been made to solve such problems, and the object of the present invention is to learn while avoiding a decrease in the learning accuracy of the fuel injection amount caused by the O 2 storage function in the catalyst. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can ensure a sufficient frequency.

上記の目的を達成するために、請求項1の発明は、内燃機関の排気通路に設けられ、排気を浄化する浄化触媒と、浄化触媒の上流側の排気通路に設けられ、排気通路内に燃料を噴射する排気通路内燃料噴射弁と、排気通路内燃料噴射弁の下流側の排気通路に設けられ、排気空燃比を検出する空燃比検出手段と、内燃機関が定常運転状態である場合に、排気空燃比がリーンとなる範囲内で排気通路内燃料噴射弁から燃料を噴射させ、空燃比検出手段により検出された排気空燃比の実測値に基づいて排気通路内燃料噴射弁からの実燃料噴射量を演算し、該実燃料噴射量と排気通路内燃料噴射弁における目標燃料噴射量との関係を学習する学習手段と、排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、排気通路内燃料噴射弁を制御して排気通路内に燃料を噴射させ、フィルタに捕集された粒子状物質を燃焼除去しフィルタを再生するフィルタ再生手段と、を備え、学習手段は、フィルタ再生手段によるフィルタ再生時に排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする。なおフィルタの下流側に空燃比センサがある場合の学習の実施時期は,粒子状物質の燃焼が空燃比に及ぼす影響の小さいフィルタ再生後半または再生終了直後が望ましい。 In order to achieve the above object, an invention according to claim 1 is provided in an exhaust passage of an internal combustion engine, provided in a purification catalyst for purifying exhaust, an exhaust passage upstream of the purification catalyst, and a fuel in the exhaust passage. When the internal combustion engine is in a steady operation state, the fuel injection valve in the exhaust passage for injecting the air, the air-fuel ratio detection means for detecting the exhaust air-fuel ratio provided in the exhaust passage downstream of the fuel injection valve in the exhaust passage, The fuel is injected from the fuel injection valve in the exhaust passage within a range where the exhaust air / fuel ratio becomes lean, and the actual fuel injection from the fuel injection valve in the exhaust passage is based on the actual value of the exhaust air / fuel ratio detected by the air / fuel ratio detection means. Learning means for calculating the amount and learning the relationship between the actual fuel injection amount and the target fuel injection amount in the fuel injection valve in the exhaust passage, a filter provided in the exhaust passage and collecting particulate matter in the exhaust, Control the fuel injection valve in the exhaust passage And a filter regeneration means for regenerating the filter by injecting fuel into the exhaust passage and burning the particulate matter collected by the filter to regenerate the filter. The learning means is a fuel in the exhaust passage during filter regeneration by the filter regeneration means. The relationship between the actual fuel injection amount from the injection valve and the target fuel injection amount is learned. It should be noted that when the air-fuel ratio sensor is located downstream of the filter, it is desirable that the learning be performed in the latter half of the filter regeneration or immediately after the regeneration is completed, where the influence of particulate matter combustion on the air-fuel ratio is small.

また、請求項2の発明は、内燃機関の排気通路に設けられ、リーン空燃比雰囲気下で排気中の窒素酸化物を吸蔵し、この吸蔵した窒素酸化物をストイキまたはリッチ空燃比雰囲気下で還元除去する窒素酸化物吸蔵触媒と、窒素酸化物吸蔵触媒の上流側の排気通路に設けられ、排気通路内に燃料を噴射する排気通路内燃料噴射弁と、排気通路内燃料噴射弁の下流側の排気通路に設けられ、排気空燃比を検出する空燃比検出手段と、内燃機関が定常運転状態である場合に、排気空燃比がリーンとなる範囲内で排気通路内燃料噴射弁から燃料を噴射させ、空燃比検出手段により検出された排気空燃比の実測値に基づいて排気通路内燃料噴射弁からの実燃料噴射量を演算し、該実燃料噴射量と排気通路内燃料噴射弁における目標燃料噴射量との関係を学習する学習手段と、窒素酸化物吸蔵触媒に吸蔵された窒素酸化物または硫黄酸化物が還元除去されるように、排気通路内燃料噴射弁を制御して、窒素酸化物吸蔵触媒に還元剤としての燃料を供給させるパージ処理手段と、を備え、学習手段は、パージ処理手段によるパージ処理時に一時的に目標燃料噴射量を排気空燃比がリーンとなる範囲内で増減させて、排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする。 The invention of claim 2 is provided in an exhaust passage of an internal combustion engine, and stores nitrogen oxides in exhaust under a lean air-fuel ratio atmosphere, and reduces the stored nitrogen oxides under stoichiometric or rich air-fuel ratio atmosphere. A nitrogen oxide storage catalyst to be removed; a fuel injection valve in the exhaust passage which is provided in an exhaust passage upstream of the nitrogen oxide storage catalyst and injects fuel into the exhaust passage; and a downstream side of the fuel injection valve in the exhaust passage. An air-fuel ratio detecting means provided in the exhaust passage for detecting the exhaust air-fuel ratio and when the internal combustion engine is in a steady operation state, fuel is injected from the fuel injection valve in the exhaust passage within a range where the exhaust air-fuel ratio becomes lean. The actual fuel injection amount from the fuel injection valve in the exhaust passage is calculated based on the measured value of the exhaust air / fuel ratio detected by the air / fuel ratio detection means, and the actual fuel injection amount and the target fuel injection in the fuel injection valve in the exhaust passage are calculated. Relationship with quantity And learning means for learning, so that nitrogen oxides occluded in the nitrogen oxide storage catalyst or sulfur oxides are reduced and removed, and controls the exhaust passage fuel injection valve, as a reducing agent to the nitrogen oxides storage catalyst Purge processing means for supplying the fuel , and the learning means temporarily increases or decreases the target fuel injection amount within the range in which the exhaust air-fuel ratio becomes lean during the purge processing by the purge processing means, The relationship between the actual fuel injection amount from the injection valve and the target fuel injection amount is learned.

また、請求項3の発明は、請求項2において、パージ処理手段は、排気通路内燃料噴射弁に排気空燃比がリッチとなる目標燃料噴射量を間欠的に複数回噴射させ、学習手段は、複数回噴射される燃料の少なくとも1回の目標燃料噴射量を排気空燃比がリーンとなる範囲内とし、排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする。 According to a third aspect of the present invention, in the second aspect , the purge processing means intermittently injects the target fuel injection amount at which the exhaust air-fuel ratio becomes rich into the fuel injection valve in the exhaust passage a plurality of times, and the learning means includes: Learning the relationship between the actual fuel injection amount from the fuel injection valve in the exhaust passage and the target fuel injection amount by setting at least one target fuel injection amount of the fuel to be injected a plurality of times within a range in which the exhaust air-fuel ratio becomes lean. It is characterized by that.

好ましくは、排気空燃比をリーンする噴射時期は、排気管内の温度が高いパージ処理後半がよい。   Preferably, the injection timing for leaning the exhaust air-fuel ratio is good in the second half of the purge process where the temperature in the exhaust pipe is high.

本発明の請求項1の内燃機関の排気浄化装置によれば、排気空燃比がリーンとなる範囲内で排気通路内に燃料を噴射させて目標燃料噴射量と実燃料噴射量との関係が学習されるので、浄化触媒がOストレージ機能を有していてもこれに影響されることなく学習が可能となる。したがって、学習頻度を増加させることができ、学習効果を十分に得ることができる。そして、この学習結果から例えばその後の燃料噴射量制御の精度を向上させることができる。 According to the exhaust gas purification apparatus for an internal combustion engine of claim 1 of the present invention, the fuel is injected into the exhaust passage within a range where the exhaust air-fuel ratio becomes lean, and the relationship between the target fuel injection amount and the actual fuel injection amount is learned. Therefore, even if the purification catalyst has an O 2 storage function, learning can be performed without being affected by this. Therefore, the learning frequency can be increased and the learning effect can be sufficiently obtained. And the precision of subsequent fuel injection amount control can be improved from this learning result, for example.

特に、フィルタ再生時に排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習するので、パージ処理時に学習する場合と比較して、学習機会を増加させることができる。また、フィルタ再生により排気管内の温度が上昇している状態で学習をすることで、この学習時において排気通路内燃料噴射弁から噴射した燃料を全て燃焼させることができ、学習時における空燃比検出精度を向上させることができる。フィルタの下流側に空燃比センサがある場合の学習の実施時期は,粒子状物質の燃焼が空燃比に及ぼす影響の小さいフィルタ再生後半または再生終了直後とすることで排気空燃比を正しく検出できる。 In particular, since the relationship between the actual fuel injection amount from the fuel injection valve in the exhaust passage and the target fuel injection amount is learned at the time of filter regeneration, the learning opportunities can be increased compared with the case where learning is performed during the purge process. Also, by learning while the temperature in the exhaust pipe is rising due to filter regeneration, it is possible to burn all the fuel injected from the fuel injection valve in the exhaust passage during this learning, and to detect the air-fuel ratio at the time of learning Accuracy can be improved. When the air-fuel ratio sensor is provided on the downstream side of the filter, the exhaust air-fuel ratio can be correctly detected by setting the learning timing to the latter half of the filter regeneration where the influence of particulate matter combustion on the air-fuel ratio is small or immediately after the regeneration is completed.

また、本発明の請求項2および3の内燃機関の排気浄化装置によれば、浄化触媒は、リーン空燃比雰囲気下で排気中の窒素酸化物を吸蔵し、この吸蔵した窒素酸化物をストイキまたはリッチ空燃比雰囲気下で還元除去する窒素酸化物吸蔵触媒であって、窒素酸化物や硫黄酸化物のパージ処理時に一時的に燃料噴射量を排気空燃比がリーンとなる範囲内で燃料噴射量を増減させ、排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習するので、窒素酸化物のパージ処理時に学習する場合と比較して排気管内の温度が上昇していることから、排気通路内燃料噴射弁から噴射した燃料をより完全に燃焼させることができ、学習時における空燃比検出精度を向上できる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claims 2 and 3 of the present invention, the purification catalyst occludes nitrogen oxide in the exhaust under a lean air-fuel ratio atmosphere, and the occluded nitrogen oxide is stoichiometric or A nitrogen oxide storage catalyst that reduces and removes under a rich air-fuel ratio atmosphere, and temporarily reduces the fuel injection amount during the purge process of nitrogen oxide or sulfur oxide within the range where the exhaust air-fuel ratio becomes lean Since the relationship between the actual fuel injection amount from the fuel injection valve in the exhaust passage and the target fuel injection amount is learned, the temperature in the exhaust pipe rises compared to when learning during the nitrogen oxide purge process. Therefore, the fuel injected from the fuel injection valve in the exhaust passage can be burned more completely, and the air-fuel ratio detection accuracy during learning can be improved.

以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の排気浄化装置が適用されたエンジン(内燃機関)1の排気系の概略構成図である。
エンジン1はディーゼルエンジンであって、その排気管2には、上流側から順番に、酸化触媒3、NOx吸蔵触媒4、DPF(フィルタ)5が介装されている。酸化触媒3は、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されており、排気中のCO及びHCを酸化させてCO及びHOに変換させるとともに、排気中のNOを酸化させてNOを生成する機能を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an exhaust system of an engine (internal combustion engine) 1 to which an exhaust emission control device of the present invention is applied.
The engine 1 is a diesel engine, and an exhaust catalyst 2 is provided with an oxidation catalyst 3, a NOx storage catalyst 4, and a DPF (filter) 5 in that order from the upstream side. The oxidation catalyst 3 is formed by supporting a catalytic noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) on a porous wall forming a passage, and oxidizes CO and HC in exhaust gas. together is converted to CO 2 and H 2 O Te has a function of NO in the exhaust is oxidized to generate NO 2.

NOx吸蔵触媒4は、例えば、白金(Pt),パラジウム(Pd)等の貴金属を含んだ担体に、バリウム(Ba),カリウム(K)等のNOx吸蔵剤を担持させて構成されており、リーン空燃比雰囲気(酸化雰囲気)下でNOxを捕捉する一方、リッチ空燃比雰囲気(還元雰囲気)下で、捕捉しているNOxを放出し、排気中のHC、COと反応させて還元する機能を有している。   The NOx storage catalyst 4 is configured, for example, by supporting a NOx storage agent such as barium (Ba) or potassium (K) on a support containing a noble metal such as platinum (Pt) or palladium (Pd). While trapping NOx under an air-fuel ratio atmosphere (oxidizing atmosphere), it has the function of releasing the trapped NOx under a rich air-fuel ratio atmosphere (reducing atmosphere) and reducing it by reacting with HC and CO in the exhaust. is doing.

DPF5は、例えば、ハニカム担体の通路の上流側及び下流側を交互にプラグで閉鎖して、排気中のPMを捕集する機能を有しており、更に、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されている。
酸化触媒3の上流側には、排気管内燃料噴射弁(排気通路内燃料噴射弁)6が設置されている。排気管内燃料噴射弁6には、図示しない燃料タンクから、エンジン1によって駆動される燃料ポンプによって燃料が供給される。排気管内燃料噴射弁6は、供給された燃料を排気管2内に噴射する機能を有している。
The DPF 5 has a function of, for example, alternately closing the upstream side and the downstream side of the honeycomb carrier passage with plugs to collect PM in the exhaust gas, and further, on the porous wall forming the passage. It is formed by supporting a catalytic noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh).
An exhaust pipe fuel injection valve (exhaust passage fuel injection valve) 6 is installed upstream of the oxidation catalyst 3. Fuel is supplied to the exhaust pipe fuel injection valve 6 from a fuel tank (not shown) by a fuel pump driven by the engine 1. The exhaust pipe fuel injection valve 6 has a function of injecting the supplied fuel into the exhaust pipe 2.

排気管2には、酸化触媒3の上流側に第1の温度センサ7、酸化触媒3とNOx吸蔵触媒4との間に第2の温度センサ8、NOx吸蔵触媒4に第3の温度センサ9、DPF5の下流側に第4の温度センサ10が備えられている。第1の温度センサ7は酸化触媒3に流入する排気の温度を、第2の温度センサ8はNOx吸蔵触媒4に流入する排気の温度を、第3の温度センサ9はNOx吸蔵触媒4の触媒温度を、第4の温度センサ10はDPF5から流出した排気の温度を検出する機能を有する。また、排気管2には、排気の空燃比を検出する空燃比センサ(空燃比検出手段)11がDPF5の下流側に備えられるとともに、DPF5の上流側と下流側との差圧を検出する差圧センサ12が備えられている。   The exhaust pipe 2 includes a first temperature sensor 7 on the upstream side of the oxidation catalyst 3, a second temperature sensor 8 between the oxidation catalyst 3 and the NOx storage catalyst 4, and a third temperature sensor 9 on the NOx storage catalyst 4. The fourth temperature sensor 10 is provided on the downstream side of the DPF 5. The first temperature sensor 7 is the temperature of the exhaust gas flowing into the oxidation catalyst 3, the second temperature sensor 8 is the temperature of the exhaust gas flowing into the NOx storage catalyst 4, and the third temperature sensor 9 is the catalyst of the NOx storage catalyst 4. The fourth temperature sensor 10 has a function of detecting the temperature of the exhaust gas flowing out from the DPF 5. In addition, the exhaust pipe 2 is provided with an air-fuel ratio sensor (air-fuel ratio detection means) 11 for detecting the air-fuel ratio of the exhaust gas on the downstream side of the DPF 5 and for detecting the differential pressure between the upstream side and the downstream side of the DPF 5. A pressure sensor 12 is provided.

ECU20は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成されている。
ECU20の入力側には、上述する第1〜4の温度センサ7〜10、空燃比センサ11、差圧センサ12の他にエンジン1の吸気流量を検出するエアフローセンサ、クランク角を検出するクランク角センサ、アクセルペダルの踏込量を検出するアクセルポジションセンサ等が接続されており、これらセンサ類からの検出情報が入力される。
The ECU 20 is a control device for performing comprehensive control including operation control of the engine 1, and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. It consists of
On the input side of the ECU 20, in addition to the first to fourth temperature sensors 7 to 10, the air-fuel ratio sensor 11, and the differential pressure sensor 12, an air flow sensor that detects the intake flow rate of the engine 1, and a crank angle that detects the crank angle A sensor, an accelerator position sensor for detecting the depression amount of the accelerator pedal, and the like are connected, and detection information from these sensors is input.

一方、ECU20の出力側には、上述した排気管内燃料噴射弁6の他に、エンジン1の燃焼室に燃料を噴射する燃料噴射弁や図示しない吸気絞り弁等の各種出力デバイスが接続されている。ECU20は、各種センサ類からの検出情報に基づいて燃焼室への燃料噴射量、燃料噴射時期等を演算し、各種出力デバイスにそれぞれ出力することで、適正なタイミングで燃料噴射弁や吸気絞り弁等を制御する。   On the other hand, the output side of the ECU 20 is connected to various output devices such as a fuel injection valve for injecting fuel into the combustion chamber of the engine 1 and an intake throttle valve (not shown) in addition to the above-described fuel injection valve 6 in the exhaust pipe. . The ECU 20 calculates a fuel injection amount, a fuel injection timing, and the like into the combustion chamber based on detection information from various sensors, and outputs them to various output devices, so that a fuel injection valve and an intake throttle valve can be output at appropriate timing. Control etc.

ところで、以上のようにDPF5の上流に酸化触媒3を配置することにより、リッチ空燃比雰囲気下では、酸化触媒3からNOが排出され、NOx吸蔵触媒4を通過してDPF5に流入し、DPF5に捕集され堆積しているPM中の炭素成分であるすすと反応してこれを酸化させる。酸化したすすはCOとなり、DPF5から除去され、DPF5が連続的に再生される。 By the way, by disposing the oxidation catalyst 3 upstream of the DPF 5 as described above, NO 2 is discharged from the oxidation catalyst 3 in the rich air-fuel ratio atmosphere, passes through the NOx storage catalyst 4, flows into the DPF 5, and flows into the DPF 5 It reacts with soot, which is a carbon component in the PM collected and deposited, and oxidizes it. The oxidized soot becomes CO 2 and is removed from the DPF 5 , and the DPF 5 is continuously regenerated.

上記の連続再生では、エンジン1の運転状況により十分にDPF5の再生が行われない場合がある。そこで、本実施形態では、差圧センサ12により検出された差圧と排気流量とに基づいてDPF5でのPMの堆積量を推定し、この推定量が許容量以上となったときに、強制再生を実施させる。強制再生は、ECU20が排気管内燃料噴射弁6を制御して排気管2内に燃料を供給させることで実行される。排気管2内に供給された燃料は、酸化触媒3に流入し、酸化触媒3で酸化することで、排気温度を上昇させる。これにより、DPF5に堆積したPMを燃焼させ、DPF5を再生させる(フィルタ再生手段)。   In the above-described continuous regeneration, the DPF 5 may not be sufficiently regenerated depending on the operating condition of the engine 1. Therefore, in the present embodiment, the PM accumulation amount in the DPF 5 is estimated based on the differential pressure detected by the differential pressure sensor 12 and the exhaust gas flow rate, and the forced regeneration is performed when the estimated amount exceeds the allowable amount. To implement. The forced regeneration is executed by the ECU 20 controlling the fuel injection valve 6 in the exhaust pipe and supplying fuel into the exhaust pipe 2. The fuel supplied into the exhaust pipe 2 flows into the oxidation catalyst 3 and is oxidized by the oxidation catalyst 3, thereby raising the exhaust temperature. Thereby, PM deposited on the DPF 5 is burned to regenerate the DPF 5 (filter regeneration means).

また、エンジン1には、NOx吸蔵触媒4に吸蔵されたNOxを排出させるNOxパージ機能が備えられている。NOxパージは、ECU20により、上述する各種センサ類からの検出情報、即ちエンジン1の運転状態に基づいて排気管内燃料噴射弁6を制御して排気管2内に燃料を噴射させ、NOx吸蔵触媒4に流入する排気の空燃比をリッチ化させることで実行される。排気管内燃料噴射弁6の燃料噴射は、間欠的に複数回にわたって行われ、排気空燃比が燃料噴射時はリッチ、燃料噴射停止時はリーンと周期的に変動する。また、NOx吸蔵触媒4には、燃料中の硫黄成分の酸化によるSOxも硫酸塩として堆積されるので、この堆積した硫黄成分をNOx吸蔵触媒4から除去するために、エンジン1にはSパージ機能も備えられている。このSパージも、ECU20により排気管内燃料噴射弁6を制御して排気管2内に燃料を噴射させ、NOx吸蔵触媒4に流入する排気を高温に制御するとともに空燃比をリッチ化させることで実行される(パージ処理手段)。   Further, the engine 1 is provided with a NOx purge function for discharging NOx stored in the NOx storage catalyst 4. In the NOx purge, the ECU 20 controls the fuel injection valve 6 in the exhaust pipe 6 based on the detection information from the various sensors described above, that is, the operating state of the engine 1 to inject fuel into the exhaust pipe 2, and the NOx storage catalyst 4 This is executed by enriching the air-fuel ratio of the exhaust gas flowing into the engine. The fuel injection of the exhaust pipe fuel injection valve 6 is intermittently performed a plurality of times, and the exhaust air-fuel ratio fluctuates periodically when the fuel injection is rich and lean when the fuel injection is stopped. Further, since SOx resulting from oxidation of the sulfur component in the fuel is also deposited on the NOx storage catalyst 4 as a sulfate, the engine 1 has an S purge function in order to remove the accumulated sulfur component from the NOx storage catalyst 4. Is also provided. This S purge is also executed by controlling the fuel injection valve 6 in the exhaust pipe by the ECU 20 to inject fuel into the exhaust pipe 2, controlling the exhaust flowing into the NOx storage catalyst 4 to a high temperature and enriching the air-fuel ratio. (Purge processing means).

本発明に係る排気浄化装置では、ECU20は、定常運転時に排気管内燃料噴射を一時的に行わせ、このときの排気空燃比の変化に基づいて排気管内燃料噴射弁6からの実燃料噴射量を演算し、実燃料噴射量と目標燃料噴射量との関係を学習する排気管内噴射量学習を実行する(学習手段)。
図2は、排気管内噴射量学習制御の制御手順を示すフローチャートである。本ルーチンはエンジン作動時に繰り返し実行される。
In the exhaust emission control device according to the present invention, the ECU 20 temporarily performs fuel injection in the exhaust pipe during steady operation, and calculates the actual fuel injection amount from the fuel injection valve 6 in the exhaust pipe based on the change in the exhaust air-fuel ratio at this time. An exhaust pipe injection amount learning that learns the relationship between the actual fuel injection amount and the target fuel injection amount is performed (learning means).
FIG. 2 is a flowchart showing a control procedure of the exhaust pipe injection amount learning control. This routine is repeatedly executed when the engine is operating.

先ず、ステップS10では、エンジン1が定常運転状態であるか否か、即ちエンジン1から排出される排気の空燃比が一定であるか否かを判別する。詳しくは、エンジン1の回転速度や負荷が略一定に安定しているか否かを判別する。定常運転状態である場合は、ステップS12に進む。
ステップS12では、排気管2内に目標燃料噴射量Qftの燃料を噴射させる制御信号を排気管内燃料噴射弁6に出力する。目標燃料噴射量Qtは、排気管内燃料噴射弁6からの燃料噴射により排気空燃比が下降しても、リーンに留まる範囲内で適宜設定すればよい。そして、ステップS14に進む。
First, in step S10, it is determined whether or not the engine 1 is in a steady operation state, that is, whether or not the air-fuel ratio of the exhaust discharged from the engine 1 is constant. Specifically, it is determined whether or not the rotational speed and load of the engine 1 are stable at a substantially constant level. When it is in a steady operation state, the process proceeds to step S12.
In step S12, a control signal for injecting fuel of the target fuel injection amount Qft into the exhaust pipe 2 is output to the fuel injection valve 6 in the exhaust pipe. The target fuel injection amount Qt may be set as appropriate within a range that remains lean even when the exhaust air-fuel ratio decreases due to fuel injection from the exhaust pipe fuel injection valve 6. Then, the process proceeds to step S14.

ステップS14では、空燃比センサ11から排気空燃比A/Frichを入力し、記憶装置に記憶する。そして、ステップS16に進む。
ステップS16では、排気管内燃料噴射弁6からの燃料の噴射を停止する。そして、ステップS18に進む。
ステップS18では、空燃比センサ11から排気空燃比A/Fleanを入力し、記憶装置に記憶する。そして、ステップS20に進む。
In step S14, the exhaust air / fuel ratio A / Frich is input from the air / fuel ratio sensor 11 and stored in the storage device. Then, the process proceeds to step S16.
In step S16, the fuel injection from the exhaust pipe fuel injection valve 6 is stopped. Then, the process proceeds to step S18.
In step S18, the exhaust air / fuel ratio A / Flean is input from the air / fuel ratio sensor 11 and stored in the storage device. Then, the process proceeds to step S20.

ステップS20では、エアフローメータにより検出した吸入空気量Qair、燃料密度B、ステップS12、S16にて入力し記憶装置に記憶された排気空燃比A/Frich、A/Fleanを用いて、以下(1)式により実燃料噴射量Qfrを演算する。
Qfr=Qair/(A/Frich)/B−Qair/(A/Flean)/B・・・(1)
そして、ステップS20に進む。
In step S20, using the intake air amount Qair detected by the air flow meter, the fuel density B, and the exhaust air / fuel ratios A / Frich and A / Flean input in steps S12 and S16 and stored in the storage device, the following (1) The actual fuel injection amount Qfr is calculated by the equation.
Qfr = Qair / (A / Frich) / B-Qair / (A / Flean) / B (1)
Then, the process proceeds to step S20.

ステップS20では、ステップS12で設定されている目標燃料噴射量QftとステップS18で演算した実燃料噴射量Qfrを用いて、下式(2)により補正係数Cfを演算する。
Cf=Qft/Qfr・・・(2)
補正係数Cfを記憶装置に記憶し、目標燃料噴射量Qftと実燃料噴射量Qfrとの関係として学習する。そして、本ルーチンをリターンする。
In step S20, the correction coefficient Cf is calculated by the following equation (2) using the target fuel injection amount Qft set in step S12 and the actual fuel injection amount Qfr calculated in step S18.
Cf = Qft / Qfr (2)
The correction coefficient Cf is stored in the storage device and learned as the relationship between the target fuel injection amount Qft and the actual fuel injection amount Qfr. Then, this routine is returned.

一方、ステップS10において、定常運転状態でないと判定した場合は、本ルーチンをリターンする。
図3は、本実施形態における排気管内噴射量学習制御時での排気空燃比の推移を示すタイムチャートである。
図3に示すように、本実施形態では、排気管内噴射量学習制御時において、排気管内燃料噴射弁6からの燃料噴射をON、OFFすることで、排気空燃比が上下変動する。また、燃料噴射時であっても排気空燃比はリーンの範囲内に留まる。
On the other hand, if it is determined in step S10 that the vehicle is not in a steady operation state, this routine is returned.
FIG. 3 is a time chart showing the transition of the exhaust air / fuel ratio during the exhaust pipe injection amount learning control in the present embodiment.
As shown in FIG. 3, in the present embodiment, the exhaust air-fuel ratio fluctuates up and down by turning on and off the fuel injection from the fuel injection valve 6 in the exhaust pipe during the exhaust pipe injection amount learning control. Further, even during fuel injection, the exhaust air-fuel ratio remains within the lean range.

以上の制御により、エンジン1が定常運転状態であるときに、排気管内噴射量学習が実施される。この排気管内噴射量学習は、排気管内燃料噴射弁6から一時的に燃料噴射させ、燃料噴射時の排気空燃比A/Frichと燃料噴射停止時の排気空燃比A/Fleanを検出し、これらの排気空燃比A/Frich及びA/Fleanの偏差に基づいて実燃料噴射量Qfrを演算する。更に、この実燃料噴射量Qfrと目標燃料噴射量Qftとの比を補正係数として演算し学習する。   By the above control, the injection amount learning in the exhaust pipe is performed when the engine 1 is in a steady operation state. In this exhaust pipe injection amount learning, fuel is temporarily injected from the fuel injection valve 6 in the exhaust pipe, and the exhaust air / fuel ratio A / Frich at the time of fuel injection and the exhaust air / fuel ratio A / Flean at the time of fuel injection stop are detected. The actual fuel injection amount Qfr is calculated based on the deviation of the exhaust air / fuel ratio A / Frich and A / Flean. Further, the learning is performed by calculating the ratio between the actual fuel injection amount Qfr and the target fuel injection amount Qft as a correction coefficient.

そして、上記のようにして演算した補正係数Cfを、その後のSパージまたはNOxパージ処理時等に用いて、排気管内燃料噴射弁6の駆動時間を補正する。したがって、排気中のすすにより排気管内燃料噴射弁6がつまりを発生している場合や、排気管内燃料噴射弁6が経時劣化している場合でも、排気管内燃料噴射弁6から燃料を精度良く噴射させることができ、SパージまたはNOxパージを精度良く行うことが可能となる。   Then, the driving time of the fuel injection valve 6 in the exhaust pipe is corrected by using the correction coefficient Cf calculated as described above in the subsequent S purge or NOx purge processing. Accordingly, even when the fuel injection valve 6 in the exhaust pipe is clogged by soot in the exhaust or when the fuel injection valve 6 in the exhaust pipe has deteriorated over time, the fuel is accurately injected from the fuel injection valve 6 in the exhaust pipe. S purge or NOx purge can be performed with high accuracy.

特に、本実施形態では、排気管内噴射量学習時に排気管内燃料噴射弁6から燃料を噴射させる際に、排気空燃比がリーンに留まる範囲内に燃料噴射量が設定されているので、排気管内噴射量学習時に燃料がNOx吸蔵触媒4におけるOストレージ機能の影響を受けることなく、排気管内噴射量学習を正確に実施することができるとともに,NOxパージ,Sパージ時に限らず排気管内噴射量学習が可能となり学習頻度を増加させることができる。また、本実施形態では、エンジン1が定常運転状態であるときに排気管内噴射量学習が行われるので、エンジン1の燃料噴射弁の噴射精度に拘わらず排気管内噴射量学習が可能となる。 In particular, in the present embodiment, when fuel is injected from the exhaust pipe fuel injection valve 6 during learning of the exhaust pipe injection quantity, the fuel injection quantity is set within a range where the exhaust air-fuel ratio remains lean. During the amount learning, the fuel is not affected by the O 2 storage function of the NOx storage catalyst 4 and the injection amount learning in the exhaust pipe can be performed accurately, and the injection amount learning in the exhaust pipe is not limited to the NOx purge and S purge. It becomes possible and the learning frequency can be increased. Further, in the present embodiment, since the exhaust pipe injection amount learning is performed when the engine 1 is in a steady operation state, the exhaust pipe injection amount learning can be performed regardless of the injection accuracy of the fuel injection valve of the engine 1.

なお、DPF再生時にこの排気管内噴射量学習を行うとよい。DPF再生時は、排気管内燃料噴射弁6から燃料を噴射して排気空燃比を下降させていても排気空燃比をリーンに留める場合が多いので、排気管内噴射量学習が可能である。そして、DPF再生による排気温度の上昇により、排気管内噴射量学習時に噴射された燃料が空燃比センサ11の下流で完全に燃焼され、空燃比検出精度を向上させることができる。学習の実施時期は,粒子状物質の燃焼が空燃比に及ぼす影響の小さいDPF再生後半または再生終了直後とすることで排気空燃比を正しく検出できる。   It should be noted that this exhaust pipe injection amount learning may be performed during DPF regeneration. During DPF regeneration, even if fuel is injected from the exhaust pipe fuel injection valve 6 and the exhaust air / fuel ratio is lowered, the exhaust air / fuel ratio is often kept lean, so that it is possible to learn the injection quantity in the exhaust pipe. As the exhaust gas temperature rises due to DPF regeneration, the fuel injected at the time of learning the injection amount in the exhaust pipe is completely burned downstream of the air-fuel ratio sensor 11, and the air-fuel ratio detection accuracy can be improved. The exhaust air / fuel ratio can be detected correctly by setting the learning timing to the latter half of DPF regeneration or immediately after the end of regeneration, where the influence of particulate matter combustion on the air / fuel ratio is small.

また、NOxパージやSパージ時に間欠的に複数回にわたって行われる燃料噴射の少なくとも1回において排気空燃比がリーンとなるように目標燃料噴射量を設定して排気管内噴射量学習を行っても良い。この場合、複数回行われる噴射インターバルでは排気空燃比がリーンとなり、NOx吸蔵触媒4におけるOストレージ機能が飽和状態となるため、Oストレージ機能の影響を受けることなく、排気管内噴射量学習を正確に実施することができる。また、排気温度が高くなるSパージに行えば更に好ましい。なかでも,排気管内噴射量学習のためのリーンを目標とした燃料噴射を,排気温度が高く安定しているSパージ処理後半で行えば空燃比の検出精度を更に向上できる。 Further, the exhaust pipe injection amount learning may be performed by setting the target fuel injection amount so that the exhaust air-fuel ratio becomes lean in at least one of the fuel injections intermittently performed a plurality of times during NOx purge or S purge. . In this case, the exhaust air-fuel ratio becomes lean in the injection interval performed a plurality of times, and the O 2 storage function in the NOx storage catalyst 4 becomes saturated. Therefore, the injection amount learning in the exhaust pipe is not affected by the O 2 storage function. Can be implemented accurately. Further, it is more preferable to perform the S purge in which the exhaust temperature becomes high. In particular, if the fuel injection targeting lean for learning the injection amount in the exhaust pipe is performed in the latter half of the S purge process in which the exhaust temperature is high and stable, the air-fuel ratio detection accuracy can be further improved.

本発明に係る内燃機関の排気系の概略構成図である。1 is a schematic configuration diagram of an exhaust system of an internal combustion engine according to the present invention. 排気管内噴射量学習制御の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the injection amount learning control in an exhaust pipe. 排気管内噴射量学習制御時での排気空燃比の推移を示すタイムチャートである。6 is a time chart showing the transition of the exhaust air-fuel ratio during exhaust pipe injection amount learning control.

符号の説明Explanation of symbols

1 エンジン
2 排気管
3 酸化触媒
4 NOx吸蔵触媒
5 DPF
6 排気管内燃料噴射弁
11 空燃比センサ
20 ECU
1 Engine 2 Exhaust pipe 3 Oxidation catalyst 4 NOx storage catalyst 5 DPF
6 Fuel injection valve in exhaust pipe 11 Air-fuel ratio sensor 20 ECU

Claims (3)

内燃機関の排気通路に設けられ、排気を浄化する浄化触媒と、
前記浄化触媒の上流側の排気通路に設けられ、前記排気通路内に燃料を噴射する排気通路内燃料噴射弁と、
前記排気通路内燃料噴射弁の下流側の排気通路に設けられ、排気空燃比を検出する空燃比検出手段と、
前記内燃機関が定常運転状態である場合に、排気空燃比がリーンとなる範囲内で前記排気通路内燃料噴射弁から燃料を噴射させ、前記空燃比検出手段により検出された排気空燃比の実測値に基づいて前記排気通路内燃料噴射弁からの実燃料噴射量を演算し、該実燃料噴射量と前記排気通路内燃料噴射弁における目標燃料噴射量との関係を学習する学習手段と、
前記排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、
前記排気通路内燃料噴射弁を制御して前記排気通路内に燃料を噴射させ、前記フィルタに捕集された粒子状物質を燃焼除去し前記フィルタを再生するフィルタ再生手段と、を備え、
前記学習手段は、前記フィルタ再生手段によるフィルタ再生時に前記排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする内燃機関の排気浄化装置。
A purification catalyst that is provided in an exhaust passage of the internal combustion engine and purifies exhaust;
An exhaust passage fuel injection valve that is provided in an exhaust passage upstream of the purification catalyst and injects fuel into the exhaust passage;
An air-fuel ratio detecting means provided in an exhaust passage downstream of the fuel injection valve in the exhaust passage and detecting an exhaust air-fuel ratio;
When the internal combustion engine is in a steady operation state, fuel is injected from the fuel injection valve in the exhaust passage within a range in which the exhaust air / fuel ratio becomes lean, and the measured value of the exhaust air / fuel ratio detected by the air / fuel ratio detection means Learning means for calculating an actual fuel injection amount from the fuel injection valve in the exhaust passage on the basis of, and learning a relationship between the actual fuel injection amount and a target fuel injection amount in the fuel injection valve in the exhaust passage;
A filter provided in the exhaust passage for collecting particulate matter in the exhaust;
Filter regeneration means for controlling the fuel injection valve in the exhaust passage to inject fuel into the exhaust passage, burning and removing the particulate matter collected by the filter, and regenerating the filter;
The exhaust purification device for an internal combustion engine, wherein the learning means learns a relationship between an actual fuel injection amount from the fuel injection valve in the exhaust passage and a target fuel injection amount at the time of filter regeneration by the filter regeneration means .
内燃機関の排気通路に設けられ、リーン空燃比雰囲気下で排気中の窒素酸化物を吸蔵し、この吸蔵した窒素酸化物をストイキまたはリッチ空燃比雰囲気下で還元除去する窒素酸化物吸蔵触媒と、
前記窒素酸化物吸蔵触媒の上流側の排気通路に設けられ、前記排気通路内に燃料を噴射する排気通路内燃料噴射弁と、
前記排気通路内燃料噴射弁の下流側の排気通路に設けられ、排気空燃比を検出する空燃比検出手段と、
前記内燃機関が定常運転状態である場合に、排気空燃比がリーンとなる範囲内で前記排気通路内燃料噴射弁から燃料を噴射させ、前記空燃比検出手段により検出された排気空燃比の実測値に基づいて前記排気通路内燃料噴射弁からの実燃料噴射量を演算し、該実燃料噴射量と前記排気通路内燃料噴射弁における目標燃料噴射量との関係を学習する学習手段と、
前記窒素酸化物吸蔵触媒に吸蔵された窒素酸化物または硫黄酸化物が還元除去されるように、前記排気通路内燃料噴射弁を制御して、前記窒素酸化物吸蔵触媒に還元剤としての燃料を供給させるパージ処理手段と、を備え、
前記学習手段は、前記パージ処理手段によるパージ処理時に一時的に目標燃料噴射量を排気空燃比がリーンとなる範囲内で増減させて、前記排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする内燃機関の排気浄化装置。
A nitrogen oxide storage catalyst that is provided in an exhaust passage of the internal combustion engine, stores nitrogen oxides in exhaust under a lean air-fuel ratio atmosphere, and reduces and removes the stored nitrogen oxides under a stoichiometric or rich air-fuel ratio atmosphere ;
An exhaust passage fuel injection valve that is provided in an exhaust passage upstream of the nitrogen oxide storage catalyst and injects fuel into the exhaust passage;
An air-fuel ratio detecting means provided in an exhaust passage downstream of the fuel injection valve in the exhaust passage and detecting an exhaust air-fuel ratio;
When the internal combustion engine is in a steady operation state, fuel is injected from the fuel injection valve in the exhaust passage within a range in which the exhaust air / fuel ratio becomes lean, and the measured value of the exhaust air / fuel ratio detected by the air / fuel ratio detection means Learning means for calculating an actual fuel injection amount from the fuel injection valve in the exhaust passage on the basis of, and learning a relationship between the actual fuel injection amount and a target fuel injection amount in the fuel injection valve in the exhaust passage;
The fuel injection valve in the exhaust passage is controlled so that nitrogen oxide or sulfur oxide stored in the nitrogen oxide storage catalyst is reduced and removed, and fuel as a reducing agent is supplied to the nitrogen oxide storage catalyst. comprising a purging means for supplying the, the,
The learning means temporarily increases or decreases the target fuel injection amount within a range in which the exhaust air-fuel ratio becomes lean during the purge processing by the purge processing means, so that the actual fuel injection amount from the fuel injection valve in the exhaust passage and the target exhaust gas purification apparatus for an internal combustion engine you characterized by learning the relationship between the fuel injection amount.
前記パージ処理手段は、前記排気通路内燃料噴射弁に排気空燃比がリッチとなる目標燃料噴射量を間欠的に複数回噴射させ、
前記学習手段は、複数回噴射される燃料の少なくとも1回の目標燃料噴射量を排気空燃比がリーンとなる範囲内とし、前記排気通路内燃料噴射弁からの実燃料噴射量と目標燃料噴射量との関係を学習することを特徴とする請求項2に記載の内燃機関の排気浄化装置。
The purge processing means intermittently injects a target fuel injection amount at which the exhaust air-fuel ratio becomes rich to the fuel injection valve in the exhaust passage a plurality of times,
The learning means sets at least one target fuel injection amount of the fuel to be injected a plurality of times within a range in which the exhaust air-fuel ratio becomes lean, and the actual fuel injection amount and the target fuel injection amount from the fuel injection valve in the exhaust passage The exhaust gas purification apparatus for an internal combustion engine according to claim 2 , wherein the relationship is learned.
JP2007194495A 2007-07-26 2007-07-26 Exhaust gas purification device for internal combustion engine Active JP4780335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194495A JP4780335B2 (en) 2007-07-26 2007-07-26 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194495A JP4780335B2 (en) 2007-07-26 2007-07-26 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009030509A JP2009030509A (en) 2009-02-12
JP4780335B2 true JP4780335B2 (en) 2011-09-28

Family

ID=40401284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194495A Active JP4780335B2 (en) 2007-07-26 2007-07-26 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4780335B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499552B2 (en) * 2009-07-22 2014-05-21 いすゞ自動車株式会社 Exhaust pipe direct fuel injection system, internal combustion engine, and exhaust pipe direct fuel injection system control method
JP5142052B2 (en) * 2009-08-21 2013-02-13 株式会社デンソー Exhaust gas purification device for internal combustion engine
US9212585B2 (en) 2011-07-28 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107137B2 (en) * 2003-04-04 2008-06-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) * 2003-09-26 2009-11-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4631691B2 (en) * 2005-12-15 2011-02-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2009030509A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
WO2014162813A1 (en) METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
JP5795185B2 (en) Method for predicting the amount of nitrogen oxides stored in a nitrogen oxide reducing catalyst and exhaust system using the same
JP4935983B2 (en) Exhaust gas purification device for internal combustion engine
KR101251519B1 (en) METHOD FOR PREDICTING SOx STORED AT DeNOx CATALYST AND EXHAUST SYSTEM USING THE SAME
US20050132698A1 (en) Exhaust gas purifying method and exhaust gas purifying system
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
JP2008031854A (en) Exhaust emission control device for internal combustion engine
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
US8387365B2 (en) Method and device for the control of the operating state of the catalytic converter of the exhaust line of an internal combustion engine
JP2016223294A (en) Exhaust emission control system
JP2008121557A (en) Exhaust emission control device of internal combustion engine
JP5862868B2 (en) Engine exhaust purification system
US20120047878A1 (en) Exhaust purification system of internal combustion engine
JP4780335B2 (en) Exhaust gas purification device for internal combustion engine
JP6492854B2 (en) Exhaust purification equipment
JP6471858B2 (en) Control device for internal combustion engine
JP4636278B2 (en) Exhaust gas purification device for internal combustion engine
WO2015129463A1 (en) Exhaust purification apparatus for internal combustion engine
JP4697474B2 (en) Exhaust gas purification device for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP2009299617A (en) Exhaust emission control device for internal combustion engine
JP2009138525A (en) Sulfur accumulation degree estimation device of exhaust emission control device
US10392986B2 (en) Exhaust purification system, and control method for exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4780335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350