JP2007330288A - Core material or guide wire composed of core material and its manufacturing method - Google Patents

Core material or guide wire composed of core material and its manufacturing method Download PDF

Info

Publication number
JP2007330288A
JP2007330288A JP2006161891A JP2006161891A JP2007330288A JP 2007330288 A JP2007330288 A JP 2007330288A JP 2006161891 A JP2006161891 A JP 2006161891A JP 2006161891 A JP2006161891 A JP 2006161891A JP 2007330288 A JP2007330288 A JP 2007330288A
Authority
JP
Japan
Prior art keywords
core
core material
guide wire
wire
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006161891A
Other languages
Japanese (ja)
Inventor
Koji Amano
宏地 天野
Yasushi Hara
恭 原
Seiji Kawaguchi
誠司 河口
Kiyohito Ishida
清仁 石田
Kiyoshi Yamauchi
清 山内
Yuji Sudo
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nachi Fujikoshi Corp
Original Assignee
Tohoku University NUC
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nachi Fujikoshi Corp filed Critical Tohoku University NUC
Priority to JP2006161891A priority Critical patent/JP2007330288A/en
Publication of JP2007330288A publication Critical patent/JP2007330288A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core material or a guide wire composed of the core material not to be broken, for which the core material of a base part has relatively high rigidity, and a catheter. <P>SOLUTION: In the core 20 of the guide wire, a carbide is dispersed in a base comprising austenitic stainless steel at least in the surface layer of the sectional structure of a core base part 21 or the surface layer of the catheter. In the catheter or the guide wire, tensile strength in a tension test is ≥1,000 MPa at the time of 2% strain and breaking elongation is ≥5% in at least a part of the core base part. Further, for the guide wire, a carbide layer in the sectional structure is made less than the carbide amount of the surface layer part of the base part or is eliminated in at least a part of a core distal end part 22 and flexibility is provided compared with the core base part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線科、循環器科などの医療分野において,経皮的血管形成術(PTCA)に代表されるX線透視下での医療技術に用いられるステンレス製のコア材又はコア材からなるガイドワイヤに関するものである。   The present invention comprises a stainless steel core material or a core material used for medical technology under fluoroscopy represented by percutaneous angioplasty (PTCA) in the medical field such as radiology and cardiovascular medicine. It relates to a guide wire.

ガイドワイヤは、経皮的血管形成術などのカテーテル治療技術において、カテーテルの先導役として用いられるもので、大腿部或いは手首動脈の穿刺口から挿入され、目的部位まで血管を選択しつつ送られるものである。素材に関する要求物性は特許文献1に詳しく述べられているが、トルク伝達性(分岐血管での手元ねじりによるG/W先端部の方向制御)、耐キンク性(分岐血管をジグザグに進入した後の形状復元性)、突きだし性(手元突き出しを容易に先端部に伝える剛性)、先端柔軟性(導入時血管を傷つけない柔らかさ)、X線造影性(分岐血管の選択時、レントゲンでワイヤ先端部が観察できるX線不透過性)などが挙げられる。   A guide wire is used as a leading catheter in catheter treatment techniques such as percutaneous angioplasty, and is inserted from the femoral or wrist artery puncture opening and sent to a target site while selecting a blood vessel. Is. Although the required physical properties related to the material are described in detail in Patent Document 1, torque transmission (direction control of the G / W tip portion by hand twisting in the branch vessel), kink resistance (after the branch vessel enters the zigzag) Shape restoration), extrudability (rigidity that easily conveys the proximal protrusion to the tip), tip flexibility (softness that does not damage the blood vessel at the time of introduction), X-ray contrast (when branching vessel is selected, X-ray wire tip Can be observed).

特許文献1には本体部と先端部の一部をアモルファス金属によって形成しているカテーテル用ガイドワイヤが記載されている。これにより、本体部が挿入および冠捜手元操作で座屈やねじり変形しないコア材又はコア材からなるガイドワイヤを提供するというものである。   Patent Document 1 describes a catheter guide wire in which a main body part and a part of a tip part are formed of amorphous metal. Thereby, the main body portion provides a guide wire made of a core material or a core material that is not buckled or twisted and deformed by insertion and crown searcher operation.

一方、本出願人が出願した特許文献3には、特許文献4の連続真空浸炭装置を用いて、直径10〜50μmのオーステナイト系ステンレス鋼の極細線の表面から中心に向かって連続浸炭を行い、基地中に粒径が2μm以下の炭化物を分散させ、また、炭化物の密度を外側から芯に向かって漸減させ、抗張力1400MPa〜2600MPaで伸びが10%に達するステンレス極細線が開示され、金網等への適用が開示されている。
特公平3−015914号公報 特開2004−290466号公報 特開2006−89836号公報 国際公開WO2005/003400号公報
On the other hand, in Patent Document 3 filed by the present applicant, using the continuous vacuum carburizing apparatus of Patent Document 4, continuous carburization from the surface of the ultrafine wire of austenitic stainless steel having a diameter of 10 to 50 μm is performed, Disclosed is a carbide fine wire having a particle size of 2 μm or less dispersed in the base, and gradually reducing the density of the carbide from the outside toward the core, and a stainless fine wire having a tensile strength of 1400 MPa to 2600 MPa and an elongation of 10% is disclosed. The application of is disclosed.
Japanese Patent Publication No. 3-015914 JP 2004-290466 A JP 2006-89836 A International Publication WO2005 / 003400

しかしながら、特許文献1のものは、比較的剛性の高い基部が、引張り強度の伸びが5%未満と不足しているので折損し易いという問題があった。また、特許文献2のものはコア材の基部においては表面層のステンレス鋼により剛性があり、先端部はコア材の表層が加工により除去されて中心層のNi−Ti合金となるため柔軟性があるとしている。しかしながら、このような傾斜組成を持たせるために複合材料プロセスを採用しており、製造コストが大幅に増大するという問題がある。また、基部における剛性がどの程度であるかについては開示されていない。   However, the thing of the patent document 1 had the problem that it was easy to break since the base part with comparatively high rigidity was insufficient with less than 5% of elongation of tensile strength. In addition, the material of Patent Document 2 is rigid due to the surface layer of stainless steel at the base portion of the core material, and the tip portion is flexible because the surface layer of the core material is removed by processing to become the Ni—Ti alloy of the center layer. There is. However, since a composite material process is employed in order to have such a gradient composition, there is a problem that the manufacturing cost is greatly increased. Moreover, it is not disclosed about how rigid the base is.

また、特許文献3のものにおいては、金網用の直径が10〜50μmのステンレス極細線としての抗張力が高く、伸びの大きなものを得ているが、ガイドワイヤの様な強度と柔軟性が必要で、また、細線の直径が0.1〜1mm程度の太さのガイドワイヤに対しては、その適用については、検討されていない。   Moreover, in the thing of patent document 3, although the tensile strength as a stainless fine wire with a wire mesh diameter of 10-50 micrometers is high and has obtained a large elongation, strength and flexibility like a guide wire are required. Moreover, the application of the guide wire having a thin wire diameter of about 0.1 to 1 mm has not been studied.

本発明の課題は前述した問題点に鑑みて、比較的高い剛性を有し、かつ折損しないカテーテル用コア材又はコア材からなるガイドワイヤを提供することである。   In view of the above-described problems, an object of the present invention is to provide a catheter core material or a guide wire made of a core material that has relatively high rigidity and does not break.

前述の問題点を解決するために、本出願人らは先に特願2004−378622(出願時未公開)のガイドワイヤを出願した。その構成は、図1に示されるコア基部21の断面組織の表層においてオーステナイト系ステンレス鋼でなる基地中に炭化物を分散させ、コア基部の少なくとも一部が引張り試験における引張り強度が2%ひずみ時1000MPa以上、および、破断伸び4%以上とし、コア先端部22の少なくとも一部には断面組織中に炭化物が無く、コア基部に比べて柔軟性を持たせたものとするとした。これにより、引張試験時の伸びと剛性を両立した。   In order to solve the above-mentioned problems, the present applicants filed a guide wire of Japanese Patent Application No. 2004-378622 (not disclosed at the time of filing). The structure is such that carbide is dispersed in a matrix made of austenitic stainless steel in the surface layer of the cross-sectional structure of the core base 21 shown in FIG. 1, and at least a part of the core base has a tensile strength in a tensile test of 1000 MPa at 2% strain. As described above, the elongation at break is 4% or more, and at least a part of the core tip 22 has no carbide in the cross-sectional structure, and is more flexible than the core base. Thereby, both elongation and rigidity at the time of the tensile test were achieved.

しかしながら、特願2004−378622の線径0.1mmのガイドワイヤと同じ特性のものを0.2mm〜0.8mmの線径のガイドワイヤで実施しようとすると、基地中に炭化物を表層において分散させるための浸炭および拡散処理操業に要する時間が飛躍的に長くなり、コスト的に不利である。特に、浸炭後の拡散処理に要する時間は距離の2乗に比例するので、線径の違いによる影響は極めて大きい。一方、無理に短時間で処理しようとすると、浸炭層がより表層に限定されすぎて、剛性が得にくくなるか、浸炭部分の剛性を局部的に上げすぎると逆に伸びが低下する原因になり、前者の場合はガイドワイヤとしての操作性が悪くなり、後者の場合は柔軟性を損なう結果となる。   However, if the guide wire having the same characteristics as the guide wire having a wire diameter of 0.1 mm in Japanese Patent Application No. 2004-378622 is to be implemented with a guide wire having a wire diameter of 0.2 mm to 0.8 mm, carbides are dispersed in the surface layer in the base. Therefore, the time required for carburizing and diffusion treatment operation is drastically increased, which is disadvantageous in terms of cost. In particular, since the time required for the diffusion treatment after carburizing is proportional to the square of the distance, the influence of the difference in wire diameter is extremely large. On the other hand, when trying to process forcibly in a short time, the carburized layer is more limited to the surface layer and it becomes difficult to obtain rigidity, or if the rigidity of the carburized part is increased locally, it will cause the elongation to decrease. In the former case, the operability as a guide wire is deteriorated, and in the latter case, the flexibility is impaired.

そこで、本発明においては、先細のコア先端部と先端部に続き直径が0.2mm以上0.5mm以下のコア基部とからなるコア材であって、少なくとも前記コア基部の断面組織の表層においてオーステナイト系ステンレス鋼でなる基地中に炭化物が分散し、前記コア基部のが引張り試験における0.2%耐力が900MPa以上、2%ひずみ時1100MPa以上、および破断伸びが5%以上であるコア材又はコア材からなるガイドワイヤを提供することにより、前述した課題を解決した。   Therefore, in the present invention, a core material comprising a tapered core tip and a core base having a diameter of 0.2 mm or more and 0.5 mm or less following the tip, and at least in the surface layer of the cross-sectional structure of the core base. A core material or core in which carbide is dispersed in a base made of a stainless steel, the core base has a 0.2% proof stress in a tensile test of 900 MPa or more, 1100 MPa or more at 2% strain, and a breaking elongation of 5% or more The above-mentioned problems have been solved by providing a guide wire made of a material.

即ち、基部の断面組織の表層部分においてオーステナイト系ステンレス鋼でなる基地中に炭化物を分布させるとしたので、表層部分に剛性の高い炭化物相を分布させることにより、その体積割合に応じて、材料全体の剛性率が高くなる。引張り試験における0.2%耐力が900MPa以上として、塑性変形前の剛性が低いという問題点を解決した。0.2%耐力は荷重印加初期の弾性限度を表す数値であり、この値が低いと血管挿入時の荷重により塑性変形しやすく、操作性が悪い。0.2%耐力は900MPa以上であることが望ましいが、より好ましくは1000MPa以上である。   That is, since the carbide is distributed in the base made of austenitic stainless steel in the surface layer portion of the cross-sectional structure of the base portion, by distributing the carbide phase having high rigidity in the surface layer portion, depending on the volume ratio, the entire material The rigidity of becomes higher. The 0.2% proof stress in the tensile test was set to 900 MPa or more, and the problem of low rigidity before plastic deformation was solved. The 0.2% proof stress is a numerical value representing an elastic limit at the initial stage of application of a load. If this value is low, plastic deformation easily occurs due to the load at the time of blood vessel insertion, and operability is poor. The 0.2% proof stress is desirably 900 MPa or more, and more preferably 1000 MPa or more.

さらに、2%ひずみ時の応力も1000MPa以上から1100MPa以上へ増加させて、さらに操作性の改善を図った。2%ひずみ時の引張強度は、耐力とともにガイドワイヤの腰の強さに対応する機械的特性であり、特に変形を受けた時の強さを表す。2%ひずみ時の引張強度を1100MPa以上とした理由は、1100MPa未満では手元部分において十分な剛性が得られないからである。より好ましくは1200MPa以上である。   Furthermore, the stress at 2% strain was also increased from 1000 MPa to 1100 MPa to further improve the operability. The tensile strength at 2% strain is a mechanical characteristic corresponding to the waist strength of the guide wire as well as the proof stress, and particularly represents the strength when subjected to deformation. The reason why the tensile strength at 2% strain is 1100 MPa or more is that if it is less than 1100 MPa, sufficient rigidity cannot be obtained at the hand portion. More preferably, it is 1200 MPa or more.

さらにまた、破断伸びは、特許文献1に記載のような高剛性材でも3.6%のものが開示されているように、4%未満では、万一ガイドワイヤまたはカテーテルが血管挿入中にキンクした場合に折損しやすくなるので、5%以上とした。本発明においては、後述するように、10%以上の破断伸びが得られているものもある。   Furthermore, the elongation at break is less than 4% as disclosed in Patent Document 1 even for a highly rigid material of 3.6%. In this case, it is easy to break. In the present invention, as will be described later, there are those in which elongation at break of 10% or more is obtained.

さらにガイドワイヤの先端部は血管を傷つけないために通常、基部より細くされ、さらに柔軟性を要求される。そこで、請求項2に記載の発明においては、前記コア先端部の断面組織中には炭化物が前記コア基部に比べて少ないかまたは全く無く、コア基部においては基地中に炭化物が分散しているコア材又はコア材からなるガイドワイヤとした。   Further, the distal end portion of the guide wire is usually made thinner than the base portion so as not to damage the blood vessel, and further flexibility is required. Accordingly, in the invention according to claim 2, the core in which the carbide is dispersed in the base in the core base portion in which the cross-sectional structure of the core tip portion has less or no carbide compared to the core base portion. A guide wire made of a material or a core material was used.

内側は外側に比べて炭化物を少なくするので、柔軟となり、万が一無理な変形を受けても破断しにくい。さらに、断面組織中の炭化物の分散量を表層部分から内部に向かって漸減させるようにすれば、より好ましい。   Since the inner side has less carbide than the outer side, it becomes flexible, and even if it undergoes unreasonable deformation, it is difficult to break. Furthermore, it is more preferable if the amount of carbide dispersion in the cross-sectional structure is gradually decreased from the surface layer portion toward the inside.

かかるコア材又はコア材からなるガイドワイヤは、次のようにして得られる。即ち、請求項3に記載の発明においては、オーステナイト系ステンレス鋼でなるスキンパス後の仕上げ直径が0.2mm以上0.5mm以下となるような細線の基地中に炭化物を分散させた後、減面率2.9%以上10%以下のスキンパス伸線を行うコア材又はコア材からなるガイドワイヤの製造方法を提供する。 Such a core material or a guide wire made of the core material is obtained as follows. That is, in the invention according to claim 3, after the carbide is dispersed in a thin wire base having a finished diameter of 0.2 mm or more and 0.5 mm or less after a skin pass made of austenitic stainless steel, surface reduction is performed. Provided is a core material for performing skin pass drawing at a rate of 2.9% or more and 10% or less, or a method for manufacturing a guide wire made of a core material.

即ち、オーステナイト系ステンレス鋼でなる基地中に炭化物を分散させた後、減面率10%以下のスキンパス伸線を行うとしたので、0.2%耐力を向上することができる。減面率が10%を超えると、破断伸びの低下が著しくなり、4%以上の破断伸びが得られなくなり、一方、減面率が2.9%未満では耐力を得られないので、減面率は2.9%以上10%以下とした。これにより、浸炭時点で0.2%耐力が不足するような条件で浸炭した場合でも、スキンパス伸線後は炭化物の無い基地部分が加工硬化して耐力が飛躍的に向上し、耐力が大幅に改善される。スキンパス後の仕上げ寸法が0.2mm未満0.5mm超では、他の方法による方が好ましく、スキンパスの効果が期待できない。   That is, after dispersing carbide in a base made of austenitic stainless steel, skin pass wire drawing with a surface area reduction rate of 10% or less is performed, so that 0.2% proof stress can be improved. If the area reduction rate exceeds 10%, the elongation at break is significantly reduced, and a break elongation of 4% or more cannot be obtained. On the other hand, if the area reduction rate is less than 2.9%, the yield strength cannot be obtained. The rate was 2.9% to 10%. As a result, even when carburizing under the condition that 0.2% proof stress is insufficient at the time of carburizing, the base portion without carbides is work-hardened after skin pass drawing, and the proof stress is drastically improved and the proof stress is greatly increased. Improved. If the finished dimension after skin pass is less than 0.2 mm and more than 0.5 mm, the other method is preferable, and the effect of the skin pass cannot be expected.

さらに、請求項4に記載の発明においては、スキンパス伸線(請求項3に記載の製造を行った)後、先端部をテーパ形状に表面除去加工することにより表層の炭化物相を基部におけるよりも少ないかまたは全く無しとしたコア先端部を形成するコア材又はコア材からなるガイドワイヤの製造方法を提供する。   Furthermore, in the invention described in claim 4, after the skin pass wire drawing (manufacturing according to claim 3), the surface portion of the carbide layer is removed from the base portion by taper-shaped the tip portion than in the base portion. Provided is a method for manufacturing a core material or a guide wire made of a core material that forms a core tip with little or no core.

即ち、予め基部のコアに相当する径の長尺材の表面から浸炭したものをコア材又はコア材からなるガイドワイヤとしての形状寸法に仕上げることにより得られる。この場合、先端部に近いほど、すなわち外径寸法の小さい部分ほど浸炭後の炭化物分散領域が除去されるので、より柔軟性を増し、手元の剛性と先端部の柔軟性をいっそう効果的に両立させたコア材又はコア材からなるガイドワイヤが複合材料の素線を製造せずに低コストで得られる   That is, it is obtained by finishing a carburized material from the surface of a long material having a diameter corresponding to the core of the base portion in advance to a shape dimension as a core material or a guide wire made of the core material. In this case, the closer to the tip, that is, the smaller the outer diameter, the more the carbide dispersion region after carburization is removed, so the flexibility is increased, and the rigidity at hand and the flexibility of the tip are more effectively balanced. Core material or guide wire made of core material can be obtained at low cost without manufacturing composite wire

本発明においては、先細のコア先端部と先端部に続き直径が0.2mm以上0.5mm以下のコア基部とからなるコア材のコア基部の断面組織の表層においてオーステナイト系ステンレス鋼でなる基地中に炭化物を分散させ、コア基部の引張り試験における0.2%耐力が900MPa以上、2%ひずみ時1100MPa以上、および破断伸びが5%以上であるコア材とし、表層に剛性の高い炭化物相を分布させることにより、その体積割合に応じて、材料全体の剛性率を高くし、さらに内部を表層に比べて比較的柔軟とし、柔軟性を増したので、万が一無理な変形を受けても、破断しない。また、基部のコア材が比較的高い剛性を有し、かつ折損しないという効果を奏するものとなった。   In the present invention, in the base made of austenitic stainless steel in the surface layer of the cross-sectional structure of the core base portion of the core material composed of the core base portion having a diameter of 0.2 mm or more and 0.5 mm or less following the tip portion of the tapered core A core material having a 0.2% proof stress in a tensile test of the core base of 900 MPa or more, a strain of 1100 MPa or more at 2% strain, and a elongation at break of 5% or more is distributed on the surface layer. By increasing the rigidity of the whole material according to the volume ratio, and making the interior relatively flexible compared to the surface layer and increasing the flexibility, it will not break even if it is deformed by any chance. . Further, the core material of the base portion has a relatively high rigidity and has an effect that it does not break.

また、請求項2に記載の発明においては、前記コア先端部の断面組織中には炭化物が前記コア基部に比べて少ないかまたは全く無く、コア基部においては基地中に炭化物が分散させ、手元の剛性と先端部の柔軟性を両立させたコア材又はコア材からなるガイドワイヤとしたので、より使いやすいコア材又はコア材からなるガイドワイヤとなる。   Further, in the invention according to claim 2, the cross-sectional structure of the core tip portion has less or no carbide compared to the core base portion, and in the core base portion, the carbide is dispersed in the base, and at hand Since the guide wire is made of a core material or a core material that achieves both rigidity and flexibility at the tip, the guide wire is made of a core material or a core material that is easier to use.

かかるコア材又はコア材からなるガイドワイヤの製造にあたって、コア材の表層に剛性の高い炭化物相を分布させた後にスキンパス処理を施すことにより基部のコア材の耐力を飛躍的に高め、いっそう操作性を向上させるという効果を奏する。また、請求項4の発明においては、先端部の表面除去により、炭化物相を減じ、基部における剛性と折損しにくい特性を持ちつつ、手元の剛性と先端部の柔軟性をいっそう効果的に両立させたコア材又はコア材からなるガイドワイヤとしたので、より使いやすいコア材又はコア材からなるガイドワイヤとなる。   When manufacturing such a core material or a guide wire made of a core material, the yield strength of the base core material is dramatically increased by applying a skin pass treatment after distributing a rigid carbide phase on the surface layer of the core material, further operability. There is an effect of improving. Further, in the invention of claim 4, by removing the surface of the tip portion, the carbide phase is reduced, and the rigidity at the base portion and the property of being hard to break are achieved, and the rigidity of the hand and the flexibility of the tip portion are more effectively made compatible. Since the core wire or the guide wire made of the core material is used, the guide wire made of the core material or the core material is easier to use.

本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態を示すガイドワイヤのコア材の模式図である。図1に示すように、本発明のガイドワイヤの金属コア20は、比較的剛性の高い基部21と比較的柔軟な先端部22とを有してなる。また、基部21は表層部分に浸炭処理を施した後にスキンパス処理を施した合金であり、内部より表層部分の炭素含有量が多く、機械的性質は弾性変形領域における耐力および塑性変形時の加工硬化による剛性を兼ね備え、さらに所定の破断伸びをも有する。先端部22の断面においてはその表層および内部ともに基部より炭素含有量は少ないので、基部21よりも柔軟性がある。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a core material of a guide wire showing an embodiment of the present invention. As shown in FIG. 1, the metal core 20 of the guide wire of the present invention has a base portion 21 having a relatively high rigidity and a tip portion 22 that is relatively flexible. Further, the base 21 is an alloy in which the surface layer portion is carburized and then subjected to a skin pass treatment, and the surface portion has a higher carbon content than the inside, and the mechanical properties are proof stress in the elastic deformation region and work hardening during plastic deformation. And also has a predetermined elongation at break. In the cross section of the front end portion 22, both the surface layer and the inside thereof are less flexible than the base portion 21 because the carbon content is less than that of the base portion.

次に、本発明のコア材又はコア材からなるガイドワイヤを得る方法について述べる。かかるコア材又はコア材からなるガイドワイヤは、オーステナイト系ステンレス鋼線材を伸線して所定の線径まで伸線したのち、浸炭し、さらに必要に応じてスキンパス伸線すれば得られる。しかし、浸炭工程は不純物の混入、表面組織の安定性、均一さ等の点から真空浸炭によるのが好ましい。さらに、得られる線材の品質を一定なものとするためには、コイル状にして処理するバッチ処理では浸炭ムラの発生が懸念され、連続真空浸炭により浸炭するのが好ましい。そこで、本出願人が国際出願した特許文献4の金属線、金属帯もしくは金属パイプの連続真空浸炭方法およびその製造方法に記載の方法及び装置を用いて実施する。この製造装置を図5に示す。これは、特許文献4に記載されているものの一例である。   Next, a method for obtaining the core material of the present invention or a guide wire made of the core material will be described. Such a core material or a guide wire made of the core material can be obtained by drawing an austenitic stainless steel wire to a predetermined wire diameter, carburizing, and further performing skin pass drawing as necessary. However, the carburizing process is preferably performed by vacuum carburizing from the viewpoints of impurity contamination, surface texture stability, uniformity, and the like. Furthermore, in order to make the quality of the wire obtained constant, carburizing unevenness may occur in the batch processing in which the coil is processed, and it is preferable to perform carburizing by continuous vacuum carburizing. Then, it implements using the method and apparatus as described in the continuous vacuum carburizing method of the metal wire of the patent document 4 which this applicant applied for internationally, a metal strip, or a metal pipe, and its manufacturing method. This manufacturing apparatus is shown in FIG. This is an example of what is described in Patent Document 4.

図5は、本実施例のスキンパス前に、所定の線径まで伸線したオーステナイト系ステンレス鋼線材(以下「鋼線」という)7を浸炭処理するための連続真空浸炭装置乃至炉の断面説明図である。この連続真空浸炭炉1は、細長い真空容器9と、同容器内にその長手方向に沿って配置した3つの炉心管11,21,31と鋼線7を、これらの炉心管からなる炉心部に通す繰り出し巻き取り機構を有している。   FIG. 5 is a cross-sectional explanatory view of a continuous vacuum carburizing apparatus or furnace for carburizing austenitic stainless steel wire rod (hereinafter referred to as “steel wire”) 7 drawn to a predetermined wire diameter before the skin pass of this embodiment. It is. This continuous vacuum carburizing furnace 1 includes an elongated vacuum vessel 9, three core tubes 11, 21, 31 and a steel wire 7 arranged in the vessel along the longitudinal direction thereof in a core portion composed of these core tubes. It has a pay-out take-up mechanism.

各炉心管11,21,31は、両端に開口を有するする細長い形状で、2つの導入管12,13,22,23,32,33と一対の排気管14,14′,24,24′,34,34′を備えている。さらに、各炉心管にはその長手方向に沿って電気ヒータ10が設けられている。2つの導入管は、炉心管のほぼ中央に位置する中央導入管13,23,33と、中央導入管と炉心管入り口側のほぼ中央に位置する入り口側導入管12,22,32から構成され、入り口側導入管の両側に一定距離をおいて一対の排気管14,14′,24,24′,34,34′がそれぞれ配置されている。さらに、導入管及び排気管は真空容器9を貫いて炉心管に接続していて、それぞれ真空容器外から種々のガスを炉心管に導入し、真空容器外へ排出するようにされている。   Each core tube 11, 21, 31 has an elongated shape with openings at both ends, two introduction tubes 12, 13, 22, 23, 32, 33 and a pair of exhaust tubes 14, 14 ′, 24, 24 ′, 34, 34 '. Further, each furnace core tube is provided with an electric heater 10 along its longitudinal direction. The two introduction pipes are composed of central introduction pipes 13, 23, 33 located substantially in the center of the core tube, and inlet side introduction pipes 12, 22, 32 located almost at the center of the central introduction pipe and the reactor core inlet side. A pair of exhaust pipes 14, 14 ′, 24, 24 ′, 34, 34 ′ are arranged on both sides of the inlet side introduction pipe at a certain distance. Further, the introduction pipe and the exhaust pipe are connected to the reactor core tube through the vacuum vessel 9, and various gases are introduced from the outside of the vacuum vessel to the reactor core tube and discharged to the outside of the vacuum vessel.

排気管14,14′,24,24′,34,34′は、炉心管の長手方向に、入り口側導入管12,22,32の両側にそれぞれ配置され、入り口側炉心管に浸炭源ガスを導入することにより、これらの排気管の間の炉心管内は、浸炭ガスが占める浸炭部5を形成する。中央導入管13、23、33は、鋼線7の移動方向に関して、それぞれの入り口側導入管と両側の排気管の下流側に配置され、中央導入管にキャリアガスを導入することにより、この下流側の炉心管内はキャリアガスの充満する拡散部6となる。   The exhaust pipes 14, 14 ', 24, 24', 34, 34 'are arranged on both sides of the inlet side introduction pipes 12, 22, 32 in the longitudinal direction of the core tube, respectively, and supply the carburizing source gas to the inlet side core tube. By introducing, the inside of the core tube between these exhaust pipes forms a carburized portion 5 occupied by the carburizing gas. The central introduction pipes 13, 23, and 33 are arranged on the downstream side of the respective inlet side introduction pipes and the exhaust pipes on both sides with respect to the moving direction of the steel wire 7. The inside of the furnace tube on the side is a diffusion portion 6 filled with a carrier gas.

また、真空容器9は図示しない真空排気弁を設けた排気管8を有し、容器内を排気可能である。繰り出し巻き取り機構は、真空容器内で炉心管11,21,31の両側に配置した繰り出し側ボビン3と、巻き取り側ボビン4とを含む。これらボビン3,4は回転駆動され、ボビン3に巻いた鋼線7を繰り出し、炉心管11,21,31を通してボビン14に巻き取る。   Further, the vacuum container 9 has an exhaust pipe 8 provided with a vacuum exhaust valve (not shown), and the inside of the container can be exhausted. The pay-out take-up mechanism includes a pay-out side bobbin 3 and a take-up side bobbin 4 arranged on both sides of the core tube 11, 21, 31 in the vacuum vessel. These bobbins 3 and 4 are rotationally driven to feed out the steel wire 7 wound around the bobbin 3 and wind it around the bobbin 14 through the core tubes 11, 21 and 31.

かかる連続真空浸炭炉においては、例えば特許文献4の場合の例では、次のように運転する。先ず、鋼線7を、繰り出し側ボビン3から炉心管11,21,31に通して、巻き取り側ボビン4に接続する。次いで、排気管8から真空容器9全体を十分に排気する。真空容器内が10Pa以下に所定の真空度になると、ヒータ10に電流を流して、炉心管11,21,31を850℃〜1050℃の所定の温度に加熱する。   In such a continuous vacuum carburizing furnace, for example, in the example of Patent Document 4, the following operation is performed. First, the steel wire 7 is passed through the core tube 11, 21, 31 from the feeding side bobbin 3 and connected to the winding side bobbin 4. Next, the entire vacuum vessel 9 is sufficiently exhausted from the exhaust pipe 8. When the inside of the vacuum vessel reaches a predetermined vacuum level of 10 Pa or less, a current is supplied to the heater 10 to heat the core tubes 11, 21, 31 to a predetermined temperature of 850 ° C to 1050 ° C.

その後、入り口側導入管12,22,32からエチレンなどの浸炭源ガスを導入し、中央導入管13,23,33から窒素またはアルゴンなどのキャリアガスを導入し、同時に、排気管8の真空排気弁を調節して、真空容器内9内の真空を制御することにより、炉心管11,21,31内部の圧力を5kPa以下、好ましくは1〜3kPaまで復圧する。かかる雰囲気調整の後に、繰り出し巻き取り機構を作動し、鋼線7を炉心管11,21,31を通過させて、ボビン4に巻き取る。必要量の鋼線が得られたら、炉を冷却し、真空容器を真空破壊し、ボビンごと鋼線7を炉から取り出し、浸炭した鋼線が得られる。   Thereafter, a carburizing source gas such as ethylene is introduced from the inlet side introduction pipes 12, 22 and 32, and a carrier gas such as nitrogen or argon is introduced from the central introduction pipes 13, 23 and 33, and at the same time, the exhaust pipe 8 is evacuated. By adjusting the valve to control the vacuum inside the vacuum vessel 9, the pressure inside the core tube 11, 21, 31 is restored to 5 kPa or less, preferably 1 to 3 kPa. After such an atmosphere adjustment, the take-up winding mechanism is operated, and the steel wire 7 is wound around the bobbin 4 through the core tubes 11, 21, 31. When the required amount of steel wire is obtained, the furnace is cooled, the vacuum vessel is vacuum broken, the bobbin and the steel wire 7 are taken out of the furnace, and a carburized steel wire is obtained.

浸炭源ガスは、850℃〜1050℃に加熱された各炉心管に、入り口側導入管12,22,32と排気管14,14′,24,24′,34,34′から連続的に導入排気されることによって、真空浸炭可能な、圧力及び組成ガスの一定な浸炭雰囲気として機能する。この雰囲気は、そこを通過する鋼線7を浸炭させる。浸炭された鋼線7は、続いて、各炉心管の加熱された拡散部6を通る。この拡散部には浸炭源となるガスが無く、鋼線7の補油面から浸炭された炭素が合金断面内部に拡散する。このように、鋼線をゆっくり移動させながら、一つの炉心管11で浸炭・拡散を行い、さらに炉心管21,31で浸炭・拡散を繰り返し浸炭を行うことができる他、鋼線の移動速度や浸炭源ガスの濃度等を調整し、さらには、浸炭深さや、浸炭量等を調節でき、種々の浸炭・拡散条件を得られる。   The carburizing source gas is continuously introduced into each core tube heated to 850 ° C. to 1050 ° C. from the inlet side introduction pipes 12, 22, 32 and the exhaust pipes 14, 14 ′, 24, 24 ′, 34, 34 ′. By being exhausted, it functions as a constant carburizing atmosphere of pressure and composition gas that can be vacuum carburized. This atmosphere causes the steel wire 7 passing therethrough to be carburized. The carburized steel wire 7 then passes through the heated diffusion section 6 of each core tube. There is no gas which becomes a carburizing source in this diffusion part, and carbon carburized from the oil supply surface of the steel wire 7 diffuses inside the alloy cross section. Thus, while slowly moving the steel wire, carburizing / diffusion can be performed with one core tube 11 and carburizing / diffusion can be repeatedly performed with the core tubes 21 and 31, By adjusting the concentration of the carburizing source gas and the like, and further adjusting the carburizing depth and the amount of carburizing, various carburizing / diffusion conditions can be obtained.

本実施例では、浸炭時間及び拡散時間の調整の容易さの観点から、炉心管11の入り口側導入管12は閉塞し、中央導入管13より浸炭ガスを導入し、炉心管21,31のそれぞれの入り口側導入管22,32を閉塞し、中央導入管23,33にキャリアガスを導入するようにする。また、炉心管11の入り口側排気管14と炉心管21の入り口側排気管24を使用し、他の排気管を使用しないようにする。これにより、炉心管11で浸炭部とし、炉心管21,31を拡散部として用いた。   In the present embodiment, from the viewpoint of easy adjustment of the carburizing time and the diffusion time, the inlet side introduction pipe 12 of the core tube 11 is closed, and the carburizing gas is introduced from the central introduction pipe 13 to each of the core pipes 21 and 31. The inlet side introduction pipes 22 and 32 are closed, and the carrier gas is introduced into the central introduction pipes 23 and 33. Further, the inlet side exhaust pipe 14 of the core tube 11 and the inlet side exhaust pipe 24 of the core tube 21 are used, and other exhaust pipes are not used. Thus, the core tube 11 was used as a carburizing portion, and the core tubes 21 and 31 were used as diffusion portions.

次に、本発明のコア材又はコア材からなるガイドワイヤの性能について述べる。図2は、オーステナイト系ステンレス鋼線材であるSUS304及びSUS316Lを伸線して所定の線径まで伸線したのち、前述した連続真空浸炭炉1を用いて浸炭し、減面率2.9%以上10%以下でスキンパス伸線して得られた本発明品1,2のコア材又はコア材からなるガイドワイヤ(1−2,1−3,1−4,2−2,2−3,2−4)と、減面率2.9%未満または10%を越える減面率でスキンパス伸線した比較鋼線1,2(1−0,1−1,1−5,2−0,2−1,2−5)、比較例として、各種線径のSUS304,SUS316Lの線(比較例1〜7)の引当素線の材種・線径・仕上状態・当該線径を得るまでの伸線加工による累積減面率、浸炭・拡散条件、スキンパス条件及び引張試験結果を示すものである。   Next, the performance of the core material of the present invention or the guide wire made of the core material will be described. FIG. 2 shows that SUS304 and SUS316L, which are austenitic stainless steel wires, are drawn to a predetermined wire diameter and then carburized using the above-described continuous vacuum carburizing furnace 1 to reduce the area reduction rate to 2.9% or more. The core material of the products 1 and 2 of the present invention obtained by drawing the skin pass at 10% or less or a guide wire made of the core material (1-2, 1-3, 1-4, 2-2, 2-3, 2 -4) and comparative steel wires 1, 2 (1-0, 1-1, 1-5, 2-0, 2) with skin pass drawing at a surface reduction rate of less than 2.9% or more than 10% -1, 2-5) As a comparative example, the SUS304 and SUS316L wires of various wire diameters (Comparative Examples 1 to 7), the wire type, the wire diameter, the finished state, and the elongation until the wire diameter is obtained. It shows the cumulative area reduction by wire processing, carburizing / diffusion conditions, skin pass conditions and tensile test results.

引当素線は浸炭処理を行う前の状態の線であり、本発明品、比較鋼線および比較例1〜4は線の仕上状態は溶体化であり、いわゆる軟質線である。比較例5〜7の引当素線はある寸法で溶体化されたのち、各減面率に相当する伸線を行い素線線径に仕上げたものであり、いわゆる硬質線である。浸炭は前述した真空浸炭炉により実施したが、鋼線が浸炭源ガス雰囲気内を通過した時間を便宜的に浸炭時間とし、浸炭源ガスのない雰囲気内を通過した時間を拡散時間とした。本発明品及び比較鋼線では浸炭後にスキンパス伸線を図に示す減面率で施した。なお、比較例1は特願2004−376822の実施例における径0.1mmの結果である。比較例1以外は全て径0.2mm以上の結果である。比較例1乃至3は浸炭後スキンパス伸線を行わないで高剛性を狙った結果を示し、比較例4〜7には浸炭及び浸炭後のスキンパスを行わないでコア材又はコア材からなるガイドワイヤを製作した結果を示す。   The provision wire is a wire in a state before the carburizing treatment, and the finished product of the present invention, the comparative steel wire, and Comparative Examples 1 to 4 are so-called soft wires. The provision strands of Comparative Examples 5 to 7 are so-called hard wires that are formed into a certain size and then drawn into wire diameters corresponding to the respective area reduction ratios. Carburization was performed in the vacuum carburizing furnace described above, but the time when the steel wire passed through the carburizing source gas atmosphere was defined as the carburizing time for convenience, and the time when it passed through the atmosphere without the carburizing source gas was defined as the diffusion time. In the product of the present invention and the comparative steel wire, skin pass wire drawing was performed after carburizing at a reduction in area as shown in the figure. In addition, the comparative example 1 is a result of the diameter of 0.1 mm in the Example of Japanese Patent Application No. 2004-376822. All results except for Comparative Example 1 have a diameter of 0.2 mm or more. Comparative Examples 1 to 3 show the results of aiming for high rigidity without performing skin pass drawing after carburizing, and Comparative Examples 4 to 7 show a guide wire made of a core material or a core material without performing carburization and skin pass after carburizing. The result of making is shown.

図2に示すように、本発明品1,比較鋼線1では、SUS304(JIS G 4308)相当の径0.36mmのオーステナイト系ステンレス鋼線を980℃の浸炭温度で浸炭時間5分+拡散時間10分の条件で浸炭した。この処理時間は同じ装置で真空浸炭操業した径0.1mmの比較例1に対して2/3程度である。本発明品1及び比較鋼線1のスキンパス処理前の断面腐食組織の顕微鏡写真を図3(a)に示す。図3(a)に示すように、素地のオーステナイト組織中に、外周部が微細な炭化物の分散している領域が内側と区別される。黒い点が炭化物である。炭化物は外周に多く、芯側で少なくなっており、炭化物の密度が外周から芯に向かって漸減している。炭化物の大きさは0.5μm以下である。炭化物の大きさは等価円直径で表す粒径が2μm以下であるのが好ましい。   As shown in FIG. 2, in the inventive product 1 and the comparative steel wire 1, an austenitic stainless steel wire having a diameter of 0.36 mm corresponding to SUS304 (JIS G 4308) was carburized at 980 ° C. at a carburizing temperature of 5 minutes + diffusion time. Carburizing was performed for 10 minutes. This processing time is about 2/3 with respect to Comparative Example 1 having a diameter of 0.1 mm that is vacuum carburized by the same apparatus. A micrograph of the cross-sectional corrosion structure of the product 1 of the present invention and the comparative steel wire 1 before skin pass treatment is shown in FIG. As shown in FIG. 3A, in the austenite structure of the substrate, a region where fine carbides are dispersed in the outer peripheral portion is distinguished from the inside. Black dots are carbides. Carbide is much on the outer periphery and decreasing on the core side, and the density of carbide gradually decreases from the outer periphery toward the core. The size of the carbide is 0.5 μm or less. As for the size of the carbide, it is preferable that the particle diameter represented by an equivalent circular diameter is 2 μm or less.

さらに、比較鋼線1及び本発明品1を減面率なし、2.0,2.9,4.4,9.8,13.4%のスキンパス伸線条件で伸線した。図2に示すように、線径が0.1mmと細い比較例1においては、浸炭後のスキンパスなしでも0.2%耐力、2%歪応力が1000以上であり、かつ、伸びが7.7%であるのに対して、浸炭のみの線径が太い比較例2,比較鋼線1−0は、伸びが5.7〜18.1であるのに対し、耐力、応力が低くなる。また、浸炭量を増せば耐力、応力が高くなるが、伸びが小さくなる傾向がある。   Furthermore, the comparative steel wire 1 and the product 1 of the present invention were drawn under the skin pass drawing conditions of 2.0, 2.9, 4.4, 9.8, and 13.4% without any reduction in area. As shown in FIG. 2, in Comparative Example 1 having a thin wire diameter of 0.1 mm, 0.2% proof stress, 2% strain stress is 1000 or more, and elongation is 7.7 even without a skin pass after carburizing. In contrast, Comparative Example 2 and Comparative Steel Wire 1-0, in which the wire diameter of carburized only is thick, are 5.7 to 18.1, whereas the yield strength and stress are low. Further, increasing the carburizing amount increases the yield strength and stress, but tends to decrease the elongation.

一方、浸炭後にスキンパスを行った1−1乃至1−5によれば、スキンパス減面率が大きくなるに従って、0.2%耐力及び2%歪応力が高くなり、逆に伸びは小さくなる。スキンパス処理後にはスキンパス前に比べて、0.2%耐力および2%歪応力がそれぞれ約2倍および1.5倍程度に上昇し、伸びは約半分に減少し、その結果本発明品1−3および1−4においては0.2%耐力が1000MPa以上、2%歪応力が1100MPa以上でありかつ、伸び5%以上を確保でき、径0.1mmの比較例1に匹敵する剛性と伸び特性の径0.36mmの線が、比較例1の浸炭条件に近い条件で得られた。特に本発明品1−3では耐力1043MPa、2%歪応力が1163MPaという高レベルでありながら12%もの高い破断伸びが同時に得られた。尚、減面率10%を超えている比較鋼線1−5においては伸びの低下が著しい。   On the other hand, according to 1-1 to 1-5 in which skin pass was performed after carburizing, the 0.2% proof stress and 2% strain stress increased and the elongation decreased as the skin pass area reduction rate increased. After the skin pass treatment, the 0.2% proof stress and 2% strain stress increased by about 2 times and 1.5 times, respectively, and the elongation decreased by about half compared to before the skin pass. In 3 and 1-4, the 0.2% proof stress is 1000 MPa or more, the 2% strain stress is 1100 MPa or more, the elongation is 5% or more, and the rigidity and elongation characteristics comparable to those of Comparative Example 1 having a diameter of 0.1 mm. A wire having a diameter of 0.36 mm was obtained under conditions close to the carburizing conditions of Comparative Example 1. In particular, the inventive product 1-3 was able to obtain a breaking elongation as high as 12% at the same time while the yield strength was 1043 MPa and the 2% strain stress was a high level of 1163 MPa. Incidentally, in the comparative steel wire 1-5 exceeding the area reduction rate of 10%, the decrease in elongation is remarkable.

次にオーステナイト系ステンレス鋼のSUS316L(JIS G 4308)相当の径0.36mmの線を用いた場合について述べる。図2に示すように、980℃の浸炭温度で浸炭時間10分+拡散時間20分の条件で浸炭した。この処理時間は同じ装置で真空浸炭操業した径0.1mmの比較例1に対して約1.3倍である。本発明品2、比較鋼線2のスキンパス前の断面腐食組織の顕微鏡写真を図3(b)に示す。前述した本発明品1及び比較鋼線1の場合と同様、外周部の浸炭領域が認められる。   Next, a case where a wire having a diameter of 0.36 mm corresponding to SUS316L (JIS G 4308) of austenitic stainless steel is used will be described. As shown in FIG. 2, carburization was performed at a carburizing temperature of 980 ° C. under conditions of carburizing time 10 minutes + diffusion time 20 minutes. This processing time is about 1.3 times that of Comparative Example 1 having a diameter of 0.1 mm that was vacuum carburized with the same apparatus. A micrograph of the cross-sectional corrosion structure of the present invention product 2 and the comparative steel wire 2 before the skin pass is shown in FIG. As in the case of the product 1 of the present invention and the comparative steel wire 1 described above, a carburized region in the outer periphery is observed.

前述したと同様に、比較鋼線2及び本発明品2を減面率なし、2.0,2.9,4.0,6.7,11.3%のスキンパス伸線条件で伸線した。図2に示すように、浸炭のみの線径が太い比較例3,比較鋼線2−0は、伸びが3.2〜20.0であるのに対し、耐力、応力が低くなる。また、浸炭量を増せば耐力、応力が高くなるが、伸びが小さくなる傾向がある。   As described above, the comparative steel wire 2 and the product 2 of the present invention were drawn under the skin pass drawing conditions of 2.0, 2.9, 4.0, 6.7, and 11.3% with no area reduction. . As shown in FIG. 2, the comparative example 3 and the comparative steel wire 2-0 having a thick wire diameter of only carburized have an elongation of 3.2 to 20.0, whereas the proof stress and the stress are low. Further, increasing the carburizing amount increases the yield strength and stress, but tends to decrease the elongation.

浸炭後にスキンパスを行った2−1乃至2−5によれば、スキンパス減面率が大きくなるに従って、0.2%耐力及び2%歪応力が高くなり、逆に伸びは小さくなる。スキンパス処理後にはスキンパス前に比べて、0.2%耐力および2%歪応力がそれぞれ約2倍および1.5倍程度に上昇し、伸びは約半分以下に減少し、その結果本発明品2−3および2−4においては0.2%耐力が900MPa以上、2%歪応力が1100MPa以上でありかつ、伸び5%以上を確保でき、径0.1mmの比較例1に匹敵する剛性と伸び特性の径0.36mmの線が、比較例1の浸炭条件に近い条件で得られた。特に本発明品2−3においては、996MPaの耐力、1132MPaの2%歪応力を得ながら、破断伸び10.9%もの伸びが得られた。本発目品2−4においては0.2%耐力と2%歪応力がさらに少しアップし、破断伸びは逆に減少したとはいうものの依然として9%という高い伸びが得られた。尚、前述したと同様に、減面率10%を超える比較鋼線2−5においては伸びが大幅に低下する傾向が見られた。   According to 2-1 to 2-5 in which the skin pass was performed after carburizing, the 0.2% proof stress and the 2% strain stress increase as the skin pass area reduction rate increases, and the elongation decreases on the contrary. After skin pass treatment, the 0.2% proof stress and 2% strain stress increased to about 2 times and 1.5 times, respectively, and the elongation decreased to about half or less, and as a result, the product of the present invention 2 In -3 and 2-4, the 0.2% proof stress is 900 MPa or more, the 2% strain stress is 1100 MPa or more, and an elongation of 5% or more can be secured, and the rigidity and elongation comparable to those of Comparative Example 1 having a diameter of 0.1 mm. A line having a characteristic diameter of 0.36 mm was obtained under conditions close to the carburizing conditions of Comparative Example 1. In particular, in the product 2-3 of the present invention, an elongation of 10.9% at break elongation was obtained while obtaining a yield strength of 996 MPa and a 2% strain stress of 1132 MPa. In the present product 2-4, the 0.2% proof stress and the 2% strain stress were further increased, and the elongation at break was reduced, but a high elongation of 9% was still obtained. In addition, like the above-mentioned, in the comparative steel wire 2-5 which exceeds 10% of area reduction rate, the tendency for elongation to fall significantly was seen.

これらの結果をコア材又はコア材からなるガイドワイヤとして適用するにあたっては、比較鋼線1−2(減面率2.9%)から比較構成1−5(減面率13.4%)間、また、比較鋼線2−2(減面率2.9%)から比較構成2−5(減面率11.3%)間とするのがコア材又はコア材からなるガイドワイヤとして好ましい。そこで、本発明では、連続真空浸炭後のスキンパス加工に当たって、減面率2.9%以上10%以下を最も好ましい範囲とした。   In applying these results as a core material or a guide wire made of a core material, between comparative steel wire 1-2 (area reduction rate 2.9%) and comparative configuration 1-5 (area reduction rate 13.4%) Moreover, it is preferable as a guide wire which consists of a core material or a core material to make between comparative steel wire 2-2 (area reduction rate 2.9%) and comparative structure 2-5 (area reduction rate 11.3%). Therefore, in the present invention, in the skin pass processing after the continuous vacuum carburization, the area reduction rate of 2.9% or more and 10% or less is the most preferable range.

なお、比較例について詳述すると、前述したように、線径が0.2mm以上の場合にスキンパス処理を行わずに比較例1の線径0.1mmの場合に匹敵する高剛性を同じ処理時間で得ようとすると、より薄い表層浸炭部をより高剛性にする必要があり、拡散時間を減らさざるを得なくなる。比較例2および3はこの拡散時間の割合を減らした事例である。比較例2は、SUS304の線径0.36mmの線を、浸炭温度980℃、浸炭時間20分+拡散時間10分の条件で、すなわち拡散時間を浸炭時間の半分にして浸炭した。この処理時間は径0.1mmの比較例1に対して約1.3倍である。2%歪応力が1087MPa、伸びは5.7%が得られているが、0.2%耐力は703MPaと低い。比較例3は、SUS316Lの線径0.5mmの線を浸炭温度980℃、浸炭時間10分+拡散時間0分の条件で、すなわち拡散時間を無くして浸炭した。この処理時間は径0.1mmの比較例1に対して約半分である。2%歪応力が1048MPaに達する程度であったが伸びが3.2%と低く、0.2%耐力も比較例2と同様863MPaしか得られなかった。   The comparative example will be described in detail. As described above, when the wire diameter is 0.2 mm or more, the skin treatment is not performed and the high rigidity comparable to that of the comparative example 1 having the wire diameter of 0.1 mm is the same processing time. If it is going to be obtained by this, it is necessary to make the thinner surface carburized portion more rigid, and the diffusion time must be reduced. Comparative examples 2 and 3 are examples in which the ratio of the diffusion time is reduced. In Comparative Example 2, a SUS304 wire having a wire diameter of 0.36 mm was carburized under the conditions of a carburizing temperature of 980 ° C., a carburizing time of 20 minutes + a diffusion time of 10 minutes, that is, with the diffusion time being half of the carburizing time. This processing time is about 1.3 times that of Comparative Example 1 having a diameter of 0.1 mm. The 2% strain stress is 1087 MPa and the elongation is 5.7%, but the 0.2% proof stress is as low as 703 MPa. In Comparative Example 3, SUS316L wire having a wire diameter of 0.5 mm was carburized under the conditions of a carburizing temperature of 980 ° C., a carburizing time of 10 minutes + a diffusion time of 0 minutes, that is, with no diffusion time. This processing time is about half that of Comparative Example 1 having a diameter of 0.1 mm. Although the 2% strain stress reached 1048 MPa, the elongation was as low as 3.2%, and the 0.2% proof stress was only 863 MPa as in Comparative Example 2.

比較例4〜7は浸炭を行わない線の事例である。比較例4はSUS304の径0.36mmの溶体化仕上げ状態の線である。伸びは高いが剛性は全く無い。比較例5は比較例4と同じSUS304の硬質仕上げ線であるが、伸線加工の減面率を増すことによって非常に剛性の高い線が得られる事例であるが、伸びが2.4%と低い。中間的な減面率によって、これらの剛性と伸びの調整を行えることは一般的に知られているが、比較例6および7にSUS316Lにおけるそれらの事例を示すが、0.2%耐力が1000MPa以上、2%歪が1100MPa以上で、伸びが5%以上を確保できるものは無い。   Comparative Examples 4 to 7 are examples of lines that are not carburized. Comparative Example 4 is a solution-finished line of SUS304 having a diameter of 0.36 mm. Elongation is high but there is no rigidity. Comparative Example 5 is the same hard finish line of SUS304 as Comparative Example 4, but it is an example where a very rigid line can be obtained by increasing the area reduction rate of wire drawing, but the elongation is 2.4%. Low. Although it is generally known that these rigidity and elongation can be adjusted by an intermediate area reduction rate, those examples in SUS316L are shown in Comparative Examples 6 and 7, but 0.2% proof stress is 1000 MPa. As described above, there is no one that can secure a 2% strain of 1100 MPa or more and an elongation of 5% or more.

以上述べた結果を特に0.2%耐力と破断伸びに関して整理したものを図4に示す。本発明品1及び比較鋼線1は、白抜き三角形でプロットされており、左上からスキンパス前、すなわち浸炭のみで、以下右下へ向かって本発明品及び比較鋼線の1−0から1−5まで太い実線で結ばれている。本発明品2及び比較鋼線2の2−0から2−5は同様に白抜き四角形でプロットされ同様に太い実線で結ばれている。線径0.1mmの比較例1は大きな黒丸で図の中央付近にプロットされている。   FIG. 4 shows a summary of the results described above with respect to 0.2% proof stress and elongation at break. The product 1 of the present invention and the comparative steel wire 1 are plotted with white triangles, from the upper left to before the skin pass, that is, only carburizing, and from the 1-0 to the 1- Connected up to 5 with a thick solid line. 2-0 to 2-5 of the product 2 of the present invention and the comparative steel wire 2 are similarly plotted with white squares and similarly connected with thick solid lines. Comparative Example 1 having a wire diameter of 0.1 mm is a large black circle plotted near the center of the figure.

一方、比較例2および3は小さな黒丸でプロットされた4点中の右下2点に対応し、実施例1および2のスキンパス前のものと併せて、浸炭のみの場合として細い実線で結ばれている。浸炭後のスキンパス伸線を行わずに浸炭条件の調整だけで0.2%耐力を増加しようとすると1000MPaに達する前に破断伸びが4%以下に低下するので、効果が得られない。比較例4〜7は白抜き丸でプロットされ、一点鎖線で結ばれている。左上の最も伸びの高い点は溶体化したままの比較例4であり、以下伸線減面率が大きくなるに従って0.2%耐力が上昇し、破断伸びは低下するので、比較例7、6、5の順に右下へプロットされている。これらも先に述べた浸炭のみの場合と同様に、0.2%耐力が1000MPaに達するところで破断伸びが4%を割り込み始めるので、効果を得るのは極めて困難である。   On the other hand, Comparative Examples 2 and 3 correspond to the lower right two points among the four points plotted with small black circles, and are connected with a thin solid line in the case of carburizing alone in combination with the ones of Examples 1 and 2 before the skin pass. ing. If an attempt is made to increase the 0.2% yield strength only by adjusting the carburizing conditions without performing the skin pass drawing after carburizing, the elongation at break decreases to 4% or less before reaching 1000 MPa, so that no effect is obtained. Comparative Examples 4 to 7 are plotted with white circles and connected with an alternate long and short dash line. The point with the highest elongation in the upper left is Comparative Example 4 in the form of a solution. Hereinafter, 0.2% proof stress increases and elongation at break decreases as the wire drawing area reduction ratio increases, so Comparative Examples 7 and 6 Plotted in the order of 5 to the lower right. As in the case of carburizing alone described above, since the elongation at break begins to interrupt 4% when the 0.2% proof stress reaches 1000 MPa, it is extremely difficult to obtain the effect.

本発明品及び比較鋼線を比較例2および3と比較すると、線径が太い場合、比較例1における径0.1mmの(浸炭+拡散)時間の2倍以内のほぼ同等の処理時間では得られない領域、すなわち伸び4%以上、より好ましくは5%以上でかつ0.2%耐力が1000MPa以上が得られているという違いがある。一方、溶体化線を浸炭せずに伸線を重ねるだけで剛性を得た比較例4〜7との比較においても同様であった。従って本実施例においてはオーステナイト組織中の表層に分布する炭化物と、スキンパス伸線を組み合わせることが有効に作用していることがわかる。   When the product of the present invention and the comparative steel wire are compared with Comparative Examples 2 and 3, when the wire diameter is large, it can be obtained in approximately the same processing time within twice the (carburizing + diffusion) time of 0.1 mm in Comparative Example 1. There is a difference that an area that cannot be obtained, that is, an elongation of 4% or more, more preferably 5% or more and a 0.2% proof stress of 1000 MPa or more is obtained. On the other hand, it was the same in comparison with Comparative Examples 4 to 7 in which rigidity was obtained only by overlapping the wire drawing without carburizing the solution wire. Therefore, in this example, it can be seen that the combination of the carbide distributed in the surface layer in the austenite structure and the skin pass drawing works effectively.

さらに、従来かかる製法でのコア材又はコア材からなるガイドワイヤがなかったが、本発明により、直径が0.2mm以上0.5mm以下でコア基部の引張り試験における0.2%耐力が900MPa以上、2%ひずみ時1100MPa以上、および破断伸びが5%以上のコア材又はコア材からなるガイドワイヤを実現したのである。   Further, there has been no core material or a guide wire made of the core material in the conventional manufacturing method, but according to the present invention, the 0.2% proof stress in the core base tensile test is 900 MPa or more when the diameter is 0.2 mm or more and 0.5 mm or less. A guide wire made of a core material or a core material having a strain at 2% strain of 1100 MPa or more and a breaking elongation of 5% or more was realized.

なお、本実施の形態においては、代表的なオーステナイト系ステンレス鋼のSUS304およびSUS316Lを基地とする線の表面に炭化物を分散させて、スキンパス伸線加工を施すことについて述べたが、オーステナイト系ステンレス鋼であれば他のどの鋼種でも可能であり、さらには、表層部に炭化物を分散させることができ、それによって所定の引張り強度と伸びが確保できるものであれば他の金属線にも応用できることはいうまでもない。例えば、Fe−Mn−Si系合金などに応用しても良い。   In the present embodiment, it has been described that the carbide is dispersed on the surface of a wire based on SUS304 and SUS316L, which are typical austenitic stainless steels, and the skin pass wire drawing is performed. Any other steel grade can be used, and furthermore, carbide can be dispersed in the surface layer portion, so that it can be applied to other metal wires as long as a predetermined tensile strength and elongation can be secured. Needless to say. For example, the present invention may be applied to an Fe—Mn—Si alloy.

本発明の実施の形態を示すガイドワイヤのコア材の模式図である。It is a schematic diagram of the core material of the guide wire which shows embodiment of this invention. 本発明品、比較鋼線及び比較例の素線、浸炭条件、スキンパス条件及び引張試験結果を示す図である。It is a figure which shows the strand of this invention product, a comparative steel wire, and a comparative example, carburizing conditions, skin pass conditions, and a tensile test result. (a)は本発明品1及び比較鋼線1、(b)は本発明品2及び比較鋼線2おけるスキンパス処理前の断面腐食組織の顕微鏡写真である。(A) is a micrograph of a cross-sectional corrosion structure before skin pass treatment in the product 1 of the present invention and the comparative steel wire 1, and (b) in the product 2 of the present invention and the comparative steel wire 2. 本発明の本発明品、比較鋼線及び比較例の試験結果のうち、0.2%耐力および破断伸びの結果を示すグラフである。It is a graph which shows the result of 0.2% yield strength and breaking elongation among the test results of the product of the present invention, the comparative steel wire, and the comparative example. 本発明品の実施の形態で述べたコア材又はコア材からなるガイドワイヤ用ステンレス線を製造するための連続真空浸炭装置(炉)の断面説明図である。It is sectional explanatory drawing of the continuous vacuum carburizing apparatus (furnace) for manufacturing the stainless steel wire for guide wires which consists of a core material described in embodiment of this invention product or a core material.

符号の説明Explanation of symbols

20 コア(材)
21 (コア)基部
22 (コア)先端部
20 Core (material)
21 (core) base 22 (core) tip

Claims (5)

先細のコア先端部と先端部に続き直径が0.2mm以上0.5mm以下のコア基部とからなるコア材であって、少なくとも前記コア基部の断面組織の表層においてオーステナイト系ステンレス鋼でなる基地中に炭化物が分散し、前記コア基部の引張り試験における0.2%耐力が900MPa以上、2%ひずみ時1100MPa以上、および破断伸びが5%以上であることを特徴とするコア材又はコア材からなるガイドワイヤ。   A core material comprising a tapered core tip and a core base having a diameter of 0.2 mm or more and 0.5 mm or less following the tip, and at least in the base layer made of austenitic stainless steel in the surface layer of the cross-sectional structure of the core base The core material or core material is characterized in that the carbide is dispersed in the core base, the 0.2% proof stress in the tensile test of the core base is 900 MPa or more, 1100 MPa or more at 2% strain, and the elongation at break is 5% or more. Guide wire. 前記コア先端部の断面組織中には炭化物が前記コア基部に比べて少ないかまたは全く無く、コア基部においては基地中に炭化物が分散していることを特徴とする請求項1に記載のコア材又はコア材からなるガイドワイヤ。   2. The core material according to claim 1, wherein the cross-sectional structure of the core tip portion has less or no carbide in comparison with the core base portion, and the core base portion has carbide dispersed in the matrix. Or a guide wire made of a core material. オーステナイト系ステンレス鋼でなるスキンパス後の仕上げ直径が0.2mm以上0.5mm以下となるような細線の基地中に炭化物を分散させた後、減面率2.9%以上10%以下のスキンパス伸線を行うことを特徴とするコア材又はコア材からなるガイドワイヤの製造方法。   After dispersing carbide in a thin wire base with a finished diameter of 0.2 mm to 0.5 mm after skin pass made of austenitic stainless steel, a skin pass elongation of 2.9% to 10% in area reduction A method of manufacturing a guide wire comprising a core material or a core material, wherein the wire is formed. 請求項3に記載の製造を行った後、先端部をテーパ形状に表面除去加工することにより表層の炭化物相を基部におけるよりも少ないかまたは全く無しとしたコア先端部を形成することを特徴とするコア材又はコア材からなるガイドワイヤの製造方法。   After the manufacture according to claim 3, the tip of the core is subjected to surface removal processing into a taper shape, thereby forming a core tip having less or no surface carbide phase than in the base. A core material or a guide wire manufacturing method comprising the core material. 請求項3又は/及び請求項4記載の製造方法により、製造されたことを特徴とする請求項1又は2記載のコア材又はコア材からなるガイドワイヤ。
A guide wire comprising the core material or the core material according to claim 1 or 2, wherein the guide wire is manufactured by the manufacturing method according to claim 3 or / and 4.
JP2006161891A 2006-06-12 2006-06-12 Core material or guide wire composed of core material and its manufacturing method Withdrawn JP2007330288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161891A JP2007330288A (en) 2006-06-12 2006-06-12 Core material or guide wire composed of core material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161891A JP2007330288A (en) 2006-06-12 2006-06-12 Core material or guide wire composed of core material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007330288A true JP2007330288A (en) 2007-12-27

Family

ID=38930336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161891A Withdrawn JP2007330288A (en) 2006-06-12 2006-06-12 Core material or guide wire composed of core material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007330288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172229A (en) * 2008-01-25 2009-08-06 Kanai Hiroaki Guide wire core, manufacturing method of this core, and medical guide wire using this core
JP2011010900A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Medical guide wire, method of manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP2011041612A (en) * 2009-08-19 2011-03-03 Patentstra Co Ltd Medical guide wire, method of manufacturing the same and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter
EP2298488A1 (en) * 2009-09-17 2011-03-23 PatentStra Co. Ltd. A medical guide wire, a method of making the same, an assembly of balloon catheter and guiding catheter combined with the medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire
JP2011206543A (en) * 2011-04-27 2011-10-20 Patentstra Co Ltd Medical guide wire and method for manufacturing the same
JP2012205793A (en) * 2011-03-30 2012-10-25 Japan Lifeline Co Ltd Medical guide wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172229A (en) * 2008-01-25 2009-08-06 Kanai Hiroaki Guide wire core, manufacturing method of this core, and medical guide wire using this core
JP2011010900A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Medical guide wire, method of manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP2011041612A (en) * 2009-08-19 2011-03-03 Patentstra Co Ltd Medical guide wire, method of manufacturing the same and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter
EP2298488A1 (en) * 2009-09-17 2011-03-23 PatentStra Co. Ltd. A medical guide wire, a method of making the same, an assembly of balloon catheter and guiding catheter combined with the medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire
US8211039B2 (en) 2009-09-17 2012-07-03 Patentstra Co., Ltd. Medical guide wire, a method of making the same, an assembly of balloon catheter and guiding catheter combined with the medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire
JP2012205793A (en) * 2011-03-30 2012-10-25 Japan Lifeline Co Ltd Medical guide wire
JP2011206543A (en) * 2011-04-27 2011-10-20 Patentstra Co Ltd Medical guide wire and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP1674124B1 (en) Catheter and method of producing the same
US6328822B1 (en) Functionally graded alloy, use thereof and method for producing same
JP4719320B2 (en) High strength extra fine steel wire and method for producing the same
JP2007330288A (en) Core material or guide wire composed of core material and its manufacturing method
US20030120181A1 (en) Work-hardened pseudoelastic guide wires
JP2008184643A (en) Method for manufacturing high-strength ultra-fine flat wire, and high-strength metal ultra-fine flat wire obtained using the manufacturing method
KR101065519B1 (en) METHOD FOR PRODUCING Cr-CONTAINING NICKEL-BASED ALLOY PIPE AND Cr-CONTAINING NICKEL-BASED ALLOY PIPE
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
US8211039B2 (en) Medical guide wire, a method of making the same, an assembly of balloon catheter and guiding catheter combined with the medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire
JP5304323B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP5386088B2 (en) Guide wire core, method for manufacturing the core, and medical guide wire using the core
JP2005232549A (en) High-strength pc steel wire superior in twisting characteristics
CN112840044B (en) Hot-rolled wire
JP4851878B2 (en) Tubular knitted body for catheter reinforcement and catheter using the same
JP2007023373A (en) Method for producing stainless steel high strength extrafine flat wire
WO2005003400A1 (en) Method of continuous vacuum carburization of metal wire, metal band or metal pipe and apparatus therefor
JP5144334B2 (en) Stainless steel high strength soft fine wire
JP2006181140A (en) Guide wire and catheter
JP2006181139A (en) Guide wire and catheter
JP4977445B2 (en) Guide wire and manufacturing method thereof
JP4310776B2 (en) Method for producing stainless steel member
JP2022045018A (en) Austenite stainless steel-made wire drawing material, medical appliance formed from wire drawing material and wire drawing material processing method
JPH0416246B2 (en)
JP2006089836A (en) Stainless steel extra fine wire and stainless steel extra fine wire for wire net
JP4520660B2 (en) Metal sheet and rubber product using flat wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901