JP4851878B2 - Tubular knitted body for catheter reinforcement and catheter using the same - Google Patents

Tubular knitted body for catheter reinforcement and catheter using the same Download PDF

Info

Publication number
JP4851878B2
JP4851878B2 JP2006199744A JP2006199744A JP4851878B2 JP 4851878 B2 JP4851878 B2 JP 4851878B2 JP 2006199744 A JP2006199744 A JP 2006199744A JP 2006199744 A JP2006199744 A JP 2006199744A JP 4851878 B2 JP4851878 B2 JP 4851878B2
Authority
JP
Japan
Prior art keywords
less
catheter
stainless steel
strip
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006199744A
Other languages
Japanese (ja)
Other versions
JP2008023110A (en
Inventor
好則 谷本
博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2006199744A priority Critical patent/JP4851878B2/en
Publication of JP2008023110A publication Critical patent/JP2008023110A/en
Application granted granted Critical
Publication of JP4851878B2 publication Critical patent/JP4851878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は医療用のカテーテルにおいて補強用部材として樹脂材料に複合して使用される金属製の筒状網体に関し、さらに詳しくは、特に高強度で挿入操作性に優れるとともに、繰返し耐疲労特性、耐座屈性を具え、かつMRI、CTスキャンなどを使用する併用時にも磁場の干渉、撹乱による画像の歪みを減じうる非磁性特性を有する筒状網体、及びそれを用いたカテーテルに関する。   The present invention relates to a metallic cylindrical net used in combination with a resin material as a reinforcing member in a medical catheter, and more particularly, high strength and excellent insertion operability, and repeated fatigue resistance, The present invention relates to a cylindrical mesh body having non-magnetic characteristics that has buckling resistance and can reduce image distortion due to magnetic field interference and disturbance even in combination using MRI, CT scan, and the like, and a catheter using the same.

血管内に挿入されるカテーテルは、例えば図6に示すように、可撓性の長尺筒状のチューブ体Aと、該チューブ体Aを基端側で固定する把手部Bと、チューブ体Aの先端側に配されるソフトチップCとを具え、把手部BからソフトチップCまで通る内孔cにより、種々な医療部材、薬剤を人体血管内の特定部位に供給する。   For example, as shown in FIG. 6, the catheter inserted into the blood vessel includes a flexible long cylindrical tube body A, a handle portion B that fixes the tube body A on the proximal end side, and a tube body A. And various medical members and medicines are supplied to a specific site in the human body blood vessel through an inner hole c passing from the handle B to the soft chip C.

このカテーテルは、その複雑に入り組みかつ分岐する前記血管内に沿って目的部位に円滑に進入できるよう、柔軟でかつ把手部BのトルクをソフトチップCまで伝達できるトルク伝達性、及び座屈に耐え変形がないなどの操作性とともに、小径の血管、例えば血管末梢部まで進入しうる細径化も求められている。   This catheter is flexible and capable of transmitting torque of the handle B to the soft tip C and buckling so that it can smoothly enter the target site along the complicated and branched blood vessel. Along with operability such as no endurance deformation, there is also a demand for a narrow diameter blood vessel, for example, a diameter that can enter the peripheral part of the blood vessel.

しかもカテーテルでは前記細径化の反面、薬剤等の供給に支障がない程度の広さの内部通路を有すること、注入圧に耐える耐圧性を具えることも必要である。   In addition, the catheter needs to have an internal passage that is wide enough not to interfere with the supply of medicines and the like, and has pressure resistance that can withstand injection pressure.

このため、同図に示すようにチューブ体Aの周面に沿ってその内部に金属細線aをブレード編み加工(編組)した筒状網体bを埋設したものが多用されている。   For this reason, as shown in the figure, a tube body b in which a fine metal wire a is braided (braided) along the peripheral surface of the tube body A is embedded.

こうしたブレード編組用の金属細線aは、その引張強さを増すことによって、カテーテル壁を薄くし、かつ可撓性を犠牲にすることなくキンクを防止しうる剛性を付与する提案がある(例えば特許文献1参照)。又筒状網体bに用いる線材として、焼鈍されたステンレス鋼線を幅0.26mm、厚さ0.06mmの扁平な帯板に圧延成形した平線を用いて編組加工することも提案されている(例えば特許文献2)。さらに特許文献3は、その一形態として特許文献2と同様に加工された平線であって、組成としてN、Nbを添加したオーステナイト系ステンレス鋼を用いることを提案している。   There is a proposal that such a thin metal wire a for braiding braids increases the tensile strength, thereby thinning the catheter wall and imparting rigidity capable of preventing kinking without sacrificing flexibility (for example, patents). Reference 1). In addition, as a wire used for the cylindrical mesh body b, it has also been proposed to braid using an annealed stainless steel wire rolled into a flat strip having a width of 0.26 mm and a thickness of 0.06 mm. (For example, Patent Document 2). Further, Patent Document 3 proposes to use an austenitic stainless steel that is a flat wire processed in the same manner as Patent Document 2 as an embodiment and to which N and Nb are added as a composition.

特開平7−194707号公報Japanese Patent Laid-Open No. 7-194707 特開平8−317986号公報JP-A-8-317986 特開2002−282366号公報JP 2002-282366 A

しかしながら、前記各特許文献に示す金属細線において、通常のステンレス鋼線を冷間加工して加工硬化させたものでは、材料の剛性が増して組織的に不安定なものとなり、耐疲労特性が低下するばかりでなく、細径加工性及び編組作業性にも悪影響する。また逆に加工硬化の程度が小さいものでは強度不足からトルク伝達性、耐座屈性が低下して使用時の操作性に劣るとともに、薬液注入時の耐圧性の面からも好ましいものとは言い難い。   However, in the fine metal wires shown in the above-mentioned patent documents, when ordinary stainless steel wire is cold worked and work hardened, the rigidity of the material increases and it becomes structurally unstable, and the fatigue resistance is reduced. Not only does this adversely affect the small diameter workability and braiding workability. Conversely, if the degree of work hardening is small, torque transmission and buckling resistance are reduced due to insufficient strength, resulting in inferior operability during use, and it is also preferable from the standpoint of pressure resistance during chemical injection. hard.

なお、特許文献3はチューブの薄肉化の為により高強度にすることでトルク性、耐キング性を向上し、このような問題の一端を改善するものとして前記のようにN、Nbを添加したオーステナイト系ステンレス鋼を用いることを記載しているが、非磁性特性の改善についての配慮はない。   In addition, Patent Document 3 adds N and Nb as described above to improve torque and king resistance by increasing the strength to make the tube thinner, and to improve one end of such problems. Although the use of austenitic stainless steel is described, there is no consideration for improvement of nonmagnetic properties.

ところで、近年の医療現場では、カテーテルは例えばMRI、CTスキャンなどの高度診断検査装置とともに用いられている。これら装置は体内の無数の水素原子核(プロトン)が小さい磁石であることを応用してその配列を磁気共鳴現象を用いて検出する。そのために、磁性特性を有するものは磁場の干渉、攪乱によって画像の歪みが生じやすい。   By the way, in the medical field in recent years, a catheter is used together with an advanced diagnostic inspection apparatus such as an MRI or CT scan. These devices apply the fact that countless hydrogen nuclei (protons) in the body are small magnets to detect their arrangement using magnetic resonance. For this reason, those having magnetic characteristics are liable to cause image distortion due to magnetic field interference and disturbance.

このようにカテーテルは画像の歪みを生じることなく、かつその挿入状態を正確に把握でき、しかも取扱い性を向上するものでなければならず、そのためには、前記磁性材料からなるカテーテルはその課題を解決しうるものではない。   As described above, the catheter must be capable of accurately grasping the insertion state without causing distortion of the image and improving the handleability. For this purpose, the catheter made of the magnetic material has the problem. It cannot be solved.

そこで本発明は、特にカテーテル補強用の筒状網体として、特に高強度で操作性に優れ、耐繰返し疲労特性及び耐座屈性を具えるとともに、磁気現象による前記種々問題を防止し得るカテーテル補強用の筒状編体、及びそれを用いたカテーテルの提供を目的とする。   Accordingly, the present invention provides a catheter that can prevent the above-mentioned various problems due to magnetic phenomena, particularly as a tubular mesh body for reinforcing a catheter, having particularly high strength, excellent operability, resistance to repeated fatigue and buckling. An object is to provide a reinforcing tubular knitted body and a catheter using the same.

すなわち本願請求項1に係る発明は、
カテーテル補強用の筒状網体であって、厚さ50μm以下に押圧され扁平面を持つ帯状細線の編組加工によって、細径チューブ状の組物に成形されてなる筒状網体であって、前記帯状細線はステンレス鋼であって、組成は、質量%でC≦0.06%,Si≦0.80%,Mn:3.00〜18.00%,Ni:2.00〜13.00%,Cr:15.00〜25.00%,N:0.10〜0.80%とからなる主部を含み、かつ残部がFe、及び不可避不純物で構成され、又は前記主部にMo:0.40〜3.50%,Cu:0.08〜0.80%の少なくとも1種以上を含ませ、かつ残部がFe及び不可避不純物で構成されるとともに、該帯状細線は引張強さ(σ)が1500〜3000MPa、環境温度20℃での透磁率が1.01以下の高強度非磁性特性を有することを特徴とする。
That is, the invention according to claim 1 of the present application is
A tubular mesh body for reinforcing a catheter, which is formed into a thin tube-shaped braid by braiding a strip-shaped thin wire pressed to a thickness of 50 μm or less and having a flat surface, The band-like thin wire is stainless steel, and the composition is C ≦ 0.06%, Si ≦ 0.80%, Mn: 3.00 to 18.00%, Ni: 2.00 to 13.00 in mass%. %, Cr: 15.00 to 25.00%, N: 0.10 to 0.80%, and the balance is composed of Fe and inevitable impurities, or the main part is Mo: It contains at least one of 0.40 to 3.50%, Cu: 0.08 to 0.80%, and the balance is composed of Fe and unavoidable impurities. ) Is 1500 to 3000 MPa, and the magnetic permeability at an environmental temperature of 20 ° C. is 1.01 or less. And wherein the Turkey which have a high strength non-magnetic properties.

本願請求項2に係る発明は、前記ステンレス鋼が、質量%で前記主部が、C:≦0.03%,Si≦0,50%,Mn:5.00〜8.00%,Ni:8.00〜12.00%,Cr:19.00〜23.00%,N:0.30〜0.60%であり、かつこの主部にMo:1.00〜3.00%,Cu:0.08〜0.80%の少なくとも1種以上を含ませ、しかも残部:Fe及び不可避不純物で構成されたことを特徴とする。   In the invention according to claim 2 of the present application, the stainless steel is mass%, and the main part is C: ≦ 0.03%, Si ≦ 0,50%, Mn: 5.00 to 8.00%, Ni: 8.00 to 12.00%, Cr: 19.00 to 23.00%, N: 0.30 to 0.60%, and Mo: 1.00 to 3.00%, Cu : At least one of 0.08 to 0.80%, and the balance: Fe and unavoidable impurities.

本願請求項3に係る発明は、前記ステンレス鋼が、質量%で前記主部が、C≦0.06%,Si≦0.50%,Mn:12.00〜17.00%,Ni:2.00〜5.00%, Cr:16.00〜20.00%,N:0.30〜0.60% かつこの主部にMo:0.40〜2.00%、Cu:0.40〜0.70%の少なくとも1種以上を含ませ、しかも、残部:Fe及び不可避不純物で構成したことを特徴としている。   In the invention according to claim 3 of the present application, the stainless steel is mass%, and the main part is C ≦ 0.06%, Si ≦ 0.50%, Mn: 12.00-17.00%, Ni: 2 0.00 to 5.00%, Cr: 16.00 to 20.00%, N: 0.30 to 0.60%, and Mo: 0.40 to 2.00%, Cu: 0.40 It is characterized in that it contains at least one kind of ˜0.70% and is composed of the balance: Fe and inevitable impurities.

本願請求項4に係る発明は、前記不可避不純物が、Nb,Ti,Al,Oの少なくとも一種の元素を含み、かつその元素の含有量は質量%で、Nb:0.020%以下,Ti:0.030%以下,Al:0.010%以下,O:0.008%以下であることを特徴としている。   In the invention according to claim 4 of the present application, the inevitable impurities include at least one element of Nb, Ti, Al, O, and the content of the element is mass%, Nb: 0.020% or less, Ti: It is characterized by being 0.030% or less, Al: 0.010% or less, and O: 0.008% or less.

本願請求項5に係る発明は、前記ステンレス鋼が、その元素の質量%が次の関係式を満足することを特徴とする。
Ni+1.05Mn+12.6N=(18.0〜25.0%)
≧0.65Cr+12.6C
The invention according to claim 5 of the present invention is characterized in that the stainless steel satisfies the following relational expression in mass% of the element.
Ni + 1.05Mn + 12.6N = (18.0-25.0%)
≧ 0.65Cr + 12.6C

本願請求項6に係る発明は、前記帯状細線が、固溶化熱処理後の冷間伸線加工と該伸線加工に続く冷問圧延加工によって、厚さ20μm以下で、かつ該厚さの2〜10倍の巾寸法を有することを特徴とし、かつ本願請求項7に係る発明は、前記引張強さ(σ)MPaと0.2%耐力(τ)MPaとの耐力比{(τ/σ)×100}が、85〜98%であることを特徴とする。
In the invention according to claim 6 of the present application, the strip-like thin wire is 20 μm or less in thickness by cold drawing after the solution heat treatment and cold rolling after the wire drawing, and 2 to 2 of the thickness. The invention according to claim 7 is characterized in that it has a width dimension of 10 times, and the invention according to claim 7 of the present application is such that the yield strength ratio {(τ / σ) between the tensile strength (σ) MPa and 0.2% yield strength (τ) MPa. × 100} is 85 to 98%.

本願請求項8に係る発明は、請求項1〜7のいずれかに記載の前記筒状網体の内外面に樹脂製材料を配して被包することにより形成したチューブ体を有することを特徴とするカテーテルである。   The invention according to claim 8 of the present application is characterized by having a tube body formed by arranging and encapsulating a resin material on the inner and outer surfaces of the cylindrical mesh body according to any one of claims 1 to 7. It is a catheter.

本願請求項1に係る発明は、前記筒状網体に用いる帯状細線が、厚さ50μm以下に押圧された偏平面を有する横断面偏平形状をなし、かつ引張強さ1500〜3200MPaの高強度特性と、透磁率が1.01以下の非磁性特性とを持つ前記高MnかつN添加した特定組成のオーステナイト系ステンレス鋼を用いて構成し、これを編組加工によって筒状の筒状網体(ブレードメッシュ)としたものであるため、編粗形状の保持が容易となり、かつ高強度であって挿入操作性に優れ、曲げ、その繰り返しに対する高い疲労特性及び耐座屈性を具える。また該ステンレス鋼は、オーステナイト系の中でも特に高MnかつN添加した組成によってオーステナイト相の安定化を図り、高強度で非磁性を具えることから、これを例えばMRIなど磁気共鳴診断装置と併用する場合にも磁性の影響を抑え、画像の乱れを予防できる。   In the invention according to claim 1 of the present application, the thin strip wire used for the cylindrical mesh body has a flat cross-sectional shape having a flat surface pressed to a thickness of 50 μm or less, and has a high strength characteristic of a tensile strength of 1500 to 3200 MPa. And an austenitic stainless steel with a specific composition added with high Mn and N, which has nonmagnetic properties with a magnetic permeability of 1.01 or less, and this is formed into a cylindrical tubular network (blade) by braiding. Therefore, it is easy to maintain the knitted rough shape, has high strength and excellent insertion operability, and has high fatigue characteristics and buckling resistance against bending and repetition. In addition, the stainless steel stabilizes the austenite phase by the composition with high Mn and N added in the austenite system, and has high strength and non-magnetism. Therefore, this stainless steel is used in combination with a magnetic resonance diagnostic apparatus such as MRI. Even in this case, the influence of magnetism can be suppressed and image disturbance can be prevented.

また請求項2及び3に係る発明では、各々調整された前記ステンレス鋼の組成によって前記特性をさらに安定化したものとなり、特に請求項2に係る発明では耐食性の向上が可能となり、また請求項3の発明ではさらに弾性率、疲労特性を高めてより耐座屈性に優れた網体を提供できる。   In the inventions according to claims 2 and 3, the characteristics are further stabilized by the adjusted composition of the stainless steel, and in particular, the invention according to claim 2 can improve the corrosion resistance. According to the present invention, it is possible to further improve the elastic modulus and fatigue characteristics, and to provide a net body having more excellent buckling resistance.

さらに請求項4及び5の発明によれば、Nb,Ti,Al,Oなどの酸化物や非金属介在物などの発生を防いで表面性状に優れ、さらにオーステナイト相を安定化して特性の向上を図るとともに、厚さの薄い金属帯状細線として、繰り返し疲労特性を高めたカテーテル用の網体が可能となり、非磁性特性をさらに向上する。   Furthermore, according to the inventions of claims 4 and 5, the generation of oxides such as Nb, Ti, Al, O and non-metallic inclusions is prevented, and the surface properties are excellent, and the austenite phase is stabilized to improve the characteristics. In addition, as a thin metal strip-like thin wire, a network for a catheter with repeated fatigue characteristics is made possible, and the nonmagnetic characteristics are further improved.

請求項6の発明では、該帯状細線は固溶化熱処理後の冷間伸線加工で一旦加工硬化したものを用い、これを冷間圧延するものであることから、高強度化できるとともに巾側面部での微小凹凸を防いで寸法安定性に優れた帯状細線が可能となり、したがって、これを用いた網体では、繰返し疲労による折損を防いで長寿命の筒状網体となり、又請求項7に係る発明のきように、引張強さに対する耐力の比が大きいものでは筒状網体としての弾性向上が可能となり、脆性破断や形状変化を抑えた前記網体となる。   In the invention of claim 6, the strip-like thin wire is a material that is once work-hardened by cold drawing after solution heat treatment, and is cold-rolled. It is possible to form a strip-like wire excellent in dimensional stability by preventing minute irregularities in the structure. Therefore, in the net body using this, the breakage due to repeated fatigue is prevented and a long-life cylindrical net body is obtained. As in the invention, when the ratio of the proof stress to the tensile strength is large, the elasticity as a cylindrical mesh body can be improved, and the net body is obtained with suppressed brittle fracture and shape change.

さらに請求項8に係る発明では、筒状網体の内外面には樹脂製膜材を配して被包することから、前記請求項に係る発明の筒状網体を用いるカテーテルは、その特性を大きく改良することができる。   Furthermore, in the invention according to claim 8, since the resin film material is disposed on the inner and outer surfaces of the cylindrical mesh body and encapsulated, the catheter using the cylindrical mesh body according to the above invention has its characteristics. Can be greatly improved.

以下、本発明に係わるカテーテル補強用の筒状網体1(以下、単に筒状網体ということもある)の最良の形態を図面に基づき説明する。筒状網体1は、図6に示したカテーテル2におけるチューブ体Aに用いられ、該筒状網体1の内外面に樹脂製膜を配して被包することにより長尺かつ可撓性の該チューブ体Aを形成している。なおカテーテル2は、図6においては、このチューブ体Aと、該チューブ体Aを基端側で固定する把手部Bと、チューブ体Aの先端側に配されるソフトチップCとを具え、把手部BからソフトチップCまで通る内孔cにより、種々な医療部材、薬剤を人体血管内の特定部位に供給する。   Hereinafter, the best mode of a tubular mesh body 1 for reinforcing a catheter according to the present invention (hereinafter also simply referred to as a tubular mesh body) will be described with reference to the drawings. The tubular mesh body 1 is used for the tube body A in the catheter 2 shown in FIG. 6, and is made long and flexible by arranging and encapsulating a resin film on the inner and outer surfaces of the tubular mesh body 1. The tube body A is formed. In FIG. 6, the catheter 2 includes the tube body A, a handle portion B for fixing the tube body A on the proximal end side, and a soft tip C disposed on the distal end side of the tube body A. Various medical members and medicines are supplied to a specific site in the human body blood vessel by the inner hole c passing from the part B to the soft chip C.

筒状網体1は図1に示すように、帯状細線4を筒状に織成してなり、この帯状細線4は、図2に例示するように、例えば冷間圧延加工により各上下を偏平面3,3としかつ厚さtを50μm以下とした断面偏平形状に形成されている。なお前記帯状細線4として厚さtが50μmを超えるときは、前記チューブ体Aの肉厚が大となって可撓性を欠き、また筒状網体1を細径化することが困難となる。そのため、好ましくは厚さtを10〜35μm、より好ましくは15〜30μm程度とする。   As shown in FIG. 1, the cylindrical net 1 is formed by weaving strip-shaped thin wires 4 into a cylindrical shape, and the strip-shaped thin wires 4 are each formed in a flat plane 3 by, for example, cold rolling as shown in FIG. 2. 3 and a thickness t of 50 μm or less. When the thickness t of the strip-like thin wire 4 exceeds 50 μm, the thickness of the tube body A becomes large and lacks flexibility, and it is difficult to reduce the diameter of the cylindrical mesh body 1. . Therefore, the thickness t is preferably about 10 to 35 μm, more preferably about 15 to 30 μm.

また、帯状細線4の巾wと、厚さtとの比(w/t)を2〜10倍程度、例えば巾wとして0.1〜2mm程度とする。w/tを過度に大とすることは圧延加工の歩留まりを低下しかつ編成を困難にする。   Further, the ratio (w / t) of the width w of the thin strip 4 to the thickness t is about 2 to 10 times, for example, the width w is about 0.1 to 2 mm. If w / t is excessively large, the yield of the rolling process is lowered and knitting becomes difficult.

帯状細線4は、偏平面3、3を、本例では交互に接して交差させながら所定のピッチp、間隙gを保持しつつ筒状に編組することにより前記筒状網体1を形成している。又筒状網体1は、組物またはブレードメッシュなどと呼ばれ、カテーテルの仕様に応じて例えば外径0.5〜2mm程度の太さに成形される。又織成加工は公知の例えば編組加工機、ブレーダーなどによって実施することができ、帯状細線4は、筒状網体1の中心軸線1Aに対して傾斜角度αで傾斜させつつバイアス配置する。これにより、特に捻りに対するトルク伝達性及び柔軟性を高める。なおその織構成は、例えば平織りや綾織りなど任意の構成が選択され、又筒状網体1の使用目的に応じて、帯状細線4の仕様とともに、前記ピッチp,本数及び帯状細線4間の間隙gなどが設定される。なお、ピッチp,間隙g等は、前記筒状網体1の中心軸線1A上で平面視して測定される。又前記間隙gは、カテーテルが十分な柔軟性が求められ、また間隙gを通る樹脂材料により一体に被包されることから、通常は例えば0.3〜0.8mm程度とする。又傾斜角度αは例えば40〜70°、ピッチpは前記間隙g、傾斜角度α、帯状細線4の巾wなどから設定される。   The strip-shaped thin wire 4 forms the cylindrical mesh body 1 by braiding the flat surfaces 3 and 3 in a cylindrical shape while maintaining a predetermined pitch p and gap g while alternately intersecting and intersecting in this example. Yes. The cylindrical net 1 is called a braid or a blade mesh, and is formed to have a thickness of, for example, an outer diameter of about 0.5 to 2 mm according to the specification of the catheter. The weaving process can be performed by a known braiding machine, a braider, or the like, and the band-like thin wire 4 is biased while being inclined at an inclination angle α with respect to the central axis 1A of the cylindrical net body 1. Thereby, torque transmission property and flexibility with respect to torsion are enhanced. As the woven structure, for example, an arbitrary structure such as a plain weave or a twill weave is selected, and depending on the purpose of use of the cylindrical net 1, together with the specifications of the strip thin wires 4, the pitch p, the number and the strip thin wires 4 A gap g and the like are set. Note that the pitch p, the gap g, and the like are measured in plan view on the central axis 1A of the cylindrical net body 1. The gap g is usually set to, for example, about 0.3 to 0.8 mm because the catheter is required to have sufficient flexibility and is integrally encapsulated by a resin material passing through the gap g. Further, the inclination angle α is set, for example, from 40 to 70 °, and the pitch p is set from the gap g, the inclination angle α, the width w of the strip-like thin wire 4 and the like.

さらに筒状網体1の帯状細線4は、以下の組成の高MnN添加型のステンレス鋼を用いる。これにより、カテーテルとして使用する際には、高強度と非磁性の特性を具え、トルク伝達性や可撓性、耐圧性、耐座屈性等の特性向上とともに、環境磁場の干渉や撹乱による検査機器の画像の歪みを防止して、また前記樹脂材料の剥離などの問題も改善できる(組成は質量%を用いている)。   Further, the strip-like thin wire 4 of the cylindrical net 1 is made of high MnN-added stainless steel having the following composition. As a result, when used as a catheter, it has high strength and non-magnetic characteristics, improved characteristics such as torque transmission, flexibility, pressure resistance, buckling resistance, and inspection by interference and disturbance of environmental magnetic fields. It is possible to prevent distortion of the image of the device and to improve problems such as peeling of the resin material (composition uses mass%).

即ち、前記ステンレス鋼は、質量%で
C≦0.06%,
Si≦0.80%,
Mn:3.00〜18.00%,
Ni:2.00〜13.00%,
Cr:15.00〜25.00%,
N:0.10〜0.80% とからなる主部を含み、
かつ残部:Fe、及び不可避不純物で構成され、
又は前記主部に
Mo:0.40〜3.50%,
Cu:0.08〜0.80%の少なくとも1種以上を含ませ、
かつ残部:Fe及び不可避不純物で構成されている。
That is, the stainless steel is C ≦ 0.06% by mass%,
Si ≦ 0.80%,
Mn: 3.00 to 18.00%,
Ni: 2.00 to 13.00%,
Cr: 15.00 to 25.00%,
N: including a main part composed of 0.10 to 0.80%,
And the balance: Fe, and inevitable impurities,
Or Mo: 0.40 to 3.50% in the main part,
Cu: 0.08 to 0.80% of at least one kind is included,
And remainder: it is composed of Fe and inevitable impurities.

このように、主部として、Mnを3.00〜18.00%,N:0.10〜0.80%含有することによりオーステナイト相の安定化を図り高強度化、非磁性化をもたらすとともに、さらに必要に応じて添加されるMo,Cuの第三元素によって、例えば耐食性、靭性を向上することができる。   As described above, the main part contains Mn 3.00 to 18.00% and N: 0.10 to 0.80%, thereby stabilizing the austenite phase and increasing the strength and demagnetization. Further, for example, corrosion resistance and toughness can be improved by the third element of Mo and Cu added as necessary.

ここで前記ステンレス鋼の各元素の成分分量を限定する理由を説明する。
〔C〕は、その添加によって結晶を微細化して機械的特性、特に高強度化するのに有効である。しかし、0.06%を超えるものではその製造過程で行われる熱処理などに伴って有害な炭化物の原因となり、細径化する場合の加工性、繰り返し曲げに伴う疲労寿命において問題があり、好ましくは0.03%以下とし、さらに好ましくは0.010〜0.03%とする。
Here, the reason for limiting the component amount of each element of the stainless steel will be described.
The addition of [C] is effective for making the crystal finer and adding mechanical properties, in particular, high strength. However, if it exceeds 0.06%, it causes a harmful carbide in the heat treatment performed in the production process, and there is a problem in workability when reducing the diameter, fatigue life due to repeated bending, preferably It is 0.03% or less, more preferably 0.010 to 0.03%.

〔Si〕は、溶製時に必要な脱酸成分であり、その添加によって疲労,強度及び寿命特性を向上するが、0.80%を超えるとσ相生成をもたらす原因となり、より好ましくは0.50以下、さらに好ましくは0.05〜0.50%とする。   [Si] is a deoxidizing component required at the time of melting, and its addition improves fatigue, strength, and life characteristics. However, if it exceeds 0.80%, it causes σ phase formation, and more preferably is 0. 50 or less, more preferably 0.05 to 0.50%.

〔Mn〕は、ニッケルとともに熱間加工性を改善し、オーステナイト相を安定化することから有効であり、またその増加によって、多量のN添加ができることから3.00%以上とし、一方18.00%を超える程増加してもその効果は飽和する。好ましくは3.50〜17.50%とする。特に後記するNiやNとの分量に応じて、例えばNiが8.0〜12.0%では、5.00〜8.00%とし、それより少量のNi、例えば2.00〜5.00%のNiの場合は、逆に12.0〜17.00%に増加することが好ましい。   [Mn] is effective because it improves the hot workability together with nickel and stabilizes the austenite phase, and the increase makes it possible to add a large amount of N, so that it is 3.00% or more, while 18.00 The effect is saturated even if it increases to exceed%. Preferably it is set to 3.50 to 17.50%. In particular, depending on the amount of Ni and N described later, for example, when Ni is 8.0 to 12.0%, the amount is 5.00 to 8.00%, and a smaller amount of Ni, for example 2.00 to 5.00. In the case of% Ni, it is preferable to increase it to 12.0-17.00%.

〔Ni〕は、基質を安定なオーステナイト組織にする為に必要であり、またクロムの耐酸化性を助長して加工性を改善するのに有効な元素であり、また非磁性に有効なNを添加する関係から、2.00〜13.00%とする。特に2.00%未満ではその効果が期待されにくく、13.00%を超えるものではNの多量添加が困難となり、またコストアップともなる。好ましくは、2.50〜12.50%とし、さらに前記Mn及びNの分量との関係から下記一例に示すように8.00〜12.00%又は2.00〜5.00%とする。   [Ni] is an element necessary for making the substrate into a stable austenite structure, and is an element effective for improving the workability by promoting the oxidation resistance of chromium, and N effective for non-magnetism. From the relationship of addition, it is set to 2.00 to 13.00%. In particular, if it is less than 2.00%, it is difficult to expect the effect, and if it exceeds 13.00%, it is difficult to add a large amount of N, and the cost increases. Preferably, the content is 2.50 to 12.50%, and further from 8.00 to 12.00% or 2.00 to 5.00% as shown in the following example from the relationship with the amount of Mn and N.

〔Cr〕は、本合金材料の生地に固溶することで耐食性及び機械的特性を向上し、例えば15.00%以上でその効果を有するものとなるが、25.00%を超えるものでは鍛造性に影響して疲労が低下する。好ましくは14.50〜24.00%とし、さらに前記Mn,Ni及びNの分量に応じて下記一例に示すように19.00〜23.00%又は16.00〜20.00%とする。   [Cr] improves the corrosion resistance and mechanical properties by dissolving in the dough of this alloy material, and has the effect at, for example, 15.00% or more, but forging above 25.00% Fatigue is reduced due to the effect on the performance. Preferably, it is 14.50 to 24.00%, and it is 19.00 to 23.00% or 16.00 to 20.00% as shown in the following example depending on the amount of Mn, Ni and N.

〔N〕は、強力なオーステナイトの生成元素であって、結晶粒を微細化してじん性及び降伏点を上昇させる作用を有する。その効果は、本発明のステンレス鋼では少なくとも0.10%以上で有効であるが、0.80%を超えると窒化物が形成しやすくなって加工性が低下するものとなる。より好ましくは、0.30〜0.60%とする。   [N] is a strong austenite-forming element and has the effect of increasing the toughness and yield point by refining crystal grains. The effect is effective when the stainless steel of the present invention is at least 0.10% or more. However, if it exceeds 0.80%, nitrides are easily formed and the workability is lowered. More preferably, it is 0.30 to 0.60%.

さらに、必要に応じて添加される前記第三元素には次のものがある。
(1) 〔Mo〕は、少なくとも0.40%添加によって強度及び耐食性を向上し有効であるが、3.50%を超えると加工性が低下し、また効果も飽和してかえってコストアップの原因となることから、好ましくは0.45〜3.45%としている。とし、さらに下記一例に示すようにMn,Niに応じて1.00〜3.00%又は0.40〜2.00%にするのがよい。
(2) 〔Cu〕は、ステンレス鋼の生地を強化するが、じん性を損ない熱間加工性を低下することとなることから0.08〜0.80%とするが、前記Moの場合と同様に他の成分元素との関係から次の一例に示すように0.40〜0.7%とすることも好ましい。またこのMo及びCuは必要に応じて少なくともその一種を添加することができる。
Further, the third element added as necessary includes the following.
(1) [Mo] is effective in improving strength and corrosion resistance by adding at least 0.40%, but if it exceeds 3.50%, the workability is lowered and the effect is saturated, which causes cost increase. Therefore, the content is preferably 0.45 to 3.45%. Furthermore, as shown in the following example, it is good to make it 1.00 to 3.00% or 0.40 to 2.00% depending on Mn and Ni.
(2) [Cu] reinforces the stainless steel dough, but the toughness is impaired and hot workability is reduced, so 0.08 to 0.80%. Similarly, from the relationship with other component elements, it is also preferable to set it to 0.40 to 0.7% as shown in the following example. Moreover, this Mo and Cu can add at least 1 type as needed.

さらにこうした組成のより好ましい形態のステンレス鋼として、例えば次の2種類を提示することができ、特性的にも好ましいものである。   Furthermore, for example, the following two types of stainless steel having a more preferable form having such a composition can be presented, which is preferable in terms of characteristics.

その一つは、質量%で、C:≦0.03%,Si≦0.50%,Mn5.00〜8.00%,Ni:8.00〜12、00%,Cr:19.00〜23.00%,Mo:1.00〜3.00%,Cu:0.08〜0.80及びN:0.30〜0.60%を含み、残部Fe及び不可避不純物で構成されたものである。   One of them is mass%, C: ≦ 0.03%, Si ≦ 0.50%, Mn5.00-8.00%, Ni: 8.00-12,00%, Cr: 19.00 Including 23.00%, Mo: 1.00 to 3.00%, Cu: 0.08 to 0.80 and N: 0.30 to 0.60%, the balance being composed of Fe and inevitable impurities is there.

他の一つは、質量%で、C:≦0.06%,Si≦0.50%,Mln:12.00〜17.00%,Ni:2.00〜5.00%,Cr:16.00〜20.00%,Mo:0.40〜2.00%、N:0.30〜0.60%及びCu:0.40〜0.70%を含み、残部Fe及び不可避不純物で構成されたものである。   The other is mass%, C: ≦ 0.06%, Si ≦ 0.50%, Mln: 12.00-17.00%, Ni: 2.00-5.00%, Cr: 16 .00 to 20.00%, Mo: 0.40 to 2.00%, N: 0.30 to 0.60% and Cu: 0.40 to 0.70%, composed of the balance Fe and inevitable impurities It has been done.

さらに該帯状細線4は、前記厚さtとともに所定の引張強さを1500〜3000MPaとしている。1500MPa未満では、操作性及び耐座屈性が得られず、一方、3000MPaを超える程高強度にしたものでは靭性に劣り、疲労寿命の向上が困難となる。より好ましくは、2000〜2800MPa、さらに好ましくは2100〜2600MPaとする。   Further, the thin strip 4 has a predetermined tensile strength of 1500 to 3000 MPa together with the thickness t. If the pressure is less than 1500 MPa, operability and buckling resistance cannot be obtained. On the other hand, if the strength exceeds 3000 MPa, the toughness is inferior and it is difficult to improve the fatigue life. More preferably, it is 2000-2800 MPa, More preferably, it is 2100-2600 MPa.

また透磁率は導磁率とも呼ばれ、磁界の強さHと磁束密度Bとの関係を、B=μHで表した時の比例定数μで示すものであって、直流磁化特性試験装置(メトロン技研株式会社)、その他種々の透磁率測定装置で測定する.なおその場合、帯状細線4は厚さが50μm以下の微細なものであり、測定値のバラツキが大きくなる可能性があることから、その測定にあたっては例えば10〜1000本程度の多本数を束ねた束体を用い、最終的にその測定試料の有効断面積で除した値を用いることができる.そしてこの値が1.010エルステッド以下の非磁性のものとしている。前記組成のステンレス鋼では、冷間加工に伴う磁性の上昇は極めて低く、前記非磁性特性をうることができる。   The magnetic permeability is also referred to as the magnetic permeability, and the relationship between the magnetic field strength H and the magnetic flux density B is indicated by a proportional constant μ when B = μH. ) And other various permeability measuring devices. In this case, since the thin strip 4 is a fine one having a thickness of 50 μm or less and there is a possibility that the variation of the measurement value may increase, for example, a large number of about 10 to 1000 pieces is bundled. Using a bundle, it is possible to use the value finally divided by the effective area of the measurement sample. This value is assumed to be non-magnetic with a value of 1.010 oersted or less. In the stainless steel having the above composition, the increase in magnetism accompanying cold working is extremely low, and the non-magnetic characteristics can be obtained.

こうしたステンレス鋼の中で、例えばNb,Ti,A1,Oの少なくとも一種が、Nb:0.020%以下,Ti:0.030%以下,Al:0.010%以下,O:0.008%以下に規制したものでは、ステンレス鋼生地中に介在物や酸化物などの種々形態の析出物を抑えて良好な特性をもたらすことができ、より好ましくはその合計が0.050%以下になるように設定される。また、その他不純物として例えばP≦0.045%,S≦0.030%にすることも好ましい。   Among these stainless steels, for example, at least one of Nb, Ti, A1, and O is Nb: 0.020% or less, Ti: 0.030% or less, Al: 0.010% or less, O: 0.008% With those regulated below, various forms of precipitates such as inclusions and oxides can be suppressed in the stainless steel dough, and good characteristics can be obtained. More preferably, the total is 0.050% or less. Set to Further, as other impurities, for example, P ≦ 0.045% and S ≦ 0.030% are also preferable.

すなわち、これら不純物の中で特にNb,Ti,Al及びOは、ステンレス鋼生地中に介在物や酸化物などの発生をもたらす要因となり、本発明のように厚さ50μm以下の微小金属帯状細線ではこのような組織異常は直接その強度や疲労面において重大な影響を及ぼすことから、これら不純物量をその特性に応じて制御する。   That is, among these impurities, Nb, Ti, Al, and O in particular are factors that cause the occurrence of inclusions and oxides in the stainless steel dough, and in the case of a fine metal strip-like wire having a thickness of 50 μm or less as in the present invention. Since such a structural abnormality directly has a significant effect on its strength and fatigue, the amount of these impurities is controlled in accordance with its characteristics.

また、前記帯状細線4の特性をさらに高める上で、該ステンレス鋼の各元素の関係が、次の条件を満足するように調整することが好ましい。
Ni+1.05Mn+12.6N=(18.0〜25.0%)≧0.65Cr+12.6C
Further, in order to further improve the characteristics of the strip-like thin wire 4, it is preferable to adjust the relationship between the elements of the stainless steel so as to satisfy the following conditions.
Ni + 1.05Mn + 12.6N = (18.0-25.0%) ≧ 0.65Cr + 12.6C

この関係は本発明者らの実験によるものであって、前記筒状網体1のように微小な金属の帯状細線4を網加工して用い、かつ高強度化と非磁性の両特性を具えるものにあっては、オーステナイト相の安定化による非磁性化と、加工硬化による高強度化を兼備するものが好ましい。すなわち、オーステナイト相の安定化に影響する前者元素Ni,Mn,Nの合計値を18.0〜25.0%にすること、かつ高強度特性に影響する後者Cr,Cの合計値より大きくすること、より好ましくは前者合計が後者合計の1.3〜2.2倍になるように設定する。こうした関係によって、前記引張強さと非磁性の両特性を得ることができることが判明した。   This relationship is based on the experiments of the present inventors, and uses a fine metal strip-like thin wire 4 as in the cylindrical mesh body 1, and has both high strength and non-magnetic characteristics. In particular, it is preferable to combine non-magnetization by stabilizing the austenite phase and high strength by work hardening. That is, the total value of the former elements Ni, Mn, and N that affects the stabilization of the austenite phase is set to 18.0 to 25.0%, and is larger than the total value of the latter Cr and C that affects the high strength characteristics. More preferably, the former total is set to be 1.3 to 2.2 times the latter total. From this relationship, it has been found that both the tensile strength and non-magnetic characteristics can be obtained.

またさらに必要ならば、次式Aに示す計算値が26〜40%の範囲になるように調整する。これにより、前記オーステナイト相の安定化を促進して耐食性などの化学的特性を向上し、かつその後の処理過程で発生する例えば水素脆性の問題を解釈することも好ましい。
A=Ni+0.65Cr+0.98M0+1.05Mn+0.35Si+12.6C
Further, if necessary, the calculation value shown in the following formula A is adjusted to be in the range of 26 to 40%. Thereby, it is also preferable to promote the stabilization of the austenite phase to improve the chemical characteristics such as corrosion resistance and to interpret the problem of, for example, hydrogen embrittlement that occurs in the subsequent processing.
A = Ni + 0.65Cr + 0.98M0 + 1.05Mn + 0.35Si + 12.6C

また本発明に用いるステンレス鋼の帯状細線4は、例えば固溶化熱処理後に所定厚さになるように冷問圧延で加工されるが、特に厚さ20μm以下でかつその厚さの4〜8倍程度の広巾に一度に強加工したものでは、圧延加工に伴ってその巾側面部に微小凹凸d(図2に示す)を生じさせ、巾寸法のバラツキを大きくし、例えば局部的な凹部での切欠き現象による折損などを招く。   Further, the stainless steel strip-like thin wire 4 used in the present invention is processed by cold rolling so as to have a predetermined thickness after, for example, solution heat treatment, and is particularly 20 μm or less and about 4 to 8 times the thickness. In the case of the one that has been hard-worked at once in a wide width, a micro unevenness d (shown in FIG. 2) is generated on the side surface of the width along with the rolling process, thereby increasing the variation in width dimension, for example, cutting at a local recess. It causes breakage due to chipping phenomenon.

この現象を抑制するため、例えば900〜1100℃での固溶化熱処理後に、一旦加工率40〜95%程度の冷問伸線加工を行って、該ステンレス鋼中の結晶組織をその長手方向に延びる繊維組織とし、これを軟質処理することなく更に冷間圧延する、いわゆる、2段階加工法を採用すくことにより解消することができる。冷間圧延加工の圧下率は、所定厚さとなる例えば50%以上で行なわれる。   In order to suppress this phenomenon, for example, after a solution heat treatment at 900 to 1100 ° C., cold wire drawing at a working rate of about 40 to 95% is once performed, and the crystal structure in the stainless steel is extended in the longitudinal direction. This can be solved by adopting a so-called two-stage processing method in which a fiber structure is formed and further cold-rolled without being softly processed. The rolling reduction of the cold rolling process is performed at a predetermined thickness of, for example, 50% or more.

すなわち、このような2段階加工法の採用によって、圧延加工時の巾方向への広がりを滑らかにかつ均一化して巾側面部での凹凸を防ぎ寸法バラツキを抑えるとともに、さらに伸線加工による加工硬化の利用によって、単に圧延加工だけでは得られない高強度化を得ることができる。   In other words, by adopting such a two-step processing method, the spread in the width direction during rolling is smooth and uniform to prevent unevenness on the side surface of the width and to suppress dimensional variations, and further, work hardening by wire drawing. By using this, it is possible to obtain a high strength that cannot be obtained simply by rolling.

このことは、両加工は押圧加工であるものの、伸線加工では純粋に絞り加工されることより高い加工硬化が得られるのに対して、圧延加工では、拘束されていない巾方向に逃げ、部分的な加工量の違いから強度上昇率は非常に小さいのが通例であるのに対して、本態様ではこれを改善できる。また同時に、前記引張強さ(σ)と0.2%耐力との耐力比{(τ/σ)×100}が、85〜98%の弾性に富んだ帯状細線4ともなることから、カテーテル用として繰返し疲労や耐座屈性に対して優れたものとなる。   This means that although both processes are pressing, higher work hardening is obtained in wire drawing than when pure drawing is performed, whereas in rolling, there are parts that run away in the unconstrained width direction. In general, the strength increase rate is very small due to the difference in the amount of processing, but in the present embodiment, this can be improved. At the same time, the yield strength ratio {(τ / σ) × 100} between the tensile strength (σ) and the 0.2% yield strength also becomes the thin strip 4 4 rich in elasticity of 85 to 98%. As a result, it is excellent in repeated fatigue and buckling resistance.

なおその場合、前記帯状細線4の側面部はその上下方向からの前記圧延加工によって、例えば図2に見られるように側部方向への張出によって、前記偏平面3よりも粗大な表面粗さを有する。例えば長手方向に沿って計測した10点の平均表面粗さ(Rz)を求め、例えばRz=0.04〜0.1μm程度の粗さとする。この程度の表面凹凸は該帯線自体の品質性能には影響しない微細なものであり、しかもカテーテルとしてその表面に樹脂材料を被包する場合には両者の結合をより強固にして一体化を高めることができる。   In that case, the side surface portion of the strip-like thin wire 4 has a surface roughness that is coarser than the flat surface 3 by rolling in the vertical direction, for example, by projecting in the side direction as seen in FIG. Have For example, the average surface roughness (Rz) of 10 points measured along the longitudinal direction is obtained, and for example, the roughness is about Rz = 0.04 to 0.1 μm. The surface irregularities of this level are fine so as not to affect the quality performance of the band itself, and when the resin material is encapsulated on the surface as a catheter, the coupling between the two is strengthened to enhance the integration. be able to.

前記筒状網体1は、図6に示す前記したカテーテル2において、可撓性を持つ微細長尺な前記チューブ体Aをなし、従ってカテーテル2を補強している。前記チューブ体Aは、例えば図3に示すように、外径0.5〜3mmかつ膜厚さ0.2〜0.8mm程度の長尺の筒状成形品であって、捻りトルクを伝達するトルク伝達性、可撓性,耐圧性、耐座屈性を高める為に前記筒状網体1を具え、その内面の内樹脂層7Aと、外面の外樹脂層7Bとからなる樹脂層7によって被包し、一体化している。
It said tubular net body 1, in the catheter 2 described above is shown in FIG. 6, the flexible without fine long as the tube body A with, thus reinforcing the catheter 2. For example, as shown in FIG. 3, the tube body A is a long cylindrical molded product having an outer diameter of 0.5 to 3 mm and a film thickness of about 0.2 to 0.8 mm, and transmits torsion torque. In order to enhance torque transmission, flexibility, pressure resistance, and buckling resistance, the cylindrical net 1 is provided, and a resin layer 7 including an inner resin layer 7A on the inner surface and an outer resin layer 7B on the outer surface. Encapsulated and integrated.

なお前記内樹脂層7A及び外樹脂層7Bに用いる樹脂材料の種類及び被覆方法などについては、生体用として安全性・適合性を具えるものであれば特に制限するものではなく、例えば従来から使用されているポリプロピレン、ポリエチレン、ポリアミド、ポリ塩化ビニール、ポリエステル、ポリアセタール、ポリウレタン、ポリカーボネート、フッ素樹脂、シリコン樹脂、シリコンゴム,天然ゴムなど種々の樹脂材料を用いうる。なお熱可塑性樹脂材料を用いて筒状網体1の網目を通して一体成形することもでき、さらには、前記内樹脂層7Aと外樹脂層7Bのいずれか一方を省略し、又は前記内樹脂層7Aと外樹脂層7Bのいずれか一方、双方をそれぞれ複数層により形成することもできる。又前記内樹脂層7Aと外樹脂層7Bとを異なる樹脂を用いてもよく、さらには筒状網体1を跨る中間層を介して内外樹脂層7A,7Bを形成するなど、種々変形できる。   The type and coating method of the resin material used for the inner resin layer 7A and the outer resin layer 7B are not particularly limited as long as they have safety / compatibility for a living body, and are conventionally used, for example. Various resin materials such as polypropylene, polyethylene, polyamide, polyvinyl chloride, polyester, polyacetal, polyurethane, polycarbonate, fluororesin, silicone resin, silicone rubber, and natural rubber can be used. In addition, it can also integrally form through the mesh | network of the cylindrical net body 1 using a thermoplastic resin material, Furthermore, either one of the said inner resin layer 7A and the outer resin layer 7B is abbreviate | omitted, or said inner resin layer 7A One of the outer resin layer 7B and the outer resin layer 7B can be formed of a plurality of layers. The inner resin layer 7A and the outer resin layer 7B may be made of different resins, and may be modified in various ways, for example, the inner and outer resin layers 7A and 7B may be formed via an intermediate layer straddling the cylindrical net body 1.

表1に示す5種類の本発明に係る組成を持つステンレス鋼線である試料A1〜A5とし、かつ一般的な硬質用線材であるSUS304、SUS304N材、及びSUS316を、比較例の試料B1〜B3として選択した。その成分組成を合わせて表1に示す。   Samples A1 to A5, which are stainless steel wires having the compositions according to the present invention shown in Table 1, and SUS304, SUS304N material, and SUS316, which are general hard wires, are used as comparative samples B1 to B3. Selected as. The component composition is shown together in Table 1.

Figure 0004851878
Figure 0004851878

表1に示す試料A1〜A5のステンレス鋼線を各々ダイヤモンドダイスによる湿式伸線加工(加工率75%)して0.05mmの硬質素線(実施例A1〜A5)を得た。得られた各硬質素線は、いずれも平滑で光輝な表面状態を持ち、円滑に伸線加工を行うことができた。そこで、この素線を極細圧延機にセットして、該細線の引張強さの5〜20%の逆張力を付加しながら上下2方向から圧下する冷間圧延加工を行い、厚さ20μm×幅100μmの帯状細線4を得た。なおその間の熱処理は行っていない。得られた帯状細線4は表面良好で、かつ幅寸法のバラツキ、線状不良もほとんどなく、問題視されるような欠陥は認められなかつた。但し、その側面部を顕微鏡で観ると、押圧面より粗大化した微小凹凸が確認されたが、その程度は、10点の平均表面粗さで0.04〜0.09μm程度のものであり、実質的な影響はない。この冷問圧延後の機械的特性と繰り返し曲げ試験の結果を表2に示す。又比較例の試料B1〜B3についても同様に硬質素線(比較例B1〜B3)を得、その結果を表2に合わせて示している。
The stainless steel wires of Samples A1 to A5 shown in Table 1 were each wet-drawn with a diamond die (processing rate 75%) to obtain 0.05 mm hard strands (Examples A1 to A5). Each of the obtained hard strands had a smooth and brilliant surface state, and could be drawn smoothly. Therefore, this strand is set in an ultrathin rolling mill, and cold rolling is performed in which the tensile strength of the fine wire is reduced from two directions while applying a reverse tension of 5 to 20%, and the thickness is 20 μm × width. A thin strip 4 having a thickness of 100 μm was obtained. No heat treatment was performed during that time. The obtained band-like thin wire 4 had a good surface, and there was almost no variation in the width dimension and there was no linear defect, and no defect that was regarded as a problem was observed. However, when the side surface portion was observed with a microscope, fine irregularities coarsened from the pressing surface were confirmed, the degree of which was about 0.04 to 0.09 μm with an average surface roughness of 10 points, There is no substantial impact. Table 2 shows the mechanical properties after the cold rolling and the results of repeated bending tests. Similarly, hard wires (comparative examples B1 to B3) are obtained for the samples B1 to B3 of the comparative example, and the results are shown in Table 2.

Figure 0004851878
Figure 0004851878

機械的特性も、JIS−Z2201「金属材料引張試験」に基づくチャート付の細線用引張り試験機で標点間距離50mmで行ない、歪と応力とのチャート結果から求めている。ヤング率は該チャートの中で比例限領域内での傾きを示している。また、透磁率は帯状細線50本を束ねた束体で、環境温度20℃での透磁率(μ)について前記直流磁化特性試験装置(メトロン技研(株))で測定し、これを単位面積に換算したものである。これら結果から明らかなように、本実施例の帯状細線は、いずれも比較例の帯状細線と同等以上の高強度を有し、しかもいずれも1.01エルステッド以下の非磁性であることが分かる。   The mechanical properties are also obtained from the chart results of strain and stress by performing a thin wire tensile tester with a chart based on JIS-Z2201 “Metal Material Tensile Test” at a distance between gauge points of 50 mm. The Young's modulus indicates the slope within the proportional limit region in the chart. The magnetic permeability is a bundle of 50 band-like thin wires. The magnetic permeability (μ) at an environmental temperature of 20 ° C. is measured by the DC magnetization characteristic test apparatus (Metron Giken Co., Ltd.), and this is measured in unit area. It is converted. As is clear from these results, it can be seen that the thin strips of this example all have high strength equal to or higher than that of the comparative strips, and both are nonmagnetic less than 1.01 Oersted.

また繰り返し曲げ試験については図4に示すように、得られた各帯状細線をそれぞれ標点間距離80mmで把持具d,dで把持し、その一方を180゜の角度範囲で繰り返し曲げしながら破断に至るまでの曲げ回数を測定したものであり、結果は曲げ角度90゜分を1回と数えたもので示しているが、比較例に比してほぼ良好であることが分かる。また耐食性は、アノード分極曲線による孔食電位(VVSAg/Agcl)を100μA/cm2 の条件で評価したものであって、優を◎、良を○、またそれより劣るものを△,×で示している。特に試料A1,A2が良好であった。 As for the repeated bending test, as shown in FIG. 4, each obtained strip-like thin wire is gripped by gripping tools d and d at a distance between the gauge points of 80 mm, and one of them is broken while being repeatedly bent at an angular range of 180 °. The number of times of bending up to is measured, and the result is shown by counting the bending angle of 90 ° as one time, but it can be seen that it is substantially better than the comparative example. Corrosion resistance is evaluated by evaluating the pitting corrosion potential (VVSAg / Agcl) according to the anodic polarization curve under the condition of 100 μA / cm 2. Excellent is indicated by ◎, good is indicated by ○, and inferior is indicated by Δ, ×. ing. Samples A1 and A2 were particularly good.

次に,前記低温熱処理の効果を見るために、実施例A1(試料A1)及び比較例B1(試料B1)の各硬質細線をストランド型の低温熱処理炉を用いて温度400〜600℃×15〜60minの条件で処理し、得られた帯状細線の特性を調査した。結果は図5に示しているように、本発明に係わるステンレス鋼帯状細線は、処理温度とともに強度が増加し、例えば温度450℃で処理したものでは引張強さを100〜200MPa程度高強度化でき、また前記耐力比も96%と非常に優れたものであった。 Next, in order to see the effect of the low-temperature heat treatment, each hard fine wire of Example A1 (Sample A1) and Comparative Example B1 (Sample B1) was subjected to a temperature of 400 to 600 ° C. × 15 to Processing was performed for 60 min, and the characteristics of the obtained strip-like thin wires were investigated. As shown in FIG. 5, the strength of the stainless steel strip-like wire according to the present invention increases with the treatment temperature. For example, when the treatment is performed at a temperature of 450 ° C., the tensile strength is increased to about 100 to 200 MPa . In addition, the yield strength ratio was very excellent at 96%.

次に、前記実施例1とは異なるプロセスを採用し、試料B1〜B3の組成を持つステンレス鋼線を温度1150℃で固溶化熱処理して0.1mmの原材料線材とした(比較例B1〜B3)。そして、これを前記冷間圧延機にセットして各々70%の圧下率で圧延し、厚さ30μm×幅260μmの微細断面の帯状細線を得た。   Next, a process different from that of Example 1 was adopted, and a stainless steel wire having the composition of Samples B1 to B3 was subjected to a solution heat treatment at a temperature of 1150 ° C. to obtain a 0.1 mm raw material wire (Comparative Examples B1 to B3). ). Then, this was set in the cold rolling mill and rolled at a rolling reduction of 70% to obtain a strip-like thin wire having a fine cross section of 30 μm thickness × 260 μm width.

この帯状細線の特性は、引張強さ1500〜1800MPa、ヤング率170〜200GPaであり、圧延加工性は良好であったが、外観状態については実施例Aのものに比して、側面部の寸法バラッキがやや大きいものであった。   The properties of the thin strips were tensile strength of 1500 to 1800 MPa, Young's modulus of 170 to 200 GPa, and good rolling workability. Baracki was a little big.

次に、前記実施例1の実施例A1及びA3の金属帯状細線を用いて、外径1.4mm、ピッチ4mm、配線間隔0.42mmで平織りの編組加工してメッシュの筒状網体を得た。編組加工は、予め準備したの棒状芯材の表面に厚さ0.3mmのポリテトラフルオロエチレン樹脂を被覆した膜体を形成し、その上に8本の前記帯状細線を用いて交互編みブレーダーによって80ピック/インチ密度で編組加工したものであり、さらに、その表面に前記樹脂材料を再度被覆することでチューブ状の細管を形成し、最後に前記芯材は引抜かれた。網体は、非常にフレキシブルでかつ高弾性であり、しかも優れた非磁性を持つものであった。   Next, using the metal strip-like thin wires of Examples A1 and A3 of Example 1, a plain weave braided with an outer diameter of 1.4 mm, a pitch of 4 mm, and a wiring interval of 0.42 mm is obtained. It was. In the braiding process, a film body in which a polytetrafluoroethylene resin having a thickness of 0.3 mm is formed on the surface of a rod-shaped core material prepared in advance is formed by an alternating knitting brader using the above-described eight strip thin wires. It was braided at a density of 80 picks / inch, and the surface was coated again with the resin material to form a tube-like capillary tube. Finally, the core material was drawn. The net was very flexible and highly elastic, and had excellent nonmagnetic properties.

こうして得られた被覆カテーテルの性能を評価する為に、長さ100mmの試料を採取してトルク伝達性と耐圧性、座屈性能を調査した。トルク伝達性は試験試料の一端を捻った時の他端側の捻り力を感覚で求め、また耐圧性は該カテーテル内に注射器で薬液を注入した時の破裂有無で評価したものである。さらに耐座屈性は試料の一端を机上に当ててその上から押付けることで行い、座屈した時の応力の大小で評価した。その結果、本発明に係わるカテーテルはいずれの性能にも優れ、従来型のカテーテルに比して2〜3割程度の特性向上を図ることができた。   In order to evaluate the performance of the coated catheter thus obtained, a sample having a length of 100 mm was collected and investigated for torque transmission, pressure resistance, and buckling performance. Torque transmission is determined by sensation of the twisting force on the other end when one end of the test sample is twisted, and pressure resistance is evaluated by the presence or absence of rupture when a drug solution is injected into the catheter with a syringe. Further, the buckling resistance was evaluated by placing one end of the sample on a desk and pressing it from the top, and evaluating the amount of stress when buckling. As a result, the catheter according to the present invention was excellent in any performance, and the characteristics could be improved by about 20 to 30% as compared with the conventional catheter.

本発明の帯状細線を編組加工した筒状網体の一形態を例示する正面図である。It is a front view which illustrates one form of the cylindrical net body which braided the strip | belt-shaped thin wire | line of this invention. 本発明に係る極細帯状細線を例示する斜視図である。It is a perspective view which illustrates the ultrathin strip-like thin wire concerning the present invention. (A)はカテーテルのチューブ体の一形態を例示する横断面図、(B)は外樹脂層、筒状網体を順次取り除いて示す正面図である。(A) is a cross-sectional view illustrating an embodiment of a tube body of a catheter, and (B) is a front view showing an outer resin layer and a cylindrical mesh body sequentially removed. 繰り返し曲げ試験の方法を示す略図である。1 is a schematic diagram showing a method of a repeated bending test. 低温熱処理に伴う機械的特性の変化を示す線図である。It is a diagram which shows the change of the mechanical characteristic accompanying low temperature heat processing. カテーテルの一形態を示す斜視図である。It is a perspective view which shows one form of a catheter.

符号の説明Explanation of symbols

1 筒状網体
2 カテーテル
3 偏平面
4 帯状細線
7 樹脂層
7A 内樹脂層
7B 外樹脂層
DESCRIPTION OF SYMBOLS 1 Cylindrical mesh body 2 Catheter 3 Uneven plane 4 Band-shaped thin wire 7 Resin layer 7A Inner resin layer 7B Outer resin layer

Claims (8)

厚さ50μm以下に押圧され扁平面を持つ帯状細線の編組加工によって、細径チューブ状の組物に成形されてなる筒状網体であって、
前記帯状細線はステンレス鋼であって、
組成が質量%で
C≦0.06%,
Si≦0.80%,
Mn:3.00〜18.00%,
Ni:2.00〜13.00%,
Cr:15.00〜25.00%,
N:0.100〜0.800% とからなる主部を含み、
かつ残部:Fe、及び不可避不純物により構成され、
又は前記主部に
Mo:0.40〜3.50%,
Cu:0.08〜0.80%の少なくとも1種以上を含ませ、
かつ残部:Fe及び不可避不純物により構成されるとともに、
該帯状細線は引張強さ(σ)が1500〜3000MPa、環境温度20℃での透磁率が1.01以下の高強度非磁性特性を有することを特徴とするカテーテル補強用の筒状網体。
A cylindrical net formed by forming a thin tube-shaped braid by braiding a strip-shaped thin wire pressed to a thickness of 50 μm or less and having a flat surface,
The strip-shaped thin wire is stainless steel,
The composition is mass%, C ≦ 0.06%,
Si ≦ 0.80%,
Mn: 3.00 to 18.00%,
Ni: 2.00 to 13.00%,
Cr: 15.00 to 25.00%,
N: The main part which consists of 0.100-0.800%,
And the balance: Fe, and inevitable impurities,
Or Mo: 0.40 to 3.50% in the main part,
Cu: 0.08 to 0.80% of at least one kind is included,
And the balance: composed of Fe and inevitable impurities,
The band-like thin line tensile strength (sigma) is 1500~3000MPa, tubular catheter reinforcing characterized and Turkey that permeability at ambient temperature 20 ° C. have a high strength non-magnetic characteristics of 1.01 or less Net body.
前記ステンレス鋼は、質量%で前記主部が、
C:≦0.03%,
Si≦0,50%,
Mn:5.00〜8.00%,
Ni:8.00〜12.00%,
Cr:19.00〜23.00%,
N:0.30〜0.60%、の範囲
かつこの主部に
Mo:1.00〜3.00%,
Cu:0.08〜0.80%の少なくとも1種以上を含ませ、
しかも残部:Fe及び不可避不純物で構成されたことを特徴とする請求項1に記載の前記筒状網体。
The stainless steel has a mass% and the main part is
C: ≦ 0.03%,
Si ≦ 0, 50%,
Mn: 5.00 to 8.00%,
Ni: 8.00 to 12.00%,
Cr: 19.00-23.00%,
N: 0.30 to 0.60%, and in this main part Mo: 1.00 to 3.00%,
Cu: 0.08 to 0.80% of at least one kind is included,
In addition, the cylindrical net body according to claim 1, further comprising: balance: Fe and inevitable impurities.
前記ステンレス鋼は、質量%で前記主部が、
C≦0.06%,
Si≦0.50%,
Mn:12.00〜17.00%,
Ni:2.00〜5.00%,
Cr:16.00〜20.00%,
N:0.30〜0.60%、の範囲
かつこの主部に
Mo:0.40〜2.00%、
Cu:0.40〜0.70%の少なくとも1種以上を含ませ、
しかも、残部:Fe及び不可避不純物により構成したことを特徴とする請求項1に記載の前記筒状網体。
The stainless steel has a mass% and the main part is
C ≦ 0.06%,
Si ≦ 0.50%,
Mn: 12.00-17.00%,
Ni: 2.00 to 5.00%,
Cr: 16.00 to 20.00%,
N: 0.30-0.60%, and in this main part Mo: 0.40-2.00%,
Cu: at least one of 0.40 to 0.70% is included,
In addition, the cylindrical net body according to claim 1, wherein the cylindrical net body is constituted by the balance: Fe and inevitable impurities.
前記不可避不純物は、Nb,Ti,A1,Oの少なくとも一種の元素で、かつその元素の含有量は質量%で、
Nb:0.020%以下,
Ti:0.030%以下,
Al:0.010%以下,
O:0.008%以下
であることを特徴とする請求項1〜3のいずれかに記載の筒状網体。
The inevitable impurities are at least one element of Nb, Ti, A1, O, and the content of the element is mass%,
Nb: 0.020% or less,
Ti: 0.030% or less,
Al: 0.010% or less,
O: It is 0.008% or less, The cylindrical net body in any one of Claims 1-3 characterized by the above-mentioned.
前記ステンレス鋼は、その元素の質量%が次の関係式を満足することを特徴とする請求項4記載の筒状網体。
Ni+1.05Mn+12.6N=(18.0〜25.0%)
≧0.65Cr+12.6C
The cylindrical mesh body according to claim 4, wherein the stainless steel satisfies the following relational expression in mass% of the element.
Ni + 1.05Mn + 12.6N = (18.0-25.0%)
≧ 0.65Cr + 12.6C
前記帯状細線は、固溶化熱処理後の冷間伸線加工と該伸線加工に続く冷問圧延加工によって、厚さ20μm以下で、かつ該厚さの2〜10倍の巾寸法を有することを特徴とする請求項1〜5のいずれかに記載の前記筒状網体。   The strip-like thin wire has a thickness of 20 μm or less and a width of 2 to 10 times the thickness by cold drawing after the solution heat treatment and cold rolling after the drawing. The said cylindrical net body in any one of Claims 1-5 characterized by the above-mentioned. 前記引張強さ(σ)MPaと0.2%耐力(τ)MPaとの耐力比{(τ/σ)×100}が、85〜98%であることを特徴とする請求項6に記載の前記筒状網体。
The proof stress ratio {(τ / σ) × 100} between the tensile strength (σ) MPa and 0.2% proof stress (τ) MPa is 85 to 98%. The cylindrical net.
請求項1〜7のいずれかに記載の前記筒状網体の内外面に樹脂製材料を配して被包することにより形成したチューブ体を有することを特徴とするカテーテル。   A catheter having a tube body formed by arranging and encapsulating a resin material on the inner and outer surfaces of the cylindrical mesh body according to any one of claims 1 to 7.
JP2006199744A 2006-07-21 2006-07-21 Tubular knitted body for catheter reinforcement and catheter using the same Active JP4851878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199744A JP4851878B2 (en) 2006-07-21 2006-07-21 Tubular knitted body for catheter reinforcement and catheter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199744A JP4851878B2 (en) 2006-07-21 2006-07-21 Tubular knitted body for catheter reinforcement and catheter using the same

Publications (2)

Publication Number Publication Date
JP2008023110A JP2008023110A (en) 2008-02-07
JP4851878B2 true JP4851878B2 (en) 2012-01-11

Family

ID=39114366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199744A Active JP4851878B2 (en) 2006-07-21 2006-07-21 Tubular knitted body for catheter reinforcement and catheter using the same

Country Status (1)

Country Link
JP (1) JP4851878B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150427A1 (en) * 2018-01-30 2019-08-08 朝日インテック株式会社 Catheter
CN110639114B (en) * 2018-06-27 2023-03-17 先健科技(深圳)有限公司 Catheter tube
WO2020174791A1 (en) * 2019-02-26 2020-09-03 Yanchers株式会社 Medical device
CN110499462B (en) * 2019-08-27 2021-05-07 江阴祥瑞不锈钢精线有限公司 Production process of stainless steel wire for large-deformation riveting shell
CN113492153B (en) * 2021-07-16 2023-01-31 山西太钢不锈钢股份有限公司 Rolling method of austenitic stainless steel and austenitic stainless steel for electronic components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211165A (en) * 1988-06-29 1990-01-16 Kobe Steel Ltd Medical very thin tube
JP4746757B2 (en) * 2001-03-27 2011-08-10 川澄化学工業株式会社 Reinforcing catheter
JP3836747B2 (en) * 2002-04-12 2006-10-25 日本精線株式会社 High-strength stainless steel spring for meter reading machine and clothes hanger using this spring
JP4309141B2 (en) * 2003-01-21 2009-08-05 新日鐵住金ステンレス株式会社 High-strength low-permeability austenitic stainless steel sheet and manufacturing method, and bolt-fastening washer manufacturing method
JP4436206B2 (en) * 2004-07-28 2010-03-24 金井 宏彰 Blade line for reinforcing high-strength catheter and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008023110A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4851878B2 (en) Tubular knitted body for catheter reinforcement and catheter using the same
JP2008184643A (en) Method for manufacturing high-strength ultra-fine flat wire, and high-strength metal ultra-fine flat wire obtained using the manufacturing method
US7434437B2 (en) Method of making a metallic thin wire for a medical tool
EP2832876B1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
CN102049085B (en) A medical guide wire, a method of making the same, an assembly of microcatheter and guiding catheter combined with the medical guide wire
KR950008547B1 (en) Fishing line
JP4840571B2 (en) Fine metal strip for reinforcing resin material, resin molded product and medical product using the strip
US20150027598A1 (en) Chromium-nickel steel, martensitic wire and method for production thereof
JP4824960B2 (en) Stainless steel high-strength ultrafine flat wire manufacturing method
JP2009084597A (en) Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
JP2007330288A (en) Core material or guide wire composed of core material and its manufacturing method
JP6596470B2 (en) Medical treatment device wire and guide wire
TW201325642A (en) Medical guide wire
US20080215017A1 (en) Method of making cobalt-based alloy tubes having enhanced mechanical performance characteristics and a tube formed by the method
EP2947199A1 (en) Rubber article reinforcing steel wire and rubber article using same
JP2016221199A (en) Medical guide wire
JP4977445B2 (en) Guide wire and manufacturing method thereof
JP2009228114A (en) High-strength flexible fine wire of stainless steel
JPH08308637A (en) Wire for interdental brush and interdental brush
JP3597707B2 (en) Brush shaft wire and interdental brush product using the wire
EP4226964A1 (en) Medical device
JP5500906B2 (en) Fishing line and method for manufacturing fishing line
JP4436206B2 (en) Blade line for reinforcing high-strength catheter and method for manufacturing the same
JP4842615B2 (en) Catheter reinforcement
JPH11151871A (en) Wire for metal mesh

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Ref document number: 4851878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250