JP4719320B2 - High strength extra fine steel wire and method for producing the same - Google Patents

High strength extra fine steel wire and method for producing the same Download PDF

Info

Publication number
JP4719320B2
JP4719320B2 JP2010540974A JP2010540974A JP4719320B2 JP 4719320 B2 JP4719320 B2 JP 4719320B2 JP 2010540974 A JP2010540974 A JP 2010540974A JP 2010540974 A JP2010540974 A JP 2010540974A JP 4719320 B2 JP4719320 B2 JP 4719320B2
Authority
JP
Japan
Prior art keywords
steel wire
mass
wire
ferrite phase
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010540974A
Other languages
Japanese (ja)
Other versions
JPWO2010150450A1 (en
Inventor
淳 高橋
誠 小坂
順一 児玉
敏三 樽井
環輝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010540974A priority Critical patent/JP4719320B2/en
Application granted granted Critical
Publication of JP4719320B2 publication Critical patent/JP4719320B2/en
Publication of JPWO2010150450A1 publication Critical patent/JPWO2010150450A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Description

本発明は、自動車用タイヤのスチールコード、又はソーワイヤ等に使用される高強度鋼線及びその製造方法に関する。詳しくは、本発明は、ダイスを用いて冷間で伸線加工強化された線径0.04〜0.4mm、強度4500MPa級以上の極細鋼線に関する。
本願は、2009年6月22日に、日本に出願された特願2009−148051号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a high-strength steel wire used for a steel cord or saw wire of an automobile tire and a method for manufacturing the same. Specifically, the present invention relates to an ultra fine steel wire having a wire diameter of 0.04 to 0.4 mm and a strength of 4500 MPa class or higher, which is cold-drawn and strengthened by using a die.
This application claims priority on June 22, 2009 based on Japanese Patent Application No. 2009-148051 for which it applied to Japan, and uses the content here.

自動車タイヤに用いられているスチールコードにおいては、タイヤの軽量化の要求から、鋼線の高張力化に対するニーズが高まっている。同様に、サファイヤ結晶やSiC結晶等を精密切断するためのソーワイヤにおいても、高張力化に対するニーズが高まっている。このようなニーズに答えるために、多数の研究が精力的に展開された。その結果、鋼線の高張力化に加え、十分な延性が確保される必要があることが明らかになった。延性指標としてはいくつかあるが、例えば、ねじり試験による破断に至るまでのねじり回数や、ねじり試験中に鋼線の長手方向に生ずる割れ(デラミネーション)の発生の有無がある。鋼線の高強度化には延性の低下が伴うことが大きな課題となっており、これを抑制することが重要である。また、高強度鋼線は、室温時効(20℃〜40℃、数日〜数年)によって、特性が劣化する現象も見られるため、良好な延性が実質的に時効によって低下しないことも重要である。   In steel cords used for automobile tires, there is an increasing need for higher tensile strength of steel wires due to demands for weight reduction of tires. Similarly, in the saw wire for precisely cutting sapphire crystals, SiC crystals, etc., there is an increasing need for higher tension. Numerous studies have been vigorously developed to answer these needs. As a result, it became clear that it was necessary to ensure sufficient ductility in addition to increasing the tensile strength of the steel wire. There are several ductility indexes. For example, there are the number of twists until breakage in the torsion test and the presence or absence of cracks (delamination) that occur in the longitudinal direction of the steel wire during the torsion test. High strength of steel wire is accompanied by a decrease in ductility, and it is important to suppress this. In addition, it is important that high ductility does not substantially deteriorate due to aging because high strength steel wire has a phenomenon that its properties deteriorate due to room temperature aging (20 ° C. to 40 ° C., several days to several years). is there.

高強度鋼線は、一般には、パーライト組織を有する線材をダイス等を用いて、伸線加工を行うことによって製造されている。この加工によって、パーライトラメラ間隔が小さくなり、また、フェライト相の中に多量の転位が導入されることで、引張り強度が増大する。この伸線歪みが非常に大きくなると、パーライト組織中のセメンタイトが微細化し分解することが近年明らかにされている。しかしながら、特に組織が微細であることから、これらの炭素の存在位置及び存在状態と、機械的性質との関係は明らかにされておらず、特に延性劣化の原因について不明な点が多かった。実際の高強度鋼線では、鋼線内の組織や局所的な歪量は、表面領域と中心領域とで必ずしも同一ではないようであり、このことが鋼線の特性にも影響を及ぼしていると考えられる。   High-strength steel wires are generally manufactured by drawing a wire having a pearlite structure using a die or the like. This processing reduces the pearlite lamella spacing, and introduces a large amount of dislocations in the ferrite phase, thereby increasing the tensile strength. It has recently been clarified that cementite in a pearlite structure is refined and decomposed when the wire drawing strain becomes very large. However, since the structure is particularly fine, the relationship between the location and state of these carbons and the mechanical properties has not been clarified, and there are many unclear points regarding the cause of ductile deterioration. In an actual high-strength steel wire, the structure and local strain in the steel wire do not always appear to be the same in the surface region and the central region, which also affects the properties of the steel wire. it is conceivable that.

極細鋼線の高強度化を図るためには、最終パテンティング処理後の素線強度を増加させるか、又は、最終の伸線加工歪みを増加させる必要ある。ところが、最終パテンティング処理後の素線強度、又は伸線加工歪を増加させて極細鋼線の高強度化を図っても、強度が4500MPaを超えると延性の低下が著しく、実用化することが極めて困難となっていた。   In order to increase the strength of the ultrafine steel wire, it is necessary to increase the strand strength after the final patenting process or increase the final wire drawing distortion. However, even if the strength of the ultrafine steel wire is increased by increasing the wire strength after the final patenting treatment or the wire drawing strain, if the strength exceeds 4500 MPa, the ductility is remarkably lowered and may be put into practical use. It was extremely difficult.

これに対して、延性低下の少ない高強度化手段の従来の知見として、例えば、特許文献1、特許文献2、および特許文献3には、それぞれC、Si、Mn、Cr等の化学成分を規定した高強度で高延性の極細線用高炭素鋼線材が提案されている。しかし、これらの公報で開示されている実施例からも分かるように、鋼線の引張強さは最大でも3500〜3600MPaであり、極細鋼線の高強度化には限界があった。   On the other hand, for example, Patent Document 1, Patent Document 2, and Patent Document 3 define chemical components such as C, Si, Mn, and Cr, respectively, as conventional knowledge of a high-strength means with little reduction in ductility. A high-strength, high-ductility, high-carbon steel wire rod for ultrafine wires has been proposed. However, as can be seen from the examples disclosed in these publications, the maximum tensile strength of the steel wire is 3500-3600 MPa, and there is a limit to increasing the strength of the ultrafine steel wire.

また、特許文献4には、化学成分と非金属介在物組織および初析セメンタイトの面積分率を制御した高強度鋼高じん性鋼線材が提案されている。更に、特許文献5には、鋼の化学成分と最終ダイスでの減面率を制御する高強度鋼高じん性極細線鋼の製造方法が開示されている。しかし、これらの技術でも引張強さが4500MPa以上で高延性を有する極細鋼線を実現することは不可能であった。   Patent Document 4 proposes a high-strength steel and high toughness steel wire rod in which the chemical composition, the non-metallic inclusion structure, and the area fraction of proeutectoid cementite are controlled. Furthermore, Patent Document 5 discloses a method for producing a high-strength steel and a high toughness ultrafine wire steel that controls the chemical composition of the steel and the area reduction rate of the final die. However, even with these techniques, it has been impossible to realize an ultrafine steel wire having a tensile strength of 4500 MPa or more and high ductility.

また、スチールコードの特性がパーライト組織中のフェライト相中の炭素濃度に影響されるとの別の知見があり、これらの濃度を規定することにより強度と延性とのバランスを向上させる指針が開示されている。例えば特許文献6では、鋼線中の炭素濃度を規定することで、良好な特性を得ようとしている。特許文献7では、さらに熱処理を工夫することで、好ましい炭素状態を実現し、良好な特性を得る方法が開示されている。更に特許文献8では、鋼線中の炭素濃度とラメラ間隔とを規定することで、良好な特性を得ようとしている。しかし、これらは全て、鋼線最外層(表面から深さ2μmまでの領域)の炭素状態については言及していない。これは、当時の技術では実測(及び制御)できなかったことに由来する。   In addition, there is another finding that the properties of steel cords are affected by the carbon concentration in the ferrite phase of the pearlite structure, and guidelines for improving the balance between strength and ductility by disclosing these concentrations are disclosed. ing. For example, in patent document 6, it is going to acquire a favorable characteristic by prescribing | regulating the carbon concentration in a steel wire. Patent Document 7 discloses a method of achieving a preferable carbon state and obtaining good characteristics by further devising heat treatment. Furthermore, Patent Document 8 attempts to obtain good characteristics by defining the carbon concentration in the steel wire and the lamellar spacing. However, all of these do not mention the carbon state of the outermost steel wire layer (region from the surface to a depth of 2 μm). This originates from the fact that actual measurement (and control) was not possible with the technology at that time.

また、特許文献9では炭素濃度のバラツキについて規定している。さらに特許文献10では、炭素濃度のバラツキに影響するラメラ間隔の違いの程度を規定している。しかしながら、これらは全体のバラツキについて述べており、特定の箇所の炭素濃度を規定しているものではない。一方で、特許文献11は、鋼線表層部と鋼線中心部とにおけるフェライト相の中のC濃度比を規定することにより、良好な特性を得るための鋼線及び鋼線の製造方法を示している。しかし、あくまで中心部と表層部との相対値としての規定であり、明確な指標とするための絶対値の規定はされていない。また、実測は、表面から10μm以上離れた内部でなされており、表面から2μmまでの領域(最外層)におけるC濃度は制御されていない。   Further, Patent Document 9 defines variation in carbon concentration. Further, Patent Document 10 defines the degree of difference in lamella spacing that affects the variation in carbon concentration. However, these describe the overall variation and do not prescribe the carbon concentration at a specific location. On the other hand, patent document 11 shows the manufacturing method of the steel wire for obtaining a favorable characteristic by prescribing | regulating the C concentration ratio in the ferrite phase in a steel wire surface layer part and a steel wire center part, and a steel wire. ing. However, it is a regulation as a relative value between the center part and the surface layer part, and an absolute value is not prescribed for a clear index. In addition, the actual measurement is made inside 10 μm or more away from the surface, and the C concentration in the region (outermost layer) from the surface to 2 μm is not controlled.

一方、鋼線最外層の残留応力については、特許文献12や特許文献13において、疲労性や耐縦割れ性の観点から残留応力の範囲を規定している。しかしながら、残留圧縮応力が好ましいとしながら、その値の絶対値は小さく、非常に優れた延性と強度とのバランスを得るための範囲の規定はまだなされていない。さらに、最外層の炭素状態との関係について開示された例はない。   On the other hand, regarding the residual stress of the outermost layer of the steel wire, Patent Literature 12 and Patent Literature 13 define a range of residual stress from the viewpoint of fatigue resistance and longitudinal crack resistance. However, while the residual compressive stress is preferable, the absolute value of the value is small, and the range for obtaining a very good balance between ductility and strength has not yet been defined. Furthermore, there is no example disclosed about the relationship with the carbon state of the outermost layer.

高強度極細鋼線の延性を担っているのはフェライト相の延性であり、フェライト相の延性を維持すれば、高強度でも延性が確保される。しかし、伸線加工歪みが増加すると、一般にセメンタイトが分解してC原子がフェライト相の中に拡散し、フェライト相の中の炭素濃度が増加する。非特許文献1には、冷延鋼板において、フェライト相の中の炭素濃度が増加した場合、引張試験中にフェライト相における転位が炭素によって固着される動的歪み時効が生じ、顕著な延性低下を引き起こすことが述べられている。   It is the ductility of the ferrite phase that is responsible for the ductility of the high-strength ultrafine steel wire. If the ductility of the ferrite phase is maintained, ductility is ensured even at high strength. However, when the wire drawing strain increases, cementite is generally decomposed, C atoms diffuse into the ferrite phase, and the carbon concentration in the ferrite phase increases. In Non-Patent Document 1, in a cold-rolled steel sheet, when the carbon concentration in the ferrite phase increases, dynamic strain aging occurs in which the dislocations in the ferrite phase are fixed by carbon during the tensile test, resulting in a significant decrease in ductility. It is stated to cause.

特開昭60−204865号公報JP 60-204865 A 特開昭63−24046号公報JP 63-24046 A 特公平3−23674号公報Japanese Patent Publication No. 3-23674 特開平6−145895号公報JP-A-6-145895 特開平7−113119号公報JP 7-113119 A 特開平11−199980号公報JP-A-11-199980 特開2008−208450号公報JP 2008-208450 A 特開2006−249561号公報JP 2006-249561 A 特開2001−220649号公報JP 2001-220649 A 特開2007−262496号公報Japanese Patent Laid-Open No. 2007-262496 特開2003−334606号公報JP 2003-334606 A 特開平11−199979号公報JP-A-11-199979 特開2001−279381号公報JP 2001-279281 A

日本金属学会誌 第45巻 第9号 (1981)942〜947Journal of the Japan Institute of Metals Vol. 45, No. 9 (1981) 942-947

鋼線の伸線加工時に伸線加工量を非常に大きくすることによって、従来技術によっても張力の高強度化は図れるものの、延性が低下する問題が避けられなかった。本発明は以上のような現状を背景にして、4500MPa以上の高強度であり、かつ延性に優れた高強度鋼線、特に高強度極細鋼線を提供する。   By increasing the amount of wire drawing at the time of wire drawing of the steel wire, the tension can be increased even with the prior art, but the problem of reduced ductility is inevitable. The present invention provides a high-strength steel wire, particularly a high-strength ultrafine steel wire, having a high strength of 4500 MPa or more and excellent ductility, against the background of the current situation as described above.

本発明は、前記課題を解決するために以下の手段を採用した。
(1)本発明の第1の態様は、C:0.7〜1.2質量%、Si:0.05〜2.0質量%、Mn:0.2〜2.0質量%、の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線であって、前記鋼線はパーライト組織を有し、前記鋼線の最外層のフェライト相中心部の平均C濃度が0.2質量%以下であり、前記最外層の鋼線長手方向の残留圧縮応力が600MPa以上である鋼線である。
The present invention employs the following means in order to solve the above problems.
(1) The 1st aspect of this invention is the chemistry of C: 0.7-1.2 mass%, Si: 0.05-2.0 mass%, Mn: 0.2-2.0 mass%. A steel wire comprising a component and the balance being Fe and inevitable impurities , the steel wire having a pearlite structure, and an average C concentration in the center of the ferrite phase of the outermost layer of the steel wire being 0.2 mass %, And the residual compressive stress in the longitudinal direction of the outermost steel wire is 600 MPa or more.

(2)上記(1)に記載の鋼線では、Cr:0.05〜1.0質量%、Ni:0.05〜1.0質量%、V:0.01〜0.5質量%、Nb:0.001〜0.1質量%、Mo:0.01〜0.1質量%、B:0.0001〜0.01質量%、の1種以上の化学成分を更に含有してもよい。 (2) In the steel wire described in (1) above, Cr: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0 mass%, V: 0.01 to 0.5 mass%, Nb: 0.001 to 0.1% by mass, Mo: 0.01 to 0.1% by mass, B: 0.0001 to 0.01% by mass may be further contained. .

(3)上記(1)又は(2)に記載の鋼線が、4500MPa以上の引張強さを有する高強度極細鋼線であってもよい。 (3) The steel wire according to the above (1) or (2) may be a high-strength ultrafine steel wire having a tensile strength of 4500 MPa or more.

(4)上記(3)に記載の高強度極細鋼線が、スチールコードであってもよい。 (4) The high-strength ultrafine steel wire described in the above (3) may be a steel cord.

(5)上記(3)に記載の高強度極細鋼線が、ソーワイヤであってもよい。 (5) The high-strength ultrafine steel wire described in (3) above may be a saw wire.

(6)本発明の第2の態様は、4500MPa以上の引張強さを有する鋼線の製造方法であって、C:0.7〜1.2質量%、Si:0.05〜2.0質量%、Mn:0.2〜2.0質量%、の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線にパテンティング処理を行いパーライト組織を生成するパテンティング工程と;前記鋼線の最外層の前記パーライト組織におけるフェライト相中心部の平均C濃度を0.2質量%以下に制御して前記鋼線を伸線する伸線工程と;前記鋼線に600MPa以上の残留圧縮応力を付与する残留応力付与工程と;を備える鋼線の製造方法である。
(7)上記(6)に記載の鋼線の製造方法では、前記パテンティング処理を行う前の鋼線が、Cr:0.05〜1.0質量%、Ni:0.05〜1.0質量%、V:0.01〜0.5質量%、Nb:0.001〜0.1質量%、Mo:0.01〜0.1質量%、B:0.0001〜0.01質量%、の1種以上の化学成分を更に含有してもよい。
(8)4500MPa以上の引張強さを有する鋼線の製造方法であって、C:0.7〜1.2質量%、Si:0.05〜2.0質量%、Mn:0.2〜2.0質量%、の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線にパテンティング処理を行いパーライト組織を生成するパテンティング工程と;前記鋼線の最外層の前記パーライト組織におけるフェライト相中心部の平均C濃度を0.2質量%以下に制御して前記鋼線を伸線する伸線工程と;前記鋼線に600MPa以上の残留圧縮応力を付与する残留応力付与工程と;を備え、最終パテンティング処理以降に、下記のAグループ、Bグループ、Cグループからそれぞれひとつずつの製法を採用することを特徴とする、鋼線の製造方法。
Aグループ(A1:最終段に減面率が1%〜6%のスキンパス工程を行う。A2:伸線加工後にショットピーニングを行う。)
Bグループ(B1:最終段の伸線速度を200m/分以下で行う。B2:伸線加工パス間に40〜400℃の温度の加熱処理を0.5秒〜5分間施す。B3:スキンパスを含む最終段およびその一つ前の伸線工程において、アプローチ角が8〜12°で動摩擦係数が0.1以下のダイスを用いる。)
Cグループ(C1:伸線加工後、60〜300℃の加熱保持を0.1分から24時間施す。C2:最終段前の3段を除く伸線加工中に20%以上の減面率での伸線を行う。)
(6) A second aspect of the present invention is a method for producing a steel wire having a tensile strength of 4500 MPa or more, and C: 0.7 to 1.2 mass%, Si: 0.05 to 2.0. A patenting step of producing a pearlite structure by performing a patenting treatment on a steel wire containing a chemical component of mass%, Mn: 0.2 to 2.0 mass%, with the balance being Fe and inevitable impurities; A wire drawing step of drawing the steel wire by controlling an average C concentration of a ferrite phase central portion in the pearlite structure of the outermost layer of the steel wire to 0.2% by mass or less; and a residual compression of 600 MPa or more to the steel wire A method for producing a steel wire comprising: a residual stress applying step for applying stress.
(7) In the steel wire manufacturing method according to (6) above, the steel wire before the patenting treatment is Cr: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0. % By mass, V: 0.01-0.5% by mass, Nb: 0.001-0.1% by mass, Mo: 0.01-0.1% by mass, B: 0.0001-0.01% by mass One or more chemical components may be further contained.
(8) A method for producing a steel wire having a tensile strength of 4500 MPa or more, wherein C: 0.7 to 1.2% by mass, Si: 0.05 to 2.0% by mass, Mn: 0.2 to A patenting step of generating a pearlite structure by applying a patenting process to a steel wire containing 2.0% by mass of a chemical component, the balance being Fe and inevitable impurities; and the pearlite structure of the outermost layer of the steel wire; A wire drawing step of drawing the steel wire by controlling an average C concentration of the ferrite phase center portion to 0.2% by mass or less; a residual stress applying step of applying a residual compressive stress of 600 MPa or more to the steel wire; And after the final patenting process, one manufacturing method from each of the following A group, B group, and C group is employed.
Group A (A1: A skin pass process with a surface reduction rate of 1% to 6% is performed at the final stage. A2: Shot peening is performed after wire drawing.)
Group B (B1: The drawing speed of the final stage is 200 m / min or less. B2: Heat treatment at a temperature of 40 to 400 ° C. is performed for 0.5 second to 5 minutes between drawing processes. B3: Skin pass is performed. (In the final stage and the previous wire drawing step, a die having an approach angle of 8 to 12 ° and a dynamic friction coefficient of 0.1 or less is used.)
Group C (C1: After wire drawing, 60 to 300 ° C. is heated and held for 0.1 minute to 24 hours. C2: During wire drawing excluding 3 steps before the final step, with a reduction in area of 20% or more. Perform wire drawing.)

本発明による鋼線は、パーライト組織を有する鋼線の最外層のフェライト相中心部の炭素濃度が制御され、且つ、残留圧縮応力が付与されているため、高い強度と延性とを発揮することができる。
また、十分な延性と引張強度とを有する高強度鋼線を提供することが可能となるため、製造物の軽量化が可能となる。
The steel wire according to the present invention can exhibit high strength and ductility because the carbon concentration of the ferrite phase central portion of the outermost layer of the steel wire having a pearlite structure is controlled and the residual compressive stress is applied. it can.
Moreover, since it becomes possible to provide the high strength steel wire which has sufficient ductility and tensile strength, the weight reduction of a product is attained.

4500MPa以上の極細鋼線の表面のフェライト相中心部の平均C濃度と表面残留応力と延性との関係について調べた結果を示す図である。It is a figure which shows the result of having investigated about the relationship between the average C density | concentration of the ferrite phase center part of the surface of the ultrafine steel wire of 4500 Mpa or more, surface residual stress, and ductility. 極細鋼線の表面から1μm内部の領域の針試料を取り出す方法における、ブロック切り出し工程を示す図である。It is a figure which shows the block cutting-out process in the method of taking out the needle | hook sample of the area | region inside 1 micrometer from the surface of a very fine steel wire. 同ブロックを針台座上に固定する工程を示す図である。It is a figure which shows the process of fixing the block on a needle base. 集束イオンビーム(FIB)装置により加工した同ブロックを示す図である。It is a figure which shows the same block processed with the focused ion beam (FIB) apparatus. 同ブロックを上部から観察した図である。It is the figure which observed the block from the upper part. 同ブロックにFIB加工して得られる針試料を上から観察した図である。It is the figure which observed the needle sample obtained by carrying out FIB processing to the same block from the top. 同針試料を横から観察した図である。It is the figure which observed the needle sample from the side. 3次元アトムプローブ法(3DAP)によって測定されたC分布とフェライト相中心部のC濃度を示す図である。It is a figure which shows C density | concentration measured by the three-dimensional atom probe method (3DAP), and C density | concentration of a ferrite phase center part.

本発明者らは、高強度鋼線の延性の支配因子について種々解析した結果、強加工された伸線パーライト組織における、鋼線の最外層におけるフェライト相中の炭素(以下Cと表記)濃度と、鋼線最外層の鋼線長手方向の残留応力が、鋼線の延性に強く影響を及ぼすことを新たに見出した。これは、曲げやねじりにおいては、鋼線最外層は内部より強い応力が加わり破壊の起点となるためと考えられる。最外層の残留応力を調べる方法は以前より存在したが、鋼線の表面から2μm以内の鋼線の最外層のフェライト相中のC濃度を精度よく測定する方法は存在していなかった。今回この方法を開発し、特性との関係を調べたところ、鋼線の最外層のフェライト相中のC濃度が規定値以下となり、かつ、同時に鋼線長手方向の残留応力が圧縮となり、この圧縮応力が特定値以上となるように制御することにより、極細鋼線の強度と延性とのバランスが大幅に改善させることを見出した。   As a result of various analyzes on the governing factors of ductility of high-strength steel wire, the present inventors have found that the carbon (hereinafter referred to as C) concentration in the ferrite phase in the outermost layer of the steel wire in a strongly processed drawn pearlite structure It has been newly found that the residual stress in the longitudinal direction of the steel wire outermost layer strongly affects the ductility of the steel wire. This is thought to be because, in bending and twisting, the outermost layer of the steel wire is subjected to a stronger stress than the inside and becomes the starting point of fracture. There has been a method for investigating the residual stress in the outermost layer, but there has not been a method for accurately measuring the C concentration in the ferrite phase of the outermost layer of the steel wire within 2 μm from the surface of the steel wire. This time, we developed this method and investigated the relationship with the characteristics. As a result, the C concentration in the ferrite phase of the outermost layer of the steel wire was below the specified value, and at the same time, the residual stress in the longitudinal direction of the steel wire was compressed. It has been found that the balance between the strength and ductility of the ultrafine steel wire is greatly improved by controlling the stress to be a specific value or more.

一方、鋼線の最外層は、鋼線の内部に対し、より厳しい加工を受け、摩擦発熱等による激しい温度変化を受ける。従って、鋼線の内部とは明らかに異なる組織および状態となる。従って、セメンタイト分解がより進行し、最外層のフェライト相中のC濃度は、鋼線内部のフェライト相中のC濃度に比べ、一般に高い濃度を示す。鋼線の最外層が特性に最も強く関与するため、強度と延性とのバランスに優れた鋼線は、最外層の組織等の制御によって、ほぼ実現できることが判明した。   On the other hand, the outermost layer of the steel wire is subjected to severer processing with respect to the inside of the steel wire, and undergoes a severe temperature change due to frictional heat generation or the like. Therefore, the structure and state are clearly different from the inside of the steel wire. Accordingly, cementite decomposition further proceeds, and the C concentration in the ferrite phase of the outermost layer is generally higher than the C concentration in the ferrite phase inside the steel wire. Since the outermost layer of the steel wire is the most strongly involved in the properties, it has been found that a steel wire excellent in balance between strength and ductility can be realized almost by controlling the structure of the outermost layer.

高強度鋼線は、一般には、パーライト組織を有する線材をダイス等を用い、高伸線加工を施し強化することによって得られる。そのような高強度鋼線の製造の際、高伸線加工時に発生した高伸線歪によって、パーライト組織中のセメンタイトが微細化し分解してCがフェライト相の中に溶け込む現象が生じる。   A high-strength steel wire is generally obtained by strengthening a wire having a pearlite structure by applying a high-stretching process using a die or the like. When such a high-strength steel wire is manufactured, a phenomenon in which cementite in the pearlite structure is refined and decomposed and C is dissolved in the ferrite phase due to high wire drawing strain generated during high wire drawing.

本発明者らは、微細化領域のCの局所濃度を測定することができる3次元アトムプローブ法(以下3DAPと表記する)と今回初めて可能となった鋼線最外層からの針試料作製技術を組み合わせ、鋼線中のあらゆる場所の、フェライト相の中のC濃度と鋼線の強度・延性の関係を詳細に調べた。その結果、特に鋼線表層部のフェライト相の中のC濃度が高くなるか、または、同じ最外層の残留応力が鋼線長手方向に引張りまたは弱い圧縮の場合において、延性が著しく低下することが突き止められた(図1参照)。   The present inventors have developed a three-dimensional atom probe method (hereinafter referred to as 3DAP) that can measure the local concentration of C in a miniaturized region and a technique for producing a needle sample from the outermost steel wire layer that has been made possible for the first time. In combination, the relationship between the C concentration in the ferrite phase and the strength and ductility of the steel wire at every location in the steel wire was examined in detail. As a result, the ductility may be significantly reduced, particularly when the C concentration in the ferrite phase of the steel wire surface layer is increased, or when the residual stress of the same outermost layer is pulled or weakly compressed in the longitudinal direction of the steel wire. It was located (see FIG. 1).

すなわち、十分な延性を確保するためには、鋼線最外層の炭素状態と残留応力とが適切な範囲内に入っていることが同時に満足される必要があることがわかった。このような知見は、今回、鋼線最外層のC局所濃度を調べる方法が新たに開発され、鋼線最外層の炭素状態を調べることが可能となって初めて見出された。   That is, in order to ensure sufficient ductility, it was found that the carbon state and residual stress of the outermost steel wire layer must be satisfied at the same time. Such knowledge was discovered for the first time when a new method for examining the C local concentration of the outermost steel wire layer was developed and the carbon state of the outermost steel wire layer could be examined.

これらの知見から、十分な延性が確保された強度鋼線を実現するためには、鋼線最外層のフェライト相中心部の平均C濃度を特定値以下とし、さらに表面の鋼線長手方向の残留応力を十分な大きさの圧縮応力とすることが必要との結論に達した。   From these findings, in order to realize a strength steel wire with sufficient ductility, the average C concentration in the ferrite phase central portion of the outermost steel wire layer is set to a specific value or less, and the residual in the longitudinal direction of the steel wire on the surface It was concluded that the stress should be a sufficiently large compressive stress.

また、本発明者らは、色々な製法によって4500MPa以上の引張強さを有する試料を作製し、引張強さ及び延性と、表面のパーライト組織のフェライト相中心部の平均C濃度と表面の残留応力との関係を調べた。鋼線最外層のフェライト相中心部の平均C濃度は3DAPによって測定し、残留応力はX線回折法によって調べた。引張強度測定は引張試験機によって行い、延性評価の一つであるねじり試験はねじり試験機によって行った。延性指標として破断に至るまでのねじり回数を測定した。   In addition, the present inventors prepared samples having a tensile strength of 4500 MPa or more by various production methods, the tensile strength and ductility, the average C concentration of the ferrite phase center of the surface pearlite structure, and the surface residual stress. I investigated the relationship with. The average C concentration at the ferrite phase outermost layer of the steel wire was measured by 3DAP, and the residual stress was examined by X-ray diffraction. Tensile strength measurement was performed with a tensile tester, and a torsion test, which is one of ductility evaluations, was performed with a torsion tester. As a ductility index, the number of twists to break was measured.

図1は、鋼線表面下1μmの位置におけるフェライト相中心部の平均C濃度および鋼線最表層の鋼線長手方向の残留応力と、ねじり試験による破断に至るまでのねじり回数で表した延性との関係について調べた結果を示す。ここで、ねじり回数が20回以上の試料を白丸(延性が良好)で示し、さらに25回以上の試料を白四角(延性が非常に良好)で示した。また、20回未満の試料は黒三角(延性不良)で示した。4500MPa以上の引張強さをもち延性が良好な鋼線は、鋼線最外層のフェライト相中心部の平均C濃度が0.2質量%以下でかつ、残留応力が−600MPa以下の大きな圧縮となっている場合にのみ観察された。さらに、延性が非常に良好となる鋼線は、フェライト相中心部の平均C濃度が0.1質量%以下でかつ、残留応力が−600MPa以下の強い圧縮応力になっている場合に観察された。   FIG. 1 shows the average C concentration of the ferrite phase center at a position of 1 μm below the surface of the steel wire, the residual stress in the steel wire longitudinal direction of the outermost layer of the steel wire, and the ductility expressed by the number of twists until breaking by the torsion test. The result of having investigated about the relationship of is shown. Here, samples with 20 or more twists were indicated by white circles (good ductility), and samples with 25 or more twists were indicated by white squares (very good ductility). Samples of less than 20 times are indicated by black triangles (poor ductility). A steel wire having a tensile strength of 4500 MPa or more and good ductility is a large compression having an average C concentration of 0.2 mass% or less at the ferrite phase center portion of the outermost steel wire layer and a residual stress of -600 MPa or less. Only observed when. Furthermore, a steel wire with very good ductility was observed when the average C concentration in the ferrite phase center was 0.1% by mass or less and the residual stress was a strong compressive stress of −600 MPa or less. .

以上の結果より、高強度でかつ十分な延性を実現するために、鋼線最外層のフェライト相中心部の平均C濃度が0.2質量%以下、より好ましくは0.1質量以下であり、かつ、鋼線最外層の鋼線長手方向の残留応力が−600MPa、より好ましくは−700MPa以下となることが望ましい。平均C濃度は、低いほど好ましいが、最終パテンティング材のパーライト組織のフェライト相中心部の炭素濃度が、原理的に最低の炭素濃度となる。従って、最外層のフェライト相中心部の平均C濃度の下限値を0.0001質量%に設定してもよい。一方、残留圧縮応力の最高値は、原理的に鋼線の降伏応力に相当するが、実質的に−3000MPaとしてもよい。これより大きい圧縮応力を印加することは、著しいコスト増加につながり、実用的ではない。
ここで、鋼線最外層とは、めっき相や表面の異質相を除く、表面から深さ2μm以内の領域を示す。また、鋼線最外層のパーライト組織のフェライト相中心部とは、フェライト相の中心面の位置から両側にフェライト相の幅の1/4の距離までを含む領域(フェライト相の幅の半分の領域)を意味する。
From the above results, in order to realize high strength and sufficient ductility, the average C concentration in the ferrite phase outermost layer of the steel wire is 0.2 mass% or less, more preferably 0.1 mass or less, And it is desirable that the residual stress of the steel wire outermost layer in the longitudinal direction of the steel wire is −600 MPa, more preferably −700 MPa or less. The average C concentration is preferably as low as possible, but the carbon concentration in the center of the ferrite phase of the pearlite structure of the final patenting material is in principle the lowest carbon concentration. Therefore, the lower limit value of the average C concentration at the center of the ferrite phase of the outermost layer may be set to 0.0001% by mass. On the other hand, the maximum value of the residual compressive stress corresponds in principle to the yield stress of the steel wire, but may be substantially −3000 MPa. Applying a compressive stress larger than this leads to a significant cost increase and is not practical.
Here, the steel wire outermost layer refers to a region within a depth of 2 μm from the surface, excluding the plating phase and the surface heterogeneous phase. In addition, the ferrite phase central portion of the pearlite structure of the outermost steel wire layer is a region including a distance of 1/4 of the width of the ferrite phase on both sides from the position of the central surface of the ferrite phase (region of half the width of the ferrite phase) ).

上述の発見に基づく本発明の一実施形態にかかる鋼線は、Cを0.7〜1.2質量%、Siを0.05〜2.0質量%、Mnを0.2〜2.0質量%含有し、残部がFe及び不可避的不純物を有する鋼線である。この鋼線は、伸線加工されたパーライト組織を有し、最外層のフェライト相中心部の平均C濃度が0.2質量%以下であり、前記鋼線の最外層の鋼線長手方向の残留圧縮応力が600MPa以上であることを特徴とする。以下に、その限定理由を詳細に述べる。なお、以下に示す「%」は特に説明がない限り「質量%」を意味する。   The steel wire according to one embodiment of the present invention based on the above discovery has a C content of 0.7 to 1.2 mass%, a Si content of 0.05 to 2.0 mass%, and a Mn content of 0.2 to 2.0 mass%. It is a steel wire that is contained by mass and the balance contains Fe and inevitable impurities. This steel wire has a drawn pearlite structure, the average C concentration of the ferrite phase central portion of the outermost layer is 0.2% by mass or less, and the residual in the longitudinal direction of the steel wire of the outermost layer of the steel wire The compressive stress is 600 MPa or more. The reason for limitation will be described in detail below. “%” Shown below means “% by mass” unless otherwise specified.

C:Cはパテンティング処理後の引張強さの増加及び伸線加工硬化率を高める効果があり、より少ない伸線加工歪で引張強さを高めることが可能となる。C含有量が0.7%以下では本発明で目的とする高強度の鋼線を実現することが困難となり、一方、1.2%を超えるとパテンティング処理時に初析セメンタイトがオーステナイト粒界に析出して伸線加工性が劣化し伸線加工中の断線の原因になる。このため、C含有量の範囲は0.7〜1.2%に規定される。   C: C has the effect of increasing the tensile strength after the patenting treatment and increasing the wire drawing work hardening rate, and it is possible to increase the tensile strength with less wire drawing strain. If the C content is 0.7% or less, it will be difficult to achieve the intended high strength steel wire in the present invention. On the other hand, if it exceeds 1.2%, the pro-eutectoid cementite will enter the austenite grain boundaries during the patenting process. It precipitates and the wire drawing workability deteriorates, causing breakage during wire drawing. For this reason, the range of C content is prescribed | regulated to 0.7-1.2%.

Si:Siはパーライト中のフェライト相を強化させるため、また、鋼の脱酸のために有効な元素である。Si含有量が0.05%未満では上記の効果が期待できず、一方、2%を超えると伸線加工性に対して有害な硬質のSiO系介在物が発生しやすくなる。このため、Si含有量の範囲は0.05〜2.0%に規定される。Si: Si is an effective element for strengthening the ferrite phase in pearlite and for deoxidation of steel. If the Si content is less than 0.05%, the above effect cannot be expected. On the other hand, if it exceeds 2%, hard SiO 2 inclusions harmful to the wire drawing workability are likely to be generated. For this reason, the range of Si content is prescribed | regulated to 0.05 to 2.0%.

Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張り強さを高めるために有効な元素である。しかし、Mn含有量が0.2%未満では上記の効果が得られず、一方、2.0%を越えると上記の効果が飽和し、更に、パテンティング処理時のパーライト変態を完了するまでの処理時間が長くなりすぎて生産性が低下する。このため、Mn含有量の範囲は0.2〜2.0%に規定される。   Mn: Mn is not only necessary for deoxidation and desulfurization, but is an effective element for improving the hardenability of steel and increasing the tensile strength after patenting. However, if the Mn content is less than 0.2%, the above effect cannot be obtained. On the other hand, if it exceeds 2.0%, the above effect is saturated, and further, the pearlite transformation during the patenting process is completed. The processing time becomes too long and productivity is lowered. For this reason, the range of Mn content is prescribed | regulated to 0.2 to 2.0%.

上述した、本発明の一実施形態に係る鋼線は、以下の理由によって、Cr、Ni、V、Nb、Mo、Bの1種以上を更に含んでもよい。   The steel wire which concerns on one Embodiment of this invention mentioned above may further contain 1 or more types of Cr, Ni, V, Nb, Mo, B for the following reasons.

Cr:Crはパーライトのセメンタイト相の間隔を微細化しパテンティング処理後の引張強さを高めるとともに、伸線加工硬化率を向上させる。しかしながら、Cr含有量が0.05%未満では前記作用の効果が少なく、一方、1.0%を越えるとパテンティング処理時のパーライト変態終了時間が長くなり生産性が低下する。このため、Cr含有量を0.05〜1.0%の範囲に収めることが好ましい。   Cr: Cr refines the interval between cementite phases of pearlite to increase the tensile strength after the patenting treatment and to improve the wire drawing work hardening rate. However, when the Cr content is less than 0.05%, the effect of the above action is small. On the other hand, when the Cr content exceeds 1.0%, the pearlite transformation finish time during the patenting process becomes long and the productivity is lowered. For this reason, it is preferable to keep Cr content in the range of 0.05 to 1.0%.

Ni:Niはパテンティング処理時に変態生成するパーライトを伸線加工性の良好なものにする作用を有するが、Ni含有量が0.05%未満では上記の効果が得られず、1.0%を超えても添加量に見合うだけの効果が少ない。このため、Ni含有量を0.05〜1.0%の範囲に収めることが好ましい。   Ni: Ni has the effect of making pearlite produced by transformation during the patenting process to have good wire drawing workability. However, if the Ni content is less than 0.05%, the above effect cannot be obtained, and 1.0% Even if the amount exceeds 50%, the effect corresponding to the amount added is small. For this reason, it is preferable to keep Ni content in the range of 0.05 to 1.0%.

V:Vはパーライトのセメンタイト相の間隔を微細化しパテンティング処理時の引張強さを高める効果があるが、この効果はV含有量が0.01%未満では不十分であり、一方、0.5%を超えると効果が飽和する。このため、V含有量を0.01〜0.5%の範囲に収めることが好ましい。   V: V has the effect of increasing the tensile strength during patenting by reducing the interval between the pearlite cementite phases, but this effect is insufficient when the V content is less than 0.01%. If it exceeds 5%, the effect is saturated. For this reason, it is preferable to keep V content in the range of 0.01 to 0.5%.

Nb:NbはVと同様、セメンタイト相の間隔を微細化しパテンティング処理時の引張強さを高める効果があるが、Nb含有量が0.001%未満では不十分であり、一方、0.1%を超えると効果が飽和する。このため、Nb含有量を0.001〜0.1%の範囲に収めることが好ましい。   Nb: Nb, like V, has the effect of reducing the cementite phase interval and increasing the tensile strength during the patenting treatment, but if the Nb content is less than 0.001%, it is insufficient. If it exceeds%, the effect is saturated. For this reason, it is preferable to keep Nb content in the range of 0.001 to 0.1%.

Mo:MoはVと同様、セメンタイト相の間隔を微細化しパテンティング処理時の引張強さを高める効果があるが、Mo含有量が0.01%未満では不十分であり、一方、0.1%を超えると効果が飽和する。このため、Mo含有量を0.01〜0.1%の範囲に収めることが好ましい。   Mo: Mo, like V, has the effect of increasing the cementite phase interval and increasing the tensile strength during the patenting treatment. However, if the Mo content is less than 0.01%, it is insufficient. If it exceeds%, the effect is saturated. For this reason, it is preferable to keep Mo content in the range of 0.01 to 0.1%.

B:Bは、NをBNとして固定し、Nによる時効劣化を防止する作用効果があり、この効果を十分に発揮させるためには鋼材中のB含有量を0.0001%以上含有させる必要がある。一方、鋼材中のB含有量が0.01%を超えるように添加しても効果が飽和しこれ以上のB含有は製造コストを高める原因となるため好ましくない。この理由で本発明では鋼材中にBを含有させる場合には、Bの含有量を0.0001〜0.01%の範囲に収めることが好ましい。   B: B has an effect of fixing N as BN and preventing aging deterioration due to N, and in order to fully exhibit this effect, the B content in the steel material needs to be contained by 0.0001% or more. is there. On the other hand, even if it is added so that the B content in the steel material exceeds 0.01%, the effect is saturated, and B content beyond this is not preferable because it causes the production cost to be increased. For this reason, in the present invention, when B is contained in the steel material, the B content is preferably in the range of 0.0001 to 0.01%.

他の元素は特に限定しないが、不純物として含有される元素として、P:0.015%以下、S:0.015%以下、N:0.007%以下が好ましい範囲である。また、Alは、0.005%を超えると、鋼中の介在物の中で最も硬質なAl系介在物が生成しやすくなり、伸線加工あるいは撚り線加工の際の断線原因となるため、0.005%以下が好ましい範囲である。Other elements are not particularly limited, but as elements contained as impurities, P: 0.015% or less, S: 0.015% or less, and N: 0.007% or less are preferable ranges. Further, if Al exceeds 0.005%, the hardest Al 2 O 3 inclusions among the inclusions in the steel are likely to be generated, which may cause disconnection during wire drawing or stranded wire processing. Therefore, 0.005% or less is a preferable range.

また、上記元素以外にも製造工程などで不可避的に混入する不純物が含有されてもよいが、できるだけ不純物が混入しないようにすることが好ましい。   In addition to the above elements, impurities that are inevitably mixed in the manufacturing process may be contained, but it is preferable that impurities are not mixed as much as possible.

強加工された極細線の伸線パーライト組織における、鋼線最外層のフェライト相中心部の平均C濃度を0.2質量%以下で、かつ、十分な量の残留圧縮応力を付与するためには、最終パテンティング処理以降の製造工程で、下記のAグループ、Bグループ、Cグループからそれぞれひとつづつの製法を採用することが最も有効である。仮に3つの製法を採用するとしても、ひとつのグループに偏り、すべてグループの製法を採用しない場合は、十分な効果は得られない。また、同じグループから2種類を採用した場合は、かえって特性が低下する場合がある。すべてのグループからの製法を採用し、さらにもう一つの製法をどこかのグループから採用したとしても、それほどの効果は得られない。これは、同じグループにある製法は、基本的には類似の効果を与えるものである反面、異なる製法を加えた場合に、効果を打ち消してしまう可能性があるためである。従って前述したように、それぞれのグループから、ひとつづつ製法を採用することが好ましい。   In order to give a sufficient amount of residual compressive stress with an average C concentration of the ferrite phase outermost layer of the steel wire outermost layer being 0.2 mass% or less in a drawn pearlite structure of a strongly processed ultrafine wire In the manufacturing process after the final patenting process, it is most effective to employ one manufacturing method from each of the following A group, B group, and C group. Even if three manufacturing methods are adopted, sufficient effects cannot be obtained if the manufacturing method is biased to one group and all group manufacturing methods are not adopted. In addition, when two types are employed from the same group, the characteristics may be deteriorated. Adopting a manufacturing method from all groups, and even another manufacturing method from some group, will not be very effective. This is because manufacturing methods in the same group basically give similar effects, but if different manufacturing methods are added, the effects may be canceled. Therefore, as described above, it is preferable to adopt the manufacturing method one by one from each group.

(Aグループ製法)
A1:最終段にスキンパス工程を1回、好ましくは複数回入れる。
重要な製法の一つであるスキンパス伸線は、通常の伸線の減面率(10%以上)よりも特に小さな減面率にて伸線する方法である。この減面率としては、1%以上6%以下が好ましく、2%以上5%以下がより好ましい。減面率が1%に満たない場合は、鋼線の表層全体に加工を加えることが難しくなり、また、7%を超える場合は、加工量が大きすぎ、好ましい表面の残留圧縮応力やフェライト相の中の炭素濃度を得ることができなくなる。このスキンパス伸線はシングルダイス方式にて単独で行っても良いし、またダブルダイス方式にて通常伸線と同時に行っても良い。減面率が1%〜6%のスキンパス工程を最終段に1回、好ましくは複数回入れることで、鋼線表面に圧縮の残留応力を印加すると共に、表面のラメラ構造をより均一にすることができる。この表面の適正な残留圧縮応力印加と転位に固着した炭素を外す効果によって、炭素の局所固溶量を低減し易くし、最外層のセメンタイト分解を抑制する。
(Group A manufacturing method)
A1: The skin pass process is performed once, preferably a plurality of times in the final stage.
Skin pass drawing, which is one of important manufacturing methods, is a method of drawing with a particularly small area reduction than the normal area reduction (10% or more). The area reduction rate is preferably 1% to 6%, and more preferably 2% to 5%. If the area reduction is less than 1%, it becomes difficult to process the entire surface of the steel wire, and if it exceeds 7%, the amount of processing is too large, and preferable compressive residual stress and ferrite phase on the surface. The carbon concentration in can not be obtained. This skin pass wire drawing may be performed independently by a single die method, or may be performed simultaneously with normal wire drawing by a double die method. By applying a skin pass process with a surface reduction rate of 1% to 6% once, preferably multiple times, to apply compressive residual stress to the surface of the steel wire and to make the surface lamella structure more uniform Can do. By applying the appropriate residual compressive stress on the surface and removing the carbon fixed to the dislocations, the amount of local solid solution of carbon is easily reduced, and the cementite decomposition of the outermost layer is suppressed.

A2:伸線加工後にショットピーニングを行う。
ショットピーニングは、特定の圧力で、特定の時間、特定サイズの球形のショットを鋼線全体に照射し、鋼線の表面領域にのみ加工層や歪層を作る方法である。ショットピーニングは、例えば、空気投射式で空気圧力4〜5×10Pa、時間は5〜10秒が好ましく、ショット球形は10〜100μmが好ましい。鋼線の表面全体に十分な量の照射を行うことが有効である。
伸線加工後にショットピーニングを行うことで、鋼線表面に圧縮の残留応力を付与すると共に、表面のラメラ構造をより均一なものにそろえる。この表面の適正な残留圧縮応力印加と転位に固着した炭素を外す効果によって、炭素の局所固溶量を低減し、最外層のセメンタイト分解を抑制する。
A2: Shot peening is performed after wire drawing.
Shot peening is a method of irradiating the entire steel wire with a spherical shot of a specific size for a specific time at a specific pressure, and creating a processed layer or a strained layer only in the surface region of the steel wire. The shot peening is, for example, an air projection type with an air pressure of 4 to 5 × 10 5 Pa, a time of preferably 5 to 10 seconds, and a shot sphere of 10 to 100 μm. It is effective to irradiate a sufficient amount of the entire surface of the steel wire.
By performing shot peening after the wire drawing, compressive residual stress is applied to the surface of the steel wire, and the surface lamella structure is made more uniform. By applying an appropriate residual compressive stress on the surface and removing carbon adhering to dislocations, the amount of local solid solution of carbon is reduced and cementite decomposition of the outermost layer is suppressed.

(Bグループ製法)
B1:最終段の伸線速度を200m/分以下、好ましくは50m/分以下の低速伸線で行う。
低速伸線を行うことによって、摩擦や塑性変形による加工発熱量を小さくすることができ、これによってパーライト組織中のセメンタイトの分解を抑制しフェライト相の中に拡散する炭素量を減らすことができる。
(Group B manufacturing method)
B1: The final stage drawing speed is 200 m / min or less, preferably 50 m / min or less.
By performing the low-speed wire drawing, it is possible to reduce the heat generation amount due to friction and plastic deformation, thereby suppressing the decomposition of cementite in the pearlite structure and reducing the amount of carbon diffused in the ferrite phase.

B2:伸線加工パス間に40〜400℃の温度の加熱処理を0.5秒〜5分間、より好ましくは、100〜300℃の温度にて、1秒〜3分間施す。
伸線加工によるワイヤ温度は瞬時に上昇し直ぐに降下する。これとは別に、適当な温度の加熱処理を伸線加工パス間に施すことによって、伸線加工中にセメンタイトが分解してフェライト相の中に溶け込んだ過飽和な炭素を、パス間の加熱処理によってフェライト相から排出させフェライト相中のC濃度を低下させると共に、不要な点欠陥(原子空孔等)や転位を消滅させることができる。これによって、延性を回復し高歪量の加工、すなわち、フェライト相間隔の微細化を可能にする。但し、この処理は伸線加工パス間すべてに施すのではなく、特定パス間に施すことが有効である。
B2: Heat treatment at a temperature of 40 to 400 ° C. is performed for 0.5 second to 5 minutes, more preferably at a temperature of 100 to 300 ° C. for 1 second to 3 minutes between wire drawing passes.
The wire temperature due to wire drawing increases instantaneously and decreases immediately. Separately, by applying heat treatment at an appropriate temperature between the wire drawing passes, supersaturated carbon dissolved in the ferrite phase by decomposition of cementite during wire drawing is obtained by heat treatment between passes. It is possible to discharge from the ferrite phase to lower the C concentration in the ferrite phase, and to eliminate unnecessary point defects (atomic vacancies, etc.) and dislocations. As a result, ductility is restored and processing with a high strain amount, that is, the ferrite phase interval can be made finer. However, it is effective to perform this process between specific passes rather than between all wire drawing passes.

B3:スキンパスを含む最終段およびその一つ前の伸線工程において、アプローチ角が8〜12°で動摩擦係数が0.1、好ましくは0.05以下のダイスを用いる。
アプローチ角が小さく、また、動摩擦係数の小さなダイスを用いることによって、伸線加工時の摩擦発熱を抑制し、最外層の温度上昇によるセメンタイト分解によるフェライト相中のC濃度の増加を抑制する。これは最終段に近い工程において用いることが有効である。
B3: In the final stage including the skin pass and the previous drawing step, a die having an approach angle of 8 to 12 ° and a dynamic friction coefficient of 0.1, preferably 0.05 or less is used.
By using a die having a small approach angle and a small dynamic friction coefficient, frictional heat generation during wire drawing is suppressed, and an increase in the C concentration in the ferrite phase due to cementite decomposition due to temperature rise in the outermost layer is suppressed. It is effective to use this in a process close to the final stage.

(Cグループ製法)
C1:伸線加工後、60〜300℃の加熱保持を0.1分から24時間、より好ましくは180〜260℃にて20秒〜15分施す。
伸線加工中または加工後の時効によって、セメンタイトが分解してフェライト相中に溶け込んだ過飽和な炭素を排出させ、フェライト相中の炭素濃度を低下させる。但し、この温度が高すぎる場合は、球状セメンタイトや遷移炭化物が形成し、低すぎる場合は効果が小さい。鋼材種類、伸線条件に応じて適した温度に設定する必要がある。
(Group C manufacturing method)
C1: After wire drawing, heating and holding at 60 to 300 ° C. is performed for 0.1 minute to 24 hours, more preferably at 180 to 260 ° C. for 20 seconds to 15 minutes.
Due to aging during or after wire drawing, cementite decomposes and supersaturated carbon dissolved in the ferrite phase is discharged, reducing the carbon concentration in the ferrite phase. However, when this temperature is too high, spherical cementite or transition carbide is formed, and when it is too low, the effect is small. It is necessary to set a temperature suitable for the steel material type and wire drawing conditions.

C2:最終段前の3段を除く伸線加工中に20%以上の大きな減面率の工程を1回、好ましくは複数回入れる。
20%以上の大きな減面率の工程を1回、好ましくは複数回入れることにより、伸線歪みを表面に偏らせることなく、内部まで均一に歪みを入れることができる。これは、最終段前の3段より前に行うことが有効である。
C2: A process with a large area reduction rate of 20% or more is inserted once, preferably a plurality of times during wire drawing excluding the three stages before the final stage.
By introducing a process of a large area reduction rate of 20% or more once, preferably a plurality of times, it is possible to uniformly apply strain to the inside without biasing the wire drawing strain to the surface. It is effective to perform this before the third stage before the final stage.

鋼線中のフェライト相中のC濃度は、3次元アトムプローブ法(3DAP)によって正確に測定することが可能である。しかしながら、従来は、鋼線の最外層の伸線パーライト組織中のフェライト相中のC濃度を測定することはできなかった。集束イオンビーム(FIB)装置を用い、鋼線表面から小片を切り出し、これをFIBによって加工することで針試料を作製する技術を開発したことで、最外層の炭素濃度を精度よく測定することができるようになった。   The C concentration in the ferrite phase in the steel wire can be accurately measured by a three-dimensional atom probe method (3DAP). However, conventionally, the C concentration in the ferrite phase in the drawn pearlite structure of the outermost layer of the steel wire could not be measured. Using a focused ion beam (FIB) device, we have developed a technology to produce a needle sample by cutting a small piece from the surface of a steel wire and processing it with FIB, so that the carbon concentration in the outermost layer can be measured with high accuracy. I can do it now.

固溶C濃度はフェライト相中の位置の違いによって異なる値を示す場合があるため注意が必要である。セメンタイトが分解しCがフェライト相中に拡散した場合、一般には、フェライト相/セメンタイト相の界面位置でのC濃度が高く、フェライト相中心位置で最も値が小さくなる。本実施形態では、フェライト相の中心面の位置から両側にフェライト相の幅の1/4の距離までを含む領域(フェライト相の幅の半分の領域)の平均C濃度が規定される。   Care must be taken because the solute C concentration may show different values depending on the position in the ferrite phase. When cementite decomposes and C diffuses into the ferrite phase, generally, the C concentration at the ferrite phase / cementite phase interface position is high, and the value is the smallest at the ferrite phase center position. In the present embodiment, the average C concentration of a region (a region that is a half of the width of the ferrite phase) including a distance of 1/4 of the width of the ferrite phase on both sides from the position of the center plane of the ferrite phase is defined.

3DAPで分析することにより、フェライト相/セメンタイト相の界面を含むフェライト相中のC濃度の測定が可能であるため、測定データから調べたい領域に特定のサイズのボックスを選択し、切り出すことで、ボックス内のC原子と全原子の比率を計算し、フェライト相中のC濃度を原子%で求めることができる。これに、12/56を掛けることによって質量%に変換できる。このような測定を複数のフェライト相中心部について行い平均を求め、これをフェライト相中心部の平均C濃度とした。   By analyzing with 3DAP, it is possible to measure the C concentration in the ferrite phase including the ferrite phase / cementite phase interface, so by selecting and cutting out a box of a specific size in the region to be examined from the measurement data, By calculating the ratio of C atoms to all atoms in the box, the C concentration in the ferrite phase can be obtained in atomic%. This can be converted to mass% by multiplying by 12/56. Such measurement was performed for a plurality of ferrite phase center portions to obtain an average, and this was taken as the average C concentration of the ferrite phase center portion.

一例として、図2A〜図2Fには、鋼線表面から1μm内部のフェライト相中心部のC濃度を測定するための針試料の作製方法を、図3には、作製された針試料を用いて3DAPによって測定されたC分布とフェライト相中心部のC濃度をそれぞれ示した。   As an example, FIGS. 2A to 2F show a method for preparing a needle sample for measuring the C concentration of the ferrite phase center within 1 μm from the surface of the steel wire, and FIG. 3 uses the prepared needle sample. The C distribution measured by 3DAP and the C concentration at the center of the ferrite phase are shown.

鋼線表面から1μm内部の領域の針試料を作製するために、例えば図2Aに示すように、鋼線表面領域から、鋼線表面を片側に含む棒状のブロックをFIBで切り出す。このブロックを、例えばタングステンなどの蒸着(デポ)を利用して、図2Bに示すように、針台座の上に固定する。このブロックを、図2Cに示すように、先端部が細くなるようにFIBにより加工する。図2Dは加工後のブロックを上部から観察した図であり、先端部が鋼線表面を含む棒状となっていることがわかる。その後、上部からリング状のビームを照射することで、先端部を針状に加工した。図2Fはこのようにして作られた針試料を横から観察した図である。針先端位置は、図2Eで示されるように、鋼線表面から1μm内部に相当するように作製された。このような針試料作製技術を用いることによって、鋼線最外層の針試料を作製することができる。   In order to produce a needle sample in a region 1 μm from the surface of the steel wire, for example, as shown in FIG. 2A, a rod-like block including the steel wire surface on one side is cut out from the steel wire surface region by FIB. This block is fixed on the needle base as shown in FIG. 2B by using vapor deposition (deposition) of tungsten or the like, for example. As shown in FIG. 2C, this block is processed by FIB so that the tip end portion is thin. FIG. 2D is a diagram of the processed block observed from above, and it can be seen that the tip has a rod shape including the steel wire surface. Then, the tip part was processed into a needle shape by irradiating a ring-shaped beam from the upper part. FIG. 2F is a view of the needle sample thus made, observed from the side. As shown in FIG. 2E, the needle tip position was prepared so as to correspond to the inside of 1 μm from the steel wire surface. By using such a needle sample preparation technique, a needle sample of the outermost steel wire layer can be prepared.

また、図3において、色の濃い部分はC濃度が高く色の薄い部分はC濃度が低いことを示す。従って、色の濃い帯状の領域は、伸線加工を受けたセメンタイト相を示し、それらの間の色の薄い領域は、伸線加工を受けたフェライト相を示す。フェライト相中にもCは固溶している様子が示されている。   Further, in FIG. 3, the dark portion indicates that the C concentration is high and the light portion indicates that the C concentration is low. Accordingly, a dark band-like region indicates a cementite phase that has undergone wire drawing, and a lightly colored region between them indicates a ferrite phase that has undergone wire drawing. It is shown that C is also dissolved in the ferrite phase.

図に示すように、フェライト相の中心位置からボックスを切り出し、このボックスに含まれるC原子数をボックス中の全原子数で割ることによって、フェライト相中心部の炭素濃度を見積もることができる。この例では、C濃度は0.18質量%である。フェライト相中心部は、二つのセメンタイト相の中間部に位置し、フェライト相の中心面の位置から両側にフェライト相の幅の1/4の距離までを含む領域(フェライト相の幅の半分の領域)に相当する。   As shown in the figure, by cutting out a box from the center position of the ferrite phase and dividing the number of C atoms contained in the box by the total number of atoms in the box, the carbon concentration in the ferrite phase center can be estimated. In this example, the C concentration is 0.18% by mass. The ferrite phase center is located in the middle of the two cementite phases, and includes a region that includes up to a quarter of the width of the ferrite phase on both sides from the center surface of the ferrite phase (region that is half the width of the ferrite phase). ).

フェライト相の幅は、加工量や試料の場所によって必ずしも一定ではなく、狭い部分では10nm以下の領域も存在する。ボックス位置にセメンタイト領域を含んでしまうと、フェライト相中の本当のC濃度よりも高くなってしまう。したがって、分析するボックス位置はフェライト相中心部とし、ボックス幅はフェライト相の幅の半分とした。また、平均C濃度の見積もりとしては、5個以上好ましくは10個以上の異なるフェライト相中心部のC濃度の測定値の平均とする。   The width of the ferrite phase is not necessarily constant depending on the amount of processing and the location of the sample, and there is a region of 10 nm or less in a narrow portion. If the cementite region is included in the box position, it becomes higher than the actual C concentration in the ferrite phase. Therefore, the box position to be analyzed was the ferrite phase center, and the box width was half the width of the ferrite phase. Further, the average C concentration is estimated by averaging the measured values of the C concentration at the central portion of 5 or more, preferably 10 or more different ferrite phases.

鋼線最外層の残留応力は、例えば、X線回折法によって精度良く測定することができる。特に、局所領域を測定できる微小領域X線回折装置を用いデバイリングフィッテング法により正確に測定することができる。この方法は鋼線の結晶粒の反射をデバイリングとしてフィッテングし、デバイリングのゆがみから、残留応力の大きさ方向を調べる方法である。X線の浸透深さから表面を含む深さ領域が決まる。例えばX線源をCrとした場合は、表面数μmの深さの積算値が得られる。また、鋼線表面の残留応力を調べる別の方法としては随時溶解法(ヘイン法)がある。これは、調べたい最外層を溶かす前後の鋼線の長さの違いを測定することで、鋼線長手方向の残留応力を調べる方法である。これらの方法は共に、集合組織が発達した高強度鋼線の残留応力を精度良く求めることができる。   The residual stress of the steel wire outermost layer can be accurately measured by, for example, the X-ray diffraction method. In particular, it can be measured accurately by the Debye fitting method using a micro-region X-ray diffractometer capable of measuring a local region. This method is a method of fitting the reflection of the crystal grain of the steel wire as a Debye ring and examining the magnitude direction of the residual stress from the Debye distortion. The depth region including the surface is determined from the penetration depth of X-rays. For example, when the X-ray source is Cr, an integrated value with a depth of several μm on the surface can be obtained. Another method for examining the residual stress on the surface of the steel wire is a melting method (Hane method) as needed. This is a method of examining the residual stress in the longitudinal direction of the steel wire by measuring the difference in length of the steel wire before and after melting the outermost layer to be examined. Both of these methods can accurately determine the residual stress of a high-strength steel wire with a developed texture.

以下、実施例により本発明の実施可能性及び効果を更に具体的に説明する。   Hereinafter, the feasibility and effects of the present invention will be described more specifically with reference to examples.

表1に示す化学組成を有する供試材を熱間圧延で所定の線径にした後、鉛浴を用いてパテンティング処理、伸線加工を行い、引張強さが4500MPa以上となるように、線径が0.04〜0.40mmのブラスめっきを有する伸線パーライト組織からなる高強度極細線鋼を試作した。ブラスめっきは最終パテンティング処理した後の酸洗後に実施した。   After making the test material having the chemical composition shown in Table 1 into a predetermined wire diameter by hot rolling, performing a patenting treatment and a wire drawing using a lead bath, so that the tensile strength becomes 4500 MPa or more, A high-strength ultrafine wire steel made of a drawn pearlite structure having a brass plating with a wire diameter of 0.04 to 0.40 mm was manufactured. Brass plating was performed after pickling after the final patenting treatment.

表2に、極細鋼線の伸線加工真歪み、製造方法、線径、鋼線最外層のフェライト相中心部の平均C濃度、鋼線最外層の残留応力、引張強さ、及びねじり試験における破断に至るまでのねじり回数を示す。表2において、製造方法を前述した内容を示す記号で表した。ねじり試験は、試験片の両端線径の100倍のつかみの間隔で固定し、破断するまでのねじり回数を調べた。引張強さが4500MPa以上でかつねじり回数が20回以上のものを延性が良好、25回以上のものを延性が非常に良好と評価した。鋼線最外層のフェライト相中のC濃度は、前述した方法を用いて3DAPにより表面1μm位置を測定し、鋼線最外層の鋼線長手方向の残留応力は前述したデバイリングフィッテング法により測定した。残留応力が負の場合は圧縮応力を表し、正の場合は引張応力を表す。   Table 2 shows the true strain, the manufacturing method, the wire diameter, the average C concentration of the ferrite phase in the outermost layer of the steel wire, the residual stress in the outermost layer of the steel wire, the tensile strength, and the torsion test. Shows the number of twists to break. In Table 2, the manufacturing method is represented by symbols indicating the contents described above. In the torsion test, the test piece was fixed at a gripping distance 100 times the diameter of both ends of the test piece, and the number of torsion until breaking was examined. When the tensile strength was 4500 MPa or more and the number of twists was 20 times or more, the ductility was evaluated as good, and when the tensile strength was 25 times or more, the ductility was evaluated as very good. The C concentration in the ferrite phase of the steel wire outermost layer was measured at the surface of 1 μm by 3DAP using the method described above, and the residual stress in the longitudinal direction of the steel wire outermost layer was measured by the Debyling fitting method described above. . When the residual stress is negative, it represents compressive stress, and when it is positive, it represents tensile stress.

表2において試験No.1〜6が本発明例であり、その他は比較例である。同表に見られるように、本発明例はいずれも引張強さが4500MPa以上であるとともに、最外層のフェライト相中心部の平均C濃度が0.2質量%以下、残留応力が−600MPa以下(残留圧縮応力が600MPa以上)になっている。この結果、ねじり回数の高い十分な延性を有する極細鋼線が実現できている。特に試験No.1〜2は、ねじり回数が25回以上と非常に良好となっていた。   In Table 2, test no. 1-6 are examples of the present invention, and others are comparative examples. As seen in the table, all of the inventive examples have a tensile strength of 4500 MPa or more, an average C concentration of the ferrite phase central portion of the outermost layer of 0.2% by mass or less, and a residual stress of −600 MPa or less ( The residual compressive stress is 600 MPa or more. As a result, an ultrafine steel wire having a sufficient ductility with a high number of twists can be realized. In particular, test no. In Nos. 1 and 2, the number of twists was very good at 25 times or more.

一方、試験No.7〜20は比較例であり、引張強さが4500MPa以上となっているが、ねじり回数は不十分であった。   On the other hand, test no. 7 to 20 are comparative examples, and the tensile strength was 4500 MPa or more, but the number of twists was insufficient.

No.7〜9は、鋼線の成分が本発明の範囲外にある比較例である。No.7は鋼線のC量が少なすぎるため、また、伸線歪量を高めたため、フェライト相中心部のC濃度が規定値以上となり、延性が低下した。また、No.8は鋼線のSi量、No.9はC量が本発明の範囲より高い比較例である。これらの比較例では、残留応力及びフェライト相中心部のC濃度が規定範囲内にあるが、延性が低下した。   No. 7 to 9 are comparative examples in which the components of the steel wire are outside the scope of the present invention. No. In No. 7, since the amount of C in the steel wire was too small, and the amount of wire drawing strain was increased, the C concentration at the ferrite phase central portion exceeded the specified value, and the ductility decreased. No. 8 is the amount of Si in the steel wire. 9 is a comparative example in which the amount of C is higher than the range of the present invention. In these comparative examples, the residual stress and the C concentration at the ferrite phase center were within the specified range, but the ductility was lowered.

また、No.10〜13は、鋼線の成分と残留応力は本発明の範囲内にあるが、最外層のフェライト相中心部のC濃度が規定値以上である比較例である。これらの比較例では、延性が低下した。No.14〜16は、鋼線の成分とフェライト相中心部のC濃度は本発明の範囲内にあるが、残留応力が範囲外にある比較例である。これらの比較例では、延性が低下した。No.17〜20は、最外層のフェライト相中心部のC濃度と残留応力が共に範囲外にある比較例である。これらの比較例では、延性が低下した。   No. Nos. 10 to 13 are comparative examples in which the steel wire components and residual stress are within the scope of the present invention, but the C concentration in the ferrite phase central portion of the outermost layer is not less than a specified value. In these comparative examples, the ductility decreased. No. Nos. 14 to 16 are comparative examples in which the component of the steel wire and the C concentration of the ferrite phase central portion are within the range of the present invention, but the residual stress is out of the range. In these comparative examples, the ductility decreased. No. 17 to 20 are comparative examples in which the C concentration and the residual stress at the ferrite phase center of the outermost layer are both out of the range. In these comparative examples, the ductility decreased.

本発明により、十分な延性を有する高強度鋼線の提供が可能となるため、産業上に与える貢献は非常に大きい。   According to the present invention, it is possible to provide a high-strength steel wire having sufficient ductility, so that the contribution to the industry is very large.

Claims (8)

C:0.7〜1.2質量%、
Si:0.05〜2.0質量%、
Mn:0.2〜2.0質量%、
の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線であって、
前記鋼線はパーライト組織を有し、
前記鋼線の最外層のフェライト相中心部の平均C濃度が0.2質量%以下であり、
前記最外層の鋼線長手方向の残留圧縮応力が600MPa以上である
ことを特徴とする鋼線。
C: 0.7 to 1.2% by mass,
Si: 0.05 to 2.0% by mass,
Mn: 0.2 to 2.0% by mass,
A steel wire comprising the chemical components of the balance, the balance being Fe and inevitable impurities,
The steel wire has a pearlite structure,
The average C concentration of the ferrite phase central portion of the outermost layer of the steel wire is 0.2% by mass or less,
The steel wire, wherein the outermost steel wire has a residual compressive stress in the longitudinal direction of 600 MPa or more.
Cr:0.05〜1.0質量%、
Ni:0.05〜1.0質量%、
V:0.01〜0.5質量%、
Nb:0.001〜0.1質量%、
Mo:0.01〜0.1質量%、
B:0.0001〜0.01質量%、
の1種以上の化学成分を更に含有する
ことを特徴とする請求項1に記載の鋼線。
Cr: 0.05 to 1.0% by mass,
Ni: 0.05 to 1.0% by mass,
V: 0.01 to 0.5 mass%,
Nb: 0.001 to 0.1% by mass,
Mo: 0.01 to 0.1% by mass,
B: 0.0001 to 0.01% by mass,
The steel wire according to claim 1, further comprising one or more chemical components.
前記鋼線が、4500MPa以上の引張強さを有する高強度極細鋼線であることを特徴とする請求項1または2に記載の鋼線。  The steel wire according to claim 1 or 2, wherein the steel wire is a high-strength ultrafine steel wire having a tensile strength of 4500 MPa or more. 前記高強度極細鋼線が、スチールコードであることを特徴とする請求項3に記載の鋼線。  The steel wire according to claim 3, wherein the high-strength ultrafine steel wire is a steel cord. 前記高強度極細鋼線が、ソーワイヤであることを特徴とする請求項3に記載の鋼線。  The steel wire according to claim 3, wherein the high-strength ultrafine steel wire is a saw wire. 4500MPa以上の引張強さを有する鋼線の製造方法であって、
C:0.7〜1.2質量%、Si:0.05〜2.0質量%、Mn:0.2〜2.0質量%、の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線にパテンティング処理を行いパーライト組織を生成するパテンティング工程と;
前記鋼線の最外層の前記パーライト組織におけるフェライト相中心部の平均C濃度を0.2質量%以下に制御して前記鋼線を伸線する伸線工程と;
前記鋼線に600MPa以上の残留圧縮応力を付与する残留応力付与工程と;
を備えることを特徴とする、鋼線の製造方法。
A method for producing a steel wire having a tensile strength of 4500 MPa or more,
C: 0.7 to 1.2% by mass, Si: 0.05 to 2.0% by mass, Mn: 0.2 to 2.0% by mass, the balance being Fe and inevitable impurities and patenting step of generating a pearlite structure subjected to patenting treatment to become more steel wires;
A wire drawing step of drawing the steel wire by controlling an average C concentration of a ferrite phase central portion in the pearlite structure of the outermost layer of the steel wire to 0.2% by mass or less;
A residual stress applying step of applying a residual compressive stress of 600 MPa or more to the steel wire;
A method for producing a steel wire, comprising:
前記パテンティング処理を行う前の鋼線が、  The steel wire before performing the patenting process is
Cr:0.05〜1.0質量%、Cr: 0.05 to 1.0% by mass,
Ni:0.05〜1.0質量%、Ni: 0.05 to 1.0% by mass,
V:0.01〜0.5質量%、V: 0.01 to 0.5 mass%,
Nb:0.001〜0.1質量%、Nb: 0.001 to 0.1% by mass,
Mo:0.01〜0.1質量%、Mo: 0.01 to 0.1% by mass,
B:0.0001〜0.01質量%、B: 0.0001 to 0.01% by mass,
の1種以上の化学成分を更に含有することを特徴とする請求項6に記載の鋼線の製造方法。The method for producing a steel wire according to claim 6, further comprising one or more chemical components.
4500MPa以上の引張強さを有する鋼線の製造方法であって、A method for producing a steel wire having a tensile strength of 4500 MPa or more,
C:0.7〜1.2質量%、Si:0.05〜2.0質量%、Mn:0.2〜2.0質量%、の化学成分を含有し、残部がFe及び不可避的不純物よりなる鋼線にパテンティング処理を行いパーライト組織を生成するパテンティング工程と;C: 0.7 to 1.2% by mass, Si: 0.05 to 2.0% by mass, Mn: 0.2 to 2.0% by mass, the balance being Fe and inevitable impurities A patenting step of generating a pearlite structure by performing a patenting treatment on the steel wire comprising;
前記鋼線の最外層の前記パーライト組織におけるフェライト相中心部の平均C濃度を0.2質量%以下に制御して前記鋼線を伸線する伸線工程と;  A wire drawing step of drawing the steel wire by controlling an average C concentration of a ferrite phase central portion in the pearlite structure of the outermost layer of the steel wire to 0.2% by mass or less;
前記鋼線に600MPa以上の残留圧縮応力を付与する残留応力付与工程と;  A residual stress applying step of applying a residual compressive stress of 600 MPa or more to the steel wire;
を備え、With
最終パテンティング処理以降に、下記のAグループ、Bグループ、Cグループからそれぞれひとつずつの製法を採用することを特徴とする、鋼線の製造方法。  A method of manufacturing a steel wire, characterized in that after the final patenting process, one manufacturing method is adopted from each of the following A group, B group, and C group.
Aグループ(A1:最終段に減面率が1%〜6%のスキンパス工程を行う。A2:伸線加工後にショットピーニングを行う。)  Group A (A1: A skin pass process with a surface reduction rate of 1% to 6% is performed at the final stage. A2: Shot peening is performed after wire drawing.)
Bグループ(B1:最終段の伸線速度を200m/分以下で行う。B2:伸線加工パス間に40〜400℃の温度の加熱処理を0.5秒〜5分間施す。B3:スキンパスを含む最終段およびその一つ前の伸線工程において、アプローチ角が8〜12°で動摩擦係数が0.1以下のダイスを用いる。)  Group B (B1: The drawing speed of the final stage is 200 m / min or less. B2: Heat treatment at a temperature of 40 to 400 ° C. is performed for 0.5 second to 5 minutes between drawing processes. B3: Skin pass is performed. (In the final stage and the previous wire drawing process, a die having an approach angle of 8 to 12 ° and a dynamic friction coefficient of 0.1 or less is used.)
Cグループ(C1:伸線加工後、60〜300℃の加熱保持を0.1分から24時間施す。C2:最終段前の3段を除く伸線加工中に20%以上の減面率での伸線を行う。)  Group C (C1: After wire drawing, 60-300 ° C. is heated for 0.1 minutes to 24 hours. C2: During wire drawing excluding 3 steps before the final step, with a reduction in area of 20% or more. Perform wire drawing.)
JP2010540974A 2009-06-22 2010-04-21 High strength extra fine steel wire and method for producing the same Active JP4719320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540974A JP4719320B2 (en) 2009-06-22 2010-04-21 High strength extra fine steel wire and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009148051 2009-06-22
JP2009148051 2009-06-22
PCT/JP2010/002859 WO2010150450A1 (en) 2009-06-22 2010-04-21 High-strength ultra-fine steel wire and manufacturing method therefor
JP2010540974A JP4719320B2 (en) 2009-06-22 2010-04-21 High strength extra fine steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP4719320B2 true JP4719320B2 (en) 2011-07-06
JPWO2010150450A1 JPWO2010150450A1 (en) 2012-12-06

Family

ID=43386240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540974A Active JP4719320B2 (en) 2009-06-22 2010-04-21 High strength extra fine steel wire and method for producing the same

Country Status (7)

Country Link
US (1) US20110168302A1 (en)
EP (1) EP2447382B1 (en)
JP (1) JP4719320B2 (en)
KR (1) KR101260598B1 (en)
CN (1) CN102066599B (en)
TW (1) TWI412608B (en)
WO (1) WO2010150450A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069409A (en) * 2006-09-14 2008-03-27 Bridgestone Corp High strength high carbon steel wire and producing method therefor
KR101316198B1 (en) * 2011-11-15 2013-10-08 주식회사 포스코 High ductility wire rod, steel wire and manufacturing method of steel wire
CN102965546A (en) * 2012-11-20 2013-03-13 无锡康柏斯机械科技有限公司 Cord thread machine
JP6116680B2 (en) * 2013-04-30 2017-04-19 新日鐵住金株式会社 Flat steel wire
KR101860246B1 (en) * 2014-02-06 2018-05-21 신닛테츠스미킨 카부시키카이샤 Steel wire
WO2015119241A1 (en) 2014-02-06 2015-08-13 新日鐵住金株式会社 Filament
KR101869633B1 (en) * 2014-04-24 2018-06-20 신닛테츠스미킨 카부시키카이샤 Wire material for high strength steel cord
US10156001B2 (en) 2014-04-24 2018-12-18 Nippon Steel & Sumitomo Metal Corporation Filament for high strength steel cord
US10329646B2 (en) 2014-08-15 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Steel wire for drawing
CN105063508B (en) * 2015-08-26 2017-01-18 武汉钢铁(集团)公司 Boron-containing high-end cord steel and production method thereof
US10597748B2 (en) * 2015-10-23 2020-03-24 Nippon Steel Corporation Steel wire rod for wire drawing
JP6724400B2 (en) * 2016-02-10 2020-07-15 日本製鉄株式会社 High-strength ultrafine steel wire with excellent balance between strength and ductility and method for producing the same
KR101830537B1 (en) 2016-11-07 2018-02-20 주식회사 포스코 High-strength steel wire having excellent fatigue resistance and method for manufacturing thereof
JP6520985B2 (en) * 2017-05-02 2019-05-29 横浜ゴム株式会社 Bead ring and method of manufacturing the same
WO2018212327A1 (en) * 2017-05-18 2018-11-22 新日鐵住金株式会社 Wire, steel wire, and method for manufacturing steel wire
CN109811565A (en) * 2017-11-21 2019-05-28 江苏法尔胜技术开发中心有限公司 It is compacted the wear-resisting wirerope of shot-peening face stock and its production method
CN110238235A (en) * 2019-06-11 2019-09-17 安徽环新集团有限公司 Circlip wire rod production line and production method for automobile engine
CN112223569A (en) * 2020-09-28 2021-01-15 王佩 Wear-resistant wire-cutting composite wire and preparation method thereof
CN113699438B (en) * 2021-07-20 2022-07-08 武汉钢铁有限公司 86-grade low-cost cord steel and preparation process thereof
CN113913681B (en) * 2021-08-26 2022-03-25 武汉钢铁有限公司 High-strength low-wire-breakage-rate cord steel, rolling method and application thereof
JP7436964B1 (en) 2022-07-29 2024-02-22 住友電気工業株式会社 Steel wire and method for manufacturing steel wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232046A (en) * 1995-02-23 1996-09-10 Nippon Steel Corp High strength steel wire excellent in twisting crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2001279380A (en) * 2000-03-29 2001-10-10 Sumitomo Electric Ind Ltd High toughness steel wire and its production method
JP2006249561A (en) * 2005-03-14 2006-09-21 Nippon Steel Corp High strength extrafine steel wire having excellent ductility

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204865A (en) 1984-03-28 1985-10-16 Kobe Steel Ltd High-carbon steel wire rod for hyperfine wire having high strength, toughness and ductility
JPS6324046A (en) 1986-07-16 1988-02-01 Kobe Steel Ltd Wire rod for high toughness and high ductility ultrafine wire
JPH0323674A (en) 1989-06-21 1991-01-31 Mitsubishi Electric Corp Semiconductor device
JPH06145895A (en) 1992-10-30 1994-05-27 Kobe Steel Ltd High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JPH07113119A (en) 1993-10-15 1995-05-02 Kobe Steel Ltd Production of extra fine steel wire having high strength and high toughness and ductility
JPH11199979A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp High strength extra fine steel wire excellent in fatigue characteristic and its production
JP4464511B2 (en) * 2000-02-08 2010-05-19 新日本製鐵株式会社 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP2001279381A (en) * 2000-03-29 2001-10-10 Kobe Steel Ltd Ultra fine steel wire having high strength and high toughness and excellent in longitudinal crack resistance, and its manufacturing method
US6949149B2 (en) * 2002-12-18 2005-09-27 The Goodyear Tire & Rubber Company High strength, high carbon steel wire
JP3777166B2 (en) * 2003-03-31 2006-05-24 新日本製鐵株式会社 Manufacturing method of high strength extra fine steel wire
JP4593504B2 (en) 2006-03-28 2010-12-08 新日本製鐵株式会社 High-strength ultrafine steel wire with excellent ductility
JP4980172B2 (en) 2007-01-30 2012-07-18 新日本製鐵株式会社 Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232046A (en) * 1995-02-23 1996-09-10 Nippon Steel Corp High strength steel wire excellent in twisting crack resistance
JPH11199980A (en) * 1998-01-20 1999-07-27 Nippon Steel Corp High strength extra fine steel wire
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2001279380A (en) * 2000-03-29 2001-10-10 Sumitomo Electric Ind Ltd High toughness steel wire and its production method
JP2006249561A (en) * 2005-03-14 2006-09-21 Nippon Steel Corp High strength extrafine steel wire having excellent ductility

Also Published As

Publication number Publication date
CN102066599A (en) 2011-05-18
CN102066599B (en) 2013-11-06
EP2447382A1 (en) 2012-05-02
TWI412608B (en) 2013-10-21
JPWO2010150450A1 (en) 2012-12-06
EP2447382B1 (en) 2019-03-06
TW201102443A (en) 2011-01-16
KR101260598B1 (en) 2013-05-03
EP2447382A4 (en) 2017-08-02
WO2010150450A1 (en) 2010-12-29
US20110168302A1 (en) 2011-07-14
KR20110020256A (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4719320B2 (en) High strength extra fine steel wire and method for producing the same
JP4943564B2 (en) Saw wire and manufacturing method thereof
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
JPWO2009119359A1 (en) Wire material excellent in ductility, high-strength steel wire, and production method thereof
WO2016002413A1 (en) Wire material for steel wire, and steel wire
CA2980886C (en) High-carbon steel wire material with excellent wire drawability, and steel wire
EP3156511A1 (en) Steel for mechanical structure for cold working, and method for producing same
WO2015119241A1 (en) Filament
JP5945196B2 (en) High strength steel wire
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP4555711B2 (en) High-strength ultrafine steel wire with excellent ductility
JPH10325089A (en) Steel filament and its production
JP6724400B2 (en) High-strength ultrafine steel wire with excellent balance between strength and ductility and method for producing the same
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP2010275626A (en) High-strength extra-fine steel wire superior in disconnection resistance, and method for manufacturing the same
JP6922726B2 (en) Hot rolled wire
JP3641056B2 (en) High strength extra fine steel wire
JP2002212676A (en) Steel wire for wire saw and production method therefor
JP6724435B2 (en) Hot rolled wire rod and method for manufacturing the same
JP6946891B2 (en) High-strength steel wire
WO2024024401A1 (en) Steel wire, and method for producing steel wire
JPH06346190A (en) Extra fine steel wire excellent in fatigue characteristic

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R151 Written notification of patent or utility model registration

Ref document number: 4719320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350