JP2007023373A - Method for producing stainless steel high strength extrafine flat wire - Google Patents

Method for producing stainless steel high strength extrafine flat wire Download PDF

Info

Publication number
JP2007023373A
JP2007023373A JP2005211703A JP2005211703A JP2007023373A JP 2007023373 A JP2007023373 A JP 2007023373A JP 2005211703 A JP2005211703 A JP 2005211703A JP 2005211703 A JP2005211703 A JP 2005211703A JP 2007023373 A JP2007023373 A JP 2007023373A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
strength
flat wire
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211703A
Other languages
Japanese (ja)
Other versions
JP4824960B2 (en
Inventor
Hiroshi Nakano
博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005211703A priority Critical patent/JP4824960B2/en
Publication of JP2007023373A publication Critical patent/JP2007023373A/en
Application granted granted Critical
Publication of JP4824960B2 publication Critical patent/JP4824960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a high strength extrafine flat wire having high strength and excellent dimensional stability. <P>SOLUTION: The method for producing a high strength extrafine flat wire of stainless steel is characterized in that, when a stainless steel extrafine flat wire with a thickness of ≤0.1 mm having high strength properties satisfying a tensile strength of ≥2,000 N/mm<SP>2</SP>by cold rolling, it comprises: a stage 1 where a stainless steel soft wire having a fine austenitic structure with a crystal grain size of No. ≥8 based on JISG-0551 is obtained; a stage 2 where the soft wire is subjected to cold wire drawing at a working ratio of ≥60%, so as to obtain a hard fine wire with a wire diameter of ≤0.5 mm having a strain-induced martensitic structure in which crystals fibrously elongate along the longitudinal direction of the wire; and a stage 3 where the hard fine wire is cold-rolled at a draft of ≥40% while applying back tension thereto without performing heat treatment. The high strength extrafine flat wire is obtained by the method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高強度かつ寸法安定性に優れ、例えば医療用カテーテル、内視鏡など種々な耐圧極細チューブ等に補強部材として内挿される編組体、乃至異形線ばね等に好適に採用しうるステンレス鋼高強度極細平線を製造するステンレス鋼高強度極細平線の製造方法に関する。   The present invention has high strength and excellent dimensional stability. For example, a stainless steel that can be suitably used for a braided body inserted as a reinforcing member in various pressure-resistant ultrathin tubes such as medical catheters and endoscopes, or a deformed wire spring. The present invention relates to a method for producing a stainless steel high-strength ultrathin flat wire.

血管内に挿入されるカテーテルは、例えば必要患部の血管を拡張するステントを挿入する案内部材として、あるいは血管造影剤などの薬液を注入する薬液チューブとして用いられる細チューブであって、複雑に入り組み、かつ分岐する血管内を目的部位まで円滑に挿入できるよう、柔軟性、根元でのトルクを先端に伝達するトルク伝達性などの特性がよく、操作性に優れることが求められている。また細い血管にも挿入されるように、カテーテルもその外径が小でありつつ、挿入されるステント、薬液の通過に支障がない内径空間を有することとともに、造影剤の注入圧に耐える耐圧性も要請されている。   A catheter inserted into a blood vessel is a thin tube that is used as a guide member for inserting a stent for expanding a blood vessel in a necessary affected area, or as a chemical liquid tube for injecting a chemical liquid such as an angiographic contrast medium. In order to smoothly insert the branching blood vessel to the target site, it is required to have excellent characteristics such as flexibility and torque transmission property that transmits torque at the root to the tip, and excellent operability. In addition, the catheter has a small outer diameter so that it can be inserted into a thin blood vessel, but also has an internal space that does not interfere with the passage of the inserted stent and drug solution, and withstands the contrast agent injection pressure. Is also requested.

こうした要請のために、例えば図9に例示するように、金属細線aの螺旋の巻回体又はその複数本をブレード編み(編組)した補強部材bをカテーテルの周壁内に埋設することにより、前記性能を高めるカテーテルが提案されている(例えば、特許文献1)。このものは大きな引張強さを有する金属細線aを用いることにより、カテーテルの周壁を薄くし、剛性を高めつつ可撓性を付与でき、かつキンクを防止することを意図している。   For such a request, for example, as illustrated in FIG. 9, a reinforcing member b in which a spiral wound body of metal thin wires a or a plurality thereof is braided (braided) is embedded in the peripheral wall of the catheter. A catheter that enhances performance has been proposed (for example, Patent Document 1). This is intended to make the peripheral wall of the catheter thin by using the metal thin wire a having a large tensile strength, to impart flexibility while increasing rigidity, and to prevent kinking.

また補強部材に用いる金属細線として、一方の細線と、他方の細線とを互いにチューブ状をなすように螺旋に交互に編組してなる補強部材を具え,その一方の金属細線として複数本、例えば8本の0.12mmのステンレス鋼線と幅0.26mm、厚さ0.06mmの扁平な帯板に圧延成形した極細平線を用いるカテーテルも例えば特許文献2が提案している。さらに補強部材として、固溶化熱処理したのち焼戻しすることなしに高加工率の伸線を施し高強度の極細平線をうることも、例えば特許文献3が提案している。   Further, as the metal thin wire used for the reinforcing member, there is provided a reinforcing member formed by alternately braiding one thin wire and the other thin wire in a spiral shape so as to form a tube shape. For example, Patent Document 2 proposes a catheter using a 0.12 mm stainless steel wire and an ultrathin flat wire formed by rolling a flat strip having a width of 0.26 mm and a thickness of 0.06 mm. Further, as a reinforcing member, for example, Patent Document 3 proposes that a high-strength ultrathin flat wire is obtained by performing a solution heat treatment and then tempering without tempering.

特開平7−194707号公報Japanese Patent Laid-Open No. 7-194707 特開平8−317986号公報JP-A-8-317986 特開2002−282366号公報JP 2002-282366 A

このように、特許文献1は引張強さを増した金属細線からなる補強部材を用いることにより、カテーテルの壁厚さを肉薄にし、かつ十分な可撓性と剛性を付与しつつ内径を増すこと、特許文献2は、金属細線として圧延した極細平線を用いること、また特許文献3は焼戻しすることなく高強度の金属細線を用いることを提案している。しかしながら、カテーテルは前記のように,複雑に入り組みかつ分岐した血管に沿って曲がり、捻りながら挿入されため、これら変形に応じて補強部材を構成する金属細線には変形応力が加わることになる。特に極細平線では、幅方向両端の両側面における応力が他の部分に比して大となる。   As described above, Patent Document 1 uses a reinforcing member made of a fine metal wire with increased tensile strength, thereby reducing the wall thickness of the catheter and increasing the inner diameter while providing sufficient flexibility and rigidity. Patent Document 2 proposes to use a rolled ultrathin flat wire as a thin metal wire, and Patent Document 3 proposes to use a high-strength metal thin wire without tempering. However, since the catheter is bent and twisted along the complicated and branched blood vessels as described above, deformation stress is applied to the fine metal wires constituting the reinforcing member according to these deformations. In particular, in an ultrathin flat wire, the stress on both side surfaces at both ends in the width direction is larger than that in other portions.

そのため、極細平線の幅寸法に例えばうねり状などの変動があるときには、幅方向面内での横曲げの曲率が同じに強制的に曲げられる部分では幅が大きい個所の幅方向両端の側面に大きな応力が生じ、他方、幅寸法が大きい部分では面内曲げ剛性が増加して他の部分に比して曲率が小となるなど、全体としての曲げ剛さの滑らかさを損なう結果となり、さらには耐久性を阻害することとなる。   Therefore, when there are fluctuations in the width of the ultra-thin flat line, such as waviness, in the part where the curvature of the horizontal bending in the width direction plane is forced to be the same, the width of the side of both ends in the width direction is large. On the other hand, a large stress is generated, and on the other hand, the in-plane bending rigidity is increased in the portion where the width dimension is large, and the curvature becomes smaller compared to the other portions. Will impair durability.

しかしながら前記した各特許文献には、金属細線の圧延加工、強度の伸線加工により極細平線に成形することは記載しているとはいえ、幅寸法のバラツキについては考慮していない。   However, although each of the above-mentioned patent documents describes forming into an ultrathin flat wire by rolling a fine metal wire and drawing a strong wire, it does not take into account variations in width.

なお、金属細線の表面、特に幅方向両側面にうねりや凹凸が存在すると、特に凹部において応力集中の起点となり、切欠き効果も作用して断線を誘発する危険性があることが判明している。   In addition, it has been found that if waviness or unevenness is present on the surface of the fine metal wire, particularly on both sides in the width direction, it becomes the starting point of stress concentration, particularly in the recess, and there is a risk of causing disconnection due to the notch effect. .

本発明は、高強度、かつ寸法安定性に優れ、しかも幅寸法の安定性に優れたステンレス鋼高強度極細平線を効率よく製造しうるステンレス鋼高強度極細平線の製造方法の提供を課題としている。   It is an object of the present invention to provide a method for producing a stainless steel high-strength ultrathin flat wire that can efficiently produce a stainless steel high-strength ultrathin flat wire having high strength, excellent dimensional stability, and excellent width dimension stability. It is said.

本願請求項1に係る発明は、厚さ0.1mm以下、かつ引張強さ2000N/mm2 以上の高強度特性を有するステンレス鋼の極細平線を冷間圧延によって製造するステンレス鋼高強度極細平線の製造方法であって、
a)固溶化熱処理によって、JISG−0551に基づく結晶粒度が8番以上の微細なオーステナイト組織を有するステンレス鋼軟質線を得る段階と、
b)該軟質線に加工率60%以上の冷間伸線を施して、長手方向に沿って結晶が繊維状に伸びる加工誘起マルテンサイト組織の線径0.5mm以下の硬質細線を得る段階と、 c)該硬質細線に熱処理を施すことなく逆張力を加えながら、圧下率40%以上で冷間圧延を行ないステンレス鋼高強度極細平線をうる段階とを含み、
前記ステンレス鋼高強度極細平線の巾寸法のバラツキ(S)が20μm以下であることを特徴とする。
The invention according to claim 1 of the present application is a stainless steel high-strength ultrathin flat plate manufactured by cold rolling of a stainless steel ultrathin wire having a thickness of 0.1 mm or less and a tensile strength of 2000 N / mm 2 or more. A method of manufacturing a wire,
a) obtaining a stainless steel soft wire having a fine austenite structure having a crystal grain size of # 8 or more based on JISG-0551 by solution heat treatment;
b) subjecting the soft wire to cold drawing at a processing rate of 60% or more to obtain a hard fine wire having a wire diameter of 0.5 mm or less of a work-induced martensite structure in which crystals extend in a fiber shape along the longitudinal direction; C) performing a cold rolling at a rolling reduction of 40% or more while applying a reverse tension without applying heat treatment to the hard thin wire to obtain a stainless steel high-strength ultra-thin flat wire,
The stainless steel high-strength ultrathin flat wire has a width variation (S) of 20 μm or less.

請求項2に係る発明は、前記ステンレス鋼が、質量%で、C:0.05〜0.15%,Si≦1.0%,Mn≦2.0%,Ni:7.0〜11.0%(クレーム1),Cr:17.0〜21.0%,N:0.10〜0.30%を含み、残部Feと不可避不純物で構成されてなるN添加型のステンレス鋼であることを特徴とする。   According to a second aspect of the present invention, the stainless steel is, in mass%, C: 0.05 to 0.15%, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 7.0 to 11. N-added stainless steel comprising 0% (claim 1), Cr: 17.0 to 21.0%, N: 0.10 to 0.30%, and remaining Fe and inevitable impurities It is characterized by.

請求項3に係る発明は、前記ステンレス鋼高強度極細平線が、その幅方向の側面の長手方向の表面粗さが、10点平均粗さ(Rz)で0.5μm以下であること、請求項4に係る発明は、前記ステンレス鋼軟質線が、加工率75%以上の強度の冷間伸線加工を行った後、950〜1050℃程度の温度で1〜20秒の固溶化熱処理をすることにより形成されること、請求項5に係る発明は、前記硬質細線を得る段階の冷間伸線加工が、ダイヤモンドダイスを用いた湿式伸線加工を採用するとともに、前記硬質細線の10点表面粗さ(Rz)を1.0μm以下の平滑仕上げ面にすること、請求項6に係る発明は、前記冷間伸線加工が、加工率65〜98%で、かつ前記硬質細線の10点表面粗さ(Rz)を0.2μm以下としたこと、及び請求項7に係る発明は、前記冷間圧延が、前記硬質細線を、幅(W)と厚さ(t)との比(W/t)が2.5倍以上の比率の平線とすることをそれぞれ特徴としている。更に請求項8の発明は前記冷間圧延加工後、更に350〜550℃の低温歪取り熱処理が付与されるものである。   According to a third aspect of the present invention, in the stainless steel high-strength ultrathin flat wire, the surface roughness in the longitudinal direction of the side surface in the width direction is 0.5 μm or less in terms of 10-point average roughness (Rz), In the invention according to Item 4, the stainless steel soft wire is subjected to a solution heat treatment at a temperature of about 950 to 1050 ° C. for 1 to 20 seconds after performing cold wire drawing with a strength of 75% or more. In the invention according to claim 5, the cold wire drawing in the stage of obtaining the hard fine wire adopts a wet wire drawing using a diamond die, and the surface of the hard fine wire has 10 points. A smooth finish surface having a roughness (Rz) of 1.0 μm or less, and the invention according to claim 6 is characterized in that the cold drawing is performed at a processing rate of 65 to 98% and the surface of the hard fine wire is 10 points. The roughness (Rz) is 0.2 μm or less, and claims In the invention according to the present invention, the cold rolling makes the hard fine wire a flat wire having a ratio (W / t) of 2.5 times or more in the ratio of width (W) to thickness (t), respectively. It is a feature. Furthermore, in the invention of claim 8, after the cold rolling process, a low temperature strain relief heat treatment at 350 to 550 ° C. is further applied.

本件請求項1に係る発明は、係る構成を具える結果、冷間圧延加工が、その前段で行なわれる伸線加工によって予めその結晶粒を長手軸方向に沿って伸びる繊維状の加工誘起マルテンサイト組織にした硬質細線とするものであることから、圧延ロール直下ではその長手方向に伸びる繊維組織の各結晶が扇状に拡がりながら圧延されることとなり、より広幅の帯材のステンレス鋼高強度極細平線が成形できる。   As a result of having such a configuration, the invention according to claim 1 is a fibrous work-induced martensite in which the cold rolling is preliminarily stretched along the longitudinal axis by the wire drawing performed in the preceding stage. Since it is a hard thin wire made into a structure, each crystal of the fiber structure extending in the longitudinal direction immediately below the rolling roll is rolled while spreading in a fan shape, and a stainless steel high-strength ultrathin flat of a wider strip. A wire can be formed.

しかも、その繊維組織は上下面とともに、幅方向両端の側面も同様であることから側面部の表面性状に優れることとなり、その素線状態、すなわち硬質細線の状態で既に長手方向に沿う方向性を持つ繊維組織であること、しかも圧延加工は逆張力を負荷しながら行うものであることから、その長さ方向側面部のうねりや凹凸などの発生を防ぎ幅寸法の変動を低減でき、かつ表面状態の安定を図ることができ、その結果、側面部の巾寸法のバラツキを20μm以下とすることができる。そのため幅寸法の変動による曲げ剛さの変動を減じ、曲げを滑らかにして応力集中、切欠き効果などの発生を減じることもできる。なお、ステンレス鋼高強度極細平線は厚さ0.1mm以下、かつ引張強さ2000N/mm2 以上を有することから、弾性に優れ使い勝手も向上することから編組体、ばね用などとして好適に用いうる。 Moreover, since the fiber structure is the same for the side surfaces at both ends in the width direction as well as the upper and lower surfaces, the surface property of the side surface part is excellent, and the direction along the longitudinal direction is already in the state of the strands, that is, in the state of the hard fine wires Because it has a fiber structure, and rolling is performed while applying reverse tension, it can prevent the occurrence of undulations and irregularities on the side surface in the length direction, reduce fluctuations in the width dimension, and surface condition As a result, the variation in the width dimension of the side surface portion can be 20 μm or less. Therefore, it is possible to reduce the bending stiffness variation due to the width dimension variation, smooth the bending, and reduce the occurrence of stress concentration, notch effect and the like. The stainless steel high-strength ultrathin flat wire has a thickness of 0.1 mm or less and a tensile strength of 2000 N / mm 2 or more, so it is excellent in elasticity and improves usability. sell.

又請求項2〜8の構成は、各構成の採用により前記ステンレス鋼高強度極細平線の前記特性を高めることができる。   Moreover, the structure of Claims 2-8 can improve the said characteristic of the said stainless steel high intensity | strength extra fine flat wire by adoption of each structure.

本発明のステンレス鋼高強度極細平線の製造方法(以下単に製造方法と呼ぶことがある)を図面に基づき説明する。本発明の製造方法は、図1のブロック図に示すごとく、原線として微細なオーステナイト組織を有するステンレス鋼軟質線を得る段階Aと、軟質線に冷間伸線を施して硬質細線3を得る冷間伸線加工の段階Bと、該硬質細線3に冷間圧延を行ないテンレス鋼高強度極細平線4(極細平線4ということがある)をうる冷間圧延の段階Cとを含む。このような冷間圧延を逆張力を付与して行うことによって、厚さ0.1mm以下、かつ引張強さ2000N/mm2 以上、しかも幅寸法wのバラツキを20μm以下のステンレス鋼高強度極細平線をうることができる。 A method for producing a stainless steel high-strength ultrathin flat wire of the present invention (hereinafter sometimes simply referred to as a production method) will be described with reference to the drawings. As shown in the block diagram of FIG. 1, the manufacturing method according to the present invention obtains a hard thin wire 3 by subjecting a soft wire to cold drawing and a stainless steel soft wire having a fine austenite structure as a primary wire. A cold-drawing stage B and a cold-rolling stage C that cold-rolls the hard fine wire 3 to obtain a tentress steel high-strength ultrafine flat wire 4 (sometimes referred to as an ultrafine flat wire 4). By performing such cold rolling with reverse tension applied, a stainless steel high-strength ultrathin flat with a thickness of 0.1 mm or less, a tensile strength of 2000 N / mm 2 or more, and a variation of the width dimension w of 20 μm or less. A line can be obtained.

なお本明細書において、幅寸法のバラツキsは、該極細平線の幅寸法wをその長さ方向に沿って任意点数(例えば数点〜数十点、好ましくは10〜30点程度)計測した時のバラツキ、すなわち標準偏差を意味し次式(1)で求めることができ、またその測定は例えば拡大投影機やレーザー寸法計測器などが用いられる。なお好ましくは、10mm間隔において20点を測定することを基準としている。   In this specification, the width dimension variation s is obtained by measuring the width dimension w of the ultrathin flat line along the length direction by any number of points (for example, several to several tens, preferably about 10 to 30). It means the time variation, that is, the standard deviation, and can be obtained by the following equation (1). For example, an enlargement projector or a laser size measuring instrument is used for the measurement. Preferably, it is based on measuring 20 points at intervals of 10 mm.

s=√〔1/(n−1)〕×〔Σ(wi−wm)2〕 ………(1)
※wmは各点での幅寸法、wiはその平均値、nは測定点数を示す。
s = √ [1 / (n−1)] × [Σ (wi−wm) 2] (1)
* Wm is the width dimension at each point, wi is the average value, and n is the number of measurement points.

段階Aは、原線であるステンレス鋼軟質線をうる工程であって、ステンレス鋼軟質線は結晶粒度が8番以上の微細なオーステナイト組織を具え、固溶化熱処理により得ることができる。前記結晶粒度とは、JISG−0551「鋼のオーステナイト結晶粒度試験方法」に基づき、粒度番号8番とは、一つの結晶の大きさが0.00049mm2 、すなわち断面積1mm2 当たりで2048個の結晶数を有するものとされている。なお本発明の効果を更に高める上から、結晶粒度をより微細にした9番以上のものを用いることが好ましいが、その上限についてはJIS規格では粒度10番でしか規定されていないが、さらに細かいもの、例えば0.00001mm程度のものを用いることもできる。 Stage A is a process for obtaining a stainless steel soft wire as a raw wire. The stainless steel soft wire has a fine austenite structure with a crystal grain size of 8 or more and can be obtained by solution heat treatment. Wherein the crystal grain size, JISG-0551 based on the "austenite grain size testing method of steel", and the grain size number # 8, the size of one crystal 0.00049Mm 2, namely 2048 by the cross-sectional area 1 mm 2 per It has a crystal number. In order to further enhance the effect of the present invention, it is preferable to use a finer crystal grain size of No. 9 or more, but the upper limit is defined only by the grain size of No. 10 in the JIS standard. A thing, for example, about 0.00001 mm can also be used.

このような微細なオーステナイト組織のステンレス鋼軟質線を得るには、例えば加工率75〜99.5%以上、好ましくは95%以上の強度の冷間伸線加工を行った後、1000℃程度の温度で10秒程度の固溶化熱処理をすることにより得られる。又例えば前記温度より低い900℃以下で行うことによりその結晶粒はさらに微細化でき、同様に熱処理時間についても、例えば前記より短くした短時間処理を施すことによって前記と同様に微細化組織を得ることができる。この条件は、熱処理時の熱の吸収をやや抑えることにより結晶の成長を抑制しながら再結晶させる。温度や時間、雰囲気等の条件設定により適宜実施することができるが、通常850〜1050゜C程度で2〜20秒程度の時間で固溶化熱処理する。   In order to obtain a stainless steel soft wire having such a fine austenite structure, for example, after performing cold wire drawing with a strength of 75 to 99.5% or more, preferably 95% or more, the temperature is about 1000 ° C. It can be obtained by performing a solution heat treatment at a temperature of about 10 seconds. Further, for example, by performing the treatment at 900 ° C. or lower, which is lower than the above temperature, the crystal grains can be further refined. Similarly, the heat treatment time can be obtained, for example, by obtaining a refined structure in the same manner as described above by performing the shorter time treatment. be able to. Under this condition, recrystallization is performed while suppressing crystal growth by suppressing heat absorption during heat treatment. Although it can be carried out as appropriate depending on the setting of conditions such as temperature, time, atmosphere, etc., the solution heat treatment is usually performed at about 850 to 1050 ° C. for about 2 to 20 seconds.

使用しうる原線の材料として、例えばSUS302、SUS304,SUS316などのオーテナイト系ステンレス鋼が利用でき、引張強さ2000N/mm2 以上の高強度極細平線を得ることができる。好ましくは、質量%で、C:0.05〜0.15%,Si≦1.0%,Mn≦2.0%,Ni:7.0〜10、0%,Cr:17.0〜20.0%,N:0.10〜0.30%を含み、残部Feと不可避不純物で構成されてなるN添加型のステンレス鋼を用いる。この種の組成のステンレス鋼は、前記Nが侵入型の元素であることから、結晶粒子をさらに微細化でき、また加工に伴う加工硬化率が大きいことから例えば2800N/mm2 以上、より好ましくは3000N/mm2 以上の高強度極細平線を得ることができる。なお、上限は3200N/mm2 程度とし、過度の剛性増加を防ぐ。 For example, austenitic stainless steel such as SUS302, SUS304, and SUS316 can be used as a material for the original wire that can be used, and a high-strength ultrathin flat wire having a tensile strength of 2000 N / mm 2 or more can be obtained. Preferably, by mass, C: 0.05 to 0.15%, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 7.0 to 10, 0%, Cr: 17.0 to 20 0.0%, N: 0.10 to 0.30% is included, and N-added stainless steel composed of the balance Fe and inevitable impurities is used. In the stainless steel of this kind of composition, since N is an interstitial element, the crystal grains can be further refined, and the work hardening rate accompanying processing is large, for example, 2800 N / mm 2 or more, more preferably A high-strength ultrathin flat wire of 3000 N / mm 2 or more can be obtained. The upper limit is about 3200 N / mm 2 to prevent an excessive increase in rigidity.

このNを含有するステンレス鋼では加工硬化率が大きいことから、所定の強度が比較的少ない加工量で得られることから、靭性の低下を防ぐとともに耐食性にも優れステンレス鋼高強度極細平線として好ましい鋼種となる。また必要に応じて、原線のステンレス鋼軟質線の表面にNiめっき等の潤滑皮膜を形成したものを用いることもできる。この被覆技術については、例えば特開2005−15826号公報が開示するばね用ステンレス鋼線の技術が利用できる。前記N添加型ステンレス鋼線において、各元素の含有量を設定する理由を以下記載する。   Since the N-containing stainless steel has a high work-hardening rate, a predetermined strength can be obtained with a relatively small amount of processing. Therefore, it is preferable as a stainless steel high-strength ultra-thin wire with excellent corrosion resistance and excellent corrosion resistance. It becomes a steel grade. Moreover, what formed the lubricating film, such as Ni plating, on the surface of the stainless steel soft wire of an original wire can also be used as needed. As the coating technique, for example, the technique of a spring stainless steel wire disclosed in Japanese Patent Application Laid-Open No. 2005-15826 can be used. The reason why the content of each element is set in the N-added stainless steel wire will be described below.

Cはオーステナイト生成元素で、冷間加工で応力誘起されるマルテンサイト量を高めて高強度化に寄与するもので、少なくとも0.05%の添加が有効であるが、0.15%を超える程多量に含有すると脆性が増して圧延加工時にワレや断線など生産性低下の原因となり、好ましくは0.09〜0.13%として高強度化を図るのがよい。   C is an austenite-generating element that contributes to increasing the strength by increasing the amount of martensite induced by cold working, and at least 0.05% is effective, but it exceeds 0.15%. If it is contained in a large amount, the brittleness will increase, and this will cause a decrease in productivity such as cracks and breaks during rolling, and it is preferable to increase the strength to 0.09 to 0.13%.

Siは、線の引張強さ、弾性限を高める特性から必要であるが、それに伴って靭性が減少し、またδフェライト相の発生による弊害も見られることからその上限を1.0%とし、より好ましくは0.4〜1.0%よりも小とする。   Si is necessary from the property of increasing the tensile strength and elasticity limit of the wire, but the toughness is reduced accordingly, and the adverse effect due to the occurrence of δ ferrite phase is also seen, so the upper limit is 1.0%, More preferably, it is less than 0.4 to 1.0%.

Mnは、脱硫、脱酸剤としてあるいはオーステナイト相の安定化の為に添加されるものであるが、多量の添加は加工性を低下させることから上限を2.0%とし、より好ましくは0.8%以下、下限を0.3%以上とする。   Mn is added as a desulfurization and deoxidizing agent or for stabilization of the austenite phase, but a large amount of addition decreases the workability, so the upper limit is made 2.0%, more preferably 0.8. 8% or less, and the lower limit is 0.3% or more.

Niは、オーステナイト系ステンレス鋼の基本的元素で、その含有によってオーステナイト組織を安定化して耐食性を高めることができるが、多量に添加するとは高強度特性が得られ難くなることから、7.0〜11.0%、好ましくは8.0〜10.5%とする。   Ni is a basic element of austenitic stainless steel, and its inclusion can stabilize the austenite structure and increase the corrosion resistance. However, if added in a large amount, it becomes difficult to obtain high strength properties, so 7.0- 11.0%, preferably 8.0 to 10.5%.

Crも前記Niと同様にステンレス鋼の基本的元素であって、その含有によって不動態化を促進して耐食性を向上するが、多量の添加は生産性に影響することから、17〜21%、好ましくは18.0〜20.5%とする。   Cr is also a basic element of stainless steel like Ni, and its inclusion promotes passivation and improves corrosion resistance. However, since a large amount of addition affects productivity, 17 to 21%, Preferably it is 18.0 to 20.5%.

Nは、有効はオーステナイト生成元素で、しかも結晶粒を微細化して機械的特性の向上を図ることができ、微細な繊維組織を得る上から0.10%以上の添加が好ましく、また冷間加工による磁性増加を阻止した非磁性特性をもたらすことができるが、一方、0.30%を超えるものでは熱間加工性が低下して、コストアップの要因となる。   N is an austenite-generating element, and it is possible to improve the mechanical properties by refining the crystal grains. Addition of 0.10% or more is preferable from the viewpoint of obtaining a fine fiber structure. However, when the content exceeds 0.30%, the hot workability is lowered, which increases the cost.

他の形態として、前記各元素とともに、例えば0.4〜1.2%のMo、0.5%以下のCu、0.30%以下のNbのいずれか1種以上を更に含み、残部Feと不可避不純物とを含むステンレス鋼を用いることもできる。   As another form, together with each of the above elements, for example, further including any one or more of 0.4 to 1.2% Mo, 0.5% or less Cu, 0.30% or less Nb, and the balance Fe and Stainless steel containing inevitable impurities can also be used.

なお、この軟質線の線径については、その後に行われる伸線加工、圧延加工を考慮し、例えば0.08〜1.5mm程度に設定する。又表面性状も、最終の極細平線での表面性状、粗さの向上を図るため、原線は、例えばダイヤモンドダイスでの湿式伸線で加工処理した光輝精密仕上げの表面とし、このステンレス鋼線に前記固溶化熱処理を施す。   In addition, about the wire diameter and rolling process performed after that, the wire diameter of this soft wire is set to about 0.08 to 1.5 mm, for example. In addition, in order to improve the surface texture and roughness of the final ultrafine flat wire, the original wire is a bright precision finished surface processed by wet drawing with a diamond die, for example. The solution heat treatment is performed.

次に、前記段階Bの硬質細線3を得る冷間伸線加工は、前記段階Aで得たステンレス鋼軟質線に、60%以上の加工率で硬質ダイス、例えばダイヤモンドダイスを用いた冷間伸線加工を施すことで、該線内部には微細に伸びる繊維状の応力誘起マルテンサイト組織を具える例えば線径0.02〜0.8mm程度の硬質細線にする。好ましくは、加工率を75〜90%程度とする。ここで加工率とは、[(当初断面積−加工後断面積)/当初断面積]の百分率をいう。   Next, the cold drawing process for obtaining the hard wire 3 of the stage B is performed by using a hard die such as a diamond die at a processing rate of 60% or more on the stainless steel soft wire obtained in the stage A. By performing wire processing, the wire is formed into a hard thin wire having a fibrous stress-induced martensite structure that extends finely, for example, a wire diameter of about 0.02 to 0.8 mm. Preferably, the processing rate is about 75 to 90%. Here, the processing rate refers to a percentage of [(initial cross-sectional area−post-processing cross-sectional area) / initial cross-sectional area].

この硬質細線3の結晶構造の一例を図2に示す。図2では、長さ方向の断面を400倍に拡大している。断面図において結晶は長手方向に沿って微細な繊維組織が連続的にかつ密集した状態で分布している。又結晶のその繊維太さdは25μm以下、例えば10μm以下程度であることが確認できる。この繊維太さは、前記軟質線での結晶粒度の大きさと、冷間伸線加工での加工量によって変化するのであって、好ましくは、一つの繊維状結晶を取り出した図3に示すように,その結晶長さ(L)に対する結晶の幅(d)の比、すなわちアスペクト比(L/d)の平均が20〜1500倍、好ましくは100〜1000倍程度とするのがよい。   An example of the crystal structure of the hard thin wire 3 is shown in FIG. In FIG. 2, the cross section in the length direction is enlarged 400 times. In the cross-sectional view, crystals are distributed in a state where fine fiber structures are continuously and densely arranged along the longitudinal direction. The fiber thickness d of the crystal can be confirmed to be 25 μm or less, for example, about 10 μm or less. The fiber thickness varies depending on the size of the crystal grain size in the soft wire and the processing amount in the cold wire drawing, and preferably, as shown in FIG. 3 where one fibrous crystal is taken out. The ratio of the crystal width (d) to the crystal length (L), that is, the average aspect ratio (L / d) is 20 to 1500 times, preferably about 100 to 1000 times.

また、この冷間伸線加工についても、前記軟質線の場合と同様に、ダイヤモンドダイスでの湿式伸線加工によって表面性状の向上を図ることが好ましく、例えば前記60%以上の加工率によるものでは、該線の10点表面粗さ(Rz)を1.0μm以下、好ましくは0.5μm以下の超平滑仕上げ面にすることができる。また加工率65%以上の加工材では同0.2μm以下にまで表面性状を高める。98%(クレーム6との整合)を超える程大きい加工率によるものでは、その後の圧延加工が困難となることから、生産性を考慮してより好ましくは65〜90%、さらには70〜90%で行う。なお硬質細線3は図4に示す断面円状にも、楕円状、長円状にも形成できる。   As for the cold wire drawing, as in the case of the soft wire, it is preferable to improve the surface properties by wet wire drawing with a diamond die, for example, with a processing rate of 60% or more. The 10-point surface roughness (Rz) of the line can be made to be an ultra-smooth finished surface of 1.0 μm or less, preferably 0.5 μm or less. Further, in the case of a processed material having a processing rate of 65% or more, the surface property is increased to 0.2 μm or less. If the processing rate is so high that it exceeds 98% (matching with claim 6), the subsequent rolling process becomes difficult. Therefore, in consideration of productivity, it is more preferably 65 to 90%, and further 70 to 90%. To do. The hard thin wire 3 can be formed in a circular cross section shown in FIG. 4, an elliptical shape, or an oval shape.

さらに、この硬質細線3に冷間圧延を行ないステンレス鋼高強度極細平線4をうる冷間圧延の段階Cとして、前記伸線加工された硬質細線3は熱処理を行うことなく冷間圧延加工が行われる。圧下率を40%以上として所定の幅(w)と厚さ(t)とを有する断面矩形状の図5に断面で例示する極細平線4を形成する。なお本発明の極細平線は、厚さ(t)0.1mm以下であって、その幅(w)寸法は該厚さ(t)の1.5〜15倍、好ましくは2.5〜5倍程度のもの、例えば0.5mm以下のもの対象とする。ここで、幅(w)寸法は、前記式(1)における平均値wiが用いられる。   Further, cold rolling is performed on the hard thin wire 3 to obtain a stainless steel high-strength ultrathin flat wire 4 as a cold rolling stage C. The drawn hard thin wire 3 is subjected to cold rolling without heat treatment. Done. An ultrathin flat wire 4 illustrated in cross section in FIG. 5 having a rectangular cross section having a reduction ratio of 40% or more and a predetermined width (w) and thickness (t) is formed. The ultrathin flat wire of the present invention has a thickness (t) of 0.1 mm or less, and its width (w) dimension is 1.5 to 15 times the thickness (t), preferably 2.5 to 5 times. The target is about double, for example, 0.5 mm or less. Here, the average value wi in the formula (1) is used for the width (w) dimension.

冷間圧延は常に逆張力を付加しながら行う。これにより、1組の圧延ロールを用いた最終寸法までの圧延加工が可能となり、厚さが0.1mm以下の目視困難な極細平線4に連続圧延でき、多段階の連続圧延加工を避けることができる。逆張力とは、巻取りによる巻付の向きとは反対の向きの張力であり、この逆張力の付加によって該平線の巾寸法を安定化するとともに、直線性を高め、かつ残留たわみ量を低く抑える。   Cold rolling is always performed while applying reverse tension. This makes it possible to perform rolling up to the final dimension using one set of rolling rolls, can be continuously rolled into an ultrafine flat wire 4 having a thickness of 0.1 mm or less, and avoid multi-stage continuous rolling. Can do. Reverse tension is the tension in the direction opposite to the direction of winding by winding, and the addition of this reverse tension stabilizes the width dimension of the flat wire, enhances linearity, and reduces the amount of remaining deflection. Keep it low.

図6は、この圧延加工に使用する冷間圧延装置10の一例を示す。前記硬質細線3を供給する供給ブロック10Aと、これを圧延して所定寸法の極細平線にする圧延ブロック10B、及び引き出された極細平線を巻取りする巻取ブロック10Cとを一連に配置している。   FIG. 6 shows an example of the cold rolling apparatus 10 used for this rolling process. A supply block 10A for supplying the hard thin wire 3, a rolling block 10B that is rolled to form a very thin flat wire of a predetermined size, and a winding block 10C that winds the drawn ultra thin flat wire are arranged in series. ing.

前記供給ブロック10Aには、硬質細線を収容した供給リール10a、並置される両側の案内ローラ10b,10bと、その間かつその下方に位置するダンサローラ10cとからなる逆張力装置10d、及び張力測定装置10eを具える。前記逆張力装置10dは、ダンサーローラ10cが、前記供給リール10aにおける硬質細線3の巻取の向きと逆に湾曲させて、逆張力を付与して巻きくせを減じて、直線性を向上し、圧延ブロック10Bにおける圧延精度を高める。   The supply block 10A includes a supply reel 10a containing a hard thin wire, guide rollers 10b, 10b on both sides arranged side by side, and a dancer roller 10c located between and below the tension device 10d, and a tension measuring device 10e. With The reverse tension device 10d improves the linearity by causing the dancer roller 10c to bend in a direction opposite to the winding direction of the hard thin wire 3 in the supply reel 10a, thereby applying reverse tension and reducing the winding. The rolling accuracy in the rolling block 10B is increased.

前記圧延ブロック10Bには、4個のバックアップロール10fと、各上下の対のバックアップロール10f、10fで支持される上下のワークロール10g,10gとからなる圧延ロール10hと、液切り装置10iとを具える。このワークロール10g,10gにより、前記のごとく、圧下率を40%以上の冷間圧延加工が行われる。なお圧延により、幅(w)と厚さ(t)との比である幅(w)/厚さ(t)=1.5〜15の、図5に例示する断面矩形状の極細平線を形成する。   The rolling block 10B includes four backup rolls 10f, upper and lower work rolls 10g and 10g supported by upper and lower pairs of backup rolls 10f and 10f, and a liquid draining device 10i. Have. As described above, the work rolls 10g and 10g perform cold rolling with a rolling reduction of 40% or more. Note that, by rolling, an ultrathin flat wire having a rectangular cross-section illustrated in FIG. 5 and having a width (w) / thickness (t) = 1.5 to 15 which is a ratio of the width (w) to the thickness (t). Form.

前記巻取ブロック10Cは、並置される両側の案内ローラ10j,10jと、その間かつその下方に位置するダンサローラ10kとからなる逆張力装置10m、張力測定装置10n,寸法測定装置10o、巻取リール10pとを具える。逆張力装置10mは、巻取リール10pでの巻取に先立ち、巻取応力と逆向き応力を付与しておくことにより、巻取リール10pからの巻き戻し時の直線性を向上できる。   The take-up block 10C includes a reverse tension device 10m, a tension measuring device 10n, a dimension measuring device 10o, and a take-up reel 10p, which are composed of guide rollers 10j, 10j on both sides juxtaposed and a dancer roller 10k located between and below them. With. The reverse tension device 10m can improve the linearity at the time of rewinding from the take-up reel 10p by applying a reverse stress to the take-up stress prior to the take-up by the take-up reel 10p.

又前記供給リール10aと、圧延ロール10hと、巻取リール10pとは、各々図示しない駆動源(モーター)によって圧延のびを考慮した最適速度に各部線速度を制御して回転する。なお張力測定装置10e,10nは、その張力測定結果を電子制御によってフィードバックされ、装置全体の運転が円滑にかつ高精度の圧延加工がなしうるようにコントロールされている。   Further, the supply reel 10a, the rolling roll 10h, and the take-up reel 10p are rotated by controlling the respective linear speeds to optimum speeds that take into account rolling by a driving source (motor) (not shown). The tension measuring devices 10e and 10n are controlled so that the tension measurement results are fed back by electronic control so that the operation of the entire device can be performed smoothly and with high precision.

この冷間圧延装置10では、圧延加工における所定の逆張力の負荷によって、寸法バラツキを抑えながら高品質の極細平線を可能にし、表面状態も良好なものとなる。なお図6の圧延装置10では、前記逆張力は、巻取りブロック10Cと供給ブロック10Aに各々設けたダンサーロール10c,10k自体がその自重と張力との関係で上下方向にスライドするようにして移動量の程度を検出する方法で行っているが、例えば両ダンサーロール10c、10kを各々駆動式として回転速度差を設けることで付加することもできる。またその該逆張力は、前記硬質細線の破断荷重の2〜15%(より好ましくは5〜10%)の範囲で行ったものが最も優れており、また該逆張力の負荷は、1パスだけの圧延加工でも曲がり変形のない良好な真直度をもたらすことが可能となる。   The cold rolling apparatus 10 enables a high-quality ultra-thin flat wire while suppressing dimensional variation by a predetermined reverse tension load in the rolling process, and the surface state is also good. In the rolling apparatus 10 shown in FIG. 6, the reverse tension moves so that the dancer rolls 10c and 10k provided in the winding block 10C and the supply block 10A slide up and down due to their own weight and tension. Although it is performed by the method of detecting the degree of the amount, for example, both dancer rolls 10c and 10k can be added by providing a rotational speed difference with the respective drive types. The reverse tension is most excellent when it is in the range of 2 to 15% (more preferably 5 to 10%) of the breaking load of the hard thin wire, and the reverse tension load is only one pass. Even in the rolling process, it becomes possible to bring about a good straightness without bending deformation.

こうして得られた極細平線は、高強度でかつ寸法安定性に優れるものであるが、冷間伸線や圧延加工によって大きな加工歪を持つことから、これを改善する為に、例えば温度350〜550℃の低温熱処理を行うことが好ましい。この処理によって靭性が改善し、曲げに対する疲労特性を向上して寿命特性を高めることができる。この熱処理はテンパー処理と呼ばれ、前記温度に所定時間(例えば0.5〜20s程度)維持することで達成される。   The ultra-thin flat wire thus obtained has high strength and excellent dimensional stability, but has a large processing strain due to cold drawing or rolling, so that it can be improved, for example, at a temperature of 350 to 350 It is preferable to perform low-temperature heat treatment at 550 ° C. This treatment improves toughness, improves the fatigue characteristics against bending, and enhances the life characteristics. This heat treatment is called tempering and is achieved by maintaining the temperature for a predetermined time (for example, about 0.5 to 20 s).

このようなステンレス鋼高強度極細平線4は例えば図7に示すように編組されてチューブ状の補強部材5を構成する。なお、内管6の外周面に編組されてもよく、このとき外管7を外挿、鋳込みなどの方法により形成しカテーテルを生産できる。又極細平線4は外管7の内周面に埋設しておくことなど、カテーテルの成形には種々な方法を採用できる。   Such a stainless steel high-strength ultrathin flat wire 4 is braided, for example, as shown in FIG. In addition, it may be braided on the outer peripheral surface of the inner tube 6, and at this time, the outer tube 7 can be formed by a method such as extrapolation or casting to produce a catheter. Various methods can be employed for forming the catheter, such as embedding the ultrafine flat wire 4 in the inner peripheral surface of the outer tube 7.

原線として、伸線加工で線径0.3mmのSUS304ステンレス鋼硬質線に、温度950℃で固溶化熱処理を行い、原線である軟質線を得た。そこでこの軟質線の結晶粒度を測定する為に、その一部を切り出して#1200番の研磨紙とバフ研磨を行ない、シュウ酸溶液による電解エッチングを施して測定試料とした。この原線の結晶組織を200倍に拡大した顕微鏡で測定した結果、結晶粒度の平均は前記JIS:9番に相当する微細なものであった。   As a raw wire, a SUS304 stainless steel hard wire having a wire diameter of 0.3 mm was subjected to a solution heat treatment at a temperature of 950 ° C. to obtain a soft wire as a raw wire. Therefore, in order to measure the crystal grain size of this soft wire, a part thereof was cut out and buffed with # 1200 polishing paper and subjected to electrolytic etching with an oxalic acid solution to obtain a measurement sample. As a result of measuring the crystal structure of the original line with a microscope enlarged 200 times, the average crystal grain size was a fine one corresponding to JIS: 9.

次に、この原線の表面に厚さ0.2μmのNiめっきを電解めっき法で施して、これを潤滑剤とする連続伸線機にセットするとともに、15枚のダイヤモンドダイスにより総加工率95%、伸線速度150m/min.の伸線加工を行ない、線径70μmの硬質細線とした。この硬質細線は表面平滑で優れた光沢を有し、またその線内部には、細線な繊維組織が長手方向に沿って伸びる応力誘起マルテンサイト相を持つものであり、該繊維組織の太さは2μm以下の微細でまた該線の側面部の10点平均表面粗さはRz=0.18μmであった。   Next, Ni plating having a thickness of 0.2 μm is applied to the surface of the original wire by an electrolytic plating method, and this is set in a continuous wire drawing machine using this as a lubricant. %, Wire drawing speed 150 m / min. To obtain a hard fine wire having a wire diameter of 70 μm. The hard fine wire has a smooth surface and excellent gloss, and the inside of the wire has a stress-induced martensite phase in which the fine fiber structure extends along the longitudinal direction. The thickness of the fiber structure is The fine surface roughness of 2 μm or less and the 10-point average surface roughness of the side surface of the line were Rz = 0.18 μm.

そして、この硬質細線は第三段階の極細圧延加工を図3に示す冷間圧延機(アサヒ精機製)によって、逆張力100MPaを付加しながら圧下率70%の加工を行ない、幅:0.18mm,厚さ:0.02mmの極細平線を得た。この極細平線は引張強さ2600N/mm2 の高強度で、しかも表面平滑であり、平線側面部には凹凸の少ない表面粗さRz:0.3μm程度の極めて高精度のものが得られた。この極細平線の巾寸法のバラツキ(S)は3.3μmであり、非常に良好なものであった。この平線の外観写真を図8(A)に示す。 Then, this hard fine wire is processed at a reduction rate of 70% while applying a reverse tension of 100 MPa by a cold rolling mill (manufactured by Asahi Seiki) shown in FIG. , Thickness: 0.02 mm extra fine flat wire was obtained. This ultra-thin flat wire has a high strength of 2600 N / mm 2 in tensile strength and smooth surface, and has a very high accuracy with a surface roughness Rz of about 0.3 μm with little unevenness on the side surface of the flat wire. It was. The variation (S) in the width dimension of the ultrafine flat wire was 3.3 μm, which was very good. An appearance photograph of this flat line is shown in FIG.

表1の成分組成を持つ4種類のN含有ステンレス鋼軟質線0.3mmφを各々原線とし、加工率97%での冷間伸線加工と、該伸線による硬質細線を前記実施例1と同じ圧延装置にセットして、圧下率50%での冷間圧延を行った。得られた極細平線は、厚さ0.025mm,幅0.08mm,引張強さ2800〜32200N/mm2 の高強度を有し、また平線側面部での表面粗さもRz:0.02〜0.035μmの真直線性に優れた高品質の極細平線が得られた。 Four types of N-containing stainless steel soft wires having the composition shown in Table 1 are used as original wires, respectively, and cold drawing at a processing rate of 97% and hard fine wires by the drawing are as described in Example 1. Set in the same rolling machine, cold rolling was performed at a reduction rate of 50%. The obtained ultrafine flat wire has a high strength of thickness 0.025 mm, width 0.08 mm, tensile strength 2800 to 32200 N / mm 2 , and the surface roughness at the side portion of the flat wire is Rz: 0.02 A high-quality ultrathin flat wire excellent in straightness of ˜0.035 μm was obtained.

なお、この実施例の中で、前記原線での結晶粒の大きさは、いずれも0.00009mm2 程度で、10番以上の微細なオーステナイト組織を有するものであり、また冷間圧延での逆張力としては、該硬質細線の引張強さの5%に相当する応力を付加しながら行ったものである。この実施例による巾寸法wのバラツキは2.1〜6.3μmで非常に好ましいものであった。 In this example, the size of the crystal grain in the original wire is about 0.00009 mm 2 and has a fine austenite structure of No. 10 or more, and in cold rolling, The reverse tension is performed while applying a stress corresponding to 5% of the tensile strength of the hard thin wire. The variation of the width dimension w according to this example was 2.1 to 6.3 μm, which was very preferable.

次に、この極細平線(試料C)を温度420℃に設定した管状ストランド熱処理炉にセットして、時間1.3秒の条件となるように調整した速度で走行させテンパー処理を行った。熱処理はアルゴンガスによる不活性雰囲気にしたもので、この処理によって引張強さ2920N/mm2 、伸び1.2%と圧延状態に比べて引張強さが約70N/mm2 アップし、また耐力比(耐力/引張強さ)についても88%から96%へと約8%向上させることができた。 Next, this ultra-thin flat wire (sample C) was set in a tubular strand heat treatment furnace set at a temperature of 420 ° C., and tempered by running at a speed adjusted so as to satisfy the condition of time 1.3 seconds. Heat treatment than those in an inert atmosphere with argon gas, the tensile strength of 2920N / mm 2 This treatment was strength of about 70N / mm 2 up tension than 1.2% elongation and the rolling state and Strength Ratio The (yield strength / tensile strength) was also improved by about 8% from 88% to 96%.

比較例Comparative example

この実施例に対する比較例として、実施例1で用いたSUS304ステンレス軟質鋼を原線とし、この軟質線を直接冷間圧延して実施例1と同等寸法の極細平線を得た。この平線の引張強さは2450N/mm2 とほぼ同様な強度が得られたものの、幅寸法のバラツキが25μmと大きく、側面部での平均粗さはRz:1.3μmであった。この比較例による平線の外観写真を図8(B)に示しており、長手方向に大きく凹凸していることが分かる。 As a comparative example for this example, the SUS304 stainless soft steel used in Example 1 was used as the original wire, and the soft wire was directly cold-rolled to obtain an ultrathin flat wire having the same dimensions as in Example 1. Although the tensile strength of the flat wire was almost the same as 2450 N / mm 2 , the width variation was as large as 25 μm, and the average roughness at the side surface was Rz: 1.3 μm. A photograph of the appearance of a flat wire according to this comparative example is shown in FIG. 8B, and it can be seen that there are large irregularities in the longitudinal direction.

そこで、更に発明の効果を確認する為に、前記実施例1と比較例による極細平線を用いた180゜繰り返し曲げ試験を行い、破断までの曲げ回数を測定した。試験は極細平線をペンチに掴んでその把持部付近を手で折り曲げる方法で行い、一方側への曲げを1回分として試験したもので、実施例1の極細平線では153回の曲げに耐えることができた。これに対して比較例では側面部の表面粗さが大きく、曲げ回数102回で破断した。   Therefore, in order to further confirm the effect of the invention, a 180 ° repeated bending test using the ultrathin flat wire according to Example 1 and the comparative example was performed, and the number of times of bending until breakage was measured. The test was carried out by gripping an ultra-thin flat wire with a pliers and bending the vicinity of the grip portion by hand. The test was conducted with one side bent as one time. The ultra-thin flat wire of Example 1 withstands 153 times of bending. I was able to. On the other hand, in the comparative example, the surface roughness of the side surface portion was large, and the fracture occurred at the number of bending times of 102.

さらに、この両試料について、外径2.5mm,ピッチ70/インチの編組チューブ品の編組加工を行ったが、本発明による実施例の極細平線は、高強度で側面部の表面状態に優れ、また疲労特性も優れていることから、良好な加工を行うことができた。   Furthermore, for both of these samples, a braided tube product having an outer diameter of 2.5 mm and a pitch of 70 / inch was braided. Moreover, since the fatigue characteristics were excellent, it was possible to perform good processing.

本発明の極細平線は、図7に示すように、中空に押し出された高密度ポリエチレンのからなる外管7と、低密度ポリエチレンからなる内管6とからなる管体の内部に前記極細平線4による編組体からなる補強部材5を埋設したカテーテルの断面の一例であり、極細平線が高強度で疲労特性に優れることから耐圧性、トルク伝達性を向上し、また曲げに対する抵抗が大きく耐久性を高める極細チューブ用品の補強部材として好適する他、この編組体を例えばフレキシブルシャフトやロープ用品として利用することもでき、また前記極細平線を例えば種々形状にコイリング加工することで、極細異形線ばねとしても利用できるなど、広範用途に用い得る。   As shown in FIG. 7, the ultra-thin flat wire of the present invention is formed inside the tubular body composed of an outer tube 7 made of high-density polyethylene extruded into a hollow and an inner tube 6 made of low-density polyethylene. It is an example of the cross section of the catheter which embedded the reinforcement member 5 which consists of the braided body by the wire 4, A pressure resistance and torque transmission property are improved from the ultrathin flat wire being high strength and excellent in fatigue characteristics, and resistance to bending is large. In addition to being suitable as a reinforcing member for ultra-thin tube products that enhance durability, this braided body can also be used as, for example, a flexible shaft or rope product. It can be used as a wire spring and can be used in a wide range of applications.

本発明の製造方法の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of the manufacturing method of this invention. 硬質細線での繊維組織を示す拡大顕微鏡の一例である。It is an example of the magnification microscope which shows the fiber structure in a hard fine wire. 硬質細線の金属組織を取り出した状態を例示する概略図である。It is the schematic which illustrates the state which took out the metal structure of a hard fine wire. 硬質細線を例示する断面図である。It is sectional drawing which illustrates a hard fine wire. 極細平線を例示する断面図である。It is sectional drawing which illustrates an ultra-thin flat line. 冷間圧延装置を例示するブロック図である。It is a block diagram which illustrates a cold rolling apparatus. カテーテルを例示する一部を除去した正面図である。It is the front view which removed a part which illustrates a catheter. (A)は本発明に係る極細平線を例示する外観写真、(B)は比較例品を例示する外観写真である。(A) is an appearance photograph illustrating an ultrathin flat wire according to the present invention, and (B) is an appearance photograph illustrating a comparative example product. 従来のカテーテルを略示する断面図である。It is sectional drawing which shows the conventional catheter schematically.

符号の説明Explanation of symbols

3 硬質細線
4 極細平線
10d 逆張力装置
3 Hard fine wire 4 Extra fine flat wire 10d Reverse tension device

Claims (8)

厚さ0.1mm以下、かつ引張強さ2000N/mm2 以上の高強度特性を有するステンレス鋼の極細平線を冷間圧延によって製造するステンレス鋼高強度極細平線の製造方法であって、
a)固溶化熱処理によって、JISG−0551に基づく結晶粒度が8番以上の微細なオーステナイト組織を有するステンレス鋼軟質線を得る段階と、
b)該軟質線に加工率60%以上の冷間伸線を施して、長手方向に沿って結晶が繊維状に伸びる加工誘起マルテンサイト組織の線径0.5mm以下の硬質細線を得る段階と、 c)該硬質細線に熱処理を施すことなく逆張力を加えながら、圧下率40%以上で冷間圧延を行ないステンレス鋼高強度極細平線をうる段階とを含み、
前記ステンレス鋼高強度極細平線の巾寸法のばらつき(S)が20μm以下であることを特徴とするステンレス鋼高強度極細平線の製造方法。
Thickness 0.1mm or less, and the ultrafine flat wire of stainless steel having a tensile strength of 2000N / mm 2 or more high strength characteristics to a method for producing a stainless steel high-strength ultra-fine flat wire produced by cold rolling,
a) obtaining a stainless steel soft wire having a fine austenite structure having a crystal grain size of # 8 or more based on JISG-0551 by solution heat treatment;
b) subjecting the soft wire to cold drawing at a processing rate of 60% or more to obtain a hard fine wire having a wire diameter of 0.5 mm or less of a work-induced martensite structure in which crystals extend in a fiber shape along the longitudinal direction; C) performing a cold rolling at a rolling reduction of 40% or more while applying a reverse tension without applying heat treatment to the hard thin wire to obtain a stainless steel high-strength ultra-thin flat wire,
The method for producing a stainless steel high-strength ultrathin flat wire, characterized in that the variation (S) in the width dimension of the stainless steel high-strength ultrathin flat wire is 20 μm or less.
前記ステンレス鋼は、質量%で、C:0.05〜0.15%,Si≦1.0%,Mn≦2.0%,Ni:7.0〜11.0%,Cr:17.0〜21.0%,N:0.10〜0.30%を含み、残部Feと不可避不純物で構成されてなるN添加型のステンレス鋼であることを特徴とする請求項1に記載のステンレス鋼高強度極細平線の製造方法。   The stainless steel is, by mass%, C: 0.05 to 0.15%, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 7.0 to 11.0%, Cr: 17.0 The stainless steel according to claim 1, wherein the stainless steel is N-added stainless steel including ˜21.0%, N: 0.10 to 0.30%, and the balance being Fe and inevitable impurities. Manufacturing method of high-strength ultrafine flat wire. 前記ステンレス鋼高強度極細平線は、その幅方向の側面の長手方向の表面粗さが、10点平均粗さ(Rz)で0.5μm以下であることを特徴とする請求項1又は2記載のステンレス鋼高強度極細平線の製造方法。   3. The stainless steel high-strength ultrathin flat wire has a 10-point average roughness (Rz) of 0.5 μm or less in terms of the surface roughness in the longitudinal direction of the side surface in the width direction. Stainless steel high-strength ultrafine flat wire manufacturing method. 前記ステンレス鋼軟質線は、加工率75%以上の強度の冷間伸線加工を行った後、950〜1050℃程度の温度で1〜20秒の固溶化熱処理をすることにより形成されることを特徴とする請求項1〜3のいずれかに記載のステンレス鋼高強度極細平線の製造方法。   The stainless steel soft wire is formed by performing a solution heat treatment at a temperature of about 950 to 1050 ° C. for 1 to 20 seconds after performing cold wire drawing with a strength of 75% or more. The method for producing a stainless steel high-strength ultrafine flat wire according to any one of claims 1 to 3. 前記硬質細線を得る段階の冷間伸線加工は、ダイヤモンドダイスを用いた湿式伸線加工を採用するとともに、前記硬質細線の10点表面粗さ(Rz)を1.0μm以下の平滑仕上げ面にすることを特徴とする請求項1〜4のいずれかに記載のステンレス鋼高強度極細平線の製造方法。   The cold wire drawing process at the stage of obtaining the hard fine wire adopts a wet wire drawing method using a diamond die and has a 10-point surface roughness (Rz) of the hard fine wire to a smooth finish surface of 1.0 μm or less. A method for producing a stainless steel high-strength ultrathin flat wire according to any one of claims 1 to 4. 前記冷間伸線加工は、加工率65〜98%で、かつ前記硬質細線の10点表面粗さ(Rz)を0.2μm以下としたことを特徴とする請求項4又は5に記載のステンレス鋼高強度極細平線の製造方法。   6. The stainless steel according to claim 4, wherein the cold wire drawing is performed at a processing rate of 65 to 98% and a 10-point surface roughness (Rz) of the hard fine wire of 0.2 μm or less. Manufacturing method of steel high-strength ultrafine flat wire. 前記冷間圧延は、前記硬質細線を、幅(W)と厚さ(t)との比(W/t)が2.5倍以上の比率の平線とすることを特徴とする請求項1〜6のいずれかに記載のステンレス鋼高強度極細平線の製造方法。   The cold rolling is characterized in that the hard thin wire is a flat wire having a ratio (W / t) of width (W) to thickness (t) of 2.5 times or more. The manufacturing method of the stainless steel high intensity | strength extra fine flat wire in any one of -6. 前記冷間圧延加工後、更に温度350〜550℃の低温歪取り熱処理が付与されるものである請求項1〜7のいずれかに記載のステンレス鋼高強度極細平線の製造方法。   The method for producing a stainless steel high-strength ultrathin flat wire according to any one of claims 1 to 7, wherein a low-temperature strain relief heat treatment at a temperature of 350 to 550 ° C is further applied after the cold rolling.
JP2005211703A 2005-07-21 2005-07-21 Stainless steel high-strength ultrafine flat wire manufacturing method Active JP4824960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211703A JP4824960B2 (en) 2005-07-21 2005-07-21 Stainless steel high-strength ultrafine flat wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211703A JP4824960B2 (en) 2005-07-21 2005-07-21 Stainless steel high-strength ultrafine flat wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2007023373A true JP2007023373A (en) 2007-02-01
JP4824960B2 JP4824960B2 (en) 2011-11-30

Family

ID=37784536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211703A Active JP4824960B2 (en) 2005-07-21 2005-07-21 Stainless steel high-strength ultrafine flat wire manufacturing method

Country Status (1)

Country Link
JP (1) JP4824960B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184643A (en) * 2007-01-29 2008-08-14 Nippon Seisen Co Ltd Method for manufacturing high-strength ultra-fine flat wire, and high-strength metal ultra-fine flat wire obtained using the manufacturing method
JP2010088833A (en) * 2008-10-11 2010-04-22 Asahi Intecc Co Ltd Catheter body
CN104815867A (en) * 2015-04-07 2015-08-05 安徽江南鸣放电子科技有限公司 Flat-mouth copper wire processing apparatus
JP2015213917A (en) * 2014-05-07 2015-12-03 株式会社エフ・エー電子 Wire drawing machine and wire drawing method
CN105714197A (en) * 2014-12-01 2016-06-29 鞍钢股份有限公司 High-strength and easy-to-stamp-form cold-rolled steel plate and production method thereof
CN114215440A (en) * 2021-10-29 2022-03-22 佛山市高明安华陶瓷洁具有限公司 Ultra-silent shower room track section bar and preparation method thereof
JP7504672B2 (en) 2020-06-12 2024-06-24 日鉄ステンレス株式会社 Stainless steel wire, its manufacturing method, and spring parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972456B1 (en) 2017-07-17 2019-04-25 홍덕산업(주) Steel cord and single strand having excellent straightness quality and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571503A (en) * 1980-06-03 1982-01-06 Mitsubishi Steel Mfg Co Ltd Manufacture of strip material for use of spiral spring
JPS6427703A (en) * 1987-07-22 1989-01-30 Kanai Hiroyuki Manufacture of flat wire for spiral spring
JPH0379720A (en) * 1989-08-21 1991-04-04 Sankoole Kk Manufacture of flat wire
JPH06344002A (en) * 1993-06-11 1994-12-20 Saikawa:Kk Method and device for producing flat square wire
JPH08317986A (en) * 1995-03-17 1996-12-03 Asahi Intec Kk Tube for medical care
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance
JP2001299922A (en) * 2000-04-25 2001-10-30 Mitsubishi Cable Ind Ltd Flexible tube
JP2002069586A (en) * 2000-08-25 2002-03-08 Nippon Seisen Co Ltd Extra fine wire of high strength stainless steel
JP2002069587A (en) * 2000-08-28 2002-03-08 Nippon Seisen Co Ltd Austenitic stainless steel wire for member for spectacles, and member for spectacles composed of the steel wire
JP2002282366A (en) * 2001-03-27 2002-10-02 Kawasumi Lab Inc Catheter equipped with supplementary enforcement member
JP2003253399A (en) * 2002-02-27 2003-09-10 Nippon Seisen Co Ltd Ultrafine wire of high-strength stainless steel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571503A (en) * 1980-06-03 1982-01-06 Mitsubishi Steel Mfg Co Ltd Manufacture of strip material for use of spiral spring
JPS6427703A (en) * 1987-07-22 1989-01-30 Kanai Hiroyuki Manufacture of flat wire for spiral spring
JPH0379720A (en) * 1989-08-21 1991-04-04 Sankoole Kk Manufacture of flat wire
JPH06344002A (en) * 1993-06-11 1994-12-20 Saikawa:Kk Method and device for producing flat square wire
JPH08317986A (en) * 1995-03-17 1996-12-03 Asahi Intec Kk Tube for medical care
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance
JP2001299922A (en) * 2000-04-25 2001-10-30 Mitsubishi Cable Ind Ltd Flexible tube
JP2002069586A (en) * 2000-08-25 2002-03-08 Nippon Seisen Co Ltd Extra fine wire of high strength stainless steel
JP2002069587A (en) * 2000-08-28 2002-03-08 Nippon Seisen Co Ltd Austenitic stainless steel wire for member for spectacles, and member for spectacles composed of the steel wire
JP2002282366A (en) * 2001-03-27 2002-10-02 Kawasumi Lab Inc Catheter equipped with supplementary enforcement member
JP2003253399A (en) * 2002-02-27 2003-09-10 Nippon Seisen Co Ltd Ultrafine wire of high-strength stainless steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184643A (en) * 2007-01-29 2008-08-14 Nippon Seisen Co Ltd Method for manufacturing high-strength ultra-fine flat wire, and high-strength metal ultra-fine flat wire obtained using the manufacturing method
JP2010088833A (en) * 2008-10-11 2010-04-22 Asahi Intecc Co Ltd Catheter body
JP4743800B2 (en) * 2008-10-11 2011-08-10 朝日インテック株式会社 catheter
US8540695B2 (en) 2008-10-11 2013-09-24 Asahi Intecc Co., Ltd. Catheter
JP2015213917A (en) * 2014-05-07 2015-12-03 株式会社エフ・エー電子 Wire drawing machine and wire drawing method
CN105714197A (en) * 2014-12-01 2016-06-29 鞍钢股份有限公司 High-strength and easy-to-stamp-form cold-rolled steel plate and production method thereof
CN104815867A (en) * 2015-04-07 2015-08-05 安徽江南鸣放电子科技有限公司 Flat-mouth copper wire processing apparatus
JP7504672B2 (en) 2020-06-12 2024-06-24 日鉄ステンレス株式会社 Stainless steel wire, its manufacturing method, and spring parts
CN114215440A (en) * 2021-10-29 2022-03-22 佛山市高明安华陶瓷洁具有限公司 Ultra-silent shower room track section bar and preparation method thereof

Also Published As

Publication number Publication date
JP4824960B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4824960B2 (en) Stainless steel high-strength ultrafine flat wire manufacturing method
JP2008184643A (en) Method for manufacturing high-strength ultra-fine flat wire, and high-strength metal ultra-fine flat wire obtained using the manufacturing method
KR960006988B1 (en) Hot rolled steel wire rod, fine steel wire and twisted steel wire, and manufacture of the fine steel wire
CN102216482B (en) High-carbon steel wire material with excellent processability
WO2014208492A1 (en) High-carbon steel wire rod and method for manufacturing same
JP2005126765A (en) Extra-fine high carbon steel wire with excellent ductility, and its manufacturing method
JP2772627B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
KR20160018577A (en) Steel sheet for steel belt and process for manufacturing same, and steel belt
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
EP3816313A1 (en) Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
WO2000044954A1 (en) Wire for high-fatigue-strength steel wire, steel wire and production method therefor
CN110832096A (en) High-strength steel wire
JPH0660350B2 (en) Method for heat treating rolled steel products such as screwable PC steel bars and the like
JP4593504B2 (en) High-strength ultrafine steel wire with excellent ductility
US20120094123A1 (en) Core wire for guide wire and method for manufacturing the same
JPH08325964A (en) Steel wire and steel cord for rubber reinforcement
JP2007330288A (en) Core material or guide wire composed of core material and its manufacturing method
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
US20210395868A1 (en) Hot-rolled wire rod
JP6736951B2 (en) Steel wire and method for manufacturing the steel wire
JP2906025B2 (en) High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
JP2018127686A (en) Martensitic stainless steel hot rolled steel sheet and manufacturing method therefor
JP2005163082A (en) High carbon steel wire rod having excellent longitudinal crack resistance
JP4962319B2 (en) Steel strip temper rolling method
JPH10137803A (en) Diameter reducing method of stainless wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Ref document number: 4824960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250