JP2007324234A - 発光モジュール - Google Patents

発光モジュール Download PDF

Info

Publication number
JP2007324234A
JP2007324234A JP2006150484A JP2006150484A JP2007324234A JP 2007324234 A JP2007324234 A JP 2007324234A JP 2006150484 A JP2006150484 A JP 2006150484A JP 2006150484 A JP2006150484 A JP 2006150484A JP 2007324234 A JP2007324234 A JP 2007324234A
Authority
JP
Japan
Prior art keywords
light emitting
emitting module
semiconductor laser
cap
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150484A
Other languages
English (en)
Inventor
Hirotaka Omori
弘貴 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006150484A priority Critical patent/JP2007324234A/ja
Priority to US11/727,653 priority patent/US7856038B2/en
Publication of JP2007324234A publication Critical patent/JP2007324234A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】半導体レーザ素子の温度を精度よくモニタすることが可能な発光モジュールを提供すること。
【解決手段】発光モジュール1は、ステム30と、ステム30上に設けられた熱電変換素子10と、熱電変換素子10上に設けられたヒートシンク12と、ヒートシンク12に搭載された半導体レーザ素子14及び測温素子16と、キャップ32とを備える。キャップ32は、半導体レーザ素子14と光学的に結合されたレンズ38を支持する支持部32cを有する天井32bと側壁32aとを有し、ステム30に搭載されることで熱電変換素子10、半導体レーザ素子14及び測温素子16を覆う。天井32bは、支持部32cよりも外に向けて窪む凹部32eを有する。
【選択図】図2

Description

本発明は、発光モジュールに関する。
半導体レーザ素子を有する発光モジュールとして、例えば次の二つの形状が知られている。一つは、特許文献1に開示されているような、いわゆるバタフライ型発光モジュールである。他の一つは、特許文献2に開示されているような、いわゆる同軸型発光モジュールである。
特許文献1に記載されたバタフライ型発光モジュールは、バタフライ型のパッケージと、該パッケージ内に収容されたベースと、パッケージとベースとの間に配置された熱電変換素子と、ベースに搭載された半導体レーザ素子とを備える。このバタフライ型発光モジュールでは、ベースに搭載された半導体レーザ素子を熱遮蔽部材によって覆うことにより、パッケージから半導体レーザ素子に伝わる熱を低減している。
また、特許文献2に記載された同軸型発光モジュールは、熱電変換素子と、熱電変換素子上に設けられたヒートシンクと、ヒートシンクに搭載された半導体レーザ素子と、ヒートシンクに搭載された測温素子とを備える。この同軸型発光モジュールでは、ヒートシンクを介して熱電変換素子によって半導体レーザ素子の温度を制御している。
特開2003−142767号公報 特開2003−142766号公報
特許文献2に記載されたような同軸型発光モジュールは、バタフライ型発光モジュールよりも小型化が可能となっている。そのため、同軸型発光モジュールでは、サーミスタ等の測温素子とキャップとが近づいてしまい、バタフライ型発光モジュールと比較して測温素子がキャップ(発光モジュールの周囲)の熱の影響を受け易くなってしまう。測温素子では半導体レーザ素子の温度をモニタしているので、測温素子がキャップからの熱の影響を受けることで、半導体レーザ素子の温度を所望の温度に精度よく制御し難いという問題があった。
具体的には、キャップの温度(発光モジュールの周囲の温度)が上昇(又は低下)すると、T[℃]であった測温素子の温度は、キャップからの輻射熱やキャップ内に封止された気体を介した熱伝導によってΔ[℃]上昇(又はΔ[℃]低下)し、T+Δ(又はT−Δ)[℃]となる。このとき、半導体レーザ素子の温度をT[℃]に設定しようとすると、温度上昇分Δ(又は温度低下分−Δ)[℃]だけ測温素子を冷却(又は加熱)するように熱電変換素子が制御される。従って、半導体レーザ素子の温度をT[℃]に設定しようとしていたにもかかわらず、半導体レーザ素子の温度がT−Δ[℃]に過冷却(又はT+Δ[℃]に過加熱)されてしまい、半導体レーザ素子の発光波長が本来出力すべき波長から変動してしまう、いわゆる波長ドリフトが生じる。
この波長ドリフトは、特に、発光モジュールが高密度波長分割多重(DWDM:Dense Wavelength Division Multiplexing)方式の光通信に用いられる場合に問題となる。DWDM方式の光通信では信号光の波長間隔が狭く設定されているために、発光波長の変動幅(波長ドリフト幅)を極めて小さくする必要がある。従来の発光モジュールでは、例えば半導体レーザ素子の発光波長を一定に制御するための回路を発光モジュールの外部に設けることによって波長ドリフト幅を小さく抑えていた。しかしながら、このようにすると発光モジュール周辺の回路の規模が大きくなってしまう。
また、同軸型発光モジュールは、キャップによってレンズを保持する構造となっているので、半導体レーザ素子とキャップとの間隔が極めて狭くなっている。そのため、同軸型発光モジュールにおいて、特許文献1に記載されたバタフライ型発光モジュールのように半導体レーザ素子を覆う熱遮蔽部材を設けることは現実的でない。
本発明は、同軸型発光モジュールにおいて、半導体レーザ素子の温度を精度よくモニタすることが可能な発光モジュールを提供することを目的とする。
本発明に係る発光モジュールは、ステムと、ステム上に設けられた熱電変換素子と、熱電変換素子上に設けられたヒートシンクと、ヒートシンクに搭載された半導体レーザ素子と、ヒートシンクに搭載された測温素子と、半導体レーザ素子と光学的に結合されたレンズを支持する支持部を有する天井と側壁とを有し、熱電変換素子、半導体レーザ素子及び測温素子をステム上において覆うキャップとを備え、天井は、支持部よりも外に向けて窪む凹部を有するものである。
本発明に係る発光モジュールでは、キャップの天井が支持部よりも外に向けて窪む凹部を有している。そのため、レンズを半導体レーザ素子に近接させつつ、測温素子とキャップの天井とを離間させることができるようになる。その結果、測温素子とキャップとが近づいていた従来の同軸型発光モジュールよりも測温素子がキャップからの熱の影響を受け難くなり、波長ドリフトの発生が抑制されるので、半導体レーザ素子の温度を精度よくモニタすることが可能となる。
また、凹部は、支持部から天井の外縁に向かうにつれて凹部の窪みが大きくなるように形成されていることが好ましい。このようにすると、凹部の窪みの大きさが一定である場合と比較して、レンズを半導体レーザ素子に近づけつつ測温素子とキャップの天井とをより離間させることができる。その結果、半導体レーザ素子の温度をより精度よくモニタすることが可能となる。
また、支持部の一端は、ステムに向けて突き出ていることが好ましい。このようにすると、支持部がステムに向けて突き出た量に応じて測温素子とキャップの天板とを更に離間させることができるようになる。その結果、半導体レーザ素子の温度を更に精度よくモニタすることが可能となる。
本発明によれば、半導体レーザ素子の温度を精度よくモニタすることが可能な発光モジュールを提供することができる。
本発明の好適な実施形態について、図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いる。
(第1実施形態)
図1及び図2を参照して、第1実施形態に係る発光モジュール1の構成について説明する。図1は、第1実施形態に係る発光モジュールの一部を破断して示す斜視図である。図2は、図1のII−II線に沿ってとられた断面図である。
発光モジュール1は、いわゆる同軸型発光モジュールであり、また複数の熱電変換素子10、ヒートシンク12、半導体レーザ素子14、測温素子16、受光素子18及びCANケース20を備える。
熱電変換素子10は、例えばペルチェ素子である。熱電変換素子10は、供給電流の方向に応じて、下面が吸熱面又は放熱面の一方となり、上面が吸熱面又は放熱面の他方となる。熱電変換素子10は、一対の板状体22,24の間に設けられている。熱電変換素子10は、板状体22を介してステム28上に設けられている。これらの板状体22,24は、絶縁性材料(例えば、Al)によって構成されている。上側の板状体24のサイズは下側の板状体22のサイズよりも小さくなっている。そのため、受光素子18が半導体レーザ素子14の背面光(詳しくは後述する)を受光する際に妨げとならない。
ヒートシンク12は、上側の板状体24上に設けられている。ヒートシンク12は、絶縁性材料(例えば、AlN等のセラミックス)によって構成されているが、熱伝導性に優れた材質であると好ましい。ヒートシンク12は、六面体(第1実施形態では略直方体)とされており、また上面、下面及び対向する一対の側面12a,12bを含む4つの側面を有する。
半導体レーザ素子14は、例えばレーザダイオードである。半導体レーザ素子14は、駆動電流に応じた強度のレーザ光を光出射端面14a及び光反射端面14bから出射する。半導体レーザ素子14は、ヒートシンク12の側面12a上に設けられたキャリア26を介して搭載されている。キャリア26は、絶縁性材料(例えば、AlN等のセラミックス)によって構成される。
測温素子16は、例えばサーミスタである。測温素子16は、その温度に応じて電気抵抗値が変化する。測温素子16は、ヒートシンク12の側面12b上に搭載され、半導体レーザ素子14の温度をモニタする。
受光素子18は、例えばフォトダイオードである。受光素子18は、半導体レーザ素子14の発光強度をモニタする。受光素子18は、半導体レーザ素子14の光反射端面14bと光結合する受光面18aを有する。受光素子18は、半導体レーザ素子14の光反射端面14bから出射されたレーザ光(背面光)を受光面18aによって受光し、その背面光の強度に応じた電流を出力する。受光素子18は、キャリア28上に位置している。キャリア28における受光素子18の搭載面は、受光素子18から半導体レーザ素子14への戻り光を低減するために、傾斜面となっている。なお、キャリア28は、例えばCuW等の金属材料によって構成することができる。
受光素子18は、−40℃〜85℃の環境に置かれている場合、半導体レーザ素子14と比較して温度変化による影響が小さい。そのため、第1実施形態のように熱電変換素子10を介さずに受光素子18をキャリア28上に設けることにより、熱電変換素子10の吸熱又は放熱対象物を減らすことができる。
CANケース20は、ステム30及びキャップ32を有する。ステム30は、所定の軸Xに対して垂直な平面に沿った主面30aを有している。ステム32は、例えば略円形板状体である。ステム30の主面30a上には、板状体22を介して熱電変換素子10、ヒートシンク12、半導体レーザ素子14、測温素子16及び受光素子18の各部材が設けられている。
また、ステム30には、リード端子群34,36が設けられている。リード端子群34,36の間には、熱電変換素子10やヒートシンク12等の各部材が位置している。各リード端子群34,36は、それぞれリード端子を複数本(第1実施形態では、4本)ずつ含んでいる。各リード端子は、ヒートシンク12の側面12aと側面12bとの対向方向に沿うように並んで配置されている。各リード端子は、ステム30と交差する方向にステム30を貫通して伸びる棒状の金属部材である。各リード端子は、熱電変換素子10、半導体レーザ素子14、測温素子16及び受光素子18のそれぞれとボンディングワイヤ等を介して電気的に接続される。
キャップ32は、側壁32aと、天井32bとを有している。キャップ32は、ステム30に搭載されており、また抵抗溶接によってステム30に接合される。キャップ32は、熱電変換素子10、半導体レーザ素子14、測温素子16及び受光素子18を覆っている。ステム30とキャップ32とによって形成される空間には、窒素や乾燥空気等の気体が封止されている。キャップ32は、例えばステンレス(SUS)によって構成することができる。側壁32aは、例えば円筒状となっている。
天井32bは、レンズ38を支持する支持部32cを有している。レンズ38、半導体レーザ素子14、受光素子18及びステム30は、軸Xに沿ってこの順に配置されている。レンズ38は、半導体レーザ素子14と光学的に結合され、半導体レーザ素子14からのレーザ光を集光する。この集光された光は、光ファイバの一端に導かれる。レンズ38は、第1実施形態において非球面レンズとなっている。
また、天井32bは、支持部32cよりも外に向けて窪んだ凹部32eを有している。凹部32eは、支持部32cを取り囲む円環状となっており、支持部32cから天井32bの外縁まで延在している。測温素子16と凹部32eとは対向している。第1実施形態において、基準面Sと凹部32eの内面との距離は、場所によらず一定の長さとなっている。
以上のように、第1実施形態に係る発光モジュール1においては、キャップ32の天井32bが支持部32cよりも外に向けて窪む凹部32eを有し、また、測温素子16は、凹部32eと対向するように配置されている。そのため、レンズ38を半導体レーザ素子14に近接させても、測温素子16を天井30bから離間させることができる。測温素子とキャップとが近づいていた従来の同軸型発光モジュールよりも測温素子16がキャップ30(発光モジュール1の周囲)の熱の影響を受け難くなり、波長ドリフトの発生が抑制される。
また、第1実施形態に係る発光モジュール1においては、ヒートシンク12が各リード端子と隣り合っているため、測温素子16とリード端子とをボンディングワイヤによってワイヤリングする場合に、ボンディングワイヤの長さを短いものとすることができる。また、測温素子16がヒートシンク12の上面に搭載されていないので、レンズ38を半導体レーザ素子14により近接させることができる。
ところで、発光モジュールでは、半導体レーザ素子を駆動する際に、測温素子からの温度信号値が設定温度に応じた値に近づくように熱電変換素子への電流量及び電流の向きを制御する。例えば、半導体レーザ素子の温度を40℃に設定しようとした場合、40℃に相当する基準信号値と測温素子からの温度信号値との差に基づく制御電流を熱電変換素子へ送ることにより、帰還ループが構成されて、測温素子からの温度信号値が40℃に相当する基準信号値に保たれる。
ここで、発光モジュールの周囲温度が例えば75℃に上昇すると、これに伴ってキャップの温度が上昇する。そのため、測温素子の温度は、キャップからの輻射熱やキャップ内に封止された気体を介した熱伝導によりα[℃]上昇し、40+α[℃]となる。そうすると、測温素子からの温度信号値が40℃に保たれるように熱電変換素子が制御され、半導体レーザ素子が40−α[℃]に過冷却されることとなる。これにより、半導体レーザ素子の発光波長は本来出力すべき波長よりもA×α[nm](A[nm/℃]:温度変化と波長変動との相関係数)だけ短くなり、波長ドリフトが生じる。一方、発光モジュールの周囲温度が下降した場合には、上記とは逆に測温素子の温度がβ[℃]低下し、測温素子の温度が40−β[℃]となる。従って、半導体レーザ素子が40+β[℃]に過熱されることとなる。これにより、半導体レーザ素子の発光波長は本来出力すべき波長よりもA×β[nm]だけ長くなり、波長ドリフトが生じる。
この波長ドリフトは、一般的にバタフライ型発光モジュールよりも同軸型発光モジュールの方が大きい。これは、特許文献1に記載されたようなバタフライ型発光モジュールでは測温素子とパッケージとの距離が3mm程度あるのに対して、従来の同軸型発光モジュールでは測温素子とキャップとの距離が0.2mm程度と極めて短いことに起因する。半導体レーザ素子の温度を精度よくモニタするためには測温素子が半導体レーザ素子の近傍に配置されていることが必要であり、また、光ファイバと半導体レーザ素子との間の十分な光結合効率を確保するためにはレンズと半導体レーザ素子とを焦点距離まで近づける必要があるが、同軸型発光モジュールでは半導体レーザ素子等を覆うキャップにレンズが搭載されていることにより必然的に半導体レーザ素子とキャップとが近づいてしまい、同軸型発光モジュールにおいては結果として測温素子とキャップとが近づいてしまう。
ここで、第1実施形態に係る発光モジュール1のように測温素子16とキャップ32の天井32bとを離間させることによって、上記したような波長ドリフトが抑制され、半導体レーザ素子14の温度を精度よくモニタできることを確認するための実験を行った。実験としては、ステム30とキャップ32との間にリング状の部材を介在させることで測温素子16とキャップ30の天井30bとの距離L(図2参照)を0.22mm、0.36mm、0.47mmにそれぞれ変化させて、そのときの波長ドリフトをそれぞれ計測した。実験の際には、半導体レーザ素子14の駆動電流値を40mAとし、キャップ32の温度(発光モジュール1の周囲の温度)を75℃とすると共に、測温素子16からの温度信号値が40℃を示す値に保たれるように熱電変換素子10を制御した。
実験の結果、図3に示されるように、測温素子16とキャップ30の天井30bとの距離Lが長くなるにつれて波長ドリフトが−100pm、−17pm、27pmと大きくなっていき、また距離Lを0.22mmから0.36mmと変化させたときの上昇率よりも距離Lを0.36mmから0.47mmと変化させたときの上昇率の方が小さくなった。そのため、この実験では、キャップ32(発光モジュール1の周囲)以外からの熱による波長ドリフトが存在したために距離Lが長くなったときに波長ドリフトが0pmを超えるものとなったものの、測温素子16とキャップ32の天井32bとを離間させることで波長ドリフトの変化率が小さくなったことによりキャップ32(発光モジュール1の周囲)からの熱による波長ドリフトが低減されたことが実験によって確認された。これは、測温素子16とキャップ32の天井32bとを離間させることで、測温素子16がキャップ32(発光モジュール1の周囲)からの熱の影響を受け難くなったためである。従って、測温素子16によって半導体レーザ素子14の温度を精度よくモニタすることができることが確認された。
(第2実施形態)
続いて、図4及び図5を参照して、第2実施形態に係る発光モジュール2の構成について説明する。図4は、第2実施形態に係る発光モジュールの一部を破断して示す斜視図である。図5は、図4のV−V線に沿ってとられた断面図である。以下では、第1実施形態に係る発光モジュール1との相違点を中心に説明する。
CANケース20は、ステム30及びキャップ42を有する。キャップ42は、側壁42aと、天井42bとを有する。
天井42bは、レンズ38を支持する支持部42cを有している。図5に示されるように、第2実施形態において、支持部42cの一端は、軸X方向にステム30に向けて突き出ている。
また、天井42bは、支持部42cよりも外に向けて窪む凹部42eを有している。図5に示されるように、第2実施形態において、凹部42eは、支持部42cから天井42bの外縁に向かうにつれて凹部42eの窪みが大きくなるように形成されている。この凹部42eは、支持部42cを取り囲む円環状となっており、支持部42cから天井42bの外縁まで延在している。このような形態を有するキャップ42は、プレス加工することによって安価に製造することができる。
以上のように、第2実施形態に係る発光モジュール2では、第1実施形態に係る発光モジュール1と同様の作用効果を奏する。
また、第2実施形態に係る発光モジュール2では、凹部42eの窪みの大きさが一定である場合と比較して、レンズ38を半導体レーザ素子14に近づけても測温素子16とキャップ42の天井42bとを十分に離間させることができる。これにより、測温素子16がキャップ42からの熱の影響を受け難くなる。
(第3実施形態)
続いて、図6及び図7を参照して、第3実施形態に係る発光モジュール3の構成について説明する。図6は、第3実施形態に係る発光モジュールの一部を破断して示す斜視図である。図7は、図6のVII−VII線に沿ってとられた断面図である。以下では、第1実施形態に係る発光モジュール1との相違点を中心に説明する。
CANケース20は、ステム30及びキャップ52を有する。キャップ52は、側壁52aと、天井52bとを有する。
天井52bは、レンズ38を支持する支持部52cを有している。また、天井52bは、支持部52bよりも外に向けて窪むと共に天井52bから外に向けて突出している凹部52eをその一部に有している。この凹部52eは、測温素子16上に位置している。なお、このような形態を有するキャップ52はプレス加工することによって安価に製造することができ、製造コストの低減を図ることができる。
以上のように、第3実施形態に係る発光モジュール3では、第1実施形態に係る発光モジュール1と同様の作用効果を奏する。
ところで、従来は、発光モジュールの方向を判別するためにキャップの側壁等に突起や溝を形成していが、近年の発光モジュールやその周辺機器の小型化に伴い、突起や溝を形成するための余裕がなくなってきている。しかしながら、第3実施形態に係る発光モジュール3では、天井52bがその一部に凹部52dを有し、その凹部52dの外面が外に向けて突出しているので、測温素子16とキャップ52の天井52bとを離間させるための凹部52eによって発光モジュール3の方向を判別することが可能となっている。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記した実施形態に限定されるものではない。例えば、第1及び第3実施形態に係る発光モジュール1,3において、支持部32c、52cが軸X方向に向けて伸びており、支持部32c、52cの下端32d,52dが基準面Sとステム30との間に位置しているものであってもよい。
また、第2実施形態に係る発光モジュール2において、支持部42cが軸X方向に向けて伸びたものでなくてもよい。
また、レンズ38としては、非球面レンズ、球面レンズのどちらも用いることができる。
第1実施形態に係る発光モジュールの一部を破断して示す斜視図である。 図1のII−II線に沿ってとられた断面図である。 測温素子とキャップの天井との距離と、波長ドリフトとの対応関係を示す図である。 第2実施形態に係る発光モジュールの一部を破断して示す斜視図である。 図4のV−V線に沿ってとられた断面図である。 第3実施形態に係る発光モジュールの一部を破断して示す斜視図である。 図6のVII−VII線に沿ってとられた断面図である。
符号の説明
1,2.3…発光モジュール、10…熱電変換素子、12…ヒートシンク、14…半導体レーザ素子、16…測温素子、30…ステム、32,42,52…キャップ、32a,42a,52a…側壁、32b,42b,52b…天井、32c,42c,52c…支持部、32e,42e,52e…凹部、34,36…リード端子群、38…レンズ、X…軸。

Claims (3)

  1. ステムと、
    前記ステム上に設けられた熱電変換素子と、
    前記熱電変換素子上に設けられたヒートシンクと、
    前記ヒートシンクに搭載された半導体レーザ素子と、
    前記ヒートシンクに搭載された測温素子と、
    前記半導体レーザ素子と光学的に結合されたレンズを支持する支持部を有する天井と側壁とを有し、前記熱電変換素子、前記半導体レーザ素子及び前記測温素子を前記ステム上において覆うキャップとを備え、
    前記天井は、前記支持部よりも外に向けて窪む凹部を有する発光モジュール。
  2. 前記凹部は、前記支持部から前記天井の外縁に向かうにつれて前記凹部の窪みが大きくなるように形成されている請求項1に記載された発光モジュール。
  3. 前記支持部の一端は、前記ステムに向けて突き出ている請求項1又は2に記載された発光モジュール。
JP2006150484A 2006-03-27 2006-05-30 発光モジュール Pending JP2007324234A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006150484A JP2007324234A (ja) 2006-05-30 2006-05-30 発光モジュール
US11/727,653 US7856038B2 (en) 2006-03-27 2007-03-27 Light-emitting module installing thermo-electric controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150484A JP2007324234A (ja) 2006-05-30 2006-05-30 発光モジュール

Publications (1)

Publication Number Publication Date
JP2007324234A true JP2007324234A (ja) 2007-12-13

Family

ID=38856787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150484A Pending JP2007324234A (ja) 2006-03-27 2006-05-30 発光モジュール

Country Status (1)

Country Link
JP (1) JP2007324234A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027651A (ja) * 2008-07-15 2010-02-04 Hitachi Maxell Ltd キャップ、光学ユニット、光モジュール、及び光通信モジュール
JP2016058680A (ja) * 2014-09-12 2016-04-21 株式会社デンソー レーザユニット
JP2018041839A (ja) * 2016-09-07 2018-03-15 セイコーエプソン株式会社 発光素子モジュール、原子発振器、電子機器および移動体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027651A (ja) * 2008-07-15 2010-02-04 Hitachi Maxell Ltd キャップ、光学ユニット、光モジュール、及び光通信モジュール
JP2016058680A (ja) * 2014-09-12 2016-04-21 株式会社デンソー レーザユニット
JP2018041839A (ja) * 2016-09-07 2018-03-15 セイコーエプソン株式会社 発光素子モジュール、原子発振器、電子機器および移動体

Similar Documents

Publication Publication Date Title
JP7201052B2 (ja) 光モジュール
US7856038B2 (en) Light-emitting module installing thermo-electric controller
US20060022213A1 (en) TO-can heater on flex circuit
JP2006324524A (ja) 発光モジュール
JP2006171398A (ja) 光伝送モジュール
KR20140090031A (ko) To 캔 패키지 반사형 레이저 다이오드 모듈
US20020018500A1 (en) Semiconductor laser unit and semiconductor laser module
JP2008153529A (ja) 光送信器
JP2007324234A (ja) 発光モジュール
JP2008153467A (ja) 発光モジュール
JP2004253779A (ja) 光送信器
JP4779747B2 (ja) 発光モジュール
JP6042083B2 (ja) 半導体レーザモジュール及びその製造方法
JP5005421B2 (ja) 波長ロッカー用温度制御装置、波長ロッカー及び光モジュール
JP5088866B2 (ja) 波長ロッカー用温度制御装置、波長ロッカー及び光モジュール
KR101514243B1 (ko) 광원장치
JP4186058B2 (ja) レーザ光源装置
JPH06105819B2 (ja) 半導体レーザモジュール
JP2001284700A (ja) 半導体レーザモジュール
JP2004153176A (ja) 波長ロッカー
JP6311378B2 (ja) 光モジュール、光モジュールの製造方法
JP2694838B2 (ja) レーザモジュール構造
JP4622396B2 (ja) レーザ光源装置
JP2022120929A (ja) 発光装置
JPH08179170A (ja) 熱電子冷却素子付半導体レーザモジュール