JP2007321136A5 - - Google Patents

Download PDF

Info

Publication number
JP2007321136A5
JP2007321136A5 JP2006156536A JP2006156536A JP2007321136A5 JP 2007321136 A5 JP2007321136 A5 JP 2007321136A5 JP 2006156536 A JP2006156536 A JP 2006156536A JP 2006156536 A JP2006156536 A JP 2006156536A JP 2007321136 A5 JP2007321136 A5 JP 2007321136A5
Authority
JP
Japan
Prior art keywords
solid component
purified
range
moles
heptane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156536A
Other languages
Japanese (ja)
Other versions
JP2007321136A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006156536A priority Critical patent/JP2007321136A/en
Priority claimed from JP2006156536A external-priority patent/JP2007321136A/en
Publication of JP2007321136A publication Critical patent/JP2007321136A/en
Publication of JP2007321136A5 publication Critical patent/JP2007321136A5/ja
Pending legal-status Critical Current

Links

Description

特開平7−25927号公報Japanese Patent Laid-Open No. 7-25927 特開平8−67710号公報JP-A-8-67710 特開2000−7725号公報JP 2000-7725 A 特開平8−3215号公報JP-A-8-3215 特開2004−315742号公報JP 2004-315742 A 特開2005−48045号公報JP 2005-48045 A 特開平8−100019号公報JP-A-8-100019 特開平8−157519号公報JP-A-8-157519

本発明における固体触媒成分(A)を構成する各成分の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次の範囲内が好ましい。
ビニルシラン化合物(A2)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(ビニルシラン化合物(A2)のモル数/チタン原子のモル数)で、好ましくは0.001から1,000の範囲内であり、特に好ましくは0.01から100の範囲内が望ましい。
アルコキシ基を有する有機ケイ素化合物(A3a)を用いる場合の使用量は、固体成分(A1)を構成するチタン成分に対するモル比で(アルコキシ基を有する有機ケイ素化合物(A3a)のモル数/チタン原子のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
少なくとも二つのエーテル結合を有する化合物(A3)を用いる場合は、その使用量は、固体成分(A1)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(A3)のモル数/チタン原子のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
任意成分として有機アルミニウム化合物(A4)を用いる場合の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(有機アルミニウム化合物(A4)のモル数/チタン原子のモル数)で、好ましくは0.1から100の範囲内であり、特に好ましくは1から50の範囲内が望ましい。
The amount ratio of each component constituting the solid catalyst component (A) in the present invention may be any as long as the effects of the present invention are not impaired, but generally it is preferably within the following range. .
The amount of the vinylsilane compound (A2) used is a molar ratio to the titanium component constituting the solid component (A1) (number of moles of vinylsilane compound (A2) / number of moles of titanium atoms), preferably 0.001 to 1,000. And particularly preferably within the range of 0.01 to 100.
The amount used when the organosilicon compound having an alkoxy group (A3a) is used is the molar ratio to the titanium component constituting the solid component (A1) (number of moles of organosilicon compound having an alkoxy group (A3a) / titanium atom). The number of moles) is preferably in the range of 0.01 to 1,000, and particularly preferably in the range of 0.1 to 100.
When the compound (A3 b ) having at least two ether bonds is used, the amount used is a molar ratio with respect to the titanium component constituting the solid component (A1) (mole of the compound (A3 b ) having at least two ether bonds). Number / number of moles of titanium atoms), preferably in the range of 0.01 to 1,000, particularly preferably in the range of 0.1 to 100.
The amount used when the organoaluminum compound (A4) is used as an optional component is preferably a molar ratio to the titanium component constituting the solid component (A1) (number of moles of organoaluminum compound (A4) / number of moles of titanium atoms). Is in the range of 0.1 to 100, particularly preferably in the range of 1 to 50.

(実施例1)
(1)固体成分の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、Mg(OEt)を200g、TiClを1L添加した。温度を90℃に上げて、フタル酸ジ−n−ブチルを50ml導入した。その後、温度を110℃に上げて3hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiCl を1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。更に、精製したn−ヘプタンを用いて、トルエンをn−ヘプタンで置換し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.7質量%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として100g導入した。精製したn−ヘプタンを導入して、固体成分(A1)の濃度が25g/Lとなるように調整した。SiCl50mlを加え、90℃で1hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄した。
その後、精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、ジメチルジビニルシランを30ml、(i−Pr)Si(OMe)を30ml、EtAlのn−ヘプタン希釈液をEtAlとして80g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分にはTiが1.2質量%、(i−Pr)Si(OMe)が8.8質量%含まれていた。

Example 1
(1) Preparation of solid component A 10 L autoclave equipped with a stirrer was sufficiently replaced with nitrogen, and 2 L of purified toluene was introduced. To this, 200 g of Mg (OEt) 2 and 1 L of TiCl 4 were added at room temperature. The temperature was raised to 90 ° C. and 50 ml of di-n-butyl phthalate was introduced. Thereafter, the temperature was raised to 110 ° C. to carry out a reaction for 3 hours. The reaction product was thoroughly washed with purified toluene. Subsequently, the refined toluene was introduce | transduced and the whole liquid quantity was adjusted to 2L. 1 L of TiCl 4 was added at room temperature , the temperature was raised to 110 ° C., and the reaction was performed for 2 hours. The reaction product was thoroughly washed with purified toluene. Further, using purified n-heptane, toluene was replaced with n-heptane to obtain a slurry of the solid component (A1). A portion of this slurry was sampled and dried. As a result of analysis, the Ti content of the solid component (A1) was 2.7% by mass.
Next, a 20 L autoclave equipped with a stirrer was sufficiently substituted with nitrogen, and 100 g of the solid component (A1) slurry was introduced as a solid component (A1). Purified n-heptane was introduced to adjust the concentration of the solid component (A1) to 25 g / L. 50 ml of SiCl 4 was added and a reaction was performed at 90 ° C. for 1 hr. The reaction product was thoroughly washed with purified n-heptane.
Thereafter, purified n-heptane was introduced to adjust the liquid level to 4 L. To this, 30 ml of dimethyldivinylsilane, 30 ml of (i-Pr) 2 Si (OMe) 2 and 80 g of Et 3 Al in an n-heptane diluted solution were added as Et 3 Al, and a reaction was carried out at 40 ° C. for 2 hours. The reaction product was thoroughly washed with purified n-heptane, and a portion of the resulting slurry was sampled and dried. As a result of analysis, the solid component contained 1.2% by mass of Ti and 8.8% by mass of (i-Pr) 2 Si (OMe) 2 .

JP2006156536A 2006-06-05 2006-06-05 Method for producing polypropylene-based block copolymer Pending JP2007321136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156536A JP2007321136A (en) 2006-06-05 2006-06-05 Method for producing polypropylene-based block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156536A JP2007321136A (en) 2006-06-05 2006-06-05 Method for producing polypropylene-based block copolymer

Publications (2)

Publication Number Publication Date
JP2007321136A JP2007321136A (en) 2007-12-13
JP2007321136A5 true JP2007321136A5 (en) 2009-05-28

Family

ID=38854224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156536A Pending JP2007321136A (en) 2006-06-05 2006-06-05 Method for producing polypropylene-based block copolymer

Country Status (1)

Country Link
JP (1) JP2007321136A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244514B2 (en) * 2008-09-16 2013-07-24 日本ポリプロ株式会社 Process for continuous gas phase production of propylene-based block copolymer
WO2011055802A1 (en) 2009-11-06 2011-05-12 日本ポリプロ株式会社 Reactor for propylene polymerization and process for producing propylene polymer
JP2012214556A (en) * 2011-03-31 2012-11-08 Japan Polypropylene Corp Catalyst for propylene-ethylene block copolymerization and method for producing propylene-ethylene block copolymer
JP6107585B2 (en) * 2013-10-01 2017-04-05 日本ポリプロ株式会社 Propylene-based block copolymer production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680101B2 (en) * 1986-09-09 1994-10-12 三井東圧化学株式会社 Process for producing block copolymer of propylene
JP3162441B2 (en) * 1991-10-28 2001-04-25 三菱化学株式会社 High rigidity propylene copolymer composition
JPH07109313A (en) * 1993-08-18 1995-04-25 Mitsui Petrochem Ind Ltd Production of propylene-based block copolymer
JPH07247311A (en) * 1994-03-09 1995-09-26 Asahi Chem Ind Co Ltd Production of propylene block copolymer
JP3355819B2 (en) * 1994-09-28 2002-12-09 チッソ株式会社 Method for producing propylene / ethylene block copolymer
JP3580001B2 (en) * 1995-12-21 2004-10-20 チッソ株式会社 Method for producing propylene-olefin block copolymer
JP4098419B2 (en) * 1998-03-11 2008-06-11 三菱化学株式会社 Impact resistant propylene block copolymer
JP2001206905A (en) * 2000-01-27 2001-07-31 Japan Polychem Corp Method for producing propylenic block copolymer
JP4039961B2 (en) * 2003-02-28 2008-01-30 三井化学株式会社 Method for producing polypropylene copolymer

Similar Documents

Publication Publication Date Title
JP2007254671A5 (en)
JP2007321136A5 (en)
JP2010507559A5 (en)
JP2006002146A5 (en)
JP2008115321A5 (en)
JP2003520286A5 (en)
JP2008088347A5 (en)
NO20080370L (en) Process for Preparation of Fischer-Tropsch Catalysts with High Mechanical, Thermal and Chemical Stability
do Carmo et al. Preparation, characterization and application of a nanostructured composite: Octakis (cyanopropyldimethylsiloxy) octasilsesquioxane
KR101013394B1 (en) Novel epoxy compound and process for production thereof
JP5360736B2 (en) Method for producing compound having Si-Si bond
AU769510B2 (en) Febrifugine and isofebrifugine and processes for the preparation of both
JP2005529224A5 (en)
JP2007016125A (en) Silicon compound
JP5529272B2 (en) Catalyst for hydrodechlorination of chlorosilane to hydrogensilane and method for producing hydrogensilane using the catalyst
JP5247997B2 (en) Method for producing methacryloxy group- or acryloxy group-containing organosilicon compound
JP2007015977A (en) Silicon compound
JP2004352695A (en) Chlorosilane bearing bissilylamino group, method for producing the same and method for producing organooxysilane bearing bissilylamino group
JP3881424B2 (en) Alkoxysilane compounds containing organosilyl groups and carbamate bonds
JP4278725B2 (en) Process for producing α, ω-dihydrogenorganopentasiloxane
JPH04247091A (en) Organic silicon compound
Lorenz et al. Silsesquioxane chemistry. 13. Synthesis and structural characterization of a dimeric indasilsesquioxane stabilized by intramolecular hydrogen bonding
EP2658861B1 (en) New (triorganosilyl)alkynes and their derivatives and a new catalytic method for obtaining new and conventional substituted (triorganosilyl)alkynes and their derivatives
JPH07252271A (en) Production of iodosilane
JP4120032B2 (en) Method for producing fluorine-containing chlorosilane