JP2007254671A5 - - Google Patents

Download PDF

Info

Publication number
JP2007254671A5
JP2007254671A5 JP2006083332A JP2006083332A JP2007254671A5 JP 2007254671 A5 JP2007254671 A5 JP 2007254671A5 JP 2006083332 A JP2006083332 A JP 2006083332A JP 2006083332 A JP2006083332 A JP 2006083332A JP 2007254671 A5 JP2007254671 A5 JP 2007254671A5
Authority
JP
Japan
Prior art keywords
group
hydrocarbon group
component
moles
solid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083332A
Other languages
Japanese (ja)
Other versions
JP2007254671A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006083332A priority Critical patent/JP2007254671A/en
Priority claimed from JP2006083332A external-priority patent/JP2007254671A/en
Priority to PCT/JP2007/051592 priority patent/WO2007088887A1/en
Priority to US12/162,995 priority patent/US7858716B2/en
Priority to EP07713752.9A priority patent/EP1980576B1/en
Priority to CN200780004291XA priority patent/CN101379097B/en
Priority to CN201110151974.6A priority patent/CN102351966B/en
Priority to TW096103700A priority patent/TWI378109B/en
Publication of JP2007254671A publication Critical patent/JP2007254671A/en
Publication of JP2007254671A5 publication Critical patent/JP2007254671A5/ja
Priority to US12/641,883 priority patent/US8232358B2/en
Pending legal-status Critical Current

Links

Description

触媒を改良することにより、この課題を解決する方法が幾つか提案されている。例えば、助触媒として有機アルミニウム成分とアルモキサンを併用する方法(例えば、特許文献1参照。)、助触媒として有機アルミニウム成分と有機亜鉛成分を併用する方法(例えば、特許文献2参照。)、ハロゲン含有成分を固体触媒に担持する方法(例えば、特許文献3参照。)、アミノ基を有する有機ケイ素化合物を用いる方法(例えば、特許文献4、5、6参照。)、分岐若しくは脂環式炭化水素基とアミノ基を併せ持つ特定の有機ケイ素化合物を使用する方法(例えば、特許文献7、8参照。)等が提案されている。
しかしながら、発明者等が知る限りでは、高MFRのポリプロピレンの生産性という意味では、未だ充分な性能を示すものはなく、更なる改良技術の開発が望まれている。
特開平7−25927号公報 特開平8−67710号公報 特開2000−7725号公報 特開平8−3215号公報 特開2004−315742号公報 特開2005−48045号公報 特開平8−100019号公報 特開平8−157519号公報
Several methods have been proposed to solve this problem by improving the catalyst. For example, a method of using an organoaluminum component and an alumoxane as a cocatalyst (see, for example, Patent Document 1), a method of using an organoaluminum component and an organic zinc component as a cocatalyst (for example, see Patent Document 2), and halogen-containing A method of supporting a component on a solid catalyst (for example, see Patent Document 3), a method using an organosilicon compound having an amino group (for example, see Patent Documents 4, 5, and 6), a branched or alicyclic hydrocarbon group And a method using a specific organosilicon compound having both an amino group and an amino group (see, for example, Patent Documents 7 and 8).
However, as far as the inventors know, nothing has yet shown sufficient performance in terms of productivity of high MFR polypropylene, and the development of further improved technology is desired.
Japanese Patent Laid-Open No. 7-25927 JP-A-8-67710 JP 2000-7725 A JP-A-8-3215 JP 2004-315742 A JP 2005-48045 A JP-A-8-100019 JP-A-8-157519

一般式(3)中、Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。
として用いることの出来る炭化水素基は、一般に炭素数1から20、好ましくは炭素数3から10のものである。Rとして用いることの出来る炭化水素基の具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げる事が出来る。より好ましくは、Rとして分岐状脂肪族炭化水素基若しくは脂環式炭化水素基を用いる事が望ましく、とりわけ、i−プロピル基、i−ブチル基、t−ブチル基、キシル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
がヘテロ原子含有炭化水素基である場合は、ヘテロ原子が、窒素、酸素、硫黄、リン、ケイ素から選ばれる事が望ましく、とりわけ、窒素又は酸素である事が望ましい。Rのヘテロ原子含有炭化水素基の骨格構造としては、Rが炭化水素基である場合の例示から選ぶことが望ましい。とりわけ、N,N−ジエチルアミノ基、キノリノ基、イソキノリノ基、などが好ましい。
In general formula (3), R 3 represents a hydrocarbon group or a heteroatom-containing hydrocarbon group.
The hydrocarbon group that can be used as R 3 is generally one having 1 to 20 carbon atoms, preferably 3 to 10 carbon atoms. Specific examples of the hydrocarbon group that can be used as R 3 include a linear aliphatic hydrocarbon group typified by an n-propyl group, a branched chain typified by an i-propyl group and a t-butyl group. Examples thereof include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group represented by a cyclopentyl group and a cyclohexyl group, and an aromatic hydrocarbon group represented by a phenyl group. More preferably, it is desirable to use a branched aliphatic hydrocarbon group or alicyclic hydrocarbon group as R 3, among others, i- propyl, i- butyl, t- butyl group, a hexyl group, a cyclopentyl group , A cyclohexyl group, and the like are preferable.
When R 3 is a heteroatom-containing hydrocarbon group, the heteroatom is preferably selected from nitrogen, oxygen, sulfur, phosphorus, and silicon, and particularly preferably nitrogen or oxygen. The skeleton structure of the hetero atom-containing hydrocarbon group R 3, it is desirable to select from the example of the case where R 3 is a hydrocarbon group. In particular, N, N-diethylamino group, quinolino group, isoquinolino group and the like are preferable.

本発明における固体触媒成分(A)を構成する各成分の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次の範囲内が好ましい。
ビニルシラン化合物(A2)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(ビニルシラン化合物(A2)のモル数/チタン原子のモル数)で、好ましくは0.001から1,000の範囲内であり、特に好ましくは0.01から100の範囲内が望ましい。
アルコキシ基を有する有機ケイ素化合物(A3a)を用いる場合の使用量は、固体成分(A1)を構成するチタン成分に対するモル比で(アルコキシ基を有する有機ケイ素化合物(A3a)のモル数/チタン原子のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
少なくとも二つのエーテル結合を有する化合物(A3)を用いる場合の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(A3)のモル数/チタン原子のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
任意成分として有機アルミニウム化合物(A4)を用いる場合の使用量は、固体成分(A1)を構成するチタン成分に対するアルミニウムの原子比(アルミニウム原子のモル数/チタン原子のモル数)で、好ましくは0.1から100の範囲内であり、特に好ましくは1から50の範囲内が望ましい。
The amount ratio of each component constituting the solid catalyst component (A) in the present invention may be any as long as the effects of the present invention are not impaired, but generally it is preferably within the following range. .
The amount of the vinylsilane compound (A2) used is a molar ratio to the titanium component constituting the solid component (A1) (number of moles of vinylsilane compound (A2) / number of moles of titanium atoms), preferably 0.001 to 1,000. And particularly preferably within the range of 0.01 to 100.
The amount used when the organosilicon compound having an alkoxy group (A3a) is used is the molar ratio to the titanium component constituting the solid component (A1) (the number of moles of the organosilicon compound having an alkoxy group (A3a) / titanium atom). The number of moles) is preferably in the range of 0.01 to 1,000, and particularly preferably in the range of 0.1 to 100.
When the compound (A3 b ) having at least two ether bonds is used, the amount used is the molar ratio of the titanium component constituting the solid component (A1) (the number of moles of the compound (A3 b ) having at least two ether bonds). The number of moles of titanium atoms) is preferably in the range of 0.01 to 1,000, and particularly preferably in the range of 0.1 to 100.
The amount used when the organoaluminum compound (A4) is used as an optional component is preferably an atomic ratio of aluminum to the titanium component constituting the solid component (A1) (number of moles of aluminum atoms / number of moles of titanium atoms), preferably 0. Within the range of 1 to 100, particularly preferably within the range of 1 to 50 is desirable.

(実施例1)
(1)固体成分の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、Mg(OEt)を200g、TiClを1L添加した。温度を90℃に上げて、フタル酸ジ−n−ブチルを50ml導入した。その後、温度を110℃に上げて3hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiCl を1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。更に、精製したn−ヘプタンを用いて、トルエンをn−ヘプタンで置換し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.7wt%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として100g導入した。精製したn−ヘプタンを導入して、固体成分(A1)の濃度が25g/Lとなる様に調整した。SiClを50mlを加え、90℃で1hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄した。
その後、精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、ジメチルジビニルシランを30ml、(i−Pr)Si(OMe)を30ml、EtAlのn−ヘプタン希釈液をEtAlとして80g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分にはTiが1.2wt%、(i−Pr)Si(OMe)が8.8wt%含まれていた。
Example 1
(1) Preparation of solid component A 10 L autoclave equipped with a stirrer was sufficiently substituted with nitrogen, and 2 L of purified toluene was introduced. To this, 200 g of Mg (OEt) 2 and 1 L of TiCl 4 were added at room temperature. The temperature was raised to 90 ° C. and 50 ml of di-n-butyl phthalate was introduced. Thereafter, the temperature was raised to 110 ° C. to carry out a reaction for 3 hours. The reaction product was thoroughly washed with purified toluene. Subsequently, the refined toluene was introduce | transduced and the whole liquid quantity was adjusted to 2L. 1 L of TiCl 4 was added at room temperature , the temperature was raised to 110 ° C., and the reaction was performed for 2 hours. The reaction product was thoroughly washed with purified toluene. Further, using purified n-heptane, toluene was replaced with n-heptane to obtain a slurry of the solid component (A1). A portion of this slurry was sampled and dried. As a result of analysis, the Ti content of the solid component (A1) was 2.7 wt%.
Next, a 20 L autoclave equipped with a stirrer was sufficiently substituted with nitrogen, and 100 g of the solid component (A1) slurry was introduced as a solid component (A1). Purified n-heptane was introduced to adjust the concentration of the solid component (A1) to 25 g / L. 50 ml of SiCl 4 was added and a reaction was performed at 90 ° C. for 1 hr. The reaction product was thoroughly washed with purified n-heptane.
Thereafter, purified n-heptane was introduced to adjust the liquid level to 4 L. To this, 30 ml of dimethyldivinylsilane, 30 ml of (i-Pr) 2 Si (OMe) 2 and 80 g of Et 3 Al in an n-heptane diluted solution were added as Et 3 Al, and a reaction was carried out at 40 ° C. for 2 hours. The reaction product was thoroughly washed with purified n-heptane, and a portion of the resulting slurry was sampled and dried. As a result of analysis, the solid component contained 1.2 wt% Ti and 8.8 wt% (i-Pr) 2 Si (OMe) 2 .

JP2006083332A 2006-02-03 2006-03-24 Method for producing polypropylene Pending JP2007254671A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006083332A JP2007254671A (en) 2006-03-24 2006-03-24 Method for producing polypropylene
CN201110151974.6A CN102351966B (en) 2006-02-03 2007-01-31 Propylene polymer, method for production of propylene polymer, propylene polymer composition, and molded article manufactured from composition
CN200780004291XA CN101379097B (en) 2006-02-03 2007-01-31 Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
US12/162,995 US7858716B2 (en) 2006-02-03 2007-01-31 Propylene-based polymer and production method therefor, propylene-based polymer composition and molded body made thereof
EP07713752.9A EP1980576B1 (en) 2006-02-03 2007-01-31 Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
PCT/JP2007/051592 WO2007088887A1 (en) 2006-02-03 2007-01-31 Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
TW096103700A TWI378109B (en) 2006-02-03 2007-02-01 Propylene-based polymer and manufacturing method there of; propylene-based polymer composition and molded article of it
US12/641,883 US8232358B2 (en) 2006-02-03 2009-12-18 Propylene-based polymer and production method therefor, propylene-based polymer composition and molded body made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083332A JP2007254671A (en) 2006-03-24 2006-03-24 Method for producing polypropylene

Publications (2)

Publication Number Publication Date
JP2007254671A JP2007254671A (en) 2007-10-04
JP2007254671A5 true JP2007254671A5 (en) 2009-03-26

Family

ID=38629224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083332A Pending JP2007254671A (en) 2006-02-03 2006-03-24 Method for producing polypropylene

Country Status (1)

Country Link
JP (1) JP2007254671A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647788B2 (en) 2007-08-24 2020-05-12 W. R. Grace & Co-.Conn. Self-limiting catalyst system with controlled aluminum to SCA ratio and method
EP2206731B1 (en) 2007-11-01 2013-08-28 Mitsui Chemicals, Inc. Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization method
JP5337421B2 (en) * 2008-07-23 2013-11-06 日本ポリプロ株式会社 α-Olefin Polymerization Catalyst and Method for Producing α-Olefin Polymer or Copolymer Using the Same
EP2315789B1 (en) 2008-08-21 2015-09-02 W.R. Grace & CO. - CONN. Catalyst composition with mixed selectivity control agent and polymerisation method using it
RU2487897C2 (en) * 2008-08-21 2013-07-20 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи High melt flow rate, impact-resistant propylene copolymer and method for production thereof
ES2554829T3 (en) * 2009-06-09 2015-12-23 Basf Corporation Internal donor for olefin polymerization catalysts
US9505894B2 (en) 2012-02-23 2016-11-29 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
US9284427B2 (en) 2012-02-23 2016-03-15 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
MX356546B (en) 2012-02-24 2018-06-01 Japan Polypropylene Corp Propylene-ethylene copolymer resin composition, and molded product, film and sheet thereof.
JP5862501B2 (en) * 2012-07-27 2016-02-16 日本ポリプロ株式会社 Continuous production method of crystalline propylene polymer with controlled crystallinity
JP6090804B2 (en) * 2015-06-15 2017-03-08 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn Internal donor for olefin polymerization catalysts
EP3495140B1 (en) 2016-08-02 2021-03-10 Japan Polypropylene Corporation Decorative film and method for producing decorative molded body using same
CN109790306A (en) 2016-08-09 2019-05-21 日本聚丙烯株式会社 Decorating film and the method for producing decoration formed body using it
CN111386185A (en) 2017-11-20 2020-07-07 日本聚丙烯株式会社 Decorative film and method for producing decorative molded body using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230010A (en) * 1983-06-11 1984-12-24 Chisso Corp Vapor-phase multi-stage polymerization process
JPH0277413A (en) * 1988-08-31 1990-03-16 Mitsubishi Petrochem Co Ltd Production of propylene block copolymer
JP2874934B2 (en) * 1990-02-08 1999-03-24 三菱化学株式会社 Production of .ALPHA.-olefin polymer
JP2940993B2 (en) * 1990-04-13 1999-08-25 三井化学株式会社 Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst and olefin polymerization method
JP3443848B2 (en) * 1992-11-04 2003-09-08 東ソー株式会社 Method for producing propylene block copolymer
JP3508187B2 (en) * 1993-11-10 2004-03-22 チッソ株式会社 Continuous production of propylene / ethylene block copolymer
JPH1180235A (en) * 1997-09-02 1999-03-26 Mitsubishi Chem Corp Catalyst component for alpha-olefin polymerization, catalyst and alpha-olefin polymerization process
JP2001122921A (en) * 1999-10-26 2001-05-08 Japan Polychem Corp Method for producing propylene-ethylene random copolymer

Similar Documents

Publication Publication Date Title
JP2007254671A5 (en)
RU2226535C2 (en) Components of catalysts for polymerization of olefins
TWI363057B (en) Process for manufacturing 3(r)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide
US20180237552A1 (en) Heterocyclic Organic Compounds as Electron Donors for Polyolefin Catalysts
RU2003128027A (en) METHOD FOR POLYMERIZATION OF OLEFINS
JP2008088347A5 (en)
JP2006002146A5 (en)
RU2013150191A (en) CATALYST COMPONENTS FOR POLYMERIZATION OF OLEFINS
JP2003520286A5 (en)
EA200800089A1 (en) METHOD OF OBTAINING FISHER-TRIPSHA CATALYSTS, WITH HIGH MECHANICAL, THERMAL AND CHEMICAL STABILITY
CN1714105A (en) Components and catalysts for the polymerization of olefins
JP2007321136A5 (en)
JP2008115321A5 (en)
Aiube et al. The preparation and crystal structures of [(Me3Si) 3C] PhSi (OH) 2 and [(Me3Si) 3C] PhSi (Ome) OH
JP2008534724A5 (en)
RU2007139937A (en) METHOD FOR PRODUCING CRYSTALLINE (CO) POLYMERS OF ETHYLENE
RU2007139935A (en) CATALYTIC COMPONENTS FOR POLYMERIZATION OF OLEFINS
JP3049316B1 (en) Method for producing alkenylsilanes
Varga et al. Zirconocene silanolate complexes and their heterogeneous siliceous analogues as catalysts for phenylsilane dehydropolymerization
JP2008534722A5 (en)
Lorenz et al. Silsesquioxane chemistry. 13. Synthesis and structural characterization of a dimeric indasilsesquioxane stabilized by intramolecular hydrogen bonding
RU2012131222A (en) OLEFIN POLYMERIZATION CATALYST COMPONENTS AND THE CATALYSTS PRODUCED FROM THEM
CN109890852A (en) Catalytic component for olefinic polymerization
Dushenko et al. Polydentate coordination of the thallium atom in complexes with chiral amidinylcyclopentadienyl ligands
Dużak et al. Bridging vs. Chelating Coordination Modes of Vinylsilanes in CuI π‐Complexes: Structure and Stability