JPS59230010A - Vapor-phase multi-stage polymerization process - Google Patents

Vapor-phase multi-stage polymerization process

Info

Publication number
JPS59230010A
JPS59230010A JP10439983A JP10439983A JPS59230010A JP S59230010 A JPS59230010 A JP S59230010A JP 10439983 A JP10439983 A JP 10439983A JP 10439983 A JP10439983 A JP 10439983A JP S59230010 A JPS59230010 A JP S59230010A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
gas
propylene
polymerization zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10439983A
Other languages
Japanese (ja)
Other versions
JPH0365366B2 (en
Inventor
Masamitsu Iwasaki
岩崎 真光
Kazuyuki Watabe
渡部 一之
Takashi Koizumi
隆 小泉
Takeshi Suzuki
武 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10439983A priority Critical patent/JPS59230010A/en
Publication of JPS59230010A publication Critical patent/JPS59230010A/en
Publication of JPH0365366B2 publication Critical patent/JPH0365366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/382Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it with a rotatable device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To produce a block copolymer giving a molded article free from fish- eye, by polymerizing propylene with a Ziegler-Natta catalyst, extracting the polymer intermittently from the system, separating the entrained gas, and copolymerizing ethylene and propylene at a specific ratio. CONSTITUTION:A Ziegler-Natta catalyst and propylene are supplied through the lines 1 and 5, respectively to the first polymerization zone 2 of a horizontal stirring-bed reactor, etc., and subjected to the vapor-phase polymerization. The produced polymer is extracted intermittently from the reactor through the discharge valve 14 to the receptor 15, and the entrained gas is expelled from the receptor 15 by opening the gas-discharge valve 18. The pressure in the receptor 15 containing the polymer is increased by opening the pressurizing gas inlet valve 17 until the ethylene/propylene molar ratio of the gas in the receptor 15 reaches <=0.1 or >=0.9, and then the polymer is transferred through the line 20 into the second polymerization zone 22 and polymerized to obtain the objective block copolymer.

Description

【発明の詳細な説明】 本発明はエチレン・プロピレン共重合体の製造に好適な
気相多段重合方法に関する。更に詳細には、該多段重合
方法における重合帯域間の重合体の移送方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas phase multistage polymerization method suitable for producing ethylene-propylene copolymers. More specifically, the present invention relates to a method for transferring a polymer between polymerization zones in the multistage polymerization method.

オレフィン重合用の高活性触媒の開発が進み、重合後に
おける触媒除去操作を省略し得る状況になったため操作
の簡便−気相重合法が注目されている。又、ポ□リオレ
フインの物性の改良のため、二つ以上の重合帯域を設け
て一連の重合反応を異なる反応条件で逐灰行なう多段重
合方法を気相で行う提案もあり、特開昭57−6570
8号はその一例である。
With the progress in the development of highly active catalysts for olefin polymerization, it has become possible to omit the catalyst removal operation after polymerization, and thus gas phase polymerization is attracting attention because of its simple operation. In addition, in order to improve the physical properties of polyolefin, there has been a proposal to carry out a multi-stage polymerization method in the gas phase, in which two or more polymerization zones are provided and a series of polymerization reactions are carried out under different reaction conditions. 6570
No. 8 is one example.

:f−f V 7・プロピレンブロック共重合体ハ、通
常、プロピレンの単独重合の後、引続きエチレンとプロ
ビレ/の混合物の重合を行うことによ多製造される。こ
のようなエチレン・プロピレンプロツク共重合を気相で
行う際に重要なことは、分子量コントロール剤として使
用する水−素およびエチレンとプロピレンの濃度を各々
の重合帯域毎に独立にコントロールする点にある。
:f-f V 7.Propylene block copolymer C is usually produced by homopolymerizing propylene and then subsequently polymerizing a mixture of ethylene and propylene. When carrying out such ethylene/propylene block copolymerization in the gas phase, it is important to independently control the hydrogen used as a molecular weight control agent and the concentrations of ethylene and propylene in each polymerization zone. be.

前記特開昭57−65708号ではプロピレン単独重合
体の製造のための気相多段重合方法における水素濃度の
コントロールの方法として、第一重合帯域から抜出した
重合体を一旦不活性ガス雰囲気区域に保持した後、該重
合体を第二重合帯域に供給される原料ガスの圧力を利用
して第二重合帯域に導入する方法を開示している。
In JP-A-57-65708, as a method of controlling hydrogen concentration in a gas phase multi-stage polymerization method for producing propylene homopolymer, the polymer extracted from the first polymerization zone is temporarily held in an inert gas atmosphere area. After that, a method is disclosed in which the polymer is introduced into a second polymerization zone using the pressure of the raw material gas supplied to the second polymerization zone.

しかし、この方法をエチレン・プロピレンブロック共重
合体の製造に利用する場合には、不活性雰囲気区域およ
び第二重合帯域への移送配管内で粘着性の共重合体が生
成、蓄積し、管路が閉塞され易く、長期間の連続運転が
困難となる他、蓄積した粘着性の共重合体上で生長した
重合度ヲコントロールされていない重合体が第二重合帯
域に混入することにより最終の成形品の表面がアしたシ
フイツシュアイが発生するという新しい問題点が発生す
る。
However, when this method is used to produce ethylene-propylene block copolymers, a sticky copolymer forms and accumulates in the inert atmosphere area and in the transfer piping to the second polymerization zone. In addition, the polymerization zone is easily clogged, making long-term continuous operation difficult. In addition, the polymer that has grown on the accumulated sticky copolymer and whose degree of polymerization is not controlled enters the second polymerization zone, making it difficult to complete the final molding. A new problem arises in that the surface of the product is damaged by scratches.

本発明者等はエチレン・プロピレンブロック共重合体を
気相多段重合方法で製造する際の上記問題点の解消のた
め鋭意研究の結果、第一重合帯域から受器に抜出された
重合体と該重合体に同伴して抜出されたガスを分離した
後、エチレンおよびプロピレンの濃度が特定の範囲にあ
るガスの圧力で該重合体を第二重合帯域に導入すること
により上記諸問題が解決されることを知り本発明を完成
するに到った。
As a result of intensive research to solve the above problems when producing ethylene-propylene block copolymer using a gas phase multi-stage polymerization method, the present inventors have found that the polymer extracted from the first polymerization zone into a receiver and The above problems are solved by separating the gas extracted along with the polymer and then introducing the polymer into the second polymerization zone at a gas pressure where the concentrations of ethylene and propylene are in a specific range. Having learned that this is the case, we have completed the present invention.

すなわち本発明は、 チーブ2−・ナツタ触媒の存在下、第一重合帯域でプロ
ピレンの気相重合を行い、引続き第二重合帯域でエチレ
ンとプロピレンの気相共重合を継続してエチレン・プロ
ピレン共重合体を製造する気相多段重合方法において、 囚第−重合帯域から重合体を間欠的に受器に抜出すZ工
程、 但)該重合体に同伴して導入されたガスを該受器←Φ←
ブスで昇圧する工程、 (6)該受器中の重合体を第二重合帯域に導入する工程
を包含することを特徴とする気相多段重合方法である。
That is, the present invention performs gas phase polymerization of propylene in the first polymerization zone in the presence of a Chive 2-Natsuta catalyst, and then continues gas phase copolymerization of ethylene and propylene in the second polymerization zone to form ethylene and propylene copolymer. In a gas phase multi-stage polymerization method for producing a polymer, there is a Z step in which the polymer is intermittently extracted from the polymerization zone into a receiver; however, the gas introduced along with the polymer is transferred to the receiver. Φ←
(6) introducing the polymer in the receiver into a second polymerization zone.

本発明の方法を実施して得られる効果の第一は、第一重
合帯域から第二重合帯域への重合体の移送経路における
粘着性共重合体の生成が防止されるため、該移送経路の
閉塞が完全に防止されることによシ、気相多段重合法に
よるエチレン・プロピレン共重合体の製造を長期間安定
して実施できる点にある。
The first effect obtained by carrying out the method of the present invention is that the formation of a sticky copolymer in the polymer transfer path from the first polymerization zone to the second polymerization zone is prevented. By completely preventing clogging, the production of ethylene-propylene copolymers by gas phase multi-stage polymerization can be carried out stably for a long period of time.

本発明の方法を実施して得られる効果の第二は、第一重
合帯域から第二重合帯域へのガスの洩れ込みが実質的に
防止され、各重合帯域でのガス濃度を任意に、かつ、独
立にコントロールすることができる点にある。このこと
により、各重合帯域で生成する重合体の分子量および共
重合成分の組成をそれぞれ任意かつ独立にコントロール
することが可能となシ、ポリマー設計の自由度が大きく
なる。
The second effect obtained by carrying out the method of the present invention is that leakage of gas from the first polymerization zone to the second polymerization zone is substantially prevented, and the gas concentration in each polymerization zone can be adjusted arbitrarily and , in that it can be controlled independently. This makes it possible to arbitrarily and independently control the molecular weight of the polymer produced in each polymerization zone and the composition of the copolymer components, increasing the degree of freedom in polymer design.

本発明の方法を実施して得られる効果の第三は、前記移
送経路における粘着性共重合体の発生が無いことにより
、該経路内で生成した分子fi−?組成をコントロール
されていない異質の重合体が製品中に混入することが無
く、最終成形品の肌荒れやフイツシ工アイの発生の極め
て少い高品質のエチレン・プ“ロピレンブ買ツク共重合
体を得ることができる。
The third effect obtained by carrying out the method of the present invention is that since no adhesive copolymer is generated in the transport path, molecules fi-? To obtain a high-quality ethylene-propylene polymer copolymer that does not mix foreign polymers whose composition is not controlled into the product and has extremely low occurrence of surface roughness or fissure eyes in the final molded product. be able to.

本発明の方法の実施に際して、重合触媒としては、三塩
化チタン組成物と有機アルミニウム化合物を含有する触
媒系を使用することが出来タン組成物と有機アルミニウ
ム化合物の二成分のみから成る場合のみならず該二成分
に加えて電子供与性化合物あるいは担体等の補助的成分
が共存する系であっても良いことを意味する。
In carrying out the process of the invention, a catalyst system containing a titanium trichloride composition and an organoaluminum compound can be used as the polymerization catalyst, and not only when it consists of only the two components of a titanium trichloride composition and an organoaluminum compound. This means that in addition to the two components, an auxiliary component such as an electron-donating compound or a carrier may coexist.

またこれらの成分がどのような形態でこの触媒系に存在
しているかは問わない。
Furthermore, it does not matter what form these components are present in the catalyst system.

上記三塩化チタン組成物としては、四塩化チタンをアル
ミニウムあるいは有機アルミニウム化合物で還元して得
られる三塩化チタン、あるいは該三塩化チタンを粉砕し
て活性化したもの、さらには該三塩化チタンと電子供与
性化合物との粉砕処理物、エーテル化合物の存在下に液
状化した三塩化チタンから析出させて得られるもの、特
公昭53−8856号に記載された方法によシ得られる
もの、四塩化チタン、マグネシウム化合物および電子供
与性化合物を接触させて得られる相持型のものなどが挙
げられる。
The above-mentioned titanium trichloride composition includes titanium trichloride obtained by reducing titanium tetrachloride with aluminum or an organoaluminum compound, a titanium trichloride obtained by pulverizing and activating the titanium trichloride, and titanium trichloride and an electron A pulverized product with a donor compound, a product obtained by precipitation from liquefied titanium trichloride in the presence of an ether compound, a product obtained by the method described in Japanese Patent Publication No. 8856/1983, titanium tetrachloride , a mutually compatible type obtained by bringing a magnesium compound and an electron-donating compound into contact with each other.

好ましい三塩化チタン組成物の一例として、四塩化チタ
ン、有機アルミニウム化合物およびエーテル化合物を反
応させて得られた生成物を、引続いて四塩化チタンとエ
ーテル化合物、もしくは四塩化チタンとエーテル化合物
との反応生成物で処理して得られる三塩化チタン組成物
を挙げることが出来る。
As an example of a preferred titanium trichloride composition, a product obtained by reacting titanium tetrachloride, an organoaluminum compound, and an ether compound is subsequently reacted with titanium tetrachloride and an ether compound, or with titanium tetrachloride and an ether compound. Mention may be made of titanium trichloride compositions obtained by treatment with reaction products.

有機アルミニウム化合物としては、一般式AtRmXg
−m (R=水素または炭素数1〜10の炭化水素基、
特にアルキル基、X−ハロゲンまたは炭素数1〜12の
アルコキシ基、(1<m〈3)であられされる。具体的
には、トリエチルアルミニウム、l・リーn−7’ロピ
ルアルミニウム、トリー1so−プロピルアルミニウム
、トリー iso −フfルアルミニウム、ジエチルア
ルミニウムクロ2イド、ジー1so−ブチルアルミニウ
ムクロライド、ジエチルアルミニウムアイオダイドなど
があげられる。また、これらから選ばれたものの混合物
を用いることができる。
The organoaluminum compound has the general formula AtRmXg
-m (R = hydrogen or a hydrocarbon group having 1 to 10 carbon atoms,
In particular, it is an alkyl group, X-halogen or an alkoxy group having 1 to 12 carbon atoms (1<m<3). Specifically, triethylaluminum, l-li-n-7'ropylaluminum, tri-1so-propylaluminum, tri-iso-fluoraluminum, diethylaluminium chloride, di-1so-butylaluminum chloride, diethylaluminium iodide. etc. Moreover, a mixture of those selected from these can be used.

重合触媒系の第三成分として各組の電子供与性化合物を
重合時に加え、触媒の性能向上を図ることも可能である
。かかる電子供与性化合物としては、(イ)エーテル類
、たとえばジエチルニーfル、ジノルマルブチルエーテ
ル、ジインアミルエーテル、テトラヒドロフラン、ジオ
キサン、ジエチレン、グリコールジメチルエーテル。
It is also possible to add each set of electron-donating compounds as a third component of the polymerization catalyst system during polymerization to improve the performance of the catalyst. Examples of such electron-donating compounds include (a) ethers such as diethyl needle, di-n-butyl ether, diynamyl ether, tetrahydrofuran, dioxane, diethylene, and glycol dimethyl ether;

ジフェニルエーテル類、(ロ)カルボン酸エステル類、
たとえばギ酸メチル9.酢−酸エチル、安息香酸エチル
、トルイル酸エチル、メタクリル酸メチルなど、e→タ
ケトン類たとえばメチルエチルケトン、アセトフェノン
など、に)アルデヒド類、たとえばアセトアルデヒド、
インブチルアルデヒド、ベンズアルデヒドなど、(ホ)
アミン、ニトリル、酸アミド類、たとえばジエチルアミ
ン。
diphenyl ethers, (b)carboxylic acid esters,
For example, methyl formate9. Ethyl acetate, ethyl benzoate, ethyl toluate, methyl methacrylate, etc., e→taketones such as methyl ethyl ketone, acetophenone, etc.) aldehydes, such as acetaldehyde,
Inbutyraldehyde, benzaldehyde, etc. (e)
Amines, nitriles, acid amides such as diethylamine.

アニリン、アセトニトリル、アクリルアミド。Aniline, acetonitrile, acrylamide.

テトラメチル尿素など、(へ)リン酸化合物、たとえば
トリフェニルホスフィン、トリフェニルホスファイト、
トリフェニルホスフェートなど、(ト)イ′オウ化合物
、たとえば二硫化炭素、メチルフェニルスルホンなど、
をあげることができる。
(he)phosphoric acid compounds such as tetramethylurea, such as triphenylphosphine, triphenylphosphite,
triphenyl phosphate, (t)i'sulfur compounds such as carbon disulfide, methyl phenyl sulfone, etc.
can be given.

重合触媒系には特開昭57−209904号に開示され
ている予備活性化処理を施すことが出来る。
The polymerization catalyst system can be subjected to a preactivation treatment as disclosed in JP-A-57-209904.

第一重合帯域で製造される重合体はプロピレンの単独重
合体が好ましいが、エチレンもしくは炭素数4ないし1
1のα−オレフィンの含有量が10重量%以下のプロピ
レン系ランダム共重合体であっても良い。該重合体の分
子量は、極限粘度(テトラリン溶液、185℃で測定し
た(η)値)で0.5〜9の範囲が好ましい。
The polymer produced in the first polymerization zone is preferably a homopolymer of propylene, but ethylene or
A propylene-based random copolymer having an α-olefin content of 10% by weight or less may also be used. The molecular weight of the polymer is preferably in the range of 0.5 to 9 in terms of intrinsic viscosity ((η) value measured in a tetralin solution at 185° C.).

第二重合帯域で製造される重合体はエチレン含量が5〜
95重量%の範囲のエチレン・プロピレン、ランダム共
重合体の中から選択でき、さらに、これら共重合体には
第8成分として炭素数4〜11のオレフイyやスチレン
等のビニル化合物を10重量%以下含有させることがで
きる。エチレン含量が上記の範囲外であれば粘着性共重
合体の生成が少く、本発明の方法を適用しなくても、前
記特開昭57−65708号の方法によル各重合帯間の
移送を行うことが出来るため本発明の範囲から除外され
る。第二重合帯域で製造される上記重合体の極限粘度〔
η〕は第−重合帯域で製造される重合体の極限粘度〔η
〕よシ高い方が好ましい。
The polymer produced in the second polymerization zone has an ethylene content of 5 to
It can be selected from ethylene/propylene and random copolymers in the range of 95% by weight, and these copolymers also contain 10% by weight of a vinyl compound such as olefin having 4 to 11 carbon atoms or styrene as the eighth component. The following can be contained. If the ethylene content is outside the above range, less sticky copolymer will be produced, and even if the method of the present invention is not applied, the method of JP-A-57-65708 can be used to transfer the copolymer between each polymerization zone. This is excluded from the scope of the present invention. Intrinsic viscosity of the above polymer produced in the second polymerization zone [
η] is the intrinsic viscosity of the polymer produced in the first polymerization zone [η
] Higher is preferable.

各重合帯域において分子量調整剤として水素を共存させ
ることが出来、その濃度はオレフィン1モルに対し約1
5モル以下の如き範囲である。又、各重合帯域における
重合温度は生成する重合体の焼結温度よシ低く、かつ、
反応器内のガス混合物の露点よシ高く設定される。具体
的には30〜90°C1好ましくは40〜80℃、更に
好ましくは50〜75°Cの範囲から選択することが出
来る。重合圧力は1〜40kf/d−Gの範囲から選択
できる。重合時間は10分間ないし10時間、好ましく
は80分間ないし5時間の範囲から選択できる。重合圧
力、重合温度、重合時間、水素濃度等の反応条件は各重
合帯域毎に異っていても良く、第二重合帯域の圧力を第
一重合帯域のそれよル高く設定しても本発明の目的は達
成される。
Hydrogen can coexist as a molecular weight regulator in each polymerization zone, and its concentration is approximately 1 mole of olefin.
The amount is in the range of 5 moles or less. In addition, the polymerization temperature in each polymerization zone is lower than the sintering temperature of the resulting polymer, and
It is set higher than the dew point of the gas mixture in the reactor. Specifically, the temperature can be selected from the range of 30 to 90°C, preferably 40 to 80°C, and more preferably 50 to 75°C. The polymerization pressure can be selected from the range of 1 to 40 kf/dG. The polymerization time can be selected from the range of 10 minutes to 10 hours, preferably 80 minutes to 5 hours. Reaction conditions such as polymerization pressure, polymerization temperature, polymerization time, hydrogen concentration, etc. may be different for each polymerization zone, and the present invention can be achieved even if the pressure in the second polymerization zone is set higher than that in the first polymerization zone. objective is achieved.

第一重合帯域および第二重合帯域はいずれも一基の重合
器で構成されても良く、また二基以上の重合器で構成さ
れても良く、同一重合帯域を構成する複数の重合器は直
列に運転されることが望ましい。本発明はこれら同一重
合帯域内の重合器間の重合体の移送にも適用できる。
Both the first polymerization zone and the second polymerization zone may be composed of one polymerization vessel, or may be composed of two or more polymerization vessels, and the plurality of polymerization vessels constituting the same polymerization zone are connected in series. It is desirable that the vehicle be operated in the following manner. The present invention can also be applied to transfer of polymer between polymerization vessels within the same polymerization zone.

なお、本発明の実施にあた)前記第一重合帯域の前およ
び/または第二重合帯域の後に任意のオレフィン重合段
階を付加して実施できることは勿論であシ、これら付加
段階についても本発明を適用することが出来る。
Note that in carrying out the present invention, it is of course possible to add any olefin polymerization step before the first polymerization zone and/or after the second polymerization zone, and the present invention also applies to these additional steps. can be applied.

本発明の方法を実施する際に用いられる反応器の形式に
は特別な制限は無く、流動床反応器。
There are no particular restrictions on the type of reactor used when carrying out the method of the present invention, including a fluidized bed reactor.

攪拌未反応器、攪拌流動床反応器、管型反応器などがい
ずれも使用でき、これらは縦型であっても横型であって
も良い。好ましく使用できる反応器として特開昭51−
86584号の水平反応器あるいは特開昭57−155
204号の攪拌流動床反応器を例示できる。
Any of a stirred unreactor, a stirred fluidized bed reactor, a tubular reactor, etc. can be used, and these may be either vertical or horizontal. As a reactor that can be preferably used, JP-A-51-
Horizontal reactor No. 86584 or JP-A-57-155
An example is a stirred fluidized bed reactor No. 204.

本発明においては、第一重合帯域から重合体を間欠的に
受器に抜き出す。この重合体の抜き出しには第一重合帯
域のガス成分の漏出を伴うので、該受器を第一重合帯域
との連通を遮断した後落圧することによシ前記漏出ガス
を受器よシ排除する。落圧は、真空にする必要はなく、
大気圧程度あるいは0.5に9/d−G程度であっても
良い。次いで、該重合体を入れた受器をガスで昇圧する
。昇圧に用いるガスとしては、触媒毒とならない不活性
ガス、例えば窒素、炭素数1〜4の飽和炭化水素の他エ
チレンあるいはプロピレン更にはこれらのガスの混合物
を用いでなければならない。このモル比が0.1と0.
9の間になる混合物を用いると受器内やそれ以降の重合
体移送系路に粘着性の共重合体が生成するため好ましく
ない。好ましく用いられる昇圧用ガスとして、グロビレ
ンあるいはエチレンの単独ガス、更には前記モル比の条
件を満たせば第一重合帯域の雰囲気ガスを例示すること
が出来る。昇圧は、重合体の第二重合帯域への移送を容
易にするため、第二重合帯域の重合圧力よシ高く、好ま
しくは2ky/d−G以上高く設定することが望ましい
。受器は所定の値まで昇圧された後第二重合帯域と連通
させ、重合体を第二重合帯域に移送し、該帯域での重合
が行なわれる。上記一連の処置は各遮断パルプの一連の
シーフェンス動作によシ自動的に実施される。
In the present invention, polymer is intermittently extracted from the first polymerization zone into a receiver. Since the extraction of this polymer involves the leakage of gas components from the first polymerization zone, the leaked gas is removed from the receiver by cutting off communication with the first polymerization zone and then reducing the pressure. do. Falling pressure does not need to be a vacuum,
It may be about atmospheric pressure or about 0.5 to 9/d-G. Next, the pressure of the receiver containing the polymer is increased with gas. The gas used for pressurization must be an inert gas that does not poison the catalyst, such as nitrogen, saturated hydrocarbons having 1 to 4 carbon atoms, ethylene or propylene, or mixtures of these gases. This molar ratio is 0.1 and 0.
If a mixture between 9 and 9 is used, a sticky copolymer will be formed in the receiver and in the polymer transport system thereafter, which is not preferable. Examples of preferable pressurizing gases include globylene or ethylene gas alone, and furthermore the atmospheric gas in the first polymerization zone as long as the above molar ratio conditions are met. In order to facilitate the transfer of the polymer to the second polymerization zone, the pressure increase is desirably set higher than the polymerization pressure in the second polymerization zone, preferably 2 ky/dG or higher. After the receiver is pressurized to a predetermined value, it is brought into communication with the second polymerization zone, the polymer is transferred to the second polymerization zone, and polymerization is carried out in the zone. The above-mentioned series of procedures are automatically carried out by a series of sea fence operations of each cut-off pulp.

以下本発明の方法を実施態様の一例を示す添付図に依っ
て更に具体的に説明する。
The method of the present invention will be explained in more detail below with reference to the accompanying drawings showing an example of an embodiment.

第1図は本発明の方法の一実施態様例を示すフローシー
トである。この例においては第一重合帯域および第二重
合帯域はそれぞれ1台の重合器で構成されている。
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention. In this example, the first polymerization zone and the second polymerization zone each consist of one polymerization vessel.

予め別の容器(図示せず)中で炭素数4〜7の飽和炭化
水素中で三塩化チタン組成物および有機アルミニウム化
合物な少量のオレフィンで予備重合処理して得た触媒懸
濁液を触媒供給管1から第一重合器2の中へ噴霧供給す
る。本例において重合器2は横型攪拌未反応器であシ、
攪拌羽根4をモーター8で回転させ、プロピレンの気相
重合を行う。管5よシ液化プロピレンを第一重合器2内
に噴霧供給して重合熱の除去を行う。未反応ガスは管6
によシ反応系よシ抜き出され、冷却器8によυ一部が液
化されてリザーバー9に入る。リザーバー9内の液化ガ
スはポンプ10によシ抜き出され、管5′に:経て反応
器2に戻る、一方、気相のガスはプロワ−18−1によ
り抜き出され第一重合器2の下部に吹き込まれる。反応
系で消費される水素およびプロピレン、必要によっては
少量のエチレンは管7および/または管12よシ補給さ
れる。
A catalyst suspension obtained by prepolymerizing a titanium trichloride composition and a small amount of an olefin such as an organoaluminum compound in a saturated hydrocarbon having 4 to 7 carbon atoms in a separate container (not shown) is supplied as a catalyst. Spray feed from pipe 1 into first polymerization vessel 2. In this example, the polymerization vessel 2 is a horizontal stirring unreactor;
The stirring blade 4 is rotated by a motor 8 to perform gas phase polymerization of propylene. Liquefied propylene is sprayed into the first polymerization vessel 2 through the pipe 5 to remove polymerization heat. Unreacted gas is pipe 6
It is then extracted from the reaction system, and a portion of it is liquefied by a cooler 8 and enters a reservoir 9. The liquefied gas in the reservoir 9 is extracted by the pump 10 and returned to the reactor 2 via the pipe 5', while the gas in the gas phase is extracted by the blower 18-1 to the first polymerizer 2. Blown into the bottom. Hydrogen and propylene consumed in the reaction system, and if necessary a small amount of ethylene, are replenished through pipe 7 and/or pipe 12.

第一重合器2内で生成した重合体は重合体排出弁14を
所定時間だけ開くことによシ受器15中に間欠的に導入
される。該受器16中に重合体と共に導入されたガスは
、ガス排出弁18を開くことによシガス回収系(図示せ
ず)に排出される。ガス排出弁18を閉じた後、加圧ガ
ス導入弁17を開いて管16よシ受器16に加圧ガスを
導入し、次いで該弁17を閉じる。
The polymer produced in the first polymerization vessel 2 is intermittently introduced into the receiver 15 by opening the polymer discharge valve 14 for a predetermined period of time. The gas introduced into the receiver 16 with the polymer is discharged to a gas recovery system (not shown) by opening the gas discharge valve 18. After closing the gas exhaust valve 18, the pressurized gas introduction valve 17 is opened to introduce pressurized gas into the receiver 16 through the pipe 16, and then the valve 17 is closed.

次に、重合体移送弁19を開いて受器15及び移送管2
0中の重合体を加圧ガスによって第二重合器22に移送
する。もし、加圧ガスの圧力が第二重合器22の重合圧
力よシ高ければ、と器15中にフラッシュすることは、
受器15および移送管20゛中に重合体の残留が少くな
るので有益である。重合体の移送が終了すれば重合体移
送弁19を閉じることによシ第−重合器2から第二重合
器22への重合体の移送操作の1サイクルが終了する。
Next, open the polymer transfer valve 19 to remove the receiver 15 and the transfer pipe 2.
The polymer in 0 is transferred to the second polymerizer 22 by pressurized gas. If the pressure of the pressurized gas is higher than the polymerization pressure in the second polymerization vessel 22, the flashing into the reactor 15 will be
Beneficially, less polymer remains in the receiver 15 and transfer tube 20. When the transfer of the polymer is completed, the polymer transfer valve 19 is closed, thereby completing one cycle of the operation of transferring the polymer from the first polymerizer 2 to the second polymerizer 22.

なお、このあと排出弁14を開ける前に、ガス排出弁1
8を開き、受器15内の残存ガスを回収系に排出した後
該排出弁18を閉じ、次いで加圧ガス導入弁17を開い
て加圧ガスを導入し、受器16内の圧力を“第一重合器
20重合圧と同じ圧力まで昇圧した後閉じる工程を付は
加えることが出来る。
Note that after this, before opening the exhaust valve 14, open the gas exhaust valve 1.
8 is opened, the residual gas in the receiver 15 is discharged to the recovery system, and then the discharge valve 18 is closed.Then, the pressurized gas introduction valve 17 is opened to introduce pressurized gas, and the pressure in the receiver 16 is reduced. It is possible to add a step of increasing the pressure to the same pressure as the polymerization pressure of the first polymerization vessel 20 and then closing it.

上記の一連の操作を繰シ返すことによシ、第一重合器2
から第二重合器22への重合体の移送を移送経路の閉塞
なしに円滑に行うことができる。
By repeating the above series of operations, the first polymerization vessel 2
The polymer can be smoothly transferred from the polymerizer to the second polymerizer 22 without clogging the transfer path.

第二重合器22では第一重合器2と類似の流れによ)エ
チレンとプロピレンの気相共重合が行なわれる。
In the second polymerization vessel 22, gas phase copolymerization of ethylene and propylene is carried out in a flow similar to that in the first polymerization vessel 2).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施態様例を示す一70−シ
一トでちる。 以上 矛1日
FIG. 1 is a 170-sheet diagram illustrating one embodiment of the method of the present invention. More than 1 day

Claims (3)

【特許請求の範囲】[Claims] (1)  チーブ2−・ナンタ触媒の存在下、第一重合
帯域でプロピレンの気相重合を行い、引続キ第二重合帯
域でエチレンとプロピレンの気相共重合を継続してエチ
レン・プロピレン共重合体を製造する気相多段重合方法
において、(AJ第一重合帯域から重合体を間欠的に受
器に抜出す工程、 の)該重合体に同伴して導入されたガスを該受器から排
除する工程、 (Q次いで、該重合体を容れた該受器を、該受器中のガ
ス組成が(エチレン/プロピレン)のモル比が0.1以
下あるいは0.9以上となる様な加圧ガスで昇圧する工
程、     −(6)該受器中の重合体を第二重合帯
域に導入する工程、 を包含することを特徴とする気相多段重合方法。
(1) In the presence of a Chive 2-Nanta catalyst, gas phase polymerization of propylene is carried out in the first polymerization zone, followed by gas phase copolymerization of ethylene and propylene in the second polymerization zone to produce ethylene-propylene copolymerization. In the gas phase multi-stage polymerization method for producing a polymer, the gas introduced along with the polymer (in the step of intermittently withdrawing the polymer from the AJ first polymerization zone to the receiver) is removed from the receiver. (Q) Next, the receiver containing the polymer is pressurized such that the gas composition in the receiver is such that the molar ratio of (ethylene/propylene) is 0.1 or less or 0.9 or more. A gas phase multi-stage polymerization method comprising the following steps: - (6) introducing the polymer in the receiver into a second polymerization zone.
(2)該工程0の加圧ガスがプロピレンであることを特
徴とする特許請求の範囲第1項記載の気相多段重合方法
(2) The gas phase multi-stage polymerization method according to claim 1, wherein the pressurized gas in step 0 is propylene.
(3)該工程(Qの昇圧後の圧力が第二重合帯域の重合
圧力よJ2#/d以上高いことを特徴とする特許請求の
範囲第(1)項記載の気相多段重合方法。
(3) The gas phase multi-stage polymerization method according to claim (1), characterized in that the pressure after increasing the pressure in the step (Q) is higher than the polymerization pressure in the second polymerization zone by J2#/d or more.
JP10439983A 1983-06-11 1983-06-11 Vapor-phase multi-stage polymerization process Granted JPS59230010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10439983A JPS59230010A (en) 1983-06-11 1983-06-11 Vapor-phase multi-stage polymerization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10439983A JPS59230010A (en) 1983-06-11 1983-06-11 Vapor-phase multi-stage polymerization process

Publications (2)

Publication Number Publication Date
JPS59230010A true JPS59230010A (en) 1984-12-24
JPH0365366B2 JPH0365366B2 (en) 1991-10-11

Family

ID=14379644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10439983A Granted JPS59230010A (en) 1983-06-11 1983-06-11 Vapor-phase multi-stage polymerization process

Country Status (1)

Country Link
JP (1) JPS59230010A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200104A (en) * 1985-02-19 1986-09-04 ビーピー ケミカルズ リミテツド Polymerization of alpha-olefin and device for carrying out process
WO2000021656A1 (en) * 1998-10-14 2000-04-20 Borealis Technology Oy Prepolymerisation reactor
WO2007088887A1 (en) * 2006-02-03 2007-08-09 Japan Polypropylene Corporation Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
JP2007254671A (en) * 2006-03-24 2007-10-04 Japan Polypropylene Corp Method for producing polypropylene
JP2009073890A (en) * 2007-09-19 2009-04-09 Japan Polypropylene Corp Method for producing propylene polymer
CN103360527A (en) * 2012-03-27 2013-10-23 中国石油化工股份有限公司 Preparation method and equipment of high-performance impact polypropylene

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200104A (en) * 1985-02-19 1986-09-04 ビーピー ケミカルズ リミテツド Polymerization of alpha-olefin and device for carrying out process
JPH0667977B2 (en) * 1985-02-19 1994-08-31 ビーピー ケミカルズ リミテツド Process for polymerizing .ALPHA.-olefin and apparatus for implementing the process.
WO2000021656A1 (en) * 1998-10-14 2000-04-20 Borealis Technology Oy Prepolymerisation reactor
WO2007088887A1 (en) * 2006-02-03 2007-08-09 Japan Polypropylene Corporation Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
EP1980576A1 (en) * 2006-02-03 2008-10-15 Japan Polypropylene Corporation Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
US7858716B2 (en) 2006-02-03 2010-12-28 Japan Polypropylene Corporation Propylene-based polymer and production method therefor, propylene-based polymer composition and molded body made thereof
CN102351966A (en) * 2006-02-03 2012-02-15 日本聚丙烯公司 Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
US8232358B2 (en) 2006-02-03 2012-07-31 Japan Polypropylene Corporation Propylene-based polymer and production method therefor, propylene-based polymer composition and molded body made thereof
EP1980576A4 (en) * 2006-02-03 2012-11-21 Japan Polypropylene Corp Propylene polymer, method for production of the propylene polymer, propylene polymer composition, and molded article manufactured from the composition
JP2007254671A (en) * 2006-03-24 2007-10-04 Japan Polypropylene Corp Method for producing polypropylene
JP2009073890A (en) * 2007-09-19 2009-04-09 Japan Polypropylene Corp Method for producing propylene polymer
CN103360527A (en) * 2012-03-27 2013-10-23 中国石油化工股份有限公司 Preparation method and equipment of high-performance impact polypropylene

Also Published As

Publication number Publication date
JPH0365366B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
US4338424A (en) Multi-step gas-phase polymerization of olefins
EP0040992B1 (en) Process for multi-step gas-phase polymerization of olefins
JP5611361B2 (en) Method for producing polyolefin
JPS6045645B2 (en) Gas phase polymerization method of olefins
JPH01115909A (en) Solid catalytic component for olefin polymerization
EP0480536B1 (en) Continuous process for producing ethylene/propylene copolymers
JPS59230010A (en) Vapor-phase multi-stage polymerization process
JPS6166705A (en) Method of continuous gaseous-phase polymerization for propylene
JPS59172505A (en) Improved continuous manufacture of ethylenic polymer
US3280092A (en) Production of polypropylene
JPS6346211A (en) Continuous production of propylene-ethylene block copolymer
JPS62172004A (en) Method for polymerization
JPH0354125B2 (en)
JPS6039082B2 (en) Continuous production method of polyolefin with wide molecular weight distribution
JPS6383104A (en) Production of olefin polymer
SU630259A1 (en) Method of obtaining polyolefins
CN116964114A (en) Method
KR820002156B1 (en) Process of preparing pololefins having widely distributed molecular weights
KR810001165B1 (en) Process for activating catalyst for polymerizing propylene
JPS6349685B2 (en)
JPH0621133B2 (en) Continuous production method of high melt viscoelastic polypropylene
JP2706817B2 (en) Method for producing high-rigidity polypropylene
JPS5837323B2 (en) Olefin polymerization method
JPH10120719A (en) Continuous polymerization of propylene
JPS58213012A (en) Production of alpha-olefin block copolymer