JP2007319971A - ねじ切り加工方法及び工作機械 - Google Patents

ねじ切り加工方法及び工作機械 Download PDF

Info

Publication number
JP2007319971A
JP2007319971A JP2006152204A JP2006152204A JP2007319971A JP 2007319971 A JP2007319971 A JP 2007319971A JP 2006152204 A JP2006152204 A JP 2006152204A JP 2006152204 A JP2006152204 A JP 2006152204A JP 2007319971 A JP2007319971 A JP 2007319971A
Authority
JP
Japan
Prior art keywords
tool
workpiece
movement
threading
moved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152204A
Other languages
English (en)
Inventor
Satoru Ozawa
覚 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Star Micronics Co Ltd
Original Assignee
Star Micronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co Ltd filed Critical Star Micronics Co Ltd
Priority to JP2006152204A priority Critical patent/JP2007319971A/ja
Publication of JP2007319971A publication Critical patent/JP2007319971A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)

Abstract

【課題】ねじ切りサイクル時間を短くして、ねじ切り加工時間を短縮することができるねじ切り加工方法及び工作機械を提供する。
【解決手段】ワーク21を軸線の周りで回転させながら、工具24をワーク21の外周面と対応する加工動作開始位置P1、加工送り開始位置P2、加工送り終了位置P3及びねじ切り退避位置P4へ順に移動させて、ワーク21の外周面にねじ切り加工を行う。このねじ切り加工において、加工送り開始位置P2、加工送り終了位置P3及びねじ切り退避位置P4にて、工具24の移動を転換する際に、工具24をZ軸方向移動とX軸方向移動とに同時移動させる。
【選択図】図1

Description

この発明は、ワークの外周面にねじ切り加工を行うためのねじ切り加工方法及びそのねじ切り加工を可能にした工作機械に関するものである。
従来、旋盤等の工作機械において、ワークの外周面にねじ切り加工を行う場合には、例えば、図11に示すような方法が採用されていた。すなわち、ワーク41を図示しない主軸に装着した状態で自身の中心軸線の周りに一方向へ回転させながら、ねじ切り用バイト等の工具42をワーク41の軸線と直交する方向(X軸方向)及びワーク41の軸線方向(Z軸方向)へ移動させる。そして、X軸方向への切り込み位置を中心軸線側に向かって徐々に変更しながら、つまり切り込み深さを深くしながら、工具42の移動のサイクルを複数回行うことにより、ワーク41の外周面にねじ切り加工を行うようにしている。
この場合、図11及び図12に示すように、前記工具42は加工動作開始位置P1から加工送り開始位置P2までX軸方向へ早送りで移動された後、加工送り開始位置P2から加工送り終了位置P3までZ軸方向へねじリードに合わせた加工送り速度で移動される。さらに、加工送り終了位置P3からねじ切り退避位置P4までX軸方向へ早送りで移動された後、ねじ切り退避位置P4から加工動作開始位置P1までZ軸方向へ早送りで復帰移動される。以上のように、図11及び図12の従来技術においては、工具42がX,Z方向の1軸方向に2回ずつ移動される。
一方、工作機械において、工具等の移動体を2軸方向に同時に移動制御する方法としては、例えば特許文献1に開示されるような方法が従来から提案されている。この特許文献1に記載の方法では、移動体を直線状移動経路の外側領域で、円弧状軌跡を描いて移動させるようにして、移動体の急激な加減速が行われないようにしている。
特開2006−24174号公報
ところで、図11及び図12に示す従来のねじ切り加工方法では、前記位置P1,P2間、P2,P3間、P3,P4間及びP4,P1間の移動時間をそれぞれt1,t2,t3,t4とすると、工具42が移動される1サイクル分のねじ切り加工時間t0は、最低でも単純にt1+t2+t3+t4となる。しかも、工具42は各位置P1〜P4において直角に方向転換されるため、それらの各位置P1〜P4において、工具移動が停止されるのは避けることができず、加工時間に停止時間が加算される。
以上のように、図11及び図12に示す従来のねじ切り加工においては、工具42の移動時間が、工具移動停止時間を含むX,Z軸上の移動時間の単純加算であるため、ねじ切り加工時間Tが長くなる。特に、ワーク41がチタンのような難削材であると、1サイクルにおける工具42のX軸方向の切り込み量が制限されるため、切り込みサイクル数が多くなり、1サイクルの加工時間が長くなると、結果としてトータルのねじ切り加工時間Tが大幅に長くなるという問題があった。
また、前記特許文献1に記載の方法においては、移動体が同時に2軸方向において移動されるが、その移動体は直線状移動経路の外側領域で円弧状軌跡を描いて膨らむように遠回りして移動されるようになっているため、この方法をねじ切り加工の工具送りに応用しても、ねじ切り加工時間を大幅に短縮することはできない。つまり、この特許文献1の技術を図11及び図12の従来技術に適用した場合は、ねじ切り1サイクルについて、位置P3から位置P4への移動で減速した場合と早送りで移動し続けた場合との差分しか期待できない。
この発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、ねじ切りサイクル時間を短くして、ねじ切り加工時間を短縮することができるねじ切り加工方法及び工作機械を提供することにある。
上記の目的を達成するために、本願のねじ切り加工方法に係る請求項1に記載の発明は、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具を加工送り開始位置方向に前進移動させ、次いで、加工送り開始位置からワークの軸線方向に沿って工具とワークとを相対移動させることにより工具を加工送りして、その工具により回転中のワークに対してねじ切り加工を施し、引き続き、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具を退避位置方向に後退移動させ、さらに、ワークの軸線方向に沿って工具とワークとを相対移動させて工具を復帰移動させるねじ切り加工方法において、前記工具の加工送り範囲の端部における加減速領域の位置と、ねじ外径とのうちの少なくとも一方をもとに同時移動開始位置を設定し、その同時移動開始位置からワーク軸線方向及びその軸線と直交する2方向に同時移動されるように工具とワークの相対移動を行うことを特徴とする。
この発明において、ワークの軸線方向等に沿う各方向への工具の移動は、工具とワークとの間の相対移動を指すものとし、すなわち工具及びワークのうちの少なくとも一方が他方に対して移動することを指すものとする。従って、工具及びワークのうちのいずれか一方のみが移動しても、あるいは双方が移動してもよく、要するに、相対移動により工具とワークとの位置関係が変化すればよい。
請求項2に記載の発明は、請求項1に記載の発明において、前記同時移動を構成する2方向移動のうちの少なくとも一方向の移動を早送りで行うことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の発明において、前記復帰移動と前進移動との同時移動を実行させることを特徴とする。
請求項4に記載の発明は、請求項1〜3のうちのいずれか一項に記載の発明において、加工送りの終了側における同時移動領域を、前記加工送りと後退移動との両移動が実行される前半領域部と、後退移動と復帰移動との両移動が実行される後半領域部とにより構成したことを特徴とする。
請求項5に記載の発明は、請求項4に記載の発明において、前記後半領域は、ワークのねじ部の外周を軸線方向に通る延長線の外周側に設定されることを特徴とする。
工作機械に係る請求項6に記載の発明においては、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具が加工送り開始位置方向に前進移動され、次いで、加工送り開始位置からワークの軸線方向に沿って工具とワークとを相対移動させることにより工具が加工送りされて、その工具により回転中のワークに対してねじ切り加工が施され、引き続き、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具が退避位置方向に後退移動され、さらに、ワークの軸線方向に沿って工具とワークとを相対移動させることにより工具が復帰移動されるように、工具の移動を制御する制御手段を設けた工作機械において、前記制御手段は、前記工具の加工送り範囲の端部における加減速領域の位置と、ねじ外径とのうちの少なくとも一方をもとに同時移動開始位置を設定し、その同時移動開始位置からワーク軸線方向及びその軸線と直交する2方向に同時移動されるように工具とワークの相対移動を行わせる制御を実行することを特徴とする。
従って、この発明において、ねじ切り加工時に、加工送り範囲の端部に対応した同時移動開始位置から工具がワーク軸線方向及びその軸線と直交する2方向に同時移動されため、工具が加工動作開始点等において、工具とワークとの干渉を避けつつ円弧に近似した曲線軌跡を描いて近回りで移動されて、1サイクルのねじ切りサイクル時間を短くすることができ、複数回のねじ切りサイクルによるねじ切り加工時間を短縮することができる。
また、同時移動を構成する2方向移動のうちの少なくとも一方向の移動を早送りで行うようにすれば、ねじ切り加工時間をさらに短縮できる。
以上のように、この発明によれば、工具とワークとの不要な干渉を避けつつねじ切りサイクル時間を短くして、ねじ切り加工時間を短縮することができるという効果を発揮する。
(第1実施形態)
以下に、この発明の第1実施形態を、図1〜図5に基づいて説明する。
図1に示すように、この実施形態の工作機械では、ワーク21はその先端側にねじ部21bを有するとともに、ねじ部21bの基端側には環状の逃げ溝21aが形成されている。そして、ワーク21が図2に示す主軸台22上の主軸23に装着されて、その主軸23の回転により自身の中心軸線の周りで一方向に連続回転されるとともに、主軸台22の移動により前記中心軸線と平行な軸線方向(Z軸方向)へ移動される。
これに対して、ねじ切り用バイト等の工具24は図2に示す刃物台25上に搭載されて、その刃物台25の移動によりワーク21の軸線と直交する方向(X軸方向)へ、すなわちワークの軸線と直角に交差する面に沿って移動される。そして、ワーク21が回転されながら、ワーク21及び工具24の移動により、工具24がワーク21に対してねじ切り加工のためにX軸方向及びZ軸方向に相対移動される。このとき、工具24のX軸方向への切り込み位置は、ねじ切りサイクル毎に同X軸方向への移動が延長されてワーク21の中心軸線に向かって徐々に変更される。このようにして、ねじ切り加工のためのワーク21及び工具24の相対移動が複数サイクル(例えば、数回〜数十回)繰り返し行われることにより、回転中のワーク21の外周面の所定範囲にねじ切り加工が行われて、ねじ部21bが形成される。なお、以上のように、ワーク21と工具24との間の相対移動は、以降の説明においては、工具24がワーク21に対して単独でX軸方向及びZ軸方向に移動するものとして説明する。
すなわち、図1及び図3に示すように、前記工具24は、ワーク21の外周面からX軸方向へ所定距離qだけ退避したところに位置する加工動作開始位置P1から加工送り開始位置方向へその加工送り開始位置P2までX軸方向に沿って早送りで前進移動された後、加工送り開始位置P2から加工送り終了位置P3に向かってZ軸方向に沿ってねじリードに合わせた前記早送りより遅い加工送りで移動される。さらに、工具24は加工送り終了位置P3付近からねじ切り退避位置P4方向に向かってX軸方向へ早送りで移動された後、ねじ切り退避位置P4付近から加工動作開始位置P1方向に向かいZ軸方向に沿って早送りで復帰移動されて、1サイクルの動作が終了する。そして、このサイクルが複数回繰り返されるごとに、加工送り開始位置P2の位置がX軸方向においてワーク21の中心軸線側へ徐々に近付けられて、ワーク21の外周面に対する切り込み位置が変更される。
次に、前記ワーク21のねじ切り加工に際して、工具24の相対移動等を制御するための制御装置について説明する。図2に示すように、この制御装置27は、制御手段を構成し、CPU(中央演算装置)28、ROM(リードオンリメモリ)29、RAM(ランダムアクセスメモリ)30、入力部31、表示部32、主軸回転制御回路33、主軸送り制御回路34及び工具送り制御回路35を備えている。前記入力部31は数値キー等を有するキーボードから構成され、ねじ切り加工の開始に際してワーク21の種類や外径寸法のデータ、ねじリード等を含む加工データがこの入力部31から入力される。表示部32は液晶ディスプレイ等の表示装置からなり、入力部31から入力されたデータ等の各種のデータを表示する。
前記ROM29には、ねじ切り加工時に工具24及びワーク21を動作させてそれらを相対移動させたりするための制御プログラムが格納されている。RAM30は、CPU28にて演算された工具24の移動位置データや、入力部31から入力されたワーク21に関するデータ等を一時的に記憶する。
CPU28は、ねじ切り加工に際して、後述するように、工具24の加速度等のデータから加工送り範囲の両端部における加減速領域δ1,δ2の長さを演算するとともに、この加減速領域δ1,δ2に基づいて工具24のX軸方向とZ軸方向との同時移動を開始するための同時移動開始位置を演算する。そして、CPU28は、算出した位置データに基づいて、工具24をX,Z軸の2軸方向において同時に移動させる。なお、前記加減速領域δ1,δ2のうち、加工送り開始側の加減速領域δ1は、プラスの加減速(加速)領域,加工送り終了側の加減速領域δ2はマイナスの加減速(減速)領域である。
そして、図1及び図3に示すように、ねじ切り加工時における工具24の移動に際して、工具24のZ軸方向への加工送りは、加工送り開始位置P2にて加速が開始されるとともに、ねじ部21bの端面と前記位置P2との間の位置P2aにおいてねじ切りのための定常速度に達する。そして、ねじ切り終了にともない、加工送り終了位置P3とねじ部21bの端面との間の位置P3aにて減速が開始される。このため、定常速度域である位置P2a,P3aとの間は、有効ねじ切り領域αとなって、ねじ部21bに対しては所定の加工送り速度で正確なリードのねじ切り加工が行われる。これに対し、有効ねじ切り領域αの両端の位置P2と位置P2aとの間、及び、位置P3と位置P3aとの間においては、加速または減速領域であるため、工具送りは、ねじのリードに対して対応しない不完全ねじ領域となる。この不完全ねじ領域である加減速領域δ1,δ2では、どのような軌跡で工具送りが行われても有効ねじ切り領域αで加工される有効ねじ部のねじ精度に影響を与えることがない。そして、有効ねじ切り領域αがねじ部21bを確実に包含するように、加工送り開始位置P2とねじ部21bの端面との間及びねじ部21bの端面と加工送り終了位置P3との間には、前記加減速領域δ1,δ2の長さより長い空走領域D1,D2が確保される。つまり、前記ねじ切り加工における加工送り開始位置P2及び加工送り終了位置P3の空走領域D1,D2の長さは、この加減速領域δ1,δ2の長さよりも余裕を持って、
D1=D2>δ1=δ2
となるように設定される。
そして、前記CPU28は、ねじ切り加工に際して前記加減速領域δ1,δ2のワーク軸線方向における長さを、工具24のZ軸方向への送り速度、加減速度、加減速方式等の送り制御パラメータに基づいて算出する。すなわち、加減速方式が直線加減速方式で、サーボの遅れの少ないフィードフォワード制御の場合、主軸23(つまりワーク21)の回転数をN(1/sec)、ねじリードをL(mm)とすると、送り速度Fは、N・L(mm/sec)として算出される。また、加減速時間をt(sec)とすると、加減速領域δ1,δ2はそれぞれF・t/2として算出される。
ここで、加工送り開始位置P2側の加減速領域δ1の長さは、図4の工具24の復帰移動を示す三角波状の速度カーブに対応した点A1,A2,A3内の面積に相当し、加工送り終了位置P3側の加減速領域δ2の長さは、工具24の加工送り移動を示す同図の台形波状の速度カーブに対応した点B1,B2,B3内の面積に相当する。
そして、前記CPU28は、加工動作開始位置P1、加工送り終了位置P3及びねじ切り退避位置P4にそれぞれ対応して、工具24の移動方向をX軸方向とZ軸方向との間で転換する際に、算出した加減速領域δ1,δ2の長さまたはあらかじめRAM30に設定されたねじ外径のデータに基づいて、工具24をX軸方向とZ軸方向とに同時移動させるための同時移動開始位置の位置データを算出する。
すなわち、工具24をねじ切り退避位置P4付近から加工動作開始位置P1付近を経て加工送り開始位置P2に早送りで前進移動させる際に、工具24の移動方向を加工動作開始位置P1付近においてZ軸方向からX軸方向に転換させるとき、Z軸方向の移動とX軸方向との早送りの同時移動を開始させるためのZ軸座標上の同時移動開始位置P1aを加減速領域δ1の長さを加工動作開始位置P1の位置データに基づいて算出する。具体的には、加工動作開始位置P1より加減速領域δ1だけ手前に同時移動開始位置P1aを設定する。
また、工具24の移動方向を同時移動開始位置としての減速開始位置P3aを経た後においてZ軸方向からX軸方向に転換させるとき、位置P3aを、加工送り終了位置P3の位置データに基づいて算出する。具体的には、加工送り終了位置P3より加減速領域δ2だけ手前に位置P3aを設定する。
また、工具24を加工送り終了位置P3付近からねじ切り退避位置P4に向かって早送りでX軸方向に移動させる際に、工具24の移動方向をねじ切り退避位置P4付近においてX軸方向からZ軸方向に転換させるとき、X軸方向の移動と同時にZ軸方向の早送りの移動を開始させるための同時移動開始位置としてのX軸座標上の位置P4aを、ワーク21のねじ外径を示すデータに基づいて算出する。具体的には、その位置P4aをねじ部21bの外周面から軸線方向に延長された線上とする。この実施形態においては、工具24が加工送りから復帰移動へ移行する領域において、前記位置P4aを境にして加工送り側を前半領域部,復帰移動側を後半領域部とする。
そして、CPU28は、前記のように算出した位置P3a,P4a,P1aの位置データに基づいて、工具24の2軸方向の同時移動が実行されるように、主軸送り制御回路34及び工具送り制御回路35に作動指令を出力することにより、図2に示す主軸送り駆動装置37及び工具送り駆動装置38を介して、主軸台22及び刃物台25を作動させる。これにより、図1に示すように、工具24は加工送り終了位置P3、ねじ切り退避位置P4及び加工動作開始位置P1付近において、ねじ部21bの端部を周回する円弧に近似した曲線軌跡を描いて近回りで相対移動される。なお、前記主軸23,主軸台22及び刃物台25の移動を駆動するモータ(図示しない)は、それぞれエンコーダ(図示しない)を有し、これらのエンコーダからの出力により、ワーク41及び工具42の位置が監視される。
次に、前記のような構成の工作機械において、ワーク21にねじ切り加工を行う場合の動作について説明する。
さて、この工作機械において、主軸23にワーク21を装着した状態で、ねじ切り加工運転が開始されると、CPU28の制御に基づいて、主軸23が回転されてワーク21が自身の中心軸線の周りで連続回転される。それとともに、工具24のX軸,Y軸方向への移動が図5のフローチャートに示す各ステップ(以下単にSという)において制御される。その結果、工具24がワーク21に対して移動されて、ワーク21の外周面にねじ切り加工が行われ、図1に示す所定範囲にわたる長さのねじ部21bが形成される。なお、図5のフローチャートは、ROM29に格納されたプログラムがCPU28の制御のもとに進行するものである。また、RAM30には、ワーク21の外径,軸線方向長さ,工具24の送り移動加速度,早送り加減速度や早送り速度等の各種データがあらかじめ記憶されている。
すなわち、ねじ切り加工運転が開始されると、図5のS1において、工具24が退避位置である加工動作開始位置P1に位置決めされる。次のS2においては、有効ねじ切り領域αの両端部における加工送り開始位置P2側の加減速領域δ1及び加工送り終了位置P3側の加減速領域δ2のワーク軸線方向における長さが算出される。続いて、S3においては、加工送り終了位置P3に対応して工具24の減速を開始するとともに、ねじ切り退避位置P4に向かって工具24のX軸方向へ移動を開始させるZ軸座標上の位置P3aが、加工送り終了位置P3側の加減速領域δ2の長さに基づいて算出される。S4においては、加工送り開始位置P2に向かって工具24のX軸方向へ移動を開始させるZ軸座標上の位置P1aが、加工送り開始位置P2側の加減速領域δ1の長さに基づいて算出される。
その後、S5においては、1回目のねじ切り加工動作が開始され、工具24が加工動作開始位置P1から加工送り開始位置P2までX軸方向へ早送りで移動されて、X軸座標上の所定の切り込み位置,すなわち所定の切り込み深さに相当する加工送り開始位置P2に位置決めされる。次のS6においては、工具24がねじリードに合わせた加工送りで、加工送り開始位置P2から加工送り終了位置P3に向かってZ軸方向へ移動されて、ワーク21の外周面のねじ切り加工が行われる。そして、S7においては、工具24が加工送り終了位置P3よりも加減速領域δ2だけ手前側に位置するZ軸座標上の位置P3aに到達したか否かが判別され、位置P3aに到達した場合には次のS8に進行する。S8においては、工具24のZ軸方向への移動が終了する前に、位置P3aからX軸方向への移動が開始されて、工具24がねじ切り退避位置P4に向かって早送りで移動される。なお、図1に示すように、ワーク21のねじ切り加工部の基部には逃げ溝21aが形成されているため、工具24とワーク21とが干渉することはない。
従って、図1に示すように、前記Z軸座標上の位置P3a以降では、工具24が、Z軸方向への加工送り速度からの減速移動とX軸方向への早送りとの2軸方向の同時移動状態で、加工送り終了位置P3よりも近回りの円弧に近似した曲線軌跡を描いて移動される。そして、工具24のZ軸方向の移動位置が加工送り終了位置P3と同一のZ軸線上に達したとき、すなわち、工具24のZ軸方向への移動が終了したときには、工具24がX軸方向へ位置P3bまで移動されている。
続いて、図5のS9においては、工具24のX軸方向の移動位置がワーク21のねじ外径に相当するX軸座標上の位置P4aを越えたか否かが判別され、位置P4aを越えた場合には次のS10に進行する。S10においては、工具24のX軸方向への移動が終了する前に、Z軸方向への移動が開始されて、工具24が加工動作開始位置P1に向かって早送りで移動される。
従って、図1に示すように、前記X軸座標上の位置P4a以降では、工具24がX軸方向とZ軸方向との2軸方向の早送り同時移動状態で、ねじ切り退避位置P4よりも近回りの円弧に近似した曲線軌跡を描いて移動される。この場合、工具24のX軸方向への移動位置が前記位置P4aに達するまでの移動量は、図4の速度カーブに対応する点C1,C2,C3間の三角形面積に相当する。また、図1に示すように、前記位置P4a以降の移動領域がワーク21のねじ外径よりも外側にあるため、工具24が近回り移動されても、工具24とワーク21とが干渉することはない。そして、工具24がねじ部21bの外周面から所定距離qに達したところで、工具24はX軸方向への移動が停止され、Z軸方向へ早送りで復帰移動される。
次に、図5のS11においては、所定サイクル数のねじ切り加工が終了したか否かが判別され、加工が終了していない場合にはS12に進行する。S12においては、ワーク21の外周面に対するX軸方向への新たなねじ切り込み量を加えた次回の加工送り開始位置P2の位置が算出される。続いて、S13においては、工具24が加工送り開始位置P2よりも加減速領域δ1だけ手前側に位置するZ軸座標上の位置P1aに到達したか否かが判別され、位置P1aに到達した場合には次のS14に進行する。S14においては、工具24のZ軸方向への移動が終了する前に、X軸方向への移動が開始されて、工具24が加工送り開始位置P2に向かって早送りで移動される。
従って、図1に示すように、前記Z軸座標上の位置P1a以降では、工具24がZ軸方向とX軸方向との2軸方向の早送りの同時移動状態で、加工動作開始位置P1の内側における近回りの円弧に近似した曲線軌跡を描いて移動される。そして、この場合、工具24のZ軸方向とX軸方向との2軸方向同時移動の領域は、工具24とワーク21とが干渉する領域の外側に位置するため、工具24とワーク21との干渉を避けることができる。
その後は、前記S5に戻って、工具24が加工送り開始位置P2に位置決めされる。この加工送り開始位置P2は、前回のねじ切り加工時の加工送り開始位置P2よりもX軸方向に切り込まれた位置となっている。そして、これ以降は、前記S6〜S14の動作が繰り返し行われて、工具24が複数回サイクル加工移動されて、ワーク21の外周面にねじ切り加工が行われる。そして、前記S11の判別において、複数回のねじ切り加工が終了すると、S15に進行して、工具24は加工動作開始位置P1に位置決めされて停止され、ワーク21の回転が停止されて、ねじ切り加工運転が終了する。
以上のように、この実施形態の工作機械のねじ切り加工時には、加工送り開始位置P2、加工送り終了位置P3及びねじ切り退避位置P4において、工具24の移動方向が転換される際に、工具24がX軸方向とZ軸方向との2軸方向で同時移動される。従って、図3及び図4に示すように、図12に示す従来のねじ切り加工における送り速度の時間変化に比較して、前記各位置P2〜P4での同時移動の移動時間ta,tb,tc分だけ加工時間が短縮される。
すなわち、従来のねじ切り加工における1サイクル分のねじ切りサイクル時間をt0とすると、この実施形態のねじ切り加工における初回の1サイクル分のねじ切りサイクル時間t0x1は、t0x1=t0−tb−tcとなる。また、2回目以降の1サイクル分のねじ切りサイクル時間t0x2は、t0x2=t0−ta−tb−tcとなる。さらに、従来のねじ切り加工における加工全体のねじ切り加工時間をTとし、ねじ切り回数をNとすると、この実施形態のねじ切り加工における加工全体のねじ切り加工時間Txは、N・t0−N(tb+tc)−(N−1)taとなる。従って、この実施形態においては、ねじ切り加工時間Txを従来のねじ切り加工時間Tと比較して、N(tb+tc)+(N−1)ta分だけ短縮することができる。
以上に述べた実施形態の効果は以下の通りである。
(1) 工具24の復帰移動終了位置と加工動作開始位置との間及び加工送り終了位置と復帰移動開始位置との間との間において、加工精度に影響を与えず、しかも、工具24とワーク21との干渉を回避できる開始点から、工具24がX軸方向と、Y軸方向とに同時移動されて、工具24が曲線軌跡を描いて移動されため、工具24とワーク21との干渉を回避しつつ、加工時間を短縮できる。
(2) 工具24の同時移動領域において、位置P1側からの前進移動,位置P3側からの後退移動及び位置P4側からの復帰移動が早送りで行われるため、加工時間の短縮にさらに寄与できる。
(2) ねじ切り範囲の外側における加工送り範囲の両端部に加減速領域δ1,δ2をそれぞれ設定し、その加減速領域δ1,δ2内に同時移動領域が設定されるため、ねじ切り領域内においては、ワーク21の軸線方向において一定速の加工送り速度で正確な送り移動を得ることができて、高精度なねじ切り加工を実現できる。
(3) 加工送り終了側における同時移動領域を、前記加工送りと後退との同時移動領域である前半領域部と、後退と復帰との同時移動領域である後半領域部とにより構成しているため、工具24の移動方向が180度変転される場合も、反転に要する時間を短縮できる。
(4) 後半領域がワーク21のねじ切り部の外周を軸線方向に通る延長線の外周側に設定されるため、工具24が大きな曲率の曲線で方向転換しても、工具24とワーク21との干渉を回避できる。
(第2実施形態)
次に、この発明の第2実施形態を、前記第1実施形態と異なる部分を中心に説明する。
さて、この第2実施形態では、工具24のX軸方向への移動が前記第1実施形態よりも高速で行われる場合や、ねじの切込み量が少ない場合に適用される。このため、図6〜図8に示すように、加工送り終了側における加工送り終了位置P3付近において、Z軸座標上の位置P3aでX軸方向への移動が開始されて、工具24が2軸方向の同時移動状態で移動される際に、工具24の移動位置が加工送り終了位置P3と同一のZ軸線上の位置P3bに達したとき、既にワーク21のねじ外径よりも外側に配置されるようになっている。そして、この位置P3bから直ちにZ軸方向への戻り移動が開始されて、工具24が2軸方向の同時移動状態でねじ切り退避位置P4を近回りして加工動作開始位置P1に向かって移動されるようになっている。従って、この第2実施形態においては、第2領域の前半領域部と後半領域部とが位置P3bを境にして配置される。
この第2実施形態のねじ切り加工においては、図7及び図8に示すように、工具24のZ軸方向への送り速度が、加工送りの減速状態から早送りの加速状態に連続して移行されることになる。よって、この第2実施形態のねじ切り加工の場合と、図12に示す従来のねじ切り加工の場合とを比較すると、前記加工送り終了位置P3及びねじ切り退避位置P4における同時移動の移動時間td、及び前記第1実施形態と同様の加工送り開始位置P2における同時移動の移動時間taだけ加工時間が短縮される。
すなわち、従来のねじ切り加工における1サイクル分のねじ切りサイクル時間をt0とすると、この実施形態のねじ切り加工における初回の1サイクル分のねじ切りサイクル時間t0y1は、t0−tdとなる。また、2回目以降の1サイクル分のねじ切りサイクル時間t0y2は、t0−ta−tdとなる。さらに、従来のねじ切り加工における加工全体のねじ切り加工時間をTとし、ねじ切り回数をNとすると、この実施形態のねじ切り加工における加工全体のねじ切り加工時間Tyは、N・t0−Ntd−(N−1)taとなる。従って、この第2実施形態によれば、ねじ切り加工時間Tyを従来のねじ切り加工時間Tに比較して、Ntd+(N−1)ta分だけ短縮することができる。
(第3実施形態)
次に、この発明の第3実施形態を、前記第1実施形態と異なる部分を中心に説明する。
さて、この第3実施形態においては、図9に示すように、前記第1実施形態のワーク21とは異なって、ねじ部21bの基部に逃げ溝21aが設けられていないワーク21に対してねじ切り加工を行う際に、加工送り終了位置P3付近でねじ切りを切り上げるチャンファリング加工を行うようにしている。なお、チャンファリング加工とは、ねじ切りの最後に、X軸とZ軸とで同期送りを行い、C面あるいはR面の面取りを行う加工である。この実施形態のチャンファリング加工部分は、同期送りを行う通常のチャンファリング加工と異なり、きれいなR面またはC面形状とはならないが、元々不完全ねじ部の領域である為、切り上げ形状が多少異なっていても、ねじ精度に影響はない。この場合、工具24が加工送り終了位置P3よりも加減速領域δ2の長さ分だけ手前側の位置P3aに達した時点から、ねじ切り退避位置P4に向かってX軸方向への工具24の早送り移動が開始されることによって、チャンファリング加工が施される。この第3実施形態では、このチャンファリング加工部分が前記第1実施形態と同様な前半領域部となる。
従って、この第3実施形態においても、前記第1実施形態に記載の効果と同様の効果を得ることができる。
(変更例)
なお、この実施形態は、次のように変更して具体化することも可能である。
・ 前記各実施形態においては、ワーク21をZ軸方向に移動させるとともに、工具24をX軸方向に移動させて、工具24をワーク21に対してZ軸及びX軸方向へ相対移動させるようになっているが、ワーク21と工具24とのいずれか一方のみをZ軸及びX軸方向へ移動させるように構成すること。
・ 図10に示すように、工具24の移動方向を前記各実施形態の逆方向とすること(図10は、第1実施形態おいて工具の移動方向を逆にした例を示す)。すなわち、加工動作開始位置P1がねじ部21bの基端側に、加工送り終了位置P3がねじ部21bの先端側になるように、工具24の移動経路を設定すること。このようにしても、前記各実施形態と同様な効果を得ることができる。
・ 前記各実施形態では、加減速領域δ1,δ2の長さを演算により算出するようにしたが、工具24の加速度等のパラメータに対応したテーブルを作成しておき、そのテーブルのデータに従って加速,減速領域δ1,δ2の長さ等を設定すること。
・ 加工動作開始位置P1、加工送り終了位置P3、退避位置P4のうちの1箇所または2箇所においてのみ工具24をX軸方向と、Z軸方向とに同時移動させること。
・ 前記各実施形態においては、外ねじのねじ切りにおいてこの発明を具体化したが、内ねじのねじ切りにおいて具体化すること。この場合は、工具24の位置P4から位置P1への退避移動がねじ孔内で行われることになる。
・ 工具24のX軸方向,Z軸方向の同時移動領域を加減速領域全体ではなく、その全範囲の90%等、一部のみとすること。
・ 退避位置P4でも加減速領域δ2に基づいて同時移動開始位置を定めること。
(他の技術的思想)
以下に、この発明の技術的思想であって、請求項に記載されていない技術的思想を以下に述べる。
(A) 制御手段は、同時移動を構成する2方向移動のうちの少なくとも一方向の移動を早送りで行わせることを特徴とする請求項6に記載の工作機械。
(B) 制御手段は、復帰移動と前進移動との同時移動を行わせることを特徴とする請求項6に記載の工作機械。
(C) 制御手段は、加工送り範囲の終了側における同時移動領域を、加工送りと後退移動との両移動が実行される前半領域部と、後退移動と復帰移動との両移動が実行される後半領域部とにより構成させることを特徴とする請求項6,前記技術的思想(A),(B)項に記載の工作機械。
(D) 前記後半領域は、ワークのねじ切り部の外周を軸線方向に通る延長線の外周側に設定されることを特徴とする前記技術的思想(C)項に記載の工作機械。
第1実施形態の工作機械におけるねじ切り加工方法を示す部分正面図。 図1の工作機械の回路構成を示すブロック図。 図1のねじ切り加工方法における送り速度と時間との関係を示すグラフ。 図3の一部を拡大して示すグラフ。 図1の工作機械におけるねじ切り加工動作を示すフローチャート。 第2実施形態の工作機械におけるねじ切り加工方法を示す部分正面図。 図6のねじ切り加工方法における送り速度と時間との関係を示すグラフ。 図7の一部を拡大して示すグラフ。 第3実施形態の工作機械におけるねじ切り加工方法を示す部分正面図。 変形例におけるねじ切り加工方法を示す部分正面図。 従来の工作機械におけるねじ切り加工方法を示す部分正面図。 図11のねじ切り加工方法における送り速度と時間との関係を示すグラフ。
符号の説明
21…ワーク、21b…ねじ部、24…工具、27…制御手段を構成する制御装置、28…CPU、P1…加工動作開始位置、P2…加工送り開始位置、P3…加工送り終了位置、P4…ねじ切り退避位置、P1a…同時移動開始位置、P3a…同時移動開始位置、P4a…同時移動開始位置、δ1…加減速領域、δ2…加減速領域。

Claims (6)

  1. ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具を加工送り開始位置方向に前進移動させ、
    次いで、加工送り開始位置からワークの軸線方向に沿って工具とワークとを相対移動させることにより工具を加工送りして、その工具により回転中のワークに対してねじ切り加工を施し、
    引き続き、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具を退避位置方向に後退移動させ、
    さらに、ワークの軸線方向に沿って工具とワークとを相対移動させて工具を復帰移動させるねじ切り加工方法において、
    前記工具の加工送り範囲の端部における加減速領域の位置と、ねじ外径とのうちの少なくとも一方をもとに同時移動開始位置を設定し、その同時移動開始位置からワーク軸線方向及びその軸線と直交する2方向に同時移動されるように工具とワークの相対移動を行うことを特徴とするねじ切り加工方法。
  2. 前記同時移動を構成する2方向移動のうちの少なくとも一方向の移動を早送りで行うことを特徴とする請求項1に記載のねじ切り加工方法。
  3. 前記復帰移動と前進移動との同時移動を実行させることを特徴とする請求項1または2に記載のねじ切り加工方法。
  4. 加工送りの終了側における同時移動領域を、前記加工送りと後退移動との両移動が実行される前半領域部と、後退移動と復帰移動との両移動が実行される後半領域部とにより構成したことを特徴とする請求項1〜3のうちのいずれか一項に記載のねじ切り加工方法。
  5. 前記後半領域は、ワークのねじ部の外周を軸線方向に通る延長線の外周側に設定されることを特徴とする請求項4に記載のねじ切り加工方法。
  6. ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具が加工送り開始位置方向に前進移動され、次いで、加工送り開始位置からワークの軸線方向に沿って工具とワークとを相対移動させることにより工具が加工送りされて、その工具により回転中のワークに対してねじ切り加工が施され、引き続き、ワークの軸線と交差する面に沿って工具とワークとを相対移動させることにより、工具が退避位置方向に後退移動され、さらに、ワークの軸線方向に沿って工具とワークとを相対移動させることにより工具が復帰移動されるように、工具の移動を制御する制御手段を設けた工作機械において、
    前記制御手段は、前記工具の加工送り範囲の端部における加減速領域の位置と、ねじ外径とのうちの少なくとも一方をもとに同時移動開始位置を設定し、その同時移動開始位置からワーク軸線方向及びその軸線と直交する2方向に同時移動されるように工具とワークの相対移動を行わせる制御を実行することを特徴とする工作機械。
JP2006152204A 2006-05-31 2006-05-31 ねじ切り加工方法及び工作機械 Pending JP2007319971A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152204A JP2007319971A (ja) 2006-05-31 2006-05-31 ねじ切り加工方法及び工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152204A JP2007319971A (ja) 2006-05-31 2006-05-31 ねじ切り加工方法及び工作機械

Publications (1)

Publication Number Publication Date
JP2007319971A true JP2007319971A (ja) 2007-12-13

Family

ID=38853187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152204A Pending JP2007319971A (ja) 2006-05-31 2006-05-31 ねじ切り加工方法及び工作機械

Country Status (1)

Country Link
JP (1) JP2007319971A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036277A (ja) * 2008-08-01 2010-02-18 Nakayama Mokkosho:Kk 木材へのネジ形成方法と、ネジ付き木材と、木材の接合構造
JP2011183481A (ja) * 2010-03-05 2011-09-22 Okuma Corp ねじ切り制御方法
JP2014217919A (ja) * 2013-05-08 2014-11-20 リコーエレメックス株式会社 ねじ切り加工方法、ねじ部品及びねじ切り工具
JP2017024087A (ja) * 2015-07-15 2017-02-02 ブラザー工業株式会社 制御装置、螺子切り装置、制御方法及びコンピュータプログラム
CN109960221A (zh) * 2017-12-26 2019-07-02 发那科株式会社 数值控制装置
JP2021018613A (ja) * 2019-07-19 2021-02-15 ファナック株式会社 工作機械の制御装置及び制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144913A (ja) * 1986-12-08 1988-06-17 Matsushita Electric Ind Co Ltd 対話形数値制御装置
JPH09262742A (ja) * 1996-03-28 1997-10-07 Hitachi Seiki Co Ltd 工作機械の送り制御方法および装置
JP2004252699A (ja) * 2003-02-20 2004-09-09 Murata Mach Ltd 機械制御装置
JP2006000995A (ja) * 2004-06-21 2006-01-05 Yamazaki Mazak Corp ねじ切り加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144913A (ja) * 1986-12-08 1988-06-17 Matsushita Electric Ind Co Ltd 対話形数値制御装置
JPH09262742A (ja) * 1996-03-28 1997-10-07 Hitachi Seiki Co Ltd 工作機械の送り制御方法および装置
JP2004252699A (ja) * 2003-02-20 2004-09-09 Murata Mach Ltd 機械制御装置
JP2006000995A (ja) * 2004-06-21 2006-01-05 Yamazaki Mazak Corp ねじ切り加工装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036277A (ja) * 2008-08-01 2010-02-18 Nakayama Mokkosho:Kk 木材へのネジ形成方法と、ネジ付き木材と、木材の接合構造
JP2011183481A (ja) * 2010-03-05 2011-09-22 Okuma Corp ねじ切り制御方法
US8532813B2 (en) 2010-03-05 2013-09-10 Okuma Corporation Method of controlling thread cutting
DE102011005116B4 (de) 2010-03-05 2021-10-14 Okuma Corporation Verfahren zum Steuern eines Gewindeschneidens
JP2014217919A (ja) * 2013-05-08 2014-11-20 リコーエレメックス株式会社 ねじ切り加工方法、ねじ部品及びねじ切り工具
JP2017024087A (ja) * 2015-07-15 2017-02-02 ブラザー工業株式会社 制御装置、螺子切り装置、制御方法及びコンピュータプログラム
CN109960221A (zh) * 2017-12-26 2019-07-02 发那科株式会社 数值控制装置
JP2019114192A (ja) * 2017-12-26 2019-07-11 ファナック株式会社 数値制御装置
US10725456B2 (en) 2017-12-26 2020-07-28 Fanuc Corporation Numerical controller
CN109960221B (zh) * 2017-12-26 2021-07-16 发那科株式会社 数值控制装置
JP2021018613A (ja) * 2019-07-19 2021-02-15 ファナック株式会社 工作機械の制御装置及び制御システム
JP7332375B2 (ja) 2019-07-19 2023-08-23 ファナック株式会社 工作機械の制御装置及び制御システム

Similar Documents

Publication Publication Date Title
JP6709163B2 (ja) 工作機械及びこの工作機械の制御装置
EP3124174B1 (en) Control device for machine tool, and machine tool provided with said control device
TWI789382B (zh) 工具機的控制裝置以及工具機
JP2007319971A (ja) ねじ切り加工方法及び工作機械
EP1755010A1 (en) Movement controller for controlling movement of mobile body of machine tool, machine tool provided with movement controller and mobile body moving method
JP5523875B2 (ja) ねじ切り制御方法
WO2020241524A1 (ja) 工作機械及びこの工作機械の制御装置
US10007251B2 (en) Machine tool control device and machine tool
JPWO2017086238A1 (ja) 工作機械及び工作機械による加工方法
JP2008006556A (ja) 工作機械における移動制御装置及び移動制御方法
JP4995976B1 (ja) 回転軸のインポジションチェックを行う数値制御装置
JPH0999384A (ja) レーザ加工装置、レーザ加工方法、及び自動プログラミング装置
JP4639058B2 (ja) ねじ切り加工装置
KR101220121B1 (ko) 이동체의 이동 제어 장치, 이동체의 이동 제어 방법 및공작 기계의 이동 제어 장치
JP6444923B2 (ja) 数値制御装置
JP4921115B2 (ja) 移動体の移動制御装置、移動体の移動制御方法及び工作機械の移動制御装置
JP6324616B1 (ja) 数値制御装置
JP6444969B2 (ja) 数値制御装置
JP6916409B1 (ja) 数値制御装置
JP2006024174A (ja) 工作機械の移動体の移動を制御する移動制御装置、移動制御装置を有する工作機械及び移動体の移動方法
JP2015231661A (ja) 非円形孔の加工方法、非円形孔の加工装置およびレンズ
TWI409601B (zh) 數值控制裝置、系統及其轉角運動控制方法
JP6317923B2 (ja) Nc旋盤
JP7481447B2 (ja) 工作機械の制御装置及び制御方法
US20230115138A1 (en) Machine tool and method of deciding tool moving path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221