JP2007315487A - Dynamic pressure bearing device and method for manufacturing the same - Google Patents

Dynamic pressure bearing device and method for manufacturing the same Download PDF

Info

Publication number
JP2007315487A
JP2007315487A JP2006145581A JP2006145581A JP2007315487A JP 2007315487 A JP2007315487 A JP 2007315487A JP 2006145581 A JP2006145581 A JP 2006145581A JP 2006145581 A JP2006145581 A JP 2006145581A JP 2007315487 A JP2007315487 A JP 2007315487A
Authority
JP
Japan
Prior art keywords
dynamic pressure
metal part
resin
injection
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006145581A
Other languages
Japanese (ja)
Inventor
Kenji Hibi
建治 日比
Kenji Ito
健二 伊藤
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006145581A priority Critical patent/JP2007315487A/en
Publication of JP2007315487A publication Critical patent/JP2007315487A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve production efficiency by reducing the number of manufacturing processes of a dynamic pressure bearing device. <P>SOLUTION: An injection gate 11 is provided at a position opposing a metal part 2 arranged in a molding die in an axial direction in injection-molding a resin part of a bearing member. Molten resin injected from the injection gate 11 presses the metal part 2 and the inner bottom surface 2b of the metal part 2 is pressed against a second molding die 12b formed at a molding pin 12 to form a thrust dynamic pressure generating part B on the metal part 2. Consequently, since the thrust dynamic pressure generating part B can be formed simultaneously by injection-moulding the resin part 3, the number of manufacturing processes of the bearing member can be reduced and production efficiency can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間の潤滑膜に生じる動圧作用で軸部材を回転自在に支持する動圧軸受装置及びその製造方法に関するものである。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by a hydrodynamic action generated in a lubricating film in a bearing gap, and a manufacturing method thereof.

動圧軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器の冷却ファン等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, Suitable for spindle motors such as magneto-optical disk drive devices such as MOs, small motors such as fan motors used for laser beam printer (LBP) polygon scanner motors, projector color wheels, cooling fans for electrical equipment, etc. Can be used.

例えば、特許文献1に示されている動圧軸受装置は、軸部材と、内周に軸部材を挿入した有底筒状の樹脂製のハウジングと、ハウジングの底部に配置され、軸部材の端面とスラスト軸受隙間を介して対向した金属部(スラスト部材)と、金属部の端面に形成され、スラスト軸受隙間の潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備える。このように、ハウジングを樹脂化することで、材料コストの低減を図られるとともに、スラスト動圧発生部を金属部の端面に形成することで、スラスト動圧発生部の耐摩耗性を向上させることができる。   For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a shaft member, a bottomed cylindrical resin housing having a shaft member inserted into an inner periphery thereof, and a bottom surface of the housing. And a metal part (thrust member) facing each other through a thrust bearing gap, and a thrust dynamic pressure generating part that is formed on an end surface of the metal part and generates a dynamic pressure action on the lubricating fluid in the thrust bearing gap. Thus, by reducing the material cost by making the housing resin, the wear resistance of the thrust dynamic pressure generating part is improved by forming the thrust dynamic pressure generating part on the end surface of the metal part. Can do.

特開2005−114164号公報JP 2005-114164 A

しかしながら、上記のような動圧軸受装置では、予めスラスト動圧発生部を形成した金属部を、別途形成したハウジングの底部に配置する必要があるため、工程数が増加し、生産効率の低下を招いていた。   However, in the hydrodynamic bearing device as described above, it is necessary to arrange the metal part in which the thrust dynamic pressure generating part is formed in advance on the bottom part of the separately formed housing, which increases the number of processes and reduces the production efficiency. I was invited.

本発明の課題は、動圧軸受装置の製造工程数を削減し、生産効率の向上を図ることにある。   An object of the present invention is to reduce the number of manufacturing steps of a hydrodynamic bearing device and improve production efficiency.

前記課題を解決するため、本発明は、軸部材と、軸部材とスラスト軸受隙間を介して対向した金属部と、金属部をインサート部品として射出成形した樹脂部と、金属部に形成され、スラスト軸受隙間の潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置を製造するための方法であって、樹脂部を射出成形する際、スラスト動圧発生部に対応した形状を有する成形型と射出ゲートとの間に金属部を配置し、射出ゲートから射出した樹脂の圧力で金属部を成形型に押し付けることにより、金属部にスラスト動圧発生部を成形することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a shaft member, a metal part facing the shaft member through a thrust bearing gap, a resin part formed by injection molding using the metal part as an insert part, and a metal part. This is a method for manufacturing a hydrodynamic bearing device having a thrust dynamic pressure generating section that generates a dynamic pressure action on the lubricating fluid in the bearing gap, and corresponds to the thrust dynamic pressure generating section when the resin part is injection molded. Forming a thrust dynamic pressure generating part on the metal part by placing the metal part between the molding die having the shape and the injection gate and pressing the metal part against the molding die with the pressure of the resin injected from the injection gate It is characterized by.

また、前記課題を解決するため、本発明は、軸部材と、軸部材の端面とスラスト軸受隙間を介して対向した金属部と、金属部をインサート部品として射出成形した樹脂部と、金属部に形成され、スラスト軸受隙間の潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置において、樹脂部の射出ゲート跡が、金属部と軸方向で対向した位置に形成されたことを特徴とする。ここで、ゲート跡は、射出成形時、溶融樹脂を成形金型内に充填する際のゲート位置を当該成形品から判別し得る箇所を指し、例えば射出成形時にゲート内部で固化した樹脂のうち、ゲートカット後も成形品表面に残存する部分を含む。あるいは、この残存部分を機械加工等により除去加工した際に形成されるゲート除去跡を含む。   In order to solve the above problems, the present invention provides a shaft member, a metal portion opposed to the end surface of the shaft member via a thrust bearing gap, a resin portion injection-molded using the metal portion as an insert component, and a metal portion. In the hydrodynamic bearing device having a thrust dynamic pressure generating portion that is formed and generates a dynamic pressure action on the lubricating fluid in the thrust bearing gap, the injection gate trace of the resin portion is formed at a position facing the metal portion in the axial direction. It is characterized by that. Here, the gate mark refers to a location where the gate position when filling the molten resin into the molding die during injection molding can be determined from the molded product, for example, among the resin solidified inside the gate during injection molding, Including the part remaining on the surface of the molded product even after gate cutting. Alternatively, a gate removal trace formed when the remaining portion is removed by machining or the like is included.

このように本発明では、樹脂部を射出成形する金型に、スラスト動圧発生部に対応した形状を有する成形型を形成し、その成形型と射出ゲートとの間に金属部を配置する。そして、射出ゲートから射出した樹脂の圧力で金属部を成形型に押し付けることにより、金属部にスラスト動圧発生部が成形される。これにより、樹脂部の射出成形と同時にスラスト動圧発生部を形成することできるため、動圧軸受装置の製造工程数を削減でき、生産効率の向上が図られる。このようにして成形された樹脂部の射出ゲート跡は、金属部と軸方向で対向する位置に形成される。尚、射出ゲートから射出した樹脂の圧力(以下、「射出樹脂の圧力」と称す)とは、射出した樹脂が金属部に衝突することによる圧力(以下、「射出圧」と称す)、及びキャビティ内を樹脂で充満した後、キャビティ内の圧力を保つために樹脂に加える圧力(以下、「保圧」と称す)のことを言い、これらの少なくとも一方の圧力により金属部が圧迫される。   As described above, in the present invention, a molding die having a shape corresponding to the thrust dynamic pressure generating portion is formed in a mold for injection molding the resin portion, and the metal portion is disposed between the molding die and the injection gate. Then, the thrust dynamic pressure generating portion is formed on the metal portion by pressing the metal portion against the forming die with the pressure of the resin injected from the injection gate. Thereby, since the thrust dynamic pressure generating portion can be formed simultaneously with the injection molding of the resin portion, the number of manufacturing steps of the dynamic pressure bearing device can be reduced, and the production efficiency can be improved. The injection gate trace of the resin part thus molded is formed at a position facing the metal part in the axial direction. The pressure of the resin injected from the injection gate (hereinafter referred to as “injection resin pressure”) refers to the pressure (hereinafter referred to as “injection pressure”) caused by the injected resin colliding with the metal part, and the cavity. This is the pressure applied to the resin (hereinafter referred to as “holding pressure”) in order to maintain the pressure in the cavity after the inside is filled with the resin, and the metal part is pressed by at least one of these pressures.

この射出ゲートを点状に形成すると、射出される樹脂の圧力を高めることができるため、より確実にスラスト動圧発生部を形成することができる。   When this injection gate is formed in a dot shape, the pressure of the injected resin can be increased, and thus the thrust dynamic pressure generating portion can be more reliably formed.

以上のように、本発明によれば、動圧軸受装置の製造工程数を削減し、生産効率の向上が図られる。   As described above, according to the present invention, the number of manufacturing steps of the hydrodynamic bearing device can be reduced and the production efficiency can be improved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る動圧軸受装置1を示している。この動圧軸受装置1は、軸部材5と、軸部材5を内周に挿入した有底筒状の軸受部材4とで構成される。軸受部材4は、金属部2と、金属部2を保持する樹脂部3とからなる。なお、説明の便宜上、金属部2の閉口側を下側、開口側を上側として、以下の説明を進める。   FIG. 1 shows a hydrodynamic bearing device 1 according to a first embodiment of the present invention. The hydrodynamic bearing device 1 includes a shaft member 5 and a bottomed cylindrical bearing member 4 in which the shaft member 5 is inserted into the inner periphery. The bearing member 4 includes a metal part 2 and a resin part 3 that holds the metal part 2. For convenience of explanation, the following explanation will be made with the closed side of the metal part 2 as the lower side and the opening side as the upper side.

軸部材5は、SUS等の金属材料で円筒状に形成される。軸部材5の外周面5aは、金属部2の内周面2aとラジアル軸受隙間を介して対向し、軸部材5の下端面5bは、金属部2の内底面2bとスラスト軸受隙間を介して対向する。   The shaft member 5 is formed in a cylindrical shape with a metal material such as SUS. The outer peripheral surface 5a of the shaft member 5 is opposed to the inner peripheral surface 2a of the metal portion 2 via a radial bearing gap, and the lower end surface 5b of the shaft member 5 is opposed to the inner bottom surface 2b of the metal portion 2 via a thrust bearing gap. opposite.

金属部2は、例えば電鋳加工により有底筒状に形成される。具体的には、まず、金属部2に使用される金属を含んだ溶液にマスターを浸漬し、この溶液に通電することにより(いわゆる電解メッキ)、あるいは通電せずに化学反応により(いわゆる無電解メッキ)、マスターの表面に金属部2を析出させる。その後、金属部2とマスターとを分離することにより、金属部2が形成される。尚、金属部2は、電鋳加工に限らず、例えば旋削加工、プレス加工、鍛造加工等の他の加工方法で形成することもできる。   The metal part 2 is formed in a bottomed cylindrical shape by, for example, electroforming. Specifically, first, a master is immersed in a solution containing a metal used for the metal part 2 and the solution is energized (so-called electrolytic plating), or by a chemical reaction without energization (so-called electroless). Plating) and depositing the metal part 2 on the surface of the master. Then, the metal part 2 is formed by separating the metal part 2 and the master. The metal part 2 is not limited to electroforming, and can be formed by other processing methods such as turning, pressing, and forging.

金属部2の内周面2aの全面又は一部円筒領域には、図示しない複数の動圧溝をヘリングボーン形状に配列した領域が、軸方向に離隔した2箇所に形成され、該領域がそれぞれラジアル動圧発生部A1、A2となる(図1にクロスハッチングで示す)。   On the entire inner surface or a part of the cylindrical region of the metal part 2, a plurality of unillustrated dynamic pressure grooves are formed in two herringbone-shaped regions separated in the axial direction. Radial dynamic pressure generating portions A1 and A2 (shown by cross hatching in FIG. 1).

金属部2の内底面2bの全面又は一部環状領域には、図示しない複数の動圧溝をスパイラル形状に配列した領域が環状に形成され、該領域がスラスト動圧発生部Bとなる(図1にクロスハッチングで示す)。   A region where a plurality of dynamic pressure grooves (not shown) are arranged in a spiral shape is formed in a ring shape on the entire inner surface or a part of the annular region of the inner bottom surface 2b of the metal portion 2, and this region becomes a thrust dynamic pressure generating portion B (see FIG. 1 is indicated by cross-hatching).

樹脂部3は、金属部2の外周面及び下端面を覆い、金属部2をインサート部品とした射出成形により形成される。以下に、樹脂部4の射出成形工程を、図2及び図3を用いて説明する。   The resin portion 3 covers the outer peripheral surface and the lower end surface of the metal portion 2 and is formed by injection molding using the metal portion 2 as an insert part. Below, the injection molding process of the resin part 4 is demonstrated using FIG.2 and FIG.3.

この射出成形工程で使用される金型は、図2に示すように、固定型6と、可動型7とで構成される。固定型6は、第1固定型61と、第1固定型61の内周に配された第2固定型62とで構成される。第1固定型61は、内周面61a及び内周面61aの下端から内径へ向けて延びた内底面61bとを備え、内底面61bの中央部には、溶融樹脂を射出するためのスプルー10及び射出ゲート11(本実施形態では点状ゲート)が形成される。   As shown in FIG. 2, the mold used in this injection molding process includes a fixed mold 6 and a movable mold 7. The fixed mold 6 includes a first fixed mold 61 and a second fixed mold 62 disposed on the inner periphery of the first fixed mold 61. The first fixed mold 61 includes an inner peripheral surface 61a and an inner bottom surface 61b extending from the lower end of the inner peripheral surface 61a toward the inner diameter, and a sprue 10 for injecting molten resin at the center of the inner bottom surface 61b. And the injection gate 11 (in this embodiment, a dotted gate) is formed.

第2固定型62は、第1固定型61の内周面61aと嵌合した保持部62aと、保持部62aの内径側に配された円筒状の成形部62bとを一体に備える。成形部62bは、保持部62aの内周面の下端から内径へ向けて延びた固定部62cを介して、保持部62aに片持ち梁状で弾性変形可能に支持される。尚、本実施形態では、第1固定型61及び第2固定型62が別体に形成されているが、これらを一体に形成しても良い。   The second fixed mold 62 is integrally provided with a holding part 62a fitted to the inner peripheral surface 61a of the first fixed mold 61, and a cylindrical molding part 62b disposed on the inner diameter side of the holding part 62a. The molding portion 62b is supported by the holding portion 62a in a cantilever shape so as to be elastically deformable via a fixing portion 62c extending from the lower end of the inner peripheral surface of the holding portion 62a toward the inner diameter. In the present embodiment, the first fixed mold 61 and the second fixed mold 62 are formed separately, but they may be integrally formed.

可動型7は、第1固定型61の端面と当接する第1端面7aと、第2固定型62の端面と当接する第2端面7bを備え、第2端面7bの中央部には、固定穴7cが形成され、この固定穴7cに成形ピン12が挿入、固定される。成形ピン12は、外周面12aに、金属部2の内周面2aに動圧発生部A1、A2を形成するための第1成形型12a1、12a2を備えると共に、下端面に、金属部2の内底面2bに動圧発生部Bを形成するための第2成形型12bを備える(図3参照)。この成形ピン12に、マスターから分離した電鋳加工品である金属部2を外挿し、この状態で、可動型7を固定型6と当接させて型締めすることにより、金属部2及び成形ピン12が金型内で位置決めされる。尚、本実施形態では、第1端面7aと第2端面7bとが、軸方向の段差を介して設けられているが、これらを同一平面上に設けても良い。   The movable die 7 includes a first end surface 7a that abuts on the end surface of the first fixed die 61, and a second end surface 7b that abuts on the end surface of the second fixed die 62. A fixed hole is formed at the center of the second end surface 7b. 7c is formed, and the molding pin 12 is inserted and fixed in the fixing hole 7c. The forming pin 12 includes first forming molds 12a1 and 12a2 for forming dynamic pressure generating portions A1 and A2 on the inner peripheral surface 2a of the metal portion 2 on the outer peripheral surface 12a, and the lower end surface of the metal portion 2 A second molding die 12b for forming the dynamic pressure generating part B is provided on the inner bottom surface 2b (see FIG. 3). The metal part 2, which is an electroformed product separated from the master, is extrapolated to the molding pin 12, and in this state, the movable part 7 is brought into contact with the fixed mold 6 and clamped to thereby form the metal part 2 and the molding. The pin 12 is positioned in the mold. In the present embodiment, the first end surface 7a and the second end surface 7b are provided via a step in the axial direction, but they may be provided on the same plane.

型締め時には、可動型7の第2端面7bと、第1固定型61の内底面61bと、第2固定型62の成形部62bの内周面62b1とでキャビティ13が形成されると共に、第2固定型62の保持部62aと成形部62bとの間の径方向隙間と、可動型7の第2端面7bとで、油圧空間63が形成される(図2及び図3(a)参照)。油圧空間63及び油圧経路9の内部は、油で満たされる。   At the time of clamping, the cavity 13 is formed by the second end surface 7b of the movable mold 7, the inner bottom surface 61b of the first fixed mold 61, and the inner peripheral surface 62b1 of the molding portion 62b of the second fixed mold 62, and the first 2 A hydraulic space 63 is formed by the radial gap between the holding portion 62a and the molding portion 62b of the fixed die 62 and the second end surface 7b of the movable die 7 (see FIGS. 2 and 3A). . The interiors of the hydraulic space 63 and the hydraulic path 9 are filled with oil.

その後、図3(b)に示すように、固定型6に設けられたスプルー10、ゲート11を介して、溶融樹脂をキャビティ13内に射出する。ゲート11から射出された溶融樹脂は、図3(b)の矢印で示すように、ゲート11と対向する位置に配置された金属部2の下端面2cに衝突した後、外径方向へ流動する。この射出した樹脂の衝突により、金属部2が圧迫される(射出圧)。その後、キャビティ13が樹脂で充満されると、キャビティ13内の圧力を一定に保つために、ゲート11を介してキャビティ13内の樹脂に圧力を加える(保圧)。この射出圧及び保圧の少なくとも一方の圧力(射出樹脂の圧力)により、金属部2の内底面2bが内型12の下端面に形成された第2成形型12bに押し付けられる。これにより、金属部2の内底面2b1に第2成形型12bの形状が転写され、スラスト動圧発生部Bが形成される。   Thereafter, as shown in FIG. 3B, the molten resin is injected into the cavity 13 through the sprue 10 and the gate 11 provided in the fixed mold 6. As shown by the arrow in FIG. 3B, the molten resin injected from the gate 11 flows in the outer diameter direction after colliding with the lower end surface 2c of the metal part 2 disposed at a position facing the gate 11. . The metal part 2 is pressed by the collision of the injected resin (injection pressure). Thereafter, when the cavity 13 is filled with resin, pressure is applied to the resin in the cavity 13 via the gate 11 in order to keep the pressure in the cavity 13 constant (pressure holding). The inner bottom surface 2b of the metal part 2 is pressed against the second mold 12b formed on the lower end surface of the inner mold 12 by at least one of the injection pressure and the holding pressure (pressure of the injection resin). As a result, the shape of the second molding die 12b is transferred to the inner bottom surface 2b1 of the metal part 2, and the thrust dynamic pressure generating part B is formed.

このように、本発明では、ゲート11を金属部2の下端面2cと軸方向で対向する位置に設けることにより、射出樹脂の圧力で確実に金属部2を圧迫することができる。これにより、樹脂部3の射出成形と同時にスラスト動圧発生部Bをすることができるため、軸受部材4の製造工程数を削減し、生産効率の向上が図られる。尚、本実施形態のように、射出ゲート11を点状に形成すると、射出樹脂の圧力、特に射出圧を高めることができるため、より確実にスラスト動圧発生部Bを形成することができる。   Thus, in the present invention, by providing the gate 11 at a position facing the lower end surface 2c of the metal part 2 in the axial direction, the metal part 2 can be reliably pressed by the pressure of the injection resin. Thereby, since the thrust dynamic pressure generating part B can be performed simultaneously with the injection molding of the resin part 3, the number of manufacturing steps of the bearing member 4 can be reduced, and the production efficiency can be improved. In addition, when the injection gate 11 is formed like a dot as in the present embodiment, the pressure of the injection resin, particularly the injection pressure, can be increased, so that the thrust dynamic pressure generating portion B can be formed more reliably.

樹脂の固化後、油圧空間63に充満された油を、油圧経路9を介して加圧すると、第2固定型62の成形部62bの内周面62b1が弾性的に縮径し、樹脂部3を介して金属部2が外周から圧迫され、金属部2の内周面2aが弾性的に縮径する(図3(c)参照)。これにより、金属部2の内周面2aが成形ピン12の外周面12aに形成された第1成形型12a1、12a2に押し付けられ、第1成形型12a1、12a2の形状が金属部2の内周面2aに転写され、ラジアル動圧発生部A1、A2が形成される。   When the oil filled in the hydraulic space 63 is pressurized through the hydraulic path 9 after the resin is solidified, the inner peripheral surface 62b1 of the molding part 62b of the second fixed mold 62 is elastically reduced in diameter, and the resin part 3 The metal part 2 is pressed from the outer periphery through the inner periphery, and the inner peripheral surface 2a of the metal part 2 is elastically reduced in diameter (see FIG. 3C). Thereby, the inner peripheral surface 2a of the metal part 2 is pressed against the first molding dies 12a1 and 12a2 formed on the outer peripheral surface 12a of the molding pin 12, and the shape of the first molding dies 12a1 and 12a2 is changed to the inner periphery of the metal part 2. Transferred to the surface 2a, radial dynamic pressure generating portions A1 and A2 are formed.

その後、油圧空間63の油に加えられていた圧力を解放すると、第2固定型62の成形部62bの内周面62b1、及び金属部2の内周面2aが弾性的に拡径し、第1成形型12a1、12a2に食い込んでいた金属部2の内周面2aのラジアル動圧発生部A1、A2が、第1成形型12a1、12a2から剥離する。これにより、ラジアル動圧発生部A1、A2と第1成形型12a1、12a2との間に微小隙間が形成されるため、成形ピン12と軸受部材4とを分離する際、ラジアル動圧発生部A1、A2と第1成形型12a1、12a2との軸方向の干渉を回避又は軽減できるため、ラジアル動圧発生部A1、A2の損傷を回避することができる。一方、スラスト動圧発生部Bは、離型時に第2成形型12bと干渉しないため、損傷の恐れはない。   Thereafter, when the pressure applied to the oil in the hydraulic space 63 is released, the inner peripheral surface 62b1 of the molding portion 62b of the second fixed mold 62 and the inner peripheral surface 2a of the metal portion 2 are elastically expanded in diameter. The radial dynamic pressure generating parts A1 and A2 on the inner peripheral surface 2a of the metal part 2 that have bitten into the first molds 12a1 and 12a2 are peeled off from the first molds 12a1 and 12a2. As a result, a minute gap is formed between the radial dynamic pressure generating portions A1 and A2 and the first molding dies 12a1 and 12a2. Therefore, when the molding pin 12 and the bearing member 4 are separated, the radial dynamic pressure generating portion A1. Since the axial interference between A2 and the first molds 12a1 and 12a2 can be avoided or reduced, damage to the radial dynamic pressure generating portions A1 and A2 can be avoided. On the other hand, since the thrust dynamic pressure generating part B does not interfere with the second molding die 12b at the time of mold release, there is no fear of damage.

尚、油圧空間63の油の加圧時における成形部62bは、図3(c)に示すように、成形部62bの固定部62c側ではほとんど変位せず、図中上方へ向かうほど変位量が大きくなるため、加圧前の成形部62bの位置(図3(c)に点線で示す)に対して傾斜して変形する。このため、金属部2の内周面2aが成形型に押し付けられる際、下側のラジアル動圧発生部A2の溝深さが、上側のラジアル動圧発生部A1の溝深さよりも浅くなることがある。この場合、成形部62bの肉厚や油圧空間63の油に加える圧力を調整し、成形部62bの変形量を調整することにより、ラジアル動圧発生部A2においても、十分な動圧作用を発現できるような溝深さを得ることができる。   Incidentally, as shown in FIG. 3C, the molding portion 62b at the time of pressurization of the oil in the hydraulic space 63 hardly displaces on the fixed portion 62c side of the molding portion 62b, and the displacement amount increases toward the upper side in the figure. Since it becomes large, it is inclined and deformed with respect to the position of the molding part 62b before pressing (indicated by a dotted line in FIG. 3C). For this reason, when the inner peripheral surface 2a of the metal part 2 is pressed against the forming die, the groove depth of the lower radial dynamic pressure generating part A2 is shallower than the groove depth of the upper radial dynamic pressure generating part A1. There is. In this case, by adjusting the thickness applied to the molding portion 62b and the pressure applied to the oil in the hydraulic space 63, and adjusting the deformation amount of the molding portion 62b, the radial dynamic pressure generating portion A2 exhibits sufficient dynamic pressure action. A groove depth that can be obtained can be obtained.

固定型6と軸受部材4とを分離する際、ゲート11内で固化した樹脂が自動的に切断され、あるいはゲートカット機構によって切断され、樹脂部3のゲート対応位置に切断した樹脂の一部がゲート跡11aとして残る。このゲート跡11aは、機械加工等により除去してもよい。この場合、ゲート跡11aの除去跡が樹脂部3の下端面3bに残る(図1参照)。   When the fixed mold 6 and the bearing member 4 are separated, the resin solidified in the gate 11 is automatically cut or cut by the gate cut mechanism, and a part of the resin cut to the gate corresponding position of the resin portion 3 is obtained. It remains as gate trace 11a. The gate trace 11a may be removed by machining or the like. In this case, the removal trace of the gate trace 11a remains on the lower end surface 3b of the resin portion 3 (see FIG. 1).

このようにして形成された金属部2および樹脂部3の一体品、すなわち軸受部材4の内周に軸部材5を挿入し、軸部材5と軸受部材4との間に形成される空間に潤滑油を充満させることにより、動圧軸受装置1が完成する。   The shaft member 5 is inserted into the integral part of the metal part 2 and the resin part 3 thus formed, that is, the inner periphery of the bearing member 4, and the space formed between the shaft member 5 and the bearing member 4 is lubricated. The fluid dynamic bearing device 1 is completed by filling the oil.

動圧軸受装置1内部に充満される潤滑油としては、種々のものが使用可能であるが、例えば低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が使用可能である。   Various lubricants can be used as the lubricating oil filled in the hydrodynamic bearing device 1. For example, ester lubricants excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl, etc. Azelate (DOZ) or the like can be used.

上記構成の動圧軸受装置1において、軸部材5が回転すると、軸部材5の回転に伴い、ラジアル軸受隙間の潤滑油が、金属部2の内周面2aに形成されたラジアル動圧発生部A1、A2としてのヘリングボーン形状の動圧溝の軸方向中心側に押し込まれ、その圧力が上昇する。このように、ラジアル動圧発生部A1、A2によって生じる潤滑油の動圧作用によって、軸部材5をラジアル方向に非接触支持するラジアル軸受部R1、R2がそれぞれ構成される。   In the dynamic pressure bearing device 1 having the above-described configuration, when the shaft member 5 rotates, the radial dynamic pressure generating portion in which the lubricating oil in the radial bearing gap is formed on the inner peripheral surface 2a of the metal portion 2 as the shaft member 5 rotates. The herringbone-shaped dynamic pressure grooves as A1 and A2 are pushed into the axial center side, and the pressure rises. In this manner, the radial bearing portions R1 and R2 that support the shaft member 5 in the radial direction in a non-contact manner are configured by the dynamic pressure action of the lubricating oil generated by the radial dynamic pressure generating portions A1 and A2, respectively.

これと同時に、スラスト動圧発生部Bが、スラスト軸受隙間の潤滑油に動圧作用を発生させ、これにより軸部材5をスラスト方向に非接触支持するスラスト軸受部Tが構成される。   At the same time, the thrust dynamic pressure generating section B generates a dynamic pressure action on the lubricating oil in the thrust bearing gap, thereby forming a thrust bearing section T that supports the shaft member 5 in a non-contact manner in the thrust direction.

本発明の実施形態は、上記に限られない。以上の実施形態では、金属部2が鍛造加工や電鋳加工により金属材料で形成される場合を示したが、例えば、金属部2を焼結金属で形成すると、焼結金属の内部に含浸された潤滑油がスラスト軸受隙間に逐次供給されるため、潤滑性をさらに高めることができる。   The embodiment of the present invention is not limited to the above. In the above embodiment, the case where the metal part 2 is formed of a metal material by forging or electroforming is shown. However, for example, when the metal part 2 is formed of sintered metal, the inside of the sintered metal is impregnated. Since the lubricating oil is sequentially supplied to the thrust bearing gap, the lubricity can be further improved.

また、以上の実施形態では、ラジアル動圧発生部としてヘリングボーン形状の動圧溝が形成される場合を示したが、これに限らず、例えばラジアル動圧発生部として、スパイラル形状の動圧溝や、多円弧軸受、あるいはステップ軸受等を採用することもできる。また、スラスト動圧発生部としてスパイラル形状の動圧溝が採用されているが、例えば、ヘリングボーン形状の動圧溝や、ステップ軸受、あるいは波型軸受(ステップ軸受が波型形状となったもの)等を採用することもできる。   Further, in the above embodiment, the case where the herringbone-shaped dynamic pressure groove is formed as the radial dynamic pressure generating portion is shown, but not limited to this, for example, the spiral-shaped dynamic pressure groove as the radial dynamic pressure generating portion Alternatively, a multi-arc bearing, a step bearing, or the like can be employed. In addition, a spiral-shaped dynamic pressure groove is used as the thrust dynamic pressure generating portion. For example, a herringbone-shaped dynamic pressure groove, a step bearing, or a corrugated bearing (the step bearing has a corrugated shape) ) Etc. can also be adopted.

また、以上の実施形態では、ラジアル動圧発生部が金属部に形成されているが、成形樹脂の内周面に形成してもよい。また、軸受部材の内周面ではなく、この面と対向する軸部材の外周面にラジアル動圧発生部を形成してもよい。   Further, in the above embodiment, the radial dynamic pressure generating portion is formed on the metal portion, but may be formed on the inner peripheral surface of the molding resin. Moreover, you may form a radial dynamic-pressure generation | occurrence | production part not on the internal peripheral surface of a bearing member but on the outer peripheral surface of the shaft member facing this surface.

以下に、本発明に係る製造方法で形成した動圧軸受装置1を、電気機器の冷却ファン等に使用されるファンモータに組み込んだ場合を示す。   Below, the case where the hydrodynamic bearing apparatus 1 formed with the manufacturing method which concerns on this invention is integrated in the fan motor used for the cooling fan etc. of an electric equipment is shown.

図4は、動圧軸受装置1を組み込んだファンモータを概念的に示す断面図である。このファンモータは、軸部材5を回転自在に非接触支持する動圧軸受装置1と、軸部材5に装着されたロータ33と、ロータ33の外径端に取付けられたファン34と、例えば半径方向(ラジアル方向)のギャップを介して対向させたステータコイル36およびロータマグネット37と、これらを収容し、上端面および側面の一部が開口したケーシング35とを備えるものであり、一般的にはラジアルギャップ型ファンモータと称される。ステータコイル36は、動圧軸受装置1の外周に取付けられ、ロータマグネット37はロータ33に取付けられている。なお、ファンモータの形態として、ステータコイル36とロータマグネット37とを軸方向(アキシャル方向)のギャップを介して対向させる、いわゆるアキシャルギャップ型ファンモータとすることもできる(図示省略)。   FIG. 4 is a cross-sectional view conceptually showing a fan motor incorporating the fluid dynamic bearing device 1. This fan motor includes a hydrodynamic bearing device 1 that supports a shaft member 5 in a non-contact manner in a freely rotatable manner, a rotor 33 attached to the shaft member 5, a fan 34 attached to an outer diameter end of the rotor 33, and a radius, for example. A stator coil 36 and a rotor magnet 37 that are opposed to each other via a gap in a direction (radial direction), and a casing 35 that accommodates these and has an upper end surface and a part of a side surface that are open. It is called a radial gap type fan motor. The stator coil 36 is attached to the outer periphery of the hydrodynamic bearing device 1, and the rotor magnet 37 is attached to the rotor 33. As a form of the fan motor, a so-called axial gap type fan motor in which the stator coil 36 and the rotor magnet 37 are opposed to each other via a gap in the axial direction (axial direction) can be used (not shown).

ステータコイル36に通電すると、ステータコイル36とロータマグネット37との間の電磁力でロータマグネット37が回転し、それによって、ロータ33及びファン34が軸部材5と一体に回転する。ファン34が回転すると、ケーシング35の上端開口部35aから図1中の矢印Y方向に外気が引き込まれると共に、ケーシング内の空気が側面開口部35bから矢印X方向へ排出される。このようなファンモータは、側面開口部35bから排出される気流によって他の装置等を冷却したり、あるいは、下端面を他の装置(図8中に一点鎖線で示す)と面するように設置し、他の装置の熱がファンモータに伝わり、上記の気流によってファンモータに伝わった熱が外部へ放熱されることにより、装置を冷却したりすることができる。   When the stator coil 36 is energized, the rotor magnet 37 is rotated by the electromagnetic force between the stator coil 36 and the rotor magnet 37, whereby the rotor 33 and the fan 34 rotate integrally with the shaft member 5. When the fan 34 rotates, outside air is drawn in the direction of arrow Y in FIG. 1 from the upper end opening 35a of the casing 35, and the air in the casing is discharged from the side opening 35b in the direction of arrow X. Such a fan motor is installed such that other devices are cooled by the airflow discharged from the side opening 35b, or the lower end surface faces another device (shown by a one-dot chain line in FIG. 8). Then, the heat of the other device is transmitted to the fan motor, and the heat transmitted to the fan motor by the airflow is radiated to the outside, so that the device can be cooled.

以上のような動圧軸受装置1は、ファンモータに限らず、HDDのディスク起動装置等に使用されるスピンドルモータ等にも適用することができる。   The hydrodynamic bearing device 1 as described above can be applied not only to a fan motor but also to a spindle motor used for a disk starting device of an HDD or the like.

動圧軸受装置1を示す断面図である。1 is a cross-sectional view showing a fluid dynamic bearing device 1. 樹脂部3の射出成形工程を示す断面図である。4 is a cross-sectional view showing an injection molding process of a resin part 3. FIG. 成形金型において、(a)射出成形前の状態、(b)射出成形と同時にスラスト動圧発生部を形成する工程、(c)ラジアル動圧発生部を形成する工程を示す断面図である。FIG. 4 is a cross-sectional view showing (a) a state before injection molding, (b) a step of forming a thrust dynamic pressure generating portion simultaneously with injection molding, and (c) a step of forming a radial dynamic pressure generating portion in a molding die. 動圧軸受装置1を組み込んだファンモータを示す断面図である。It is sectional drawing which shows the fan motor incorporating the fluid dynamic bearing device.

符号の説明Explanation of symbols

1 動圧軸受装置
2 金属部
3 樹脂部
4 軸受部材
5 軸部材
6 固定型
7 可動型
9 油圧経路
10 スプルー
11 ゲート
11a ゲート跡
12 成形ピン
12a1、12a2 第1成形型
12b 第2成形型
13 キャビティ
A1、A2 ラジアル動圧発生部
B スラスト動圧発生部
R1、R2 ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Metal part 3 Resin part 4 Bearing member 5 Shaft member 6 Fixed type | mold 7 Movable type | mold 9 Hydraulic path 10 Sprue 11 Gate 11a Gate trace 12 Molding pin 12a1, 12a2 1st shaping | molding die 12b 2nd shaping | molding die 13 Cavity A1, A2 Radial dynamic pressure generating part B Thrust dynamic pressure generating part R1, R2 Radial bearing part T Thrust bearing part

Claims (4)

軸部材と、軸部材とスラスト軸受隙間を介して対向した金属部と、金属部をインサート部品として射出成形した樹脂部と、金属部に形成され、スラスト軸受隙間の潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置を製造するための方法であって、
樹脂部を射出成形する際、スラスト動圧発生部に対応した形状を有する成形型と射出ゲートとの間に金属部を配置し、射出ゲートから射出した樹脂の圧力で金属部を成形型に押し付けることにより、金属部にスラスト動圧発生部を成形することを特徴とする動圧軸受装置の製造方法。
A shaft member, a metal part facing the shaft member through a thrust bearing gap, a resin part injection-molded with the metal part as an insert part, and a metal part, generates a hydrodynamic action on the lubricating fluid in the thrust bearing gap A method for manufacturing a hydrodynamic bearing device including a thrust dynamic pressure generating unit,
When the resin part is injection-molded, the metal part is arranged between a mold having a shape corresponding to the thrust dynamic pressure generating part and the injection gate, and the metal part is pressed against the mold by the pressure of the resin injected from the injection gate. Thus, a method of manufacturing a hydrodynamic bearing device, wherein a thrust dynamic pressure generating portion is formed on a metal portion.
射出ゲートが点状に形成された請求項1記載の動圧軸受装置の製造方法。   The method of manufacturing a hydrodynamic bearing device according to claim 1, wherein the injection gate is formed in a dot shape. 軸部材と、軸部材とスラスト軸受隙間を介して対向した金属部と、金属部をインサート部品として射出成形した樹脂部と、金属部に形成され、スラスト軸受隙間の潤滑流体に動圧作用を発生させるスラスト動圧発生部とを備えた動圧軸受装置において、
樹脂部の射出ゲート跡が、金属部と軸方向で対向した位置に形成されたことを特徴とする動圧軸受装置。
A shaft member, a metal part facing the shaft member through a thrust bearing gap, a resin part injection-molded with the metal part as an insert part, and a metal part, generates a hydrodynamic action on the lubricating fluid in the thrust bearing gap A hydrodynamic bearing device including a thrust dynamic pressure generating unit
A hydrodynamic bearing device, wherein an injection gate trace of a resin portion is formed at a position facing an axial direction of a metal portion.
射出ゲート跡が点状に形成された請求項3記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the injection gate trace is formed in a dot shape.
JP2006145581A 2006-05-25 2006-05-25 Dynamic pressure bearing device and method for manufacturing the same Withdrawn JP2007315487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145581A JP2007315487A (en) 2006-05-25 2006-05-25 Dynamic pressure bearing device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145581A JP2007315487A (en) 2006-05-25 2006-05-25 Dynamic pressure bearing device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007315487A true JP2007315487A (en) 2007-12-06

Family

ID=38849534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145581A Withdrawn JP2007315487A (en) 2006-05-25 2006-05-25 Dynamic pressure bearing device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007315487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153488A1 (en) * 2020-01-31 2021-08-05 株式会社ダイヤメット Insert sintered part and manufacturing method for same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153488A1 (en) * 2020-01-31 2021-08-05 株式会社ダイヤメット Insert sintered part and manufacturing method for same
JP2021120481A (en) * 2020-01-31 2021-08-19 株式会社ダイヤメット Insert sintered compact and method for producing the same
JP7346318B2 (en) 2020-01-31 2023-09-19 株式会社ダイヤメット Insert sintered parts and their manufacturing method
US11999088B2 (en) 2020-01-31 2024-06-04 Diamet Corporation Insert sintered part and manufacturing method for same

Similar Documents

Publication Publication Date Title
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
EP3051156B1 (en) Sintered metal bearing, fluid-dynamic bearing device provided with said bearing, and fan motor provided with said bearing device
US8756816B2 (en) Method for producing a housing for a fluid bearing apparatus
US7431505B2 (en) Fluid lubrication bearing apparatus
JP2006322511A (en) Bearing
EP3051159B1 (en) Sintered metal bearing and method for producing same
WO2015151698A1 (en) Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
JP2007263311A (en) Dynamic pressure bearing device
JP2007315487A (en) Dynamic pressure bearing device and method for manufacturing the same
JP4642686B2 (en) Sliding bearing manufacturing method
JP2007315485A (en) Method for manufacturing dynamic pressure bearing device
JP2008200734A (en) Method of manufacturing sleeve, hydrodynamic bearing device and device for manufacturing sleeve
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP2007315462A (en) Method for manufacturing dynamic pressure bearing device
JP2007162883A (en) Bearing device
JP4896430B2 (en) Bearing device and motor using the bearing device
JP4937618B2 (en) Hydrodynamic bearing device
JP2008111520A (en) Dynamic pressure bearing device
JP4584093B2 (en) Plain bearing
JP2008175386A (en) Bearing member and its manufacturing method
JP4937675B2 (en) Hydrodynamic bearing device
JP4948825B2 (en) Bearing member and manufacturing method thereof
JP2008248977A (en) Fluid bearing device
JP2007146958A (en) Bearing device and its manufacturing method
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804