JP2007310158A - 発光装置および電子機器 - Google Patents

発光装置および電子機器 Download PDF

Info

Publication number
JP2007310158A
JP2007310158A JP2006139307A JP2006139307A JP2007310158A JP 2007310158 A JP2007310158 A JP 2007310158A JP 2006139307 A JP2006139307 A JP 2006139307A JP 2006139307 A JP2006139307 A JP 2006139307A JP 2007310158 A JP2007310158 A JP 2007310158A
Authority
JP
Japan
Prior art keywords
circuit
clock signal
light emitting
period
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006139307A
Other languages
English (en)
Inventor
Eiji Kanda
栄二 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006139307A priority Critical patent/JP2007310158A/ja
Publication of JP2007310158A publication Critical patent/JP2007310158A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

【課題】各クロック信号の位相差に起因したシフトレジスタの誤動作を抑制する。
【解決手段】発光装置Dは、複数の単位回路U1〜Umが直列に接続されたシフトレジスタ
32と、各単位回路U1〜Umからの出力に応じた期間にて発光素子E1を発光させる複数
の駆動制御トランジスタQCTと、クロック信号CK1を伝送する信号線34とを具備する
。各単位回路Uiは、前段の単位回路Ui-1からの入力をクロック信号CK1とクロック信
号CK2とに応じたタイミングで順次に出力するシフト回路43と、信号線34に供給さ
れるクロック信号CK1をシフト回路43の入力と出力とに応じた期間にて選択的にシフ
ト回路43に供給するトランスミッションゲートTG1と、トランスミッションゲートT
G1から出力されるクロック信号CK1を反転したクロック信号CK2をシフト回路43に
供給する反転回路41とを含む。
【選択図】図4

Description

本発明は、発光素子や受光素子といった電気光学素子を制御する技術に関する。
液晶装置などの電気光学装置にはシフトレジスタが利用される(例えば特許文献1や特
許文献2)。図11に示すように、シフトレジスタは、複数の単位回路Uと2本の信号線
81・82とを含む。信号線81にはクロック信号CK1が供給され、信号線82にはク
ロック信号CK1の論理レベルを反転したクロック信号CK2が供給される。各単位回路U
は、前段の単位回路Uからの入力をクロック信号CK1・CK2に応じたタイミングで順次
に出力する。
特開2001−34236号公報 特開平10−199284号公報
しかしながら、図11の構成においては、信号線81・82に付随する容量や抵抗に起
因して、各単位回路Uに入力されるクロック信号CK1とCK2とに位相差が生じる場合が
ある。クロック信号CK1とCK2の位相差は各単位回路Uの誤動作の原因となり得る。
有機発光ダイオード素子などの発光素子がマトリクス状に配列された発光装置において
は、各発光素子が発光する期間(以下「発光期間」という)を制御するためにシフトレジ
スタが利用される。各行の発光素子の発光期間は相互に重複する(すなわち複数行の発光
素子が同時に発光する)から、特許文献1や特許文献2のシフトレジスタを発光装置に適
用する場合には、複数の単位回路Uを同時に動作させる必要がある。したがって、ひとつ
の単位回路Uのみが選択的に動作する場合と比較して信号線82の負荷が増大し、この結
果としてクロック信号CK1とCK2との位相差は特に顕著となる。
また、発光装置の全体的な輝度は例えば発光期間の時間長に応じて調整される。同時に
発光する発光素子の個数(行数)は発光期間の時間長に応じて変化するから、特許文献1
や特許文献2のように各単位回路Uを選択的に信号線81・82に接続する構成において
は、信号線81・82と各単位回路Uとの接続の状態が輝度の調整の程度に応じて変化す
る。これによってクロック信号CK1とCK2との位相差が輝度の調整の前後で相違するか
ら、シフトレジスタが正常に動作できなくなる可能性がある。例えば、発光すべき発光素
子が発光しない場合や消灯すべき発光素子が発光する場合がある。
以上の事情に鑑みて、本発明は、各単位回路に2相のクロック信号が供給される構成に
起因した不具合を抑制するという課題の解決を目的としている。
以上の課題を解決するために、本発明に係る発光装置は、開始パルスを順次にシフトし
て出力する複数の単位回路が直列に接続されたシフトレジスタと、各単位回路からの出力
に応じた期間にて発光素子を発光させる複数の駆動制御素子(例えば図2の駆動制御トラ
ンジスタQCT)と、第1クロック信号が供給される信号線とを具備し、複数の単位回路の
各々は、前段の単位回路からの入力を第1クロック信号と第2クロック信号とに応じたタ
イミングで順次に出力するシフト回路と、信号線に供給される第1クロック信号をシフト
回路の入力と出力とに応じた期間にて選択的にシフト回路に供給する第1スイッチ(例え
ば図4のトランスミッションゲートTG1)と、第1スイッチから出力される第1クロッ
ク信号を反転した第2クロック信号をシフト回路に供給する反転回路とを含む。
以上の構成によれば、シフトレジスタの各単位回路に対して単相の第1クロック信号が
供給され、各単位回路の反転回路によって第2クロック信号が生成されるから、各単位回
路に対して外部から2相のクロック信号が供給される構成と比較して各クロック信号の位
相差が抑制される。したがって、シフトレジスタの誤動作やこれに起因した各発光素子の
誤発光(消灯すべき発光素子が発光する場合)や誤消灯(発光すべき発光素子が消灯する
場合)の可能性を低減することができる。
本発明の好適な態様において、複数の単位回路の各々は、第1スイッチから出力される
第1クロック信号の経路に対し、第1スイッチがオフ状態となる期間にて定電位を供給す
る第2スイッチ(例えば図4のトランスミッションゲートTG2)を含む。本態様によれ
ば、第1スイッチがオフ状態となる期間においても第1スイッチの出力側の経路が電気的
なフローティング状態とならないから、ノイズなどの外乱に起因してシフト回路が誤動作
する可能性が低減される。
以上の態様において、例えば、複数の単位回路の各々は、シフト回路の入力と出力とを
演算する論理演算回路を含み、第1スイッチと第2スイッチとは、論理演算回路からの出
力に応じて制御される。この構成においては第1スイッチと第2スイッチとが論理演算回
路からの共通の出力に応じて制御されるから、各々が個別に制御される構成と比較して単
位回路の構成が簡素化されるという利点がある。論理演算回路は、例えばシフト回路の入
力と出力との排他的論理和を演算する。
本発明の好適な態様において、複数の単位回路の各々は、第1スイッチから出力される
第1クロック信号と反転回路から出力される第2クロック信号との位相差を抑制する位相
補正回路を含む。本態様によれば、第1クロック信号と第2クロック信号との位相差に起
因してシフト回路が誤動作する可能性を充分に低減できる。
本発明のひとつの態様に係る発光装置において、シフトレジスタに入力される開始パル
スのパルス幅は制御回路によって制御される。この態様においては、各単位回路から出力
される信号が開始パルスに応じたパルス幅(デューティ比)に応じて可変的に設定される
から、信号線の負荷は、各単位回路からの出力のうち同時にアクティブレベルとなる信号
の総数に応じて変動する。本発明においては各単位回路に対して選択的にクロック信号が
供給されるから、信号線の負荷が増大した場合であっても、クロック・スキューに起因し
たシフトレジスタの誤動作を抑制できるという利点がある。すなわち、開始パルスのパル
ス幅が可変である発光装置に本発明は特に好適である。
本発明に係る発光装置は各種の電子機器に利用される。この電子機器の典型例は、発光
装置を表示装置として利用した機器である。この種の電子機器としては、パーソナルコン
ピュータや携帯電話機などがある。もっとも、本発明に係る発光装置の用途は画像の表示
に限定されない。例えば、光線の照射によって感光体ドラムなどの像担持体に潜像を形成
するための露光装置(露光ヘッド)、液晶装置の背面側に配置されてこれを照明する装置
(バックライト)、あるいは、スキャナなどの画像読取装置に搭載されて原稿を照明する
装置など各種の照明装置など、様々な用途に本発明の発光装置を適用することができる。
また、以上の各態様に係るシフトレジスタは、複数の受光素子の各々による受光量を検
出する受光装置にも採用される。ひとつの形態に係る受光装置は、開始パルスを順次にシ
フトして出力する複数の単位回路が直列に接続されたシフトレジスタと、各々が別個の単
位回路に対応する複数の画素回路(例えば図6の画素回路P2)と、第1クロック信号が
供給される信号線とを具備する。
複数の画素回路の各々は、ゲートの電位に応じた検出信号(例えば図6の検出電流IDT
)を生成する検出トランジスタと、各単位回路からの出力に応じた期間にて受光素子を検
出トランジスタのゲートに電気的に接続する駆動制御素子(例えば図6の駆動制御トラン
ジスタRCT)とを含む。また、複数の単位回路の各々は、前段の単位回路からの入力を第
1クロック信号と第2クロック信号とに応じたタイミングで順次に出力するシフト回路と
、信号線に供給される第1クロック信号をシフト回路の入力と出力とに応じた期間にて選
択的にシフト回路に供給する第1スイッチと、第1スイッチから出力される第1クロック
信号を反転した第2クロック信号をシフト回路に供給する反転回路とを含む。以上の受光
装置においても、本発明に係る発光装置と同様に、第1クロック信号と第2クロック信号
との位相差に起因したシフトレジスタの誤動作を抑制できる。
<A:第1実施形態>
まず、電気光学装置を画像の表示に利用した形態(発光装置)を例示する。図1は、本
実施形態に係る発光装置の構成を示すブロック図である。発光装置Dは、複数の画素回路
P1が配列された素子アレイ部Aと、各画素回路P1を駆動する駆動回路DRと、駆動回路
DRを制御する制御回路28とを具備する。駆動回路DRは、走査線駆動回路22とデー
タ線駆動回路24と駆動期間制御回路30とを含む。
図1に示すように、素子アレイ部Aには、X方向に延在するm本の走査線12と、走査
線12と対をなしてX方向に延在するm本の制御線13と、X方向に直交するY方向に延
在するn本のデータ線14とが形成される(mおよびnの各々は自然数)。各画素回路P
1は、走査線12および制御線13の対とデータ線14との各交差に対応した位置に配置
される。したがって、これらの画素回路P1は縦m行×横n列のマトリクス状に配列する
。図2に示すように、各画素回路P1は発光素子E1を含む。発光素子E1は、相互に対向
する陽極と陰極との間に有機EL(Electroluminescence)材料の発光層が介在する有機
発光ダイオード素子である。
図1の制御回路28は、駆動回路DRに対して各種の信号を供給する。例えば、制御回
路28は、クロック信号の供給によって走査線駆動回路22やデータ線駆動回路24の動
作を制御するとともに、各画素回路P1の発光素子E1の階調を指定する画像データをデー
タ線駆動回路24に出力する。また、本実施形態の制御回路28は、開始パルスDYと所
定の周期のクロック信号CK1とを生成して駆動期間制御回路30に出力する。図3に示
すように、開始パルスDYはフレーム期間Fが開始するたびに立ち上がる。
図1の走査線駆動回路22は、素子アレイ部Aのm行の各々を順次に選択するための走
査信号Ga[1]〜Ga[m]を生成して各走査線12に出力する手段(例えばmビットのシフト
レジスタ)である。図3に示すように、走査信号Ga[1]〜Ga[m]の各々は水平走査期間H
ごとに順番にアクティブレベル(ローレベル)に遷移する。すなわち、第i行(iは1≦
i≦mを満たす整数)の走査線12に出力される走査信号Ga[i]は、ひとつのフレーム期
間Fのうち第i番目の水平走査期間Hにてローレベルとなり、それ以外の期間にてハイレ
ベルを維持する。
データ線駆動回路24は、制御回路28から供給される画像データに基づいてデータ電
流S[1]〜S[n]を生成して各データ線14に流す手段である。走査信号Ga[i]がローレベ
ルとなる水平走査期間Hにて第j列目(jは1≦j≦nを満たす整数)のデータ線14に
流れるデータ電流S[j]の電流値は、第i行に属する第j列目の画素回路P1に指定された
階調に応じて設定される。
駆動期間制御回路30は、各行の発光素子E1がデータ電流S[1]〜S[n]に応じた階調
に実際に駆動される期間(以下「発光期間」という)Pを規定する制御信号Gb[1]〜Gb[
m]を生成して各制御線13に出力する。図3の部分(a)に示すように、第i行の制御線1
3に出力される制御信号Gb[i]は、走査信号Ga[i]がローレベルとなる水平走査期間Hの
経過後から次回に走査信号Ga[i]がローレベルとなる水平走査期間の開始前までの発光期
間Pにてアクティブレベル(ローレベル)となり、それ以外の期間ではハイレベルを維持
する。
次に、図2を参照して、各画素回路P1の具体的な構成を説明する。なお、同図におい
ては第i行に属する第j列目のひとつの画素回路P1のみが図示されているが、素子アレ
イ部Aを構成する各画素回路P1は同様の構成である。
図2に示すように、発光素子E1は、電源線(高位側の電源電位VEL)から接地線(接
地電位Gnd)に至る経路上に配置される。発光素子E1は、陽極と陰極との間に流れる電
流(以下「駆動電流」という)IELの電流量に応じた輝度(強度)で発光する。発光素子
E1の陰極は接地される。
駆動電流IELの経路上(電源線と発光素子E1との間)にはpチャネル型の駆動トラン
ジスタQDRが配置される。駆動トランジスタQDRは、駆動電流IELの電流量(すなわち発
光素子E1の輝度)をゲートの電位に応じて制御する手段である。駆動トランジスタQDR
のソースは電源線に接続される。
駆動トランジスタQDRのドレインと発光素子E1の陽極との間には両者の電気的な接続
(導通/非導通)を制御するpチャネル型のトランジスタ(以下「駆動制御トランジスタ
」という)QCTが介在する。第i行の各画素回路P1における駆動制御トランジスタQCT
のゲートには第i行の制御線13から制御信号Gb[i]が共通に供給される。制御信号Gb[
i]がアクティブレベルとなる発光期間Pにおいては、駆動制御トランジスタQCTがオン状
態となって発光素子E1に駆動電流IELが供給される。これに対し、発光期間P以外の期
間では、駆動制御トランジスタQCTがオフ状態を維持するから、発光素子E1に対する駆
動電流IELの供給は停止する。すなわち、駆動制御トランジスタQCTは、制御信号Gb[i]
が指定する発光期間Pにて選択的に発光素子E1を発光させる手段(駆動制御素子)であ
る。
第j列の各画素回路P1における駆動トランジスタQDRのドレインと第j列目のデータ
線14との間には両者の電気的な接続を制御するpチャネル型のトランジスタQSW1が介
在する。また、駆動トランジスタQDRのゲートとドレインとの間には両者の電気的な接続
を制御するpチャネル型のトランジスタQSW2が介在する。第i行の各画素回路P1におけ
るトランジスタQSW1・QSW2の各々のゲートは第i行の走査線12に対して共通に接続さ
れる。駆動トランジスタQDRのゲートとソース(電源線)との間には容量素子Cが介挿さ
れる。容量素子Cは、駆動トランジスタQDRのゲートの電位を保持する手段である。
以上の構成において、走査信号Ga[i]が水平走査期間Hにてローレベルに遷移すると、
トランジスタQSW2がオン状態に変化することで駆動トランジスタQDRのゲートとドレイ
ンとが接続(ダイオード接続)される。このときにトランジスタQSW1もオン状態となっ
ているから、図2に破線の矢印で示すように、電源線から駆動トランジスタQDRおよびト
ランジスタQSW1を経由してデータ電流S[j]が第j列目のデータ線14に流れ込む。した
がって、容量素子Cにはデータ電流S[j]に応じた電荷が蓄積される。
走査信号Ga[i]がハイレベルに遷移するとトランジスタQSW1・QSW2はオフ状態となる
。したがって、駆動トランジスタQDRのゲート−ソース間の電圧は、容量素子Cによって
直前の水平走査期間Hにおける電圧に維持される。この状態において制御信号Gb[i]がロ
ーレベルに変化して駆動制御トランジスタQCTがオン状態に遷移すると、駆動トランジス
タQDRのゲートの電位に応じた駆動電流IELが電源線から駆動トランジスタQDRおよび駆
動制御トランジスタQCTを経由して発光素子E1に供給され、発光素子E1は駆動電流IEL
に略比例した輝度で発光する。
次に、図4を参照して駆動期間制御回路30の構成を説明する。同図に示すように、駆
動期間制御回路30は、シフトレジスタ32と1本の信号線34とを含む。シフトレジス
タ32は、開始パルスDYをクロック信号CK1に同期したタイミングで順次にシフトす
ることで制御信号Gb[1]〜Gb[m]を生成する手段であり、制御線13の総数に相当するm
個の単位回路U1〜Umを含む。単位回路U1〜Umは信号線34に沿って配列して直列に接
続される。第1段目の単位回路U1には制御回路28から開始パルスDYが供給される。
信号線34には制御回路28からクロック信号CK1が供給される。
図4に示すように、各単位回路Uiは、トランスミッションゲートTG1と反転回路41
(インバータ)とシフト回路43とを含む。単位回路U1〜Umの各々におけるトランスミ
ッションゲートTG1の入力端は信号線34に対して共通に接続される。単位回路Uiのト
ランスミッションゲートTG1は、単位回路Uiに対するクロック信号CK1の入力の可否
を制御するスイッチとして機能する。すなわち、単位回路Uiのトランスミッションゲー
トTG1がオン状態に遷移すると信号線34のクロック信号CK1が単位回路Uiに入力さ
れ、トランスミッションゲートTG1がオフ状態に遷移すると単位回路Uiに対するクロッ
ク信号CK1の供給が停止される。トランスミッションゲートTG1から入力されたクロッ
ク信号CK1は経路C1を介してシフト回路43に供給される。
図4の反転回路41は、オン状態となったトランスミッションゲートTG1から出力さ
れるクロック信号CK1の論理レベルを反転し、この反転後の信号をクロック信号CK2と
して出力する。反転回路41から出力されたクロック信号CK2は経路C2を介してシフト
回路43に供給される。
各単位回路Uiのシフト回路43は、直列に接続されたクロックドインバータ431お
よびインバータ432と、入力端がインバータ432の出力端に接続されて出力端がイン
バータ432の入力端に接続されたクロックドインバータ433とを含むD型フリップフ
ロップである。奇数段目の各単位回路Uiにおいては、クロックドインバータ431にク
ロック信号CK1が供給されてクロックドインバータ433にクロック信号CK2が供給さ
れる。偶数段目の各単位回路Uiにおいては、クロックドインバータ431にクロック信
号CK2が供給されてクロックドインバータ433にクロック信号CK1が供給される。
以上の構成によって、単位回路Uiのシフト回路43は、図3の部分(a)に示す波形の制
御信号Gb[i]を出力する。さらに詳述すると、単位回路U1のシフト回路43は、制御回
路28から供給される開始パルスDYをクロック信号CK1・CK2に応じたタイミングに
遅延させた信号を制御信号Gb[1]として出力する。また、第2段目から第m段目までの各
単位回路Uiのシフト回路43は、その前段の単位回路Ui-1のシフト回路43から出力さ
れた制御信号Gb[i-1]をクロック信号CK1・CK2に応じたタイミングに遅延させた信号
を制御信号Gb[i]として出力する。
図11のようにクロック信号CK1・CK2の双方が外部から各単位回路Uに供給される
構成においては、クロック・スキュー(例えばクロック信号CK1・CK2の位相差)に起
因してシフトレジスタ80が誤動作する可能性がある。これに対し、本実施形態において
は、各単位回路Uiの反転回路41によってクロック信号CK2が生成されるから、クロッ
ク信号CK1・CK2の位相差が低減され、この結果としてクロック・スキューに起因した
誤動作は防止される。また、クロック信号CK2が入力される実装端子を削減できるとい
う利点もある。
ところで、本実施形態の開始パルスDYのパルス幅は可変である。すなわち、制御回路
28は、開始パルスDYを、例えば利用者による操作子への操作に応じたパルス幅に調整
する。図3の部分(b)には、図3の部分(a)と比較して開始パルスDYのパルス幅を増加さ
せた場合の制御信号Gb[1]〜Gb[m]の波形が図示されている。図3の部分(a)と部分(b)と
の対比から理解されるように、制御信号Gb[1]〜Gb[m]がアクティブレベルを維持する発
光期間Pは開始パルスDYのパルス幅が長いほど短縮される。したがって、開始パルスD
Yのパルス幅の制御によって素子アレイ部Aの全体的な明度が調整される。すなわち、素
子アレイ部Aに表示される画像は、図3の部分(b)の場合よりも同図の部分(a)の場合のほ
うが明るい。
以上のように発光期間Pの時間長が制御される構成においては、発光期間Pが長時間に
設定された場合と短時間に設定された場合とで、同時にアクティブレベル(ローレベル)
となる制御信号Gb[i]の総数が変化する。例えば図3の部分(a)の場合は、同図の部分(b)
の場合と比較すると、同時にアクティブレベルとなる制御信号Gb[i]の総数が多い。そし
て、例えばアクティブレベルの制御信号Gb[i]を出力する総ての単位回路Uiにクロック
信号CK1が供給される構成においては、アクティブレベルを維持する制御信号Gb[i]の
総数が多い場合に信号線34の負荷が過大となる。したがって、クロック・スキューに起
因して駆動期間制御回路30が誤動作するという問題や消費電力の低減が困難であるとい
う問題が顕在化する。
以上の問題を解決するために、本実施形態においては、制御信号Gb[i-1]と制御信号G
b[i]とが逆位相となる期間に限って単位回路Uiにクロック信号CK1が供給される。図4
の単位回路Uiが備えるXOR(排他的論理和)回路45は、制御信号Gb[i-1]と制御信
号Gb[i]とが逆位相であるか否かに応じてクロック信号CK1の入力の可否を判定する手
段である。すなわち、単位回路UiのXOR回路45は、前段の単位回路Ui-1からシフト
回路43に入力される制御信号Gb[i-1](単位回路U1については開始パルスDY)と当
該単位回路Uiのシフト回路43から出力される制御信号Gb[i]との排他的論理和を演算
し、この演算の結果に応じた制御信号CTLを出力する。
トランスミッションゲートTG1は、制御信号CTLがハイレベルである期間(制御信号CT
Lをインバータ46で反転した信号/CTLがローレベルである期間)にてオン状態となる。
すなわち、制御信号Gb[i-1]と制御信号Gb[i]とが逆位相となる期間に限ってクロック信
号CK1がトランスミッションゲートTG1を介して単位回路Uiに供給される。これに対
し、単位回路Uiの制御信号CTLがローレベルである期間(信号/CTLがハイレベルである期
間)においてはトランスミッションゲートTG1がオフ状態となるから、単位回路Uiに対
するクロック信号CK1の供給は停止される。以上の構成によれば、図3から理解される
ように信号線34からクロック信号CK1が同時に供給される単位回路Uiは1個に制限さ
れる。これによって信号線34の負荷が低減されるから、クロック・スキューに起因した
誤動作を防止するとともに、駆動期間制御回路30における消費電力を低減することがで
きる。
図4に示すように、各単位回路Uiは、制御信号CTLと信号/CTLとに応じてオン状態また
はオフ状態となるトランスミッションゲートTG2を含む。奇数段目の単位回路Uiにおけ
るトランスミッションゲートTG2は、低位側の電源電位VSSが供給される配線と経路C1
(トランスミッションゲートTGの出力端)との間に介在して両者の電気的な接続(導通
/非導通)を制御するスイッチである。偶数段目の単位回路Uiにおけるトランスミッシ
ョンゲートTG2は、高位側の電源電位VDDが供給される配線と経路C1との電気的な接続
を制御する。トランスミッションゲートTG2は、トランスミッションゲートTG1がオン
状態となる期間にてオフ状態となり、トランスミッションゲートTG1がオフ状態となる
期間にてオン状態を維持する。トランスミッションゲートTG2がオン状態に遷移すると
、経路C1は電源電位(VSSまたはVDD)に維持される。
トランスミッションゲートTG2が設置されない構成においては、トランスミッション
ゲートTG1がオフ状態に変化すると経路C1・C2が電気的なフローティング状態となる
。したがって、ノイズなどの外乱によって経路C1・C2の電位が変動した場合にはシフト
回路43が誤動作する可能性がある。本実施形態においては、トランスミッションゲート
TG1がオフ状態を維持する期間にトランスミッションゲートTG2がオン状態に遷移して
経路C1・C2は定電位(VSSまたはVDD)に固定されるから、シフト回路43の誤動作を
防止できるという利点がある。さらに、本実施形態においてはトランスミッションゲート
TG1・TG2が共通の信号CTL・/CTLによって制御されるから、各々が個別の信号によっ
て制御される構成と比較して単位回路Uiの構成が簡素化されるという利点がある。
<B:第2実施形態>
次に、本発明の第2実施形態について説明する。なお、以下に例示する各形態において
作用や機能が第1実施形態と共通する要素については同一の符号を付してその詳細な説明
を適宜に省略する。
図5は、本実施形態に係る駆動期間制御回路30の構成を示す回路図である。同図の駆
動期間制御回路30における単位回路Uiは、第1実施形態の構成に加えて、4個のイン
バータ(541・542・551・552)と位相補正回路50とを含む。経路C1上に
配置されたインバータ541・551は、クロック信号CK1を増幅・整形するためのバ
ッファとして機能する。同様に、経路C2上に配置されたインバータ542・552はク
ロック信号CK2を増幅・整形する。位相補正回路50からみてシフト回路43側に配置
されたインバータ551・552は、インバータ541・542と比較して、各々を構成
するトランジスタのサイズが大きい。この構成によれば各インバータ551・552に充
分な電流供給能力が確保されるから、例えばクロックドインバータ431や433の容量
が大きい場合であっても各々を迅速かつ高精度に制御することが可能となる。
位相補正回路50は、クロック信号CK1とCK2とを逆位相に維持するための手段であ
り、入力端が経路C1に接続されて出力端が経路C2に接続されたインバータ51と、入力
端が経路C2に接続されて出力端が経路C1に接続されたインバータ52とを含む。以上の
構成によれば、何らかの不具合によってクロック信号CK1とCK2とが同位相(同じ論理
レベル)となった場合に、相互に逆位相となるように各々の位相が補正される。したがっ
て、クロック信号CK1とCK2との位相差に起因したシフト回路43の誤動作を第1実施
形態よりも確実に防止できるという利点がある。
<C:第3実施形態>
以上の各形態に係る駆動期間制御回路30は発光装置D以外の電気光学装置にも適用さ
れる。本実施形態は、太陽光や照明光などの外光の受光量に応じた電気信号を生成する受
光装置(センサ装置)に第1実施形態と同様の駆動期間制御回路30を適用した形態であ
る。
本実施形態の受光装置は、図1と同様に、X方向およびY方向にわたってマトリクス状
に配列された複数の画素回路P2を含む。図6は、各画素回路P2の構成を示す回路図であ
る。なお、同図においてはひとつの列に属する3行分(第(i-1)行〜第(i+1)行)の画素回
路P2のみが便宜的に図示されている。画素回路P2は、受光量に応じて電気的な特性(抵
抗値)が変化するフォトダイオード素子などの受光素子E2を含む。
図6に示すように、画素回路P2は、ゲートの電位VGに応じた電流(以下「検出電流」
という)IDTを生成する検出トランジスタRDTを含む。検出トランジスタRDTは、電源電
位VELが供給される電源線とデータ線14との間に介在するnチャネル型のトランジスタ
である。検出トランジスタRDTのゲートと受光素子E2との間には、両者間の電気的な接
続を制御する駆動制御トランジスタRCTが介在する。駆動制御トランジスタRCTのゲート
には駆動期間制御回路30から制御信号Gb[i]が供給される。
検出トランジスタRDTとデータ線14との間には、両者間の電気的な接続を制御するト
ランジスタRSW1が介在する。トランジスタRSW1のゲートには走査線駆動回路22から走
査信号Ga[i]が供給される。また、検出トランジスタRDTのゲートと電源線(検出トラン
ジスタRDTのドレイン)との間には容量CとトランジスタRSW2とが並列に介挿される。
トランジスタRSW2のゲートは初期化線15に接続される。初期化線15には初期化回路
(図示略)から初期化信号Gc[i]が供給される。
図7は、受光装置の動作を示すタイミングチャートである。同図に示すように、走査線
駆動回路22から出力される走査信号Ga[1]〜Ga[m]は、第1実施形態と同様に水平走査
期間Hごとに順番にアクティブレベル(ハイレベル)となる。駆動期間制御回路30から
第i行目の制御線13に出力される制御信号Gb[i]は、走査信号Ga[i]がハイレベルとな
る水平走査期間Hの開始前の期間(以下「露光期間」という)PAにてアクティブレベル
(ハイレベル)となり、それ以外の期間にてローレベルを維持する。また、初期化信号G
c[i]は、制御信号Gb[i]がハイレベルとなる露光期間PAの開始前の初期化期間PBにてハ
イレベルとなり、それ以外の期間にてローレベルとなる。
次に、第i行に属する第j列目の画素回路P2に特に注目して受光装置の動作を説明す
る。まず、初期化期間PBにて初期化信号Gc[i]がハイレベルに遷移するとトランジスタ
RSW2がオン状態となる。したがって、図7に示すように、検出トランジスタRDTのゲー
トの電位VGは電源電位VELに初期化される。
初期化期間PBの経過後の露光期間PAにて制御信号Gb[i]がハイレベルに変化すると、
駆動制御トランジスタRCTがオン状態に遷移する。これによって受光素子E2には受光量
に応じた電流が流れるから、検出トランジスタRDTのゲートの電位VGは、図7に示すよ
うに、直前の初期化期間PBにて設定された電源電位VELから受光素子E2による受光量に
応じた速度で徐々に低下し、制御信号Gb[i]がローレベルに変化した時点(露光期間PA
の終点)で容量Cによって維持される。すなわち、露光期間PAの終点における電位VGは
、受光素子E2による受光量(電位VGの変化の速度)と露光期間PAの時間長とに応じて
決定される。
走査信号Ga[i]がハイレベルに変化してトランジスタRSW1がオン状態に遷移すると、
直前の露光期間PAで設定された電位VGに応じた電流量の検出電流IDTが検出トランジス
タRDTとトランジスタRSW1とを経由してデータ線14に流れ込む。すなわち、各行の受
光素子E2による受光量に応じた検出電流IDTが水平走査期間Hごとに時分割でデータ線
14に出力される。データ線駆動回路24はデータ線14に流れる検出電流IDTの電流値
に応じたデータを外部に出力する。データ線駆動回路24から出力されるデータの解析に
よって各受光素子E2による受光量が検出される。
以上の形態においては、制御信号Gb[i]がハイレベルとなる露光期間PAの時間長が長
いほど、電位VGのダイナミックレンジ(検出電流IDTの電流値のダイナミックレンジ)
を拡大することが可能である。例えば図7に示すように、露光時間PAが時間長T1に設定
された場合に電位VGが変化する範囲R1は、露光期間PAが時間長T1よりも短い時間長T
0であるときの電位VGの範囲R0よりも広い。
本実施形態において制御信号Gb[i]がハイレベルとなる露光期間PAの時間長は、検出
電流IDTが所望のダイナミックレンジで変化するように適宜に制御される。露光期間PA
の制御は、第1実施形態と同様に、例えば利用者による操作子への操作に応じて制御回路
28が開始パルスDYのパルス幅を調整することで実現される。なお、露光時間PAが余
りに長い場合には受光素子E2による受光量に拘わらず電位VGが最低値に収束する。した
がって、露光時間PAの時間長は、受光素子E2の受光量が最大となる場合(露光期間PA
における電位VGの変化率が高い場合)であっても露光期間PAの終点にて電位VGが収束
しないように決定される。
以上のように、本実施形態においても、同時にアクティブレベルとなる制御信号Gb[i]
の総数は変化する。しかしながら、第1実施形態と同様に、駆動期間制御回路30の単位
回路Uiには、制御信号Gb[i]と制御信号Gb[i-1]とが逆位相となる場合に限ってクロッ
ク信号CK1が供給されるから、信号線34の負荷やこれに起因したクロック・スキュー
を抑制して駆動期間制御回路30の誤動作を抑制することが可能である。また、駆動期間
制御回路30の構成は第1実施形態と同様であるから、本実施形態においても第1実施形
態と同様の効果が奏される。なお、本実施形態においては第2実施形態に係る駆動期間制
御回路30を採用してもよい。
<D:変形例>
以上の各形態には様々な変形を加えることができる。具体的な変形の態様を例示すれば
以下の通りである。なお、以下の各態様を適宜に組み合わせてもよい。
(1)変形例1
単位回路Uiにクロック信号CK1が入力される期間を決定する手段はXOR回路45に
限定されない。例えば、図4のXOR回路45の代わりにNOR(否定論理和)回路を配
置した構成も採用される。この構成において、制御信号Gb[i]およびGb[i-1]の少なくと
も一方がアクティブレベルとなる期間にて選択的にトランスミッションゲートTGがオン
状態となって単位回路Uiにクロック信号CK1が供給される。以上のように、クロック信
号CK1が単位回路Uiに供給される期間を設定する方法の如何は本発明において不問であ
る。
(2)変形例2
画素回路(P1・P2)の構成は任意である。例えば、図2においてはデータ線14に流
れるデータ電流S[j]の電流値に応じて発光素子E1の輝度が設定される電流プログラミン
グ方式の画素回路P1を例示したが、データ線14の電位に応じて発光素子E1の輝度が設
定される電圧プログラミング方式の画素回路を採用してもよい。また、単位回路の構成も
任意である。例えば、図4に例示したシフト回路43としてRS型のフリップフロップを
採用してもよい。
(3)変形例3
有機発光ダイオード素子は発光素子E1の例示に過ぎない。無機EL材料からなる発光
層を含む発光素子や発光ダイオード素子、電界放出(FE:Field Emission)素子、表
面導電型電子放出(SE:Surface-conduction Electron-emitter)素子、弾道電子放出
(BS:Ballistic electron Surface emitting)素子など様々な発光素子を備えた発
光装置に本発明を適用することができる。
<E:応用例>
次に、本発明に係る電子機器について説明する。図8から図10には、以上に例示した
発光装置Dを表示装置として採用した電子機器の形態が図示されている。
図8は、発光装置Dを採用したモバイル型のパーソナルコンピュータの構成を示す斜視
図である。パーソナルコンピュータ2000は、各種の画像を表示する発光装置Dと、電
源スイッチ2001やキーボード2002が設置された本体部2010とを具備する。発
光装置Dは有機発光ダイオード素子を発光素子E1として使用しているので、視野角が広
く見易い画面を表示できる。
図9は、発光装置Dを適用した携帯電話機の構成を示す斜視図である。携帯電話機30
00は、複数の操作ボタン3001およびスクロールボタン3002と、各種の画像を表
示する発光装置Dとを備える。スクロールボタン3002を操作することによって、発光
装置Dに表示される画面がスクロールされる。
図10は、発光装置Dを適用した携帯情報端末(PDA:Personal Digital Assistant
s)の構成を示す斜視図である。情報携帯端末4000は、複数の操作ボタン4001お
よび電源スイッチ4002と、各種の画像を表示する発光装置Dとを備える。電源スイッ
チ4002を操作すると、住所録やスケジュール帳といった様々な情報が発光装置Dに表
示される。
なお、本発明に係る発光装置が適用される電子機器としては、図8から図10に示した
機器のほか、デジタルスチルカメラ、テレビ、ビデオカメラ、カーナビゲーション装置、
ページャ、電子手帳、電子ペーパー、電卓、ワードプロセッサ、ワークステーション、テ
レビ電話、POS端末、プリンタ、スキャナ、複写機、ビデオプレーヤ、タッチパネルを
備えた機器等などが挙げられる。また、本発明に係る発光装置の用途は画像の表示に限定
されない。例えば、光書込型のプリンタや電子複写機といった画像形成装置においては、
用紙などの記録材に形成されるべき画像に応じて感光体を露光する光ヘッド(書込ヘッド
)が使用されるが、この種の光ヘッドとしても本発明の発光装置は利用される。
第1実施形態に係る発光装置の構成を示すブロック図である。 発光装置の動作を説明するためのタイミングチャートである。 画素回路の構成を示す回路図である。 駆動期間制御回路の構成を示す回路図である。 第2実施形態に係る駆動期間制御回路の構成を示す回路図である。 第3実施形態に係る受光装置の構成を示す回路図である。 受光装置の動作を説明するためのタイミングチャートである。 本発明に係る電子機器の形態を示す斜視図である。 本発明に係る電子機器の形態を示す斜視図である。 本発明に係る電子機器の形態を示す斜視図である。 従来のシフトレジスタの構成を示すブロック図である。
符号の説明
D……発光装置、A……素子アレイ部、E……発光素子、E2……受光素子、12……走
査線、13……制御線、14……データ線、15……初期化線、22……走査線駆動回路
、24……データ線駆動回路、28……制御回路、30……駆動期間制御回路、U1〜Um
……単位回路、32……シフトレジスタ、34……信号線、TG1,TG2……トランスミ
ッションゲート、41……反転回路、43……シフト回路、45……XOR回路、50…
…位相補正回路。

Claims (6)

  1. 開始パルスを順次にシフトして出力する複数の単位回路が直列に接続されたシフトレジ
    スタと、
    前記各単位回路からの出力に応じた期間にて発光素子を発光させる複数の駆動制御素子
    と、
    第1クロック信号が供給される信号線とを具備し、
    前記複数の単位回路の各々は、
    前段の単位回路からの入力を第1クロック信号と第2クロック信号とに応じたタイミン
    グで順次に出力するシフト回路と、
    前記信号線に供給される第1クロック信号を前記シフト回路の入力と出力とに応じた期
    間にて選択的に前記シフト回路に供給する第1スイッチと、
    前記第1スイッチから出力される第1クロック信号を反転した第2クロック信号を前記
    シフト回路に供給する反転回路と
    を含む発光装置。
  2. 前記複数の単位回路の各々は、前記第1スイッチから出力される第1クロック信号の経
    路に対し、前記第1スイッチがオフ状態となる期間にて定電位を供給する第2スイッチを
    含む
    請求項1に記載の発光装置。
  3. 前記複数の単位回路の各々は、前記シフト回路の入力と出力とを演算する論理演算回路
    を含み、
    前記第1スイッチと前記第2スイッチとは、前記論理演算回路からの出力に応じて制御
    される
    請求項2に記載の発光装置。
  4. 前記複数の単位回路の各々は、第1スイッチから出力される第1クロック信号と前記反
    転回路から出力される第2クロック信号との位相差を抑制する位相補正回路を含む
    請求項1から請求項3の何れかに記載の発光装置。
  5. 前記開始パルスのパルス幅を制御する制御回路
    を具備する請求項1から請求項4の何れかに記載の発光装置。
  6. 請求項1から請求項5の何れかに記載の発光装置を具備する電子機器。
JP2006139307A 2006-05-18 2006-05-18 発光装置および電子機器 Withdrawn JP2007310158A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139307A JP2007310158A (ja) 2006-05-18 2006-05-18 発光装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139307A JP2007310158A (ja) 2006-05-18 2006-05-18 発光装置および電子機器

Publications (1)

Publication Number Publication Date
JP2007310158A true JP2007310158A (ja) 2007-11-29

Family

ID=38843070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139307A Withdrawn JP2007310158A (ja) 2006-05-18 2006-05-18 発光装置および電子機器

Country Status (1)

Country Link
JP (1) JP2007310158A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130128675A (ko) * 2012-05-17 2013-11-27 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
JP2018072825A (ja) * 2016-10-25 2018-05-10 エルジー ディスプレイ カンパニー リミテッド 有機発光表示装置およびその駆動装置
CN114822370A (zh) * 2021-01-19 2022-07-29 郑锦池 发光组件及包含其的发光装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130128675A (ko) * 2012-05-17 2013-11-27 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
CN103426398A (zh) * 2012-05-17 2013-12-04 乐金显示有限公司 有机发光二极管显示器及其驱动方法
JP2013242562A (ja) * 2012-05-17 2013-12-05 Lg Display Co Ltd 有機発光ダイオード表示装置及びその駆動方法
US9159268B2 (en) 2012-05-17 2015-10-13 Lg Display Co., Ltd. Organic light emitting diode display and its driving method
KR101883922B1 (ko) * 2012-05-17 2018-08-01 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 구동방법
JP2018072825A (ja) * 2016-10-25 2018-05-10 エルジー ディスプレイ カンパニー リミテッド 有機発光表示装置およびその駆動装置
US10593258B2 (en) 2016-10-25 2020-03-17 Lg Display Co., Ltd. Organic light emitting display device including EM driver with simplified structure and for driving the same
CN114822370A (zh) * 2021-01-19 2022-07-29 郑锦池 发光组件及包含其的发光装置

Similar Documents

Publication Publication Date Title
JP4655800B2 (ja) 電気光学装置および電子機器
JP5457826B2 (ja) レベルシフト回路、信号駆動回路、表示装置および電子機器
JP2008083680A (ja) 電気光学装置および電子機器
KR101555546B1 (ko) 반도체 디바이스, 표시 패널 및 전자 기기
US9100998B2 (en) Light emitting apparatus, electronic equipment and method of driving pixel circuit that suppress light emission
JP4207988B2 (ja) 発光装置、画素回路の駆動方法および駆動回路
JP4882536B2 (ja) 電子回路及び電子機器
JP5842264B2 (ja) 表示装置、及び、電子機器
JP4293227B2 (ja) 電子回路、電子装置、その駆動方法、電気光学装置および電子機器
US8508461B2 (en) Electro-optical device, electronic apparatus, and method of driving electro-optical device with variable subfield driving for temperature compensation
JP5011682B2 (ja) 電子装置および電子機器
US20100328364A1 (en) Method of driving light emitting device, light emitting device and electronic apparatus
JP4893207B2 (ja) 電子回路、電気光学装置および電子機器
JP2007310158A (ja) 発光装置および電子機器
JP6754786B2 (ja) 転送回路、シフトレジスタ、ゲートドライバ、表示パネル、およびフレキシブル基板
JP4665525B2 (ja) レベルシフタ、レベルシフタの駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器
JP2011085619A (ja) 電気光学装置および電子機器
JP2007096594A (ja) 信号保持回路、駆動回路、電気光学装置および電子機器
JP4661329B2 (ja) 表示システム、表示コントローラ及び表示制御方法
JP2009177450A (ja) 電気回路、電気光学装置、電子機器、および電気回路の駆動方法
JP2007279412A (ja) 電気光学装置、その駆動方法および電子機器。
JP4754872B2 (ja) 半導体装置
JP2006308862A (ja) エレクトロルミネッセンス表示装置
CN113614819A (zh) 显示装置
JP2009204802A (ja) 電気光学装置、その駆動方法および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110125