JP2007303754A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007303754A
JP2007303754A JP2006133425A JP2006133425A JP2007303754A JP 2007303754 A JP2007303754 A JP 2007303754A JP 2006133425 A JP2006133425 A JP 2006133425A JP 2006133425 A JP2006133425 A JP 2006133425A JP 2007303754 A JP2007303754 A JP 2007303754A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133425A
Other languages
Japanese (ja)
Other versions
JP2007303754A5 (en
JP4749228B2 (en
Inventor
Koji Ota
孝二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006133425A priority Critical patent/JP4749228B2/en
Publication of JP2007303754A publication Critical patent/JP2007303754A/en
Publication of JP2007303754A5 publication Critical patent/JP2007303754A5/ja
Application granted granted Critical
Publication of JP4749228B2 publication Critical patent/JP4749228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of minimizing the enlargement of a device size and an increase of cost to obtain an instantaneous high heating capacity in an instantaneous hot water supply operation. <P>SOLUTION: This heat pump type water heater comprises a CO<SB>2</SB>cycle 1 for circulating a CO<SB>2</SB>refrigerant, and a R410A cycle 2 for circulating a R410A refrigerant having compressibility lower than the CO<SB>2</SB>refrigerant. The CO<SB>2</SB>cycle 1 is operated in executing a hot water storing operation for storing hot water heated by a water heat exchanger 32 exchanging heat between the CO<SB>2</SB>refrigerant or R410A refrigerant and the water, in a hot water storage tank 31, and the R410A cycle 2 is operated in executing the instantaneous hot water supply operation for supplying the hot water heated by the water heat exchanger 32 from a prescribed hot water supply port. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,熱交換効率やエネルギ消費効率などの特性の異なる冷媒を用いた二つのヒートポンプサイクルを具備するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like. The present invention relates to a heat pump type hot water heater having two heat pump cycles using refrigerants having different characteristics.

従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前記ヒートポンプ式給湯機では,前記冷媒との熱交換により加熱された温水を給湯口から直接給湯する瞬間給湯運転や,前記冷媒との熱交換異より加熱された温水を貯湯タンクに貯留するための貯湯運転が実行される。なお,前記瞬間給湯運転では,水を瞬時に加熱して給湯する必要があるため瞬間的な高い加熱能力が必要となるが,前記貯湯運転では,徐々に温水を貯湯タンクに貯留すればよいので瞬間的な加熱能力は比較的低くてもかまわない。
ここに,前記ヒートポンプ式給湯機で用いられる冷媒は,例えば炭酸ガス冷媒やHFC冷媒などである。前記炭酸ガス冷媒は,その冷媒の特性として水を高温(例えば90℃程度)まで加熱することができる。一方,前記HFC冷媒は,冷媒の特性上比較的低温(例えば65℃程度)までしか水を加熱することができない。しかし,例えば空調用機器や温水暖房用機器などに用いた場合,エネルギ消費効率(COP)は,前記炭酸ガス冷媒を用いるよりも前記HFC冷媒を用いる方が優れている。
2. Description of the Related Art Conventionally, a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known. In the heat pump type hot water heater, an instantaneous hot water supply operation in which hot water heated by heat exchange with the refrigerant is directly supplied from a hot water outlet, or hot water heated by a heat exchange difference with the refrigerant is stored in a hot water storage tank. Hot water storage operation is executed. In the instantaneous hot water supply operation, it is necessary to instantaneously heat and supply hot water, so instantaneously high heating capacity is required. However, in the hot water storage operation, warm water should be gradually stored in the hot water storage tank. The instantaneous heating capacity may be relatively low.
Here, the refrigerant used in the heat pump type water heater is, for example, a carbon dioxide refrigerant or an HFC refrigerant. The carbon dioxide gas refrigerant can heat water to a high temperature (for example, about 90 ° C.) as a characteristic of the refrigerant. On the other hand, the HFC refrigerant can only heat water to a relatively low temperature (for example, about 65 ° C.) due to the characteristics of the refrigerant. However, when used in, for example, air conditioning equipment and hot water heating equipment, the energy consumption efficiency (COP) is superior to using the HFC refrigerant rather than using the carbon dioxide refrigerant.

一方,特許文献1には,CO2冷媒(炭酸ガス冷媒の一例)が用いられたヒートポンプサイクル(以下「CO2サイクル」という)と,R410A冷媒(HFC冷媒の一例)が用いられたヒートポンプサイクル(以下「R410Aサイクル」という)とを併せ持つヒートポンプ式給湯システムが示されている。このヒートポンプ式給湯システムでは,給湯する温水の温度に応じて前記CO2サイクル及び前記R410Aサイクルのいずれか一方が稼働される。
特開2005−83585号公報
On the other hand, Patent Document 1 discloses a heat pump cycle (hereinafter referred to as “CO 2 cycle”) using a CO 2 refrigerant (an example of a carbon dioxide gas refrigerant) and a heat pump cycle (an example of an HFC refrigerant) using an R410A refrigerant (an example of an HFC refrigerant). Hereinafter, a heat pump type hot water supply system having both “R410A cycle”) is shown. In this heat pump hot water supply system, either the CO 2 cycle or the R410A cycle is operated according to the temperature of hot water to be supplied.
Japanese Patent Laying-Open No. 2005-83585

ところで,仮に前記CO2サイクルを用いて前記瞬間給湯運転を行う場合には,その瞬間給湯運転において高い給湯性能(給湯温度や給湯量など)を得るために,該CO2サイクルの圧縮機を高出力可能に構成して,瞬間的な高い加熱能力を得る必要がある。
しかしながら,前記CO2冷媒は前記R410A冷媒よりも高い圧力で圧縮されて用いられるため,該CO2冷媒が循環される前記CO2サイクルで用いられる圧縮機,室外熱交換器,水熱交換器をはじめとするサイクル関連部品には,前記R410Aサイクルで用いられる圧縮機,室外熱交換器,水熱交換器をはじめとするサイクル関連部品よりも高い耐圧性能が要求される。そのため,前記CO2サイクルの圧縮機を高出力可能に構成する場合には,前記R410Aサイクルの圧縮機を高出力可能に構成する場合に比べて,圧縮機,室外熱交換器,水熱交換器をはじめとするサイクル関連部品のサイズ,材料の厚みが大きくなり,また,コストも高くなる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,瞬間給湯運転において瞬間的な高い加熱能力を得るための装置サイズの拡大やコストの増大をできる限り抑制することのできるヒートポンプ式給湯機を提供することにある。
By the way, if the instantaneous hot water supply operation is performed using the CO 2 cycle, in order to obtain high hot water supply performance (hot water supply temperature, hot water supply amount, etc.) in the instantaneous hot water supply operation, the compressor of the CO 2 cycle is increased. It is necessary to configure it so that it can output and to obtain a high instantaneous heating capacity.
However, since the CO 2 refrigerant is compressed and used at a pressure higher than that of the R410A refrigerant, a compressor, an outdoor heat exchanger, and a water heat exchanger used in the CO 2 cycle in which the CO 2 refrigerant is circulated are used. The cycle-related parts such as the first are required to have higher pressure resistance than the cycle-related parts including the compressor, the outdoor heat exchanger, and the water heat exchanger used in the R410A cycle. Therefore, when the CO 2 cycle compressor is configured to be capable of high output, the compressor, the outdoor heat exchanger, and the water heat exchanger are configured as compared with the case where the R410A cycle compressor is configured to be capable of high output. This increases the size and material thickness of the cycle-related parts such as and increases the cost.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to suppress as much as possible the increase in the size of the apparatus and the increase in cost for obtaining instantaneous high heating capacity in the instantaneous hot water supply operation. It is in providing the heat pump type hot water heater which can be used.

上記目的を達成するために本発明は,第一の冷媒が少なくとも第一の圧縮機及び第一の膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒よりも圧力が低い第二の冷媒が,少なくとも第二の圧縮機及び第二の膨張器を経て循環される第二のヒートポンプサイクルと,前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,前記水熱交換器で加熱された温水を貯留する貯湯タンクと,を備えてなり,前記第一のヒートポンプサイクルが,前記水熱交換器で加熱された温水を前記貯湯タンクに貯留する貯湯運転の実行時に稼働され,前記第二のヒートポンプサイクルが,前記水熱交換器で加熱された温水を所定の給湯口から給湯する瞬間給湯運転の実行時に稼働されてなることを特徴とするヒートポンプ式給湯機として構成される。ここに,例えば前記第一の冷媒は炭酸ガス冷媒であり,前記第二の冷媒はHFC冷媒である。
このような構成によれば,前記第一の冷媒よりも圧力が低い前記第二の冷媒が循環される前記第二のヒートポンプサイクルの前記第二の圧縮機を高出力可能に構成することで,前記瞬間給湯運転において瞬間的な高い加熱能力を得ることができる。したがって,前記第二の圧縮機よりも高い耐圧性能が要求される前記第一の圧縮機を高出力可能に構成する場合に比べて,装置サイズの拡大やコストの増大を抑制することができる。
To achieve the above object, the present invention provides a first heat pump cycle in which a first refrigerant is circulated through at least a first compressor and a first expander, and a pressure lower than that of the first refrigerant. Heat is generated between the second heat pump cycle in which the second refrigerant is circulated through at least the second compressor and the second expander, and the first refrigerant and / or the second refrigerant and water. A water heat exchanger for exchanging and a hot water storage tank for storing hot water heated by the water heat exchanger, wherein the first heat pump cycle supplies hot water heated by the water heat exchanger. The hot water storage tank is operated when a hot water storage operation is performed, and the second heat pump cycle is operated when an instantaneous hot water supply operation for supplying hot water heated by the water heat exchanger from a predetermined hot water supply port is performed. He is characterized by Configured as a pump-type water heater. Here, for example, the first refrigerant is a carbon dioxide refrigerant, and the second refrigerant is an HFC refrigerant.
According to such a configuration, by configuring the second compressor of the second heat pump cycle in which the second refrigerant whose pressure is lower than that of the first refrigerant is circulated, the high output can be configured, In the instantaneous hot water supply operation, an instantaneous high heating capacity can be obtained. Therefore, compared with the case where the first compressor, which requires higher pressure resistance than the second compressor, is configured to be capable of high output, it is possible to suppress an increase in device size and cost.

また,前記第一の冷媒及び前記第二の冷媒と室外空気との間で熱交換を行う共通の室外空気熱交換器を更に備えてなる構成では,前記室外空気熱交換器において前記第二の冷媒と室外空気との間で熱交換が行われる熱交換面積が,前記第一の冷媒と室外空気との間で熱交換が行われる熱交換面積よりも大きい関係にあることが望ましい。具体的には,前記室外空気熱交換器内において前記第二の冷媒が流通する配管が,該室外空気熱交換器内において前記第一の冷媒が流通する配管よりも長いことが考えられる。
これにより,前記第二の圧縮機を高出力可能に構成した場合に,前記第二のヒートポンプサイクルによる瞬間的な加熱能力をより効果的に高めることができる。
また,前記水熱交換器が,前記第一の冷媒及び前記第二の冷媒と水との間で熱交換を行う共通の水熱交換器である構成では,前記水熱交換器において前記第二の冷媒と水との間で熱交換が行われる熱交換面積が,前記第一の冷媒と水との間で熱交換が行われる熱交換面積よりも大きい関係にあることが望ましい。具体的には,前記水熱交換器内において前記第二の冷媒が流通する配管が,該水熱交換器内において前記第一の冷媒が流通する配管よりも長いことが考えられる。
これにより,前記第二の圧縮機を高出力可能に構成した場合に,前記第二のヒートポンプサイクルによる瞬間的な加熱能力をより効果的に高めることができる。
In the configuration further comprising a common outdoor air heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant and outdoor air, the outdoor air heat exchanger includes the second air heat exchanger. It is desirable that the heat exchange area where heat is exchanged between the refrigerant and the outdoor air is larger than the heat exchange area where heat is exchanged between the first refrigerant and the outdoor air. Specifically, the pipe through which the second refrigerant flows in the outdoor air heat exchanger may be longer than the pipe through which the first refrigerant flows in the outdoor air heat exchanger.
Thereby, when the second compressor is configured to be capable of high output, the instantaneous heating capacity by the second heat pump cycle can be more effectively increased.
In the configuration in which the water heat exchanger is a common water heat exchanger that performs heat exchange between the first refrigerant and the second refrigerant and water, the water heat exchanger includes the second water heat exchanger. It is desirable that the heat exchange area where heat is exchanged between the refrigerant and water is larger than the heat exchange area where heat is exchanged between the first refrigerant and water. Specifically, it is conceivable that the pipe through which the second refrigerant flows in the water heat exchanger is longer than the pipe through which the first refrigerant flows in the water heat exchanger.
Thereby, when the second compressor is configured to be capable of high output, the instantaneous heating capacity by the second heat pump cycle can be more effectively increased.

ところで,前記瞬間給湯運転の実行時における前記第二のヒートポンプサイクルの加熱負荷が所定の大きさ以上である場合には,そのことを条件に,前記第一のヒートポンプサイクルを共に稼働することが望ましい。これにより,前記第二のヒートポンプサイクルの加熱負荷が,該第二のヒートポンプサイクルの加熱能力を超える場合に,その足りない分の加熱負荷を前記第一のヒートポンプサイクルに分散することができる。例えば,前記第二のヒートポンプサイクルが,空気調和機,風呂回路及び床暖房装置のいずれか一又は複数で兼用される構成であり,これらの稼働と前記瞬間給湯運転とが同時に実行され,前記第二のヒートポンプサイクルに所定の大きさ以上の加熱負荷が作用する場合に好適である。   By the way, when the heating load of the second heat pump cycle at the time of execution of the instantaneous hot water supply operation is not less than a predetermined magnitude, it is desirable to operate the first heat pump cycle together on that condition. . Thereby, when the heating load of the second heat pump cycle exceeds the heating capacity of the second heat pump cycle, the insufficient heating load can be distributed to the first heat pump cycle. For example, the second heat pump cycle is configured to be shared by any one or more of an air conditioner, a bath circuit, and a floor heating device, and these operations and the instantaneous hot water supply operation are performed simultaneously, This is suitable when a heating load of a predetermined size or more acts on the second heat pump cycle.

本発明によれば,前記第一の冷媒よりも圧力が低い前記第二の冷媒が循環される前記第二のヒートポンプサイクルの前記第二の圧縮機を高出力可能に構成することで,前記瞬間給湯運転において瞬間的な高い加熱能力を得ることができる。したがって,前記第二の圧縮機よりも高い耐圧性能が要求される前記第一の圧縮機を高出力可能に構成する場合に比べて,装置サイズの拡大やコストの増大を抑制することができる。   According to the present invention, the second compressor of the second heat pump cycle in which the second refrigerant whose pressure is lower than that of the first refrigerant is circulated is configured to enable high output, thereby Instantaneous high heating capacity can be obtained in hot water supply operation. Therefore, compared with the case where the first compressor, which is required to have higher pressure resistance than the second compressor, is configured to be capable of high output, it is possible to suppress an increase in device size and cost.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図である。
図1に示すように,前記ヒートポンプ式給湯機Xは,炭酸ガス冷媒の一例であるCO2冷媒(第一の冷媒の一例)が循環されるヒートポンプサイクル1(第一のヒートポンプサイクルの一例,以下「CO2サイクル1」という)と,前記炭酸ガス冷媒よりも圧力が低いHFC冷媒の一例であるR410A冷媒(第二の冷媒の一例)が循環されるヒートポンプサイクル2(第二のヒートポンプサイクルの一例,以下「R410Aサイクル2」という)と,流水経路30a〜30iと,循環ポンプ34と,前記CO2サイクル1及び前記R410Aサイクル2に共通の水熱交換器32と,前期水熱交換器32で加熱された温水を貯留する貯湯タンク31と,前記CO2サイクル1及び前記R410Aサイクル2に共通の室外空気熱交換器13と,流水切換弁41〜45と,風呂回路7と,を備えて概略構成されている。また,前記ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有してなり,当該ヒートポンプ式給湯機Xを統括的に制御する不図示の制御部を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a heat pump type hot water heater X according to the embodiment of the present invention.
As shown in FIG. 1, the heat pump type hot water heater X includes a heat pump cycle 1 in which a CO 2 refrigerant (an example of a first refrigerant), which is an example of a carbon dioxide refrigerant, is circulated (an example of a first heat pump cycle, hereinafter). and referred to as "CO 2 cycle 1"), an example of the carbon dioxide gas an example of R410A refrigerant (second refrigerant which is an example of a low HFC refrigerant pressure than refrigerant) is the heat pump cycle 2 (the second heat pump cycle to be circulated , Hereinafter referred to as “R410A cycle 2”), flowing water paths 30a to 30i, circulation pump 34, water heat exchanger 32 common to the CO 2 cycle 1 and R410A cycle 2, and the preceding water heat exchanger 32 a hot water storage tank 31 for storing heated hot water, a common outdoor air heat exchanger 13 to the CO 2 cycle 1 and the R410A cycle 2, the flow A switching valve 41 to 45 are schematic configuration includes a bath circuit 7, a. The heat pump water heater X includes a CPU, a RAM, a ROM, and the like, and includes a control unit (not shown) that controls the heat pump water heater X in an integrated manner.

ここに,前記CO2冷媒は,前記R410A冷媒と異なる特性を持ち,冷媒の特性として水を高温(90℃程度)まで加熱することができるが,エネルギ消費効率(COP)が比較的低い。また,前記R410A冷媒は,前記CO2冷媒と異なる特性を持ち,該CO2冷媒に比べて水を低温(65℃程度)までしか加熱することができないが,エネルギ消費効率(COP)は高いので,比較的低い沸上げ温度に適している。後述するように,前記ヒートポンプ式給湯機Xでは,前記CO2冷媒が循環されるCO2サイクル1が主に貯湯運転で用いられ,前記R410A冷媒が循環されるR410Aサイクル2が主に瞬間給湯運転で用いられる。
なお,前記R410A冷媒の他の例としては,例えばR407C/E,R404A,R507A,R134a等がある。また,前記ヒートポンプ式給湯機Xに用いられる二つの異なる冷媒は,炭酸ガス冷媒及びHFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が異なる冷媒を用いればよい。
Here, the CO 2 refrigerant has different characteristics from the R410A refrigerant and can heat water to a high temperature (about 90 ° C.) as a characteristic of the refrigerant, but has a relatively low energy consumption efficiency (COP). The R410A refrigerant has characteristics different from those of the CO 2 refrigerant, and can heat water only to a low temperature (about 65 ° C.) as compared with the CO 2 refrigerant. However, the energy consumption efficiency (COP) is high. , Suitable for relatively low boiling temperature. As will be described later, in the heat pump type water heater X, the CO 2 cycle 1 in which the CO 2 refrigerant is circulated is mainly used for hot water storage operation, and the R410A cycle 2 in which the R410A refrigerant is circulated is mainly an instantaneous hot water supply operation. Used in
Other examples of the R410A refrigerant include R407C / E, R404A, R507A, and R134a. Further, the two different refrigerants used in the heat pump type hot water heater X are not limited to the carbon dioxide refrigerant and the HFC refrigerant, and may use refrigerants having different characteristics such as heat exchange efficiency and energy consumption efficiency.

前記流水経路30aは,給水口から前記貯湯タンク31,前記循環ポンプ34,前記流水切換弁41を経て流水経路30cに続く水の流通経路であり,前記流水経路30bは,給水口或いは流水経路30fから前記流水切換弁41を経て流水経路30cに続く水の流通経路である。前記貯湯タンク31の下層には給水口から供給された水が貯留され,上層には前記水熱交換器32で加熱された高温の温水が貯留される。
また,前記流水経路30cは,前記流水切換弁41から前記水熱交換器32に続く水の流通経路である。そして,前記水熱交換器32から流出した水は,給湯口に続く流水経路30dに流入する。
前記流水経路30dは,該流水経路30d上に設けられた流水切換弁42,44,45により,前記貯湯タンク31に続く流水経路30e,前記風呂回路7の後述する風呂追焚用熱交換器72が設けられた流水経路30f,前記風呂回路7の後述する浴槽74へ続く流水経路30gと接続されている。したがって,前記制御部によって前記流水切換弁42,44,45が制御されることにより,前記流水経路30d上の水は,前記貯湯タンク31や前記風呂追焚用熱交換器72,前記浴槽74に供給される。
なお,前記流水経路30hは,前記貯湯タンク31から前記流水切換弁43を経て給湯口に続く水の流通経路,前記流通経路30iは,給水口から前記流水切換弁43を経て給湯口に続く水の流通経路である。
The flowing water path 30a is a water distribution path that continues from the water supply port through the hot water storage tank 31, the circulation pump 34, and the flowing water switching valve 41 to the flowing water path 30c, and the flowing water path 30b is a water supply port or flowing water path 30f. To the water flow path 30c through the water flow switching valve 41 and the water flow path 30c. In the lower layer of the hot water storage tank 31, water supplied from the water supply port is stored, and in the upper layer, hot hot water heated by the water heat exchanger 32 is stored.
In addition, the flowing water path 30 c is a water circulation path that continues from the flowing water switching valve 41 to the water heat exchanger 32. And the water which flowed out from the said water heat exchanger 32 flows in into the flowing water path 30d following a hot-water supply port.
The flowing water path 30d is constituted by a flowing water switching valve 42, 44, 45 provided on the flowing water path 30d, a flowing water path 30e following the hot water storage tank 31, and a bath recuperation heat exchanger 72 described later of the bath circuit 7. Is connected to a flowing water path 30f that is connected to a bathtub 74 (to be described later) of the bath circuit 7. Therefore, the flowing water switching valves 42, 44, and 45 are controlled by the control unit, so that water on the flowing water path 30 d flows into the hot water storage tank 31, the bath recuperation heat exchanger 72, and the bathtub 74. Supplied.
The flowing water path 30h is a water distribution path from the hot water storage tank 31 through the flowing water switching valve 43 to the hot water supply port, and the distribution path 30i is water from the water supply port through the flowing water switching valve 43 to the hot water supply port. Is a distribution channel.

前記水熱交換器32は,前記CO2サイクル1及び前記R410Aサイクル2に共通するものであって,前記CO2サイクル1に循環されるCO2冷媒や前記R410Aサイクル2に循環されるR410A冷媒と,前記流水経路30c上を流れる水との間で熱交換を行うものである。
例えば,前記水熱交換器32は,該水熱交換器32内に設けられて前記CO2冷媒が流通する配管14と前記流水経路30c上に設けられて水が流通する配管33,前記R410A冷媒が流通する配管25と前記配管33が共に接触するように構成されている。これにより,前記水熱交換器32では,前記CO2サイクル1の稼働時には前記CO2冷媒と前記流水経路30c上を流れる水との間,前記R410Aサイクル2の稼働時には前記R410A冷媒と前記流水経路30c上を流れる水との間,前記CO2サイクル1及び前記R410Aサイクル2の稼働時には前記CO2冷媒及び前記R410A冷媒と前記流水経路30c上を流れる水との間で熱交換が行われ,該流水経路30c上の水が加熱される。従って,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1及び前記R410Aサイクル2を同時に稼働させることにより,個々の加熱能力以上の加熱能力を発揮することができる。
ここで,前記水熱交換器32は,前記R410A冷媒と水との間で熱交換が行われる熱交換面積が,前記CO2冷媒と水との間で熱交換が行われる熱交換面積よりも大きくなるように設計されている。即ち,前記水熱交換器32における水との熱交換能力は,前記CO2冷媒よりも前記R410A冷媒の方が高い。例えば,前記水熱交換器32において前記R410A冷媒が流通する冷媒配管が,前記CO2冷媒冷媒が流通する冷媒配管よりも長く設計されることが考えられる。このように,低圧サイクル(R410Aサイクル2)の熱交換能力を高くするほうが,高圧サイクル(CO2サイクル1)の熱交換能力を高くするよりも,各部品の設計圧力を低くできるため,コストの増大を抑制できる。
The water heat exchanger 32 is common to the CO 2 cycle 1 and the R410A cycle 2, and includes a CO 2 refrigerant circulated in the CO 2 cycle 1 and an R410A refrigerant circulated in the R410A cycle 2. The heat exchange is performed with water flowing on the flowing water path 30c.
For example, the water heat exchanger 32 includes the pipe 14 provided in the water heat exchanger 32 through which the CO 2 refrigerant flows, the pipe 33 provided on the flowing water path 30c through which water flows, and the R410A refrigerant. The pipe 25 through which the gas flows and the pipe 33 are configured to come into contact with each other. Thus, in the water heat exchanger 32, the CO 2 refrigerant and the water flowing on the flowing water path 30c are operated when the CO 2 cycle 1 is operated, and the R410A refrigerant and the flowing water path are operated when the R410A cycle 2 is operated. When the CO 2 cycle 1 and the R410A cycle 2 are in operation, heat exchange is performed between the CO 2 refrigerant and the R410A refrigerant and water flowing on the flowing water path 30c. Water on the flowing water path 30c is heated. Therefore, in the heat pump type hot water supply apparatus X, the CO 2 cycle 1 and the R410A cycle 2 can be operated at the same time, so that the heating ability exceeding the individual heating ability can be exhibited.
Here, the water heat exchanger 32 has a heat exchange area where heat is exchanged between the R410A refrigerant and water than a heat exchange area where heat is exchanged between the CO 2 refrigerant and water. Designed to be large. That is, the heat exchange capacity with water in the water heat exchanger 32 is higher in the R410A refrigerant than in the CO 2 refrigerant. For example, it is conceivable that the refrigerant pipe through which the R410A refrigerant flows in the water heat exchanger 32 is designed to be longer than the refrigerant pipe through which the CO 2 refrigerant refrigerant flows. Thus, increasing the heat exchange capacity of the low-pressure cycle (R410A cycle 2) can lower the design pressure of each component than increasing the heat exchange capacity of the high-pressure cycle (CO 2 cycle 1). The increase can be suppressed.

また,前記室外空気熱交換器13は,前記CO2サイクル1及び前記R410Aサイクル2に共通するものであって,前記CO2サイクル1に循環されるCO2冷媒や前記R410Aサイクル2に循環されるR410A冷媒と室外空気との間で熱交換を行うことにより該CO2冷媒や該R410A冷媒を加熱或いは冷却するものである。
ここで,前記室外空気熱交換器13は,前記R410A冷媒と室外空気との間で熱交換が行われる熱交換面積が,前記CO2冷媒と室外空気との間で熱交換が行われる熱交換面積よりも大きくなるように設計されている。即ち,前記室外空気熱交換器13における室外空気との熱交換能力は,前記CO2冷媒よりも前記R410A冷媒の方が高い。例えば,前記室外空気熱交換器13において前記R410A冷媒が流通する冷媒配管が,前記CO2冷媒冷媒が流通する冷媒配管よりも長く設計されることが考えられる。
The outdoor air heat exchanger 13 is common to the CO 2 cycle 1 and the R410A cycle 2, and is circulated to the CO 2 refrigerant circulated in the CO 2 cycle 1 and the R410A cycle 2. by performing the heat exchange between the R410A refrigerant and the outside air is intended to heat or cool the CO 2 refrigerant and the R410A refrigerant.
Here, the outdoor air heat exchanger 13 has a heat exchange area where heat exchange is performed between the R410A refrigerant and outdoor air, and heat exchange where heat exchange is performed between the CO 2 refrigerant and outdoor air. It is designed to be larger than the area. That is, the heat exchange capacity with the outdoor air in the outdoor air heat exchanger 13 is higher in the R410A refrigerant than in the CO 2 refrigerant. For example, it is conceivable that the refrigerant pipe through which the R410A refrigerant flows in the outdoor air heat exchanger 13 is designed to be longer than the refrigerant pipe through which the CO 2 refrigerant refrigerant flows.

前記風呂回路7は,前記流水経路30f上に設けられた風呂追焚用熱交換器72及び循環ポンプ71と,前記流水経路30g上に設けられた浴槽74と,該浴槽74,前記風呂追焚用熱交換器72及び循環ポンプ73を順に接続する風呂水追焚経路75と,を有して構成されている。
前記風呂回路7では,前記制御部によって前記流水切換弁45が制御されることにより,前記水熱交換器32で加熱されて前記流水経路30d上を流れる温水が前記浴槽74に供給される。
また,前記風呂回路7では,前記制御部によって前記循環ポンプ71及び前記循環ポンプ73が駆動され,前記流水切換弁44が制御されることにより,前記流水切換弁44から前記風呂追焚用熱交換器72に流入する温水と,前記浴槽74から前記風呂水追焚経路75を経て前記風呂追焚用熱交換器72流入する風呂水との間で熱交換が行われる。即ち,前記風呂回路7では,前記水熱交換器32で加熱されて前記流水経路30d上を流れる温水を熱媒体として,前記浴槽74に貯留された風呂水が加熱(追い焚き)される。なお,前記風呂回路7に換えて,床暖房装置や浴室乾燥機などの加熱手段を用いることも他の実施例として考えられる。
The bath circuit 7 includes a bath remedy heat exchanger 72 and a circulation pump 71 provided on the flowing water path 30f, a bathtub 74 provided on the flowing water path 30g, the bathtub 74, and the bath remedy. And a bath water retreat path 75 for connecting the heat exchanger 72 and the circulation pump 73 in order.
In the bath circuit 7, the flowing water switching valve 45 is controlled by the control unit, so that hot water heated by the water heat exchanger 32 and flowing on the flowing water path 30 d is supplied to the bathtub 74.
Further, in the bath circuit 7, the circulation pump 71 and the circulation pump 73 are driven by the control unit, and the flowing water switching valve 44 is controlled, so that the bath recuperation heat exchange is performed from the flowing water switching valve 44. Heat exchange is performed between the hot water flowing into the vessel 72 and the bath water flowing from the bathtub 74 through the bath water retreating path 75 into the bath recuperation heat exchanger 72. That is, in the bath circuit 7, the bath water stored in the bathtub 74 is heated (reheated) using the hot water heated by the water heat exchanger 32 and flowing on the flowing water path 30 d as a heat medium. In addition, it is possible to use heating means such as a floor heating device or a bathroom dryer instead of the bath circuit 7 as another embodiment.

次に,前記CO2サイクル1及び前記R410Aサイクル2各々の構成について説明する。
前記CO2サイクル1は,圧縮機11,前記水熱交換器32,膨張器12,前記室外空気熱交換器13及び前記圧縮機11を順に接続する冷媒循環経路10を有して構成されている。ここで,前記圧縮機11では,前記CO2冷媒が,前記R410A冷媒よりも高い圧力で圧縮されて吐出される。
前記冷媒循環経路10では,前記制御部(不図示)によって前記圧縮機11が駆動されることにより,前記CO2冷媒が図示する矢印方向に循環される。これにより,前記CO2サイクル1では,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記水熱交換器32において前記流水経路30c上を流れる水と熱交換されて冷却された後,前記膨張器12において膨張する。その後,前記膨張器12で膨張した低温低圧の前記CO2冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,再度前記圧縮機11に流入する。なお,前記水熱交換器32における前記CO2冷媒と水との流通方向が反対であるため,該CO2冷媒と水との熱交換は効率的に行われる。
Next, the configuration of each of the CO 2 cycle 1 and the R410A cycle 2 will be described.
The CO 2 cycle 1 includes a refrigerant circulation path 10 that connects the compressor 11, the water heat exchanger 32, the expander 12, the outdoor air heat exchanger 13, and the compressor 11 in this order. . Here, in the compressor 11, the CO 2 refrigerant is compressed and discharged at a pressure higher than that of the R410A refrigerant.
In the refrigerant circulation path 10, the CO 2 refrigerant is circulated in the direction of the arrow shown in the figure by driving the compressor 11 by the control unit (not shown). Thus, in the CO 2 cycle 1, the high-temperature and high-pressure CO 2 refrigerant compressed and discharged in the compressor 11 is heat-exchanged with the water flowing on the flowing water path 30 c in the water heat exchanger 32. After cooling, it expands in the expander 12. Thereafter, the low-temperature and low-pressure CO 2 refrigerant expanded in the expander 12 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then flows into the compressor 11 again. In addition, since the flow direction of the CO 2 refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the CO 2 refrigerant and water is performed efficiently.

一方,前記R410Aサイクル2は,前記R410A冷媒が循環される冷媒循環経路81〜83を有して構成されている。
前記冷媒循環経路81は,圧縮機21,四方弁24,冷媒切換弁51,52,前記水熱交換器32,膨張器22a,冷媒切換弁53,54,前記室外空気熱交換器13,冷媒切換弁56,前記四方弁24及び前記圧縮機21を順に接続するものである。
前記圧縮機21では,前記R410A冷媒が前記CO2冷媒よりも低い圧力で圧縮されて吐出される。
他方,前記圧縮機21の出力は,前記圧縮機11に比べて高出力可能に構成されている。このように,前記圧縮機21を高出力可能に構成することにより,前記R410Aサイクル2における瞬間的な加熱能力を高めることができる。例えば,後述する瞬間給湯運転や冷暖房運転において高い加熱能力を発揮して,高い給湯性能や冷暖房性能を得ることができる。
ところで,前記圧縮機11を高出力可能に構成しているが,前記圧縮機21に要求される耐圧性能は,前記圧縮機11に要求される耐圧性能よりも低いため,該圧縮機11を高出力可能に構成する場合に比べて,当該ヒートポンプ式給湯機Xのサイズの拡大やコストの増大は抑制されている。
On the other hand, the R410A cycle 2 includes refrigerant circulation paths 81 to 83 through which the R410A refrigerant is circulated.
The refrigerant circulation path 81 includes the compressor 21, the four-way valve 24, the refrigerant switching valves 51 and 52, the water heat exchanger 32, the expander 22a, the refrigerant switching valves 53 and 54, the outdoor air heat exchanger 13, and the refrigerant switching. The valve 56, the four-way valve 24, and the compressor 21 are connected in order.
In the compressor 21, the R410A refrigerant is compressed and discharged at a pressure lower than that of the CO 2 refrigerant.
On the other hand, the output of the compressor 21 is configured to be higher in output than the compressor 11. Thus, the instantaneous heating capability in the R410A cycle 2 can be increased by configuring the compressor 21 so as to be capable of high output. For example, it is possible to obtain high hot water supply performance and air conditioning performance by demonstrating high heating capability in the instantaneous hot water supply operation and air conditioning operation described later.
By the way, although the compressor 11 is configured to be capable of high output, the pressure resistance performance required for the compressor 21 is lower than the pressure resistance performance required for the compressor 11. Compared to the case where output is possible, the increase in the size and cost of the heat pump type water heater X is suppressed.

前記冷媒循環経路81では,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁51,52を経て前記水熱交換器32に達する。そして,前記R410A冷媒は,前記水熱交換器32において前記流水経路30c上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22aにおいて膨張する。そして,前記膨張器22aで膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁53,54を経て前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記冷媒切換弁56,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路81に循環されることにより,前記流水経路30c上を矢印方向に流れる水が,前記水熱交換器32における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器32における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる
In the refrigerant circulation path 81, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 via the four-way valve 24 and the refrigerant switching valves 51 and 52. The R410A refrigerant is cooled by exchanging heat with water flowing on the flowing water path 30c in the water heat exchanger 32. Thereafter, the R410A refrigerant expands in the expander 22a. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22a is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 through the refrigerant switching valves 53 and 54, and then absorbed and vaporized. It flows into the compressor 21 again through the valve 56 and the four-way valve 24.
In the R410A cycle 2, as described above, the R410A refrigerant is circulated in the refrigerant circulation path 81, so that water flowing in the direction of the arrow on the flowing water path 30c is changed to the R410A refrigerant in the water heat exchanger 32. It is heated to about 65 ° C. by heat exchange. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.

また,前記冷媒循環経路82は,前記圧縮機21,前記四方弁24,前記冷媒切換弁56,52,前記水熱交換器32,前記膨張器22a,前記冷媒切換弁53,55,室内空気熱交換器4,前記冷媒切換弁51,前記四方弁24及び前記圧縮機21を順に接続するものである。前記冷媒循環経路82は,給湯と冷房とを同時に行う場合に用いられる。
前記室内空気熱交換器4は,室内の冷暖房を行う空気調和機(不図示)に設けられ,前記R410Aサイクル2に循環される前記R410A冷媒と室内空気との間で熱交換を行うことにより室内空気を加熱或いは冷却するものである。
前記冷媒循環経路82では,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁56,52を経て前記水熱交換器32に達する。そして,前記R410A冷媒は,前記水熱交換器32において前記流水経路30e上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22aにおいて膨張する。そして,前記膨張器22aで膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁53,55を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記冷媒切換弁51,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路82に循環されることにより,前記流水経路30c上を矢印方向に流れる水が,前記水熱交換器32における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器32における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。
また,前記室内空気熱交換器4では,前記R410A冷媒と室内空気との間の熱交換より室内空気が冷却されるため,室内の冷房が実現される。即ち,前記冷媒循環経路82では,前記室外空気熱交換器13を用いることなく,前記室内空気熱交換器4における冷房の排熱を利用して給湯を行うことが可能である。
The refrigerant circulation path 82 includes the compressor 21, the four-way valve 24, the refrigerant switching valves 56 and 52, the water heat exchanger 32, the expander 22a, the refrigerant switching valves 53 and 55, and indoor air heat. The exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are connected in order. The refrigerant circulation path 82 is used when hot water supply and cooling are performed simultaneously.
The indoor air heat exchanger 4 is provided in an air conditioner (not shown) that heats and cools the room indoors, and performs heat exchange between the R410A refrigerant circulated in the R410A cycle 2 and room air. Air is heated or cooled.
In the refrigerant circulation path 82, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 through the four-way valve 24 and the refrigerant switching valves 56 and 52. The R410A refrigerant is cooled by exchanging heat with water flowing on the flowing water path 30e in the water heat exchanger 32. Thereafter, the R410A refrigerant expands in the expander 22a. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22a is heat-exchanged with the indoor air in the indoor air heat exchanger 4 through the refrigerant switching valves 53 and 55, and absorbs and vaporizes. It flows into the compressor 21 again through the valve 51 and the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated through the refrigerant circulation path 82 as described above, so that water flowing in the direction of the arrow on the flowing water path 30c becomes the R410A refrigerant in the water heat exchanger 32. It is heated to about 65 ° C. by heat exchange. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently.
Further, in the indoor air heat exchanger 4, the indoor air is cooled by the heat exchange between the R410A refrigerant and the indoor air, so that the indoor cooling is realized. That is, in the refrigerant circulation path 82, hot water can be supplied using the exhaust heat of the cooling in the indoor air heat exchanger 4 without using the outdoor air heat exchanger 13.

一方,前記冷媒循環経路83は,前記圧縮機21,前記四方弁24,前記冷媒切換弁51,前記室内空気熱交換器4,前記冷媒切換弁55,膨張器22b,前記冷媒切換弁54,前記室外空気熱交換器13,前記冷媒切換弁56,前記四方弁24及び前記圧縮機21を順に接続するものである。
前記R410Aサイクル2では,前記R410A冷媒が前記冷媒循環経路83において図示する実線矢印方向に循環されることにより暖房運転が行われ,図示する破線矢印方向に循環されることにより冷房運転が行われる。以下,具体的に説明する。
On the other hand, the refrigerant circulation path 83 includes the compressor 21, the four-way valve 24, the refrigerant switching valve 51, the indoor air heat exchanger 4, the refrigerant switching valve 55, the expander 22b, the refrigerant switching valve 54, The outdoor air heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are connected in order.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow shown in the refrigerant circulation path 83 to perform the heating operation, and the refrigerant is circulated in the direction of the broken arrow to show the cooling operation. This will be specifically described below.

(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から暖房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の冷媒循環経路83において前記R410A冷媒の実線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する実線経路が確立されている。
具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記冷媒切換弁51を経て前記室内空気熱交換器4に達する。そして,前記R410A冷媒は,前記室内空気熱交換器4において室内の空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記冷媒切換弁55を経て前記膨張器22bにおいて膨張する。そして,前記膨張器22bにおいて膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁54を経て前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路83において実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって加熱される。即ち,前記ヒートポンプ式給湯機Xによって暖房が実現される。
(1) About the heating operation When the user requests the heat pump type hot water heater X to start the heating operation from the operation unit (not shown), the heat pump type hot water heater X is controlled by the control unit (not shown). The compressor 21 and the four-way valve 24 are controlled, and circulation of the R410A refrigerant in the direction of the solid arrow in the refrigerant circulation path 83 of the R410A cycle 2 is started. At this time, the illustrated solid line path is established inside the four-way valve 24.
Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 through the four-way valve 24 and the refrigerant switching valve 51. The R410A refrigerant is cooled by heat exchange with indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant expands in the expander 22b through the refrigerant switching valve 55. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22b is subjected to heat exchange with the outdoor air in the outdoor air heat exchanger 13 through the refrigerant switching valve 54, and absorbs and vaporizes the refrigerant. Then, it flows into the compressor 21 again.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow in the refrigerant circulation path 83 as described above, so that indoor air exchanges heat with the R410A refrigerant in the indoor air heat exchanger 4. Heated by. That is, heating is realized by the heat pump type hot water heater X.

(2)冷房運転について
また,ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から冷房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の冷媒循環経路83において前記R410A冷媒の破線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する破線経路が確立されている。
具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24,前記冷媒切換弁56を経て前記室外空気熱交換器13に達する。そして,前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記冷媒切換弁54を経て前記膨張器22bにおいて膨張する。そして,前記膨張器22bにおいて膨張した低温低圧の前記R410A冷媒は,前記冷媒切換弁55を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記前記冷媒切換弁51,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記冷媒循環経路83において破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって冷却される。即ち,前記ヒートポンプ式給湯機Xによって冷房が実現される。
(2) Cooling operation When the user requests the heat pump water heater X to start the cooling operation from an operation unit (not shown), the heat pump water heater X has the control unit (not shown). ), The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the refrigerant circulation path 83 of the R410A cycle 2. At this time, the illustrated broken line path is established inside the four-way valve 24.
Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 13 through the four-way valve 24 and the refrigerant switching valve 56. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchanger 13. Thereafter, the R410A refrigerant expands in the expander 22b via the refrigerant switching valve 54. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22b is heat-exchanged with the indoor air in the indoor air heat exchanger 4 through the refrigerant switching valve 55 to absorb heat and vaporize, and then the refrigerant switching valve. 51, it flows into the compressor 21 again through the four-way valve 24.
In the R410A cycle 2, the R410A refrigerant is circulated in the refrigerant circulation path 83 in the direction of the broken line arrow as described above, so that the indoor air exchanges heat with the R410A refrigerant in the indoor air heat exchanger 4. Cooled by. That is, cooling is realized by the heat pump type hot water heater X.

また,当該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記各構成要素が制御されることにより,給水口から供給された水を前記水熱交換器32によって加熱して給湯口から直接給湯する瞬間給湯運転や,前記貯湯タンク31から供給された水を前記水熱交換器32によって加熱して前記貯湯タンク31に還流する貯湯運転が行われる。
本発明の実施の形態に係る前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1が主に前記貯湯運転に用いられ,前記R410Aサイクル2が主に前記瞬間給湯運転に用いられる。以下,前記貯湯運転及び前記瞬間給湯運転について説明する。
Further, in the heat pump type hot water heater X, the respective components are controlled by the control unit (not shown), whereby the water supplied from the water supply port is heated by the water heat exchanger 32 to be supplied from the hot water supply port. An instantaneous hot water supply operation for directly supplying hot water or a hot water storage operation in which water supplied from the hot water storage tank 31 is heated by the water heat exchanger 32 and returned to the hot water storage tank 31 is performed.
In the heat pump type hot water heater X according to the embodiment of the present invention, the CO 2 cycle 1 is mainly used for the hot water storage operation, and the R410A cycle 2 is mainly used for the instantaneous hot water supply operation. Hereinafter, the hot water storage operation and the instantaneous hot water supply operation will be described.

(1)貯湯運転について
前記貯湯運転では瞬間的な高い加熱能力が要求されず,徐々に前記貯留タンク31内の水を加熱すればよいため,該貯湯運転の実行時には前記CO2サイクル1が前記制御部によって稼働される。これにより,前記CO2サイクル1に前記CO2冷媒が循環される。
そして,前記制御部によって前記循環ポンプ34が駆動され,前記流水切換弁41及び42が制御されることにより,前記貯湯タンク31から供給された水が前記流水経路30a,30c,30d,前記貯湯タンク31の順に温水が循環される。これにより,前記流水経路30c上の前記水熱交換器32における前記CO2冷媒との熱交換によって加熱された温水が,前記貯湯タンク31に貯留される。このとき,前記貯湯タンク31に貯留される温水は,前記CO2冷媒との熱交換によって加熱された例えば90℃程度の高温の温水であるため,該貯湯タンク31のサイズを小さくすることができる。
(1) Hot water storage operation In the hot water storage operation, instantaneous high heating capacity is not required, and water in the storage tank 31 may be gradually heated. Therefore, when the hot water storage operation is performed, the CO 2 cycle 1 is Operated by the control unit. As a result, the CO 2 refrigerant is circulated in the CO 2 cycle 1.
Then, the circulation pump 34 is driven by the control unit, and the flowing water switching valves 41 and 42 are controlled, so that the water supplied from the hot water storage tank 31 flows into the flowing water paths 30a, 30c, 30d, and the hot water storage tank. Hot water is circulated in the order of 31. Thereby, the hot water heated by the heat exchange with the CO 2 refrigerant in the water heat exchanger 32 on the flowing water path 30 c is stored in the hot water storage tank 31. At this time, since the hot water stored in the hot water storage tank 31 is hot water having a high temperature of, for example, about 90 ° C. heated by heat exchange with the CO 2 refrigerant, the size of the hot water storage tank 31 can be reduced. .

(2)瞬間給湯運転について
一方,前記瞬間給湯運転では,十分な給湯温度や給湯量を得るために瞬間的な高い加熱能力が要求されるため,高出力可能な前記圧縮機21が設けられた前記R410Aサイクル2が稼働される。これにより,前記R410Aサイクル2の前記冷媒循環経路81に前記R410A冷媒が循環される。
そして,前記制御部によって前記流水切換弁41及び42が制御されることにより,前記給水口から供給された水が前記流水経路30b,30c,30d,前記給湯口の順に流通される。これにより,前記流水経路30c上の前記水熱交換器32における前記R410A冷媒との熱交換によって加熱された温水が前記給湯口から直接給湯される。このとき,前記R410Aサイクル2の圧縮機21は,前記CO2サイクル1の圧縮機11に比べて高出力が可能であるため,高い加熱能力を発揮することができる。
しかも,前述したように,前記圧縮機21に要求される耐圧性能は,前記圧縮機11に要求される耐圧性能よりも低くてよいため,該圧縮機11を高出力可能に構成する場合に比べて,装置サイズの拡大やコストの増大を抑制することができ,ひいては当該ヒートポンプ式給湯機Xのサイズ拡大やコスト増大を抑制することができる。
(2) Instantaneous hot water supply operation On the other hand, in the instantaneous hot water supply operation, instantaneously high heating capacity is required to obtain a sufficient hot water supply temperature and amount of hot water supply, so the compressor 21 capable of high output is provided. The R410A cycle 2 is operated. Thus, the R410A refrigerant is circulated through the refrigerant circulation path 81 of the R410A cycle 2.
And by the said control part controlling the said flowing water switching valves 41 and 42, the water supplied from the said water supply port distribute | circulates in the order of the said water flow path 30b, 30c, 30d, and the said hot water supply port. Thereby, the hot water heated by the heat exchange with the R410A refrigerant in the water heat exchanger 32 on the flowing water path 30c is directly supplied from the hot water supply port. At this time, since the compressor 21 of the R410A cycle 2 can output higher than the compressor 11 of the CO 2 cycle 1, it can exhibit a high heating capacity.
In addition, as described above, the pressure resistance required for the compressor 21 may be lower than the pressure resistance required for the compressor 11, so that the compressor 11 is configured to be capable of high output. Thus, an increase in device size and an increase in cost can be suppressed, and consequently an increase in size and an increase in cost of the heat pump hot water heater X can be suppressed.

但し,前記瞬間給湯運転が開始してからの一定時間は,前記水熱交換器32による加熱量が十分得られない。そのため,前記瞬間給湯運転の開始からある程度の時間が経過するまでの間は,前記貯湯タンク31に貯留された温水が,前記流水経路30hを経て流水切換弁43において,前記給水口から前記流水経路30iを経て供給される水と混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口から瞬時に温水を給湯することが可能である。そして,前記水熱交換器32によって水を十分に加熱することが可能となった時点で,前記貯湯タンク31からの給水は停止され,その後は前記瞬間給湯運転が行われる。なお,前記貯湯タンク31に貯留された高温の温水を前記給水口から供給される水と混合することなく,そのまま給湯することも可能である。   However, a sufficient amount of heating by the water heat exchanger 32 cannot be obtained for a certain time after the instantaneous hot water supply operation is started. Therefore, until a certain amount of time has elapsed from the start of the instantaneous hot water supply operation, the hot water stored in the hot water storage tank 31 passes through the flowing water path 30h and flows from the water supply port to the flowing water path. The temperature is adjusted by mixing with water supplied through 30i and then supplied to the hot water supply port. Thereby, hot water can be instantaneously supplied from the hot water supply port. Then, when the water heat exchanger 32 can sufficiently heat the water, the water supply from the hot water storage tank 31 is stopped, and thereafter the instantaneous hot water supply operation is performed. In addition, it is also possible to supply hot water as it is, without mixing the hot water stored in the hot water storage tank 31 with the water supplied from the water supply port.

また,前記ヒートポンプ式給湯機Xでは,前記瞬間給湯運転と前記冷暖房運転とを同時に実行することも可能である。
(1)暖房と瞬間給湯との同時運転について
暖房と瞬間給湯との同時運転時,前記R410Aサイクル2では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記冷媒切換弁51〜56が制御されることにより,前記R410A冷媒が図1に示す実線矢印方向に循環される。
具体的には,前記冷媒循環経路81では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁51,冷媒切換弁52,水熱交換器32,膨張器22a,冷媒切換弁53,冷媒切換弁54,室外空気熱交換器13,冷媒切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30b上を流れる水が加熱される。
一方,前記冷媒循環経路83では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁51,室内空気熱交換器4,冷媒切換弁55,膨張器22b,冷媒切換弁54,室外空気熱交換器13,冷媒切換弁56,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が加熱されて暖房が行われる。
このように,前記R410Aサイクル5では,前記冷媒切換弁51で前記R410A冷媒を分配することによって暖房と瞬間給湯とが同時に行われる。
Moreover, in the heat pump type hot water heater X, the instantaneous hot water supply operation and the air conditioning operation can be executed simultaneously.
(1) Simultaneous operation of heating and instantaneous hot water supply During simultaneous operation of heating and instantaneous hot water supply, in the R410A cycle 2, the control unit (not shown) performs the compressor 21, the four-way valve 24, and the refrigerant switching valve. By controlling 51 to 56, the R410A refrigerant is circulated in the direction of the solid arrow shown in FIG.
Specifically, in the refrigerant circulation path 81, the R410A refrigerant is converted into the compressor 21, the four-way valve 24, the refrigerant switching valve 51, the refrigerant switching valve 52, the water heat exchanger 32, the expander 22a, the refrigerant switching valve 53, The refrigerant switching valve 54, the outdoor air heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 32.
On the other hand, in the refrigerant circulation path 83, the R410A refrigerant flows into the compressor 21, four-way valve 24, refrigerant switching valve 51, indoor air heat exchanger 4, refrigerant switching valve 55, expander 22b, refrigerant switching valve 54, outdoor air. The heat exchanger 13, the refrigerant switching valve 56, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, in the said indoor air heat exchanger 4, indoor air is heated and heating is performed.
Thus, in the R410A cycle 5, heating and instantaneous hot water supply are performed simultaneously by distributing the R410A refrigerant by the refrigerant switching valve 51.

(2)冷房と瞬間給湯の同時運転について
冷房と瞬間給湯との同時運転時,前記R410Aサイクル2では,前記制御部(不図示)によって前記圧縮機21,前記四方弁24及び前記冷媒切換弁51〜56が制御されることにより,前記R410A冷媒が図1に示す破線矢印方向に循環される。
具体的には,前記冷媒循環経路81では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁56,52,水熱交換器32,膨張器22a,冷媒切換弁53,冷媒切換弁55,室内空気熱交換器4,冷媒切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記水熱交換器32において前記流水経路30b上を流れる水が加熱される。
一方,前記冷媒循環経路83では,前記R410A冷媒が,圧縮機21,四方弁24,冷媒切換弁56,室外空気熱交換器13,冷媒切換弁54,膨張器22b,冷媒切換弁55,室内空気熱交換器4,冷媒切換弁51,四方弁24,圧縮機21の順に循環される。これにより,前記室内空気熱交換器4において室内空気が冷却されて冷房が行われる。
このように,前記R410Aサイクル2では,前記冷媒切換弁56で前記R410A冷媒を分配することによって冷房と瞬間給湯とが同時に行われる。
(2) Simultaneous operation of cooling and instantaneous hot water supply During simultaneous operation of cooling and instantaneous hot water supply, in the R410A cycle 2, the control unit (not shown) causes the compressor 21, the four-way valve 24, and the refrigerant switching valve 51 to operate. By controlling .about.56, the R410A refrigerant is circulated in the direction of the broken arrow shown in FIG.
Specifically, in the refrigerant circulation path 81, the R410A refrigerant is supplied from the compressor 21, the four-way valve 24, the refrigerant switching valves 56 and 52, the water heat exchanger 32, the expander 22a, the refrigerant switching valve 53, and the refrigerant switching valve. 55, the indoor air heat exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. Thereby, the water flowing on the flowing water path 30b is heated in the water heat exchanger 32.
On the other hand, in the refrigerant circulation path 83, the R410A refrigerant flows into the compressor 21, the four-way valve 24, the refrigerant switching valve 56, the outdoor air heat exchanger 13, the refrigerant switching valve 54, the expander 22b, the refrigerant switching valve 55, the indoor air. The heat exchanger 4, the refrigerant switching valve 51, the four-way valve 24, and the compressor 21 are circulated in this order. As a result, the indoor air heat exchanger 4 cools the room air by cooling it.
As described above, in the R410A cycle 2, the refrigerant switching valve 56 distributes the R410A refrigerant so that cooling and instantaneous hot water supply are performed simultaneously.

ここで,前記のように前記R410Aサイクル2を用いて瞬間給湯運転と冷暖房運転とが同時に実行される場合には,前記R410Aサイクル2の加熱能力が分散して用いられるため,十分な給湯温度や給湯量を得ることができないおそれがある。
そこで,前記ヒートポンプ式給湯機Xでは,前記瞬間給湯運転においては,前記R410Aサイクル2が優先的に用いられるが,例えば瞬間給湯運転と冷暖房運転とが同時に実行される場合など,前記R410Aサイクル2の加熱負荷が,瞬間給湯運転において十分な給湯温度や給湯量を得ることができない所定の加熱負荷よりも高い場合には,前記制御部(不図示)によって前記CO2サイクル1の圧縮機11の駆動が制御されて,前記CO2サイクル1における前記CO2冷媒の循環が開始される。即ち,前記R410Aサイクル2と前記CO2サイクル1とが同時に稼働される。なお,前記R410A冷媒と前記CO2冷媒とを同時に稼働させるか否かの判断は,例えば前記冷暖房の設定温度と室内温度との差や,前記瞬間給湯の給湯温度や給湯量などに基づいて前記制御部によって行われる。
これにより,前記水熱交換器32では,前記R410A冷媒と前記CO2冷媒との両方で水が加熱されることとなる。即ち,前記R410Aサイクル1における瞬間給湯と冷暖房の同時運転時の水の加熱効率の低下は,前記CO2サイクル1に循環される前記CO2冷媒と水との熱交換によって補われる。したがって,前記R410Aサイクル2において瞬間給湯と冷暖房とを同時に行う際に,十分な給湯温度や給湯量を得ることができる。
また,本実施の形態では前記瞬間給湯運転と前記冷暖房運転とが同時に実行される場合を例に挙げて説明したが,例えば前記風呂回路7の稼働状況に応じて前記R410A冷媒と前記CO2冷媒との両方を稼働するか否かを判断してもよい。さらに,前記R410Aサイクル2が,不図示の床暖房装置や浴室乾燥機などに兼用される場合には,それらの稼働状況に応じても前記R410Aサイクル2の加熱負荷が異なるため,これらの稼働状況をも考慮して前記R410A冷媒と前記CO2冷媒との両方を稼働するか否かを判断することが望ましい。
Here, when the instantaneous hot water supply operation and the cooling / heating operation are simultaneously performed using the R410A cycle 2 as described above, the heating capacity of the R410A cycle 2 is used in a distributed manner. There is a possibility that the amount of hot water supply cannot be obtained.
Therefore, in the heat pump type hot water heater X, the R410A cycle 2 is preferentially used in the instantaneous hot water supply operation. When the heating load is higher than a predetermined heating load at which a sufficient hot water supply temperature or hot water supply amount cannot be obtained in the instantaneous hot water supply operation, the control unit (not shown) drives the compressor 11 of the CO 2 cycle 1. And the circulation of the CO 2 refrigerant in the CO 2 cycle 1 is started. That is, the R410A cycle 2 and the CO 2 cycle 1 are operated simultaneously. Whether or not the R410A refrigerant and the CO 2 refrigerant are operated simultaneously is determined based on, for example, the difference between the set temperature of the air conditioner and the room temperature, the hot water supply temperature of the instantaneous hot water supply, the amount of hot water supply, and the like. This is done by the control unit.
Thereby, in the water heat exchanger 32, water is heated by both the R410A refrigerant and the CO 2 refrigerant. That is, a decrease in the heating efficiency of water during the simultaneous operation of instantaneous hot water supply and cooling / heating in the R410A cycle 1 is compensated by heat exchange between the CO 2 refrigerant circulated in the CO 2 cycle 1 and water. Therefore, when performing instantaneous hot water supply and cooling / heating at the same time in the R410A cycle 2, sufficient hot water supply temperature and hot water supply amount can be obtained.
Further, in the present embodiment, the case where the instantaneous hot water supply operation and the cooling / heating operation are performed simultaneously has been described as an example. For example, the R410A refrigerant and the CO 2 refrigerant according to the operating state of the bath circuit 7 It may be determined whether or not both are operated. Furthermore, when the R410A cycle 2 is also used for a floor heating device or a bathroom dryer (not shown), the heating load of the R410A cycle 2 differs depending on the operation status, so that these operation statuses It is desirable to determine whether or not to operate both the R410A refrigerant and the CO 2 refrigerant in consideration of the above.

本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図。1 is a schematic configuration diagram of a heat pump type water heater X according to an embodiment of the present invention.

符号の説明Explanation of symbols

1…ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
7…風呂回路
11,21…圧縮機
12,22a,22b…膨張器
13…室外空気熱交換器
24…四方弁
30a〜30i…流水経路
31…貯湯タンク
32…水熱交換器
34…循環ポンプ
41〜45…流水切換弁
51〜56…冷媒切換弁
81〜83…冷媒循環経路
1 ... heat pump cycle (an example of a first heat pump cycle)
2 ... Heat pump cycle (an example of a second heat pump cycle)
4 ... Indoor air heat exchanger 7 ... Bath circuit 11, 21 ... Compressor 12, 22a, 22b ... Expander 13 ... Outdoor air heat exchanger 24 ... Four-way valve 30a-30i ... Flow path 31 ... Hot water storage tank 32 ... Water heat Exchanger 34 ... circulation pumps 41-45 ... flowing water switching valves 51-56 ... refrigerant switching valves 81-83 ... refrigerant circulation path

Claims (8)

第一の冷媒が少なくとも第一の圧縮機及び第一の膨張器を経て循環される第一のヒートポンプサイクルと,
前記第一の冷媒よりも圧力が低い第二の冷媒が,少なくとも第二の圧縮機及び第二の膨張器を経て循環される第二のヒートポンプサイクルと,
前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,
前記水熱交換器で加熱された温水を貯留する貯湯タンクと,
を備えてなり,
前記第一のヒートポンプサイクルが,前記水熱交換器で加熱された温水を前記貯湯タンクに貯留する貯湯運転の実行時に稼働され,
前記第二のヒートポンプサイクルが,前記水熱交換器で加熱された温水を所定の給湯口から給湯する瞬間給湯運転の実行時に稼働されてなることを特徴とするヒートポンプ式給湯機。
A first heat pump cycle in which a first refrigerant is circulated through at least a first compressor and a first expander;
A second heat pump cycle in which a second refrigerant having a pressure lower than that of the first refrigerant is circulated through at least a second compressor and a second expander;
A water heat exchanger for exchanging heat between the first refrigerant and / or the second refrigerant and water;
A hot water storage tank for storing hot water heated by the water heat exchanger;
With
The first heat pump cycle is operated at the time of executing a hot water storage operation in which hot water heated by the water heat exchanger is stored in the hot water storage tank;
The heat pump type hot water heater, wherein the second heat pump cycle is operated during execution of an instantaneous hot water supply operation in which hot water heated by the water heat exchanger is supplied from a predetermined hot water supply port.
前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒がHFC冷媒である請求項1に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein the first refrigerant is a carbon dioxide refrigerant, and the second refrigerant is an HFC refrigerant. 前記第一の冷媒及び前記第二の冷媒と室外空気との間で熱交換を行う共通の室外空気熱交換器を更に備えてなり,
前記室外空気熱交換器において前記第二の冷媒と室外空気との間で熱交換が行われる熱交換面積が,前記第一の冷媒と室外空気との間で熱交換が行われる熱交換面積よりも大きい関係にある請求項1又は2のいずれかに記載のヒートポンプ式給湯機。
A common outdoor air heat exchanger for exchanging heat between the first refrigerant and the second refrigerant and outdoor air;
The heat exchange area where heat is exchanged between the second refrigerant and outdoor air in the outdoor air heat exchanger is greater than the heat exchange area where heat is exchanged between the first refrigerant and outdoor air. The heat pump type water heater according to claim 1, wherein the heat pump type water heater is also in a large relationship.
前記室外空気熱交換器内において前記第二の冷媒が流通する配管が,該室外空気熱交換器内において前記第一の冷媒が流通する配管よりも長い関係にある請求項3に記載のヒートポンプ式給湯機。   The heat pump type according to claim 3, wherein a pipe through which the second refrigerant flows in the outdoor air heat exchanger has a longer relationship than a pipe through which the first refrigerant flows in the outdoor air heat exchanger. Water heater. 前記水熱交換器が,前記第一の冷媒及び前記第二の冷媒と水との間で熱交換を行う共通の水熱交換器であって,
前記水熱交換器において前記第二の冷媒と水との間で熱交換が行われる熱交換面積が,前記第一の冷媒と水との間で熱交換が行われる熱交換面積よりも大きい関係にある請求項1〜4のいずれかに記載のヒートポンプ式給湯機。
The water heat exchanger is a common water heat exchanger that exchanges heat between the first refrigerant and the second refrigerant and water,
In the water heat exchanger, the heat exchange area where heat exchange is performed between the second refrigerant and water is larger than the heat exchange area where heat exchange is performed between the first refrigerant and water. The heat pump type water heater according to any one of claims 1 to 4.
前記水熱交換器内において前記第二の冷媒が流通する配管が,該水熱交換器内において前記第一の冷媒が流通する配管よりも長い関係にある請求項5に記載のヒートポンプ式給湯機。   The heat pump type water heater according to claim 5, wherein a pipe through which the second refrigerant flows in the water heat exchanger has a longer relationship than a pipe through which the first refrigerant flows in the water heat exchanger. . 前記瞬間給湯運転の実行時における前記第二のヒートポンプサイクルの加熱負荷が所定の大きさ以上であることを条件に,前記第一のヒートポンプサイクルが共に稼働されてなる請求項1〜6のいずれかに記載のヒートポンプ式給湯機。   The first heat pump cycle is operated together on the condition that the heating load of the second heat pump cycle at the time of execution of the instantaneous hot water supply operation is not less than a predetermined magnitude. The heat pump type water heater described in 1. 前記第二のヒートポンプサイクルが,空気調和機,風呂回路及び床暖房装置のいずれか一又は複数で兼用されてなる請求項1〜7のいずれかに記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to any one of claims 1 to 7, wherein the second heat pump cycle is shared by any one or more of an air conditioner, a bath circuit, and a floor heating device.
JP2006133425A 2006-05-12 2006-05-12 Heat pump water heater Expired - Fee Related JP4749228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133425A JP4749228B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133425A JP4749228B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2007303754A true JP2007303754A (en) 2007-11-22
JP2007303754A5 JP2007303754A5 (en) 2008-10-16
JP4749228B2 JP4749228B2 (en) 2011-08-17

Family

ID=38837832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133425A Expired - Fee Related JP4749228B2 (en) 2006-05-12 2006-05-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4749228B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116529A (en) * 2011-03-10 2011-07-06 中山市麦科尔热能技术有限公司 Heat pump hot water system for carbon dioxide compressor
JP2011202882A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Heat pump hot water supply system
CN104949390A (en) * 2015-06-25 2015-09-30 西安交通大学 Transcritical CO2 heat pump system for heating radiator heating
CN106287901A (en) * 2015-06-05 2017-01-04 青岛海尔新能源电器有限公司 Carbon dioxide heat-pump heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886529A (en) * 1994-09-20 1996-04-02 Nippondenso Co Ltd Air conditioner
JPH11237135A (en) * 1998-02-24 1999-08-31 Fujitsu General Ltd Air conditioner
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2005076964A (en) * 2003-08-29 2005-03-24 Hitachi Home & Life Solutions Inc Heat pump hot water supplier
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2005090816A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886529A (en) * 1994-09-20 1996-04-02 Nippondenso Co Ltd Air conditioner
JPH11237135A (en) * 1998-02-24 1999-08-31 Fujitsu General Ltd Air conditioner
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2005076964A (en) * 2003-08-29 2005-03-24 Hitachi Home & Life Solutions Inc Heat pump hot water supplier
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2005090816A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202882A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Heat pump hot water supply system
CN102116529A (en) * 2011-03-10 2011-07-06 中山市麦科尔热能技术有限公司 Heat pump hot water system for carbon dioxide compressor
CN102116529B (en) * 2011-03-10 2013-07-03 广东麦科尔新能源科技有限公司 Heat pump hot water system for carbon dioxide compressor
CN106287901A (en) * 2015-06-05 2017-01-04 青岛海尔新能源电器有限公司 Carbon dioxide heat-pump heater
CN104949390A (en) * 2015-06-25 2015-09-30 西安交通大学 Transcritical CO2 heat pump system for heating radiator heating

Also Published As

Publication number Publication date
JP4749228B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4599910B2 (en) Water heater
US10197306B2 (en) Heat pump system, heat pump unit using the same, and method for controlling multiple functional modes thereof
JP5470374B2 (en) Heat pump heating system
JP2007232282A (en) Heat pump type water heater
JP2007178091A (en) Heat pump water heater
JP2011252636A (en) Hot-water heating hot-water supply apparatus
JP3966889B2 (en) Heat pump water heater
JP4890320B2 (en) Heat pump hot water supply system
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP4749228B2 (en) Heat pump water heater
JP4413188B2 (en) Heat pump water heater
JP2015215117A (en) Heat pump type air cooling device
JP2003240369A (en) Multi-functional hot-water supply unit
JP4753791B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP4033788B2 (en) Heat pump equipment
JP6326344B2 (en) Hot water heater
JP2008241176A (en) Refrigerating cycle device
JP2000121160A (en) Hot water storage type hot water supply heat source device
JP4455518B2 (en) Heat pump water heater
JP2008014520A (en) Heat pump type water heater
JP4372762B2 (en) Heat pump water heater
JP5741256B2 (en) Hot water storage water heater
JP4935402B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4749228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees