JP2005076964A - Heat pump hot water supplier - Google Patents

Heat pump hot water supplier Download PDF

Info

Publication number
JP2005076964A
JP2005076964A JP2003306875A JP2003306875A JP2005076964A JP 2005076964 A JP2005076964 A JP 2005076964A JP 2003306875 A JP2003306875 A JP 2003306875A JP 2003306875 A JP2003306875 A JP 2003306875A JP 2005076964 A JP2005076964 A JP 2005076964A
Authority
JP
Japan
Prior art keywords
hot water
heat pump
water supply
amount
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306875A
Other languages
Japanese (ja)
Other versions
JP2005076964A5 (en
Inventor
Kenichi Saito
健一 斉藤
Koichi Fukushima
功一 福島
Taichi Tanaami
太一 店網
Yoshihiko Kenmori
仁彦 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003306875A priority Critical patent/JP2005076964A/en
Priority to CN200410070838A priority patent/CN100587355C/en
Priority to KR1020040059466A priority patent/KR100563179B1/en
Publication of JP2005076964A publication Critical patent/JP2005076964A/en
Publication of JP2005076964A5 publication Critical patent/JP2005076964A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/48Water heaters for central heating incorporating heaters for domestic water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal loss in a hot water tank, about a heat pump hot water supplier equipped with the hot water tank for storing hot water heated by a heat pump. <P>SOLUTION: As the heat pump hot water supplier is equipped with the heat pump 1 for heating water to be supplied, the hot water tank 21 for storing the hot water heated by the heat pump 1, a first hot water supply pipe for communicating a hot water supply port of the heat pump 1 with a top part of the hot water tank 21, a second hot water supply pipe for communicating a water supply source and a bottom part of the hot water tank, a water supply pump 23 for supplying water at the bottom part of the hot water tank 21 to the heat pump 1 and a hot water quantity adjusting means for adjusting hot water quantity to be equal to or more than a setting quantity by activating the heat pump 1 and the water supply pump 23 when detecting that hot water quantity in the hot water tank equal to or hotter than a setting temperature is less than the setting quantity, thermal loss at the hot water tank 21 can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒートポンプ給湯装置に関し、特に、ヒートポンプで加熱された湯を貯蔵する貯湯槽を備えたものに関する。   The present invention relates to a heat pump hot water supply apparatus, and more particularly, to a device provided with a hot water storage tank for storing hot water heated by a heat pump.

従来のヒートポンプ給湯装置としては、電力が安価な夜間にヒートポンプを稼動させ、加熱された給水を貯湯槽に満杯にして蓄えておくことにより、日中に使う湯を賄うようにしている。   As a conventional heat pump hot water supply device, the heat pump is operated at night when electric power is inexpensive, and the hot water supply is filled and stored in a hot water storage tank so as to cover hot water used during the day.

また、ヒートポンプで給水を加熱する場合、外気温度が変化すると、ヒートポンプの運転効率が変化し、貯湯槽内の湯温が変化する場合がある。そこで、外気温度に応じてヒートポンプの圧縮能力を調整し、外気温度の変化に対し湯温を安定化させる方法が提案されている(特許文献1参照。)。   Moreover, when heating feed water with a heat pump, if the outside air temperature changes, the operating efficiency of the heat pump may change, and the hot water temperature in the hot water storage tank may change. Therefore, a method has been proposed in which the compression capacity of the heat pump is adjusted in accordance with the outside air temperature to stabilize the hot water temperature against changes in the outside air temperature (see Patent Document 1).

また、湯の使用量は一般に外気温度などで変化する。そのため、所定量の湯を蓄えておく貯湯方式によれば、例えば、使用量が比較的少ない夏場は、湯量が過剰になる一方、使用量の多い冬場は、湯量不足になる。従来の貯湯方式によれば、一旦湯切れを起こすと、再び所定量の湯を沸き上げるまで多くの時間が必要となる。そこで、湯切れを防ぐため、貯湯槽を大容量化(例えば、300〜450L)するとともに、できるだけ高温(例えば、90℃)で貯留し、大量の水で薄めて使用することが行われている。   Further, the amount of hot water used generally varies depending on the outside air temperature. Therefore, according to the hot water storage system for storing a predetermined amount of hot water, for example, the amount of hot water is excessive in summer when the amount of use is relatively small, whereas the amount of hot water is insufficient in winter when the amount of use is large. According to the conventional hot water storage system, once the hot water runs out, a long time is required until a predetermined amount of hot water is boiled again. Therefore, in order to prevent running out of hot water, the capacity of the hot water storage tank is increased (for example, 300 to 450 L), stored at as high a temperature as possible (for example, 90 ° C.), and diluted with a large amount of water for use. .

特開2001−255004号公報JP 2001-255004 A

しかし、貯湯槽を大型化すると、それに伴い、設置スペースが増大し、かつ設置床面の強度が必要になる。そのため、アパートやマンションのベランダなど、狭い空間においては、据え付けが困難となり、さらには、装置の搬送に多くの労力と費用がかかるという問題がある。   However, when the hot water tank is increased in size, the installation space is increased and the strength of the installation floor is required. Therefore, it is difficult to install in a narrow space such as an apartment or a condominium veranda, and further, there is a problem that much labor and cost are required for transporting the apparatus.

そこで、ヒートポンプと貯湯槽を併用し、給湯開始直後は、貯湯槽に貯蔵された湯を用いて給湯し、その間、ヒートポンプを稼動させ、ヒートポンプの加熱能力が安定したところで、貯湯槽からの給湯を停止して、ヒートポンプによる直接給湯に切り換える方法が考えられる。これによれば、貯湯槽に貯蔵する湯量を大幅に低減でき、貯湯槽を小型化できるという利点がある。   Therefore, a heat pump and a hot water tank are used together. Immediately after the start of hot water supply, hot water is stored using hot water stored in the hot water tank. During that time, the heat pump is operated, and when the heating capacity of the heat pump is stabilized, hot water is supplied from the hot water tank. A method of stopping and switching to direct hot water supply by a heat pump is conceivable. According to this, there is an advantage that the amount of hot water stored in the hot water tank can be greatly reduced and the hot water tank can be downsized.

しかしながら、このように小型化された貯湯槽を搭載した給湯装置においても、周囲より高い温度の湯を所定量貯蔵するため、貯湯槽の壁面から発散する熱の損失は避けられない。そのため、外気温度によっては熱損失が増加され、結果としてエネルギ損失を招くことから、貯湯槽における熱損失を改善すべき余地がある。   However, even in a hot water supply apparatus equipped with such a miniaturized hot water storage tank, since a predetermined amount of hot water having a temperature higher than the surroundings is stored, a loss of heat radiated from the wall surface of the hot water storage tank is unavoidable. Therefore, depending on the outside air temperature, heat loss is increased, resulting in energy loss, so there is room for improvement in heat loss in the hot water tank.

本発明は、貯湯槽における熱損失を低減することを課題とする。   An object of the present invention is to reduce heat loss in a hot water tank.

本発明のヒートポンプ給湯装置は、給水を加熱するヒートポンプと、ヒートポンプで加熱された湯を貯留する貯湯槽と、ヒートポンプの湯出口と貯湯槽の頂部とを連通する第一の給湯管と、貯湯槽の頂部と給湯口とを連通する第二の給湯管と、給水源と貯湯槽の底部とを連通する給水管と、貯湯槽の底部からヒートポンプに給水する給水ポンプと、貯湯槽の設定温度以上の湯量を検知して、その検出値が設定量未満の場合、ヒートポンプと給水ポンプとを稼動させて、湯量が設定量以上になるように調整する湯量調整手段とを備えてなることを特徴とする。   The heat pump hot water supply apparatus of the present invention includes a heat pump for heating water, a hot water storage tank for storing hot water heated by the heat pump, a first hot water supply pipe communicating with the hot water outlet of the heat pump and the top of the hot water storage tank, and a hot water storage tank A second hot-water pipe communicating with the top of the hot water supply port, a water supply pipe communicating with the water supply source and the bottom of the hot water tank, a water supply pump supplying water to the heat pump from the bottom of the hot water tank, and a set temperature of the hot water tank or higher It is characterized by comprising a hot water amount adjusting means for detecting the amount of hot water and adjusting the hot water amount to be equal to or higher than the set amount by operating the heat pump and the feed water pump when the detected value is less than the set amount. To do.

このような構成によれば、例えば、外気温度などに応じて、貯湯槽内の湯量(貯湯量)を、適量に設定することにより、過剰な貯湯による熱損失を低減することができる。すなわち、外気温度の高い夏場は湯の使用量が少なく、貯湯槽内の温度低下も遅いため、貯湯量を少なく設定できる。反対に、外気温度が低い冬場は、湯の使用量が多く、貯湯槽内の温度低下が速いため、貯湯量を多く設定する。   According to such a configuration, for example, the heat loss due to excessive hot water storage can be reduced by setting an appropriate amount of hot water (hot water storage amount) in the hot water storage tank according to the outside air temperature or the like. That is, in summer when the outside air temperature is high, the amount of hot water used is small and the temperature drop in the hot water tank is slow, so the amount of hot water stored can be set small. On the contrary, in winter when the outside air temperature is low, the amount of hot water used is large and the temperature in the hot water tank is rapidly decreasing, so the amount of hot water stored is set large.

この場合において、第一と第二の給湯管を連通させることが好ましい。これによれば、ヒートポンプが安定動作した後は、ヒートポンプから直接給湯が可能になるため、貯湯槽を小型化しても、湯切れをおこすことがない。また、貯湯槽の湯量を少なくする代わりに湯温を低下することもできるため、ヒートポンプによる加熱効率が向上する。   In this case, it is preferable to connect the first and second hot water supply pipes. According to this, since the hot water can be directly supplied from the heat pump after the heat pump is stably operated, even if the hot water storage tank is downsized, the hot water does not run out. Moreover, since the hot water temperature can be lowered instead of reducing the amount of hot water in the hot water storage tank, the heating efficiency by the heat pump is improved.

具体的には、給水を加熱するヒートポンプと、ヒートポンプで加熱された湯を貯留する貯湯槽と、ヒートポンプの湯出口と貯湯槽の頂部とを連通する第一の給湯管と、第一の給湯管と給湯口とを連通する第二の給湯管と、給水源と貯湯槽の底部とを連通する給水管と、貯湯槽の底部からヒートポンプに給水する給水ポンプと、貯湯槽の設定温度以上の湯量を検知して、その検出値が設定量未満の場合、ヒートポンプと給水ポンプとを稼動させて、湯量が設定量以上になるように調整する湯量調整手段と、給湯口の開放を検知してヒートポンプを起動させ、ヒートポンプの加熱能力が安定後にヒートポンプに給水を開始する制御手段とを備えるようにする。   Specifically, a heat pump that heats the water supply, a hot water tank that stores hot water heated by the heat pump, a first hot water pipe that communicates the hot water outlet of the heat pump and the top of the hot water tank, and the first hot water pipe A second hot water pipe that communicates with the hot water outlet, a water pipe that communicates between the water source and the bottom of the hot water tank, a water pump that supplies water to the heat pump from the bottom of the hot water tank, and a hot water amount that exceeds the set temperature of the hot water tank When the detected value is less than the set amount, the heat pump and the water supply pump are operated to adjust the hot water amount so that the amount of hot water is equal to or greater than the set amount, and the opening of the hot water inlet is detected. And a control means for starting water supply to the heat pump after the heating capacity of the heat pump is stabilized.

また、湯量調整手段は、外気温度と給水温度との少なくとも一方の温度を検知し、その検出温度に基づいて設定量を可変に設定することが好ましい。これによれば、検出温度に対し最適な湯量を予め定めておくことにより、検出温度に応じて、適宜湯量を変更し、最適な湯量の状態を維持することができる。なお、水道水などの給水温度は、一般に外気温度と比べて変動が小さく信頼性が高いため、より好ましい。   Further, it is preferable that the hot water amount adjusting means detects at least one of an outside air temperature and a feed water temperature and variably sets the set amount based on the detected temperature. According to this, by determining the optimum amount of hot water for the detected temperature in advance, it is possible to appropriately change the amount of hot water according to the detected temperature and maintain the state of the optimum amount of hot water. In addition, supply water temperature, such as tap water, is generally more preferable because it has less fluctuation and higher reliability than the outside air temperature.

また、貯湯槽は、その高さ方向に複数の温度センサを取り付けて、温度センサが直接または間接的に検知した検出温度に基づいて設定温度以上の湯量を検知するようにする。すなわち、貯湯槽内には、湯と水が上下にそれぞれ層を形成し、満杯に貯蔵されているため、湯量の変化にともない水量も変化するようになっている。そのため、高さ方向の複数箇所で温度を検知することにより、設定温度以上の湯量を検知することができる。   In addition, the hot water storage tank is provided with a plurality of temperature sensors in the height direction, and detects the amount of hot water equal to or higher than the set temperature based on the detected temperature detected directly or indirectly by the temperature sensor. That is, in the hot water tank, hot water and water form layers respectively up and down and are stored in full, so the amount of water changes as the amount of hot water changes. Therefore, the amount of hot water equal to or higher than the set temperature can be detected by detecting the temperature at a plurality of locations in the height direction.

本発明によれば、貯湯槽における熱損失を低減することができる。   According to the present invention, heat loss in the hot water tank can be reduced.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明を適用してなるヒートポンプ給湯装置の構成図である。図に示すように、ヒートポンプ給湯装置は、ヒートポンプ冷媒回路1と、給湯回路3と、運転制御手段5とを備えて構成される。ヒートポンプ冷媒回路1は、二つの冷媒回路からなる2サイクル方式が採用され、圧縮機7a、ガスクーラ9a、減圧装置11a、蒸発器13aを順次直列接続した第一の閉回路と、圧縮機7b、ガスクーラ9b、減圧装置11b、蒸発器13bを順次直接接続した第二の閉回路とからなり、各回路には冷媒が封入されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a heat pump water heater to which the present invention is applied. As shown in the figure, the heat pump hot water supply apparatus includes a heat pump refrigerant circuit 1, a hot water supply circuit 3, and an operation control means 5. The heat pump refrigerant circuit 1 employs a two-cycle system consisting of two refrigerant circuits, and includes a first closed circuit in which a compressor 7a, a gas cooler 9a, a pressure reducing device 11a, and an evaporator 13a are sequentially connected in series, a compressor 7b, and a gas cooler. 9b, a decompression device 11b, and a second closed circuit in which the evaporator 13b is directly connected sequentially, and refrigerant is sealed in each circuit.

圧縮機7a,7bは、容量制御が可能で、多量の給湯を行う場合には大きな容量で運転される。ここで、圧縮機7a,7bは、PWM制御、電圧制御(例えば、PAM制御)及びこれらの組み合わせ制御により、低速(例えば、2000回転/分)から高速(例えば、8000回転/分)まで回転数が制御自在になっている。水−冷媒熱交換器15は、冷媒側伝熱管と給水側伝熱管とからなり、前記のガスクーラ9a,9bは、それぞれ冷媒側伝熱管9a,9bして機能し、この冷媒側伝熱管9a,9bと給水側伝熱管9c,9dとの間で熱交換が行われる。蒸発器13a,13bは、空気と冷媒との熱交換を行う空気−冷媒熱交換器で構成されている。   The compressors 7a and 7b are capable of capacity control, and are operated with a large capacity when supplying a large amount of hot water. Here, the compressors 7a and 7b are rotated from low speed (for example, 2000 rotations / minute) to high speed (for example, 8000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof. Can be controlled. The water-refrigerant heat exchanger 15 includes a refrigerant side heat transfer tube and a water supply side heat transfer tube, and the gas coolers 9a and 9b function as refrigerant side heat transfer tubes 9a and 9b, respectively. Heat exchange is performed between 9b and the water supply side heat transfer tubes 9c and 9d. The evaporators 13a and 13b are air-refrigerant heat exchangers that exchange heat between air and refrigerant.

除霜用電磁弁17a,17bは、電磁コイルと、電磁コイル通電中のみ開放する開閉弁とを備えて構成され、圧縮機7a,7bの出口側と蒸発器13a,13bの入口側をバイパスして配設され、蒸発器13a,13bが着霜する際に開閉弁を開いて、圧縮機7a,7bから吐出される高温高圧の冷媒ガスを蒸発器13a,13bに導いて霜を解かすようになっている。   The defrosting solenoid valves 17a and 17b include an electromagnetic coil and an opening / closing valve that is opened only when the electromagnetic coil is energized, and bypasses the outlet side of the compressors 7a and 7b and the inlet side of the evaporators 13a and 13b. When the evaporators 13a and 13b are frosted, the open / close valve is opened, and the high-temperature and high-pressure refrigerant gas discharged from the compressors 7a and 7b is guided to the evaporators 13a and 13b so as to defrost. It has become.

給湯回路3は、貯湯回路と、直接給湯回路と、タンク給湯回路と、タンク追焚回路と、風呂湯張り回路と、風呂追焚回路とから構成される。貯湯回路およびタンク追焚回路は、貯湯タンク21,配管25,タンク循環ポンプ23,配管27,29,給水側伝熱管9cおよび9d,配管31,熱交側流量調整弁33,配管35,タンク側流量調整弁37,配管39を順次接続してなる閉回路にて構成され、配管25,39は、貯湯タンク21の底部と頂部にそれぞれ接続されている。すなわち、タンク循環ポンプ23により強制的に貯湯タンク21の底部から抜き出された水は、水−冷媒熱交換器15に導かれて熱交換され、加熱された後、再び貯湯タンク21の頂部から供給されるようになっている。   The hot water supply circuit 3 includes a hot water storage circuit, a direct hot water supply circuit, a tank hot water supply circuit, a tank remedy circuit, a bath hot water filling circuit, and a bath remedy circuit. The hot water storage circuit and the tank tracking circuit are the hot water storage tank 21, pipe 25, tank circulation pump 23, pipes 27 and 29, water supply side heat transfer pipes 9c and 9d, pipe 31, heat exchange side flow rate adjustment valve 33, pipe 35, tank side. The flow adjustment valve 37 and the pipe 39 are configured in a closed circuit, and the pipes 25 and 39 are connected to the bottom and top of the hot water storage tank 21, respectively. That is, the water forcibly extracted from the bottom of the hot water storage tank 21 by the tank circulation pump 23 is led to the water-refrigerant heat exchanger 15 to be heat exchanged and heated, and then again from the top of the hot water storage tank 21. It comes to be supplied.

直接給湯回路は、給水口41が、減圧弁43を備えた配管47を介して水比例弁45に接続され、続いて、配管49,給水逆止弁51,配管29,給水側伝熱管9cおよび9d,配管31,熱交側流量調整弁33,配管35,53,55,給湯口57の順に直列接続されて構成される。これにより、給水口から流入した給水が、水−冷媒熱交換器15に導かれて熱交換され、加熱された後に給湯口から給湯されるようになっている。   In the direct hot water supply circuit, the water supply port 41 is connected to the water proportional valve 45 via a pipe 47 provided with a pressure reducing valve 43, and then a pipe 49, a water supply check valve 51, a pipe 29, a water supply side heat transfer pipe 9c, and 9d, piping 31, heat exchange side flow rate adjustment valve 33, piping 35, 53, 55, and hot water supply port 57 are connected in series in this order. As a result, the water supplied from the water supply port is guided to the water-refrigerant heat exchanger 15 to be heat-exchanged, and after being heated, hot water is supplied from the hot water supply port.

タンク給湯回路は、給水口41が、減圧弁43を備えた配管47を介して水比例弁45に接続され、続いて、配管49,貯湯タンク21,配管39,タンク側流量調整弁37,配管53,55,給湯口57の順に直列接続されて構成される。すなわち、貯湯タンク21内には、湯水が満杯に充満しているため、所定の水圧を有する給水が貯湯タンク21の底部から貯湯タンク21内に導入されると、貯湯タンク21内の圧力上昇にともない、貯湯タンク21の頂部から湯が排出され、給湯口57から給湯されるようになっている。本回路において、貯湯タンク21から給湯する際に使用される配管39は、貯湯回路において貯湯タンク21に貯湯する際にも共通して使用されるが、例えば、配管39を2本に分離させ、配管同士を連通させるようにしてもよい。   In the tank hot water supply circuit, a water supply port 41 is connected to a water proportional valve 45 via a pipe 47 provided with a pressure reducing valve 43, and then a pipe 49, a hot water storage tank 21, a pipe 39, a tank side flow rate adjusting valve 37, a pipe. 53 and 55 and the hot-water supply port 57 are connected in series in this order. That is, since the hot water storage tank 21 is full of hot water, when water having a predetermined water pressure is introduced into the hot water storage tank 21 from the bottom of the hot water storage tank 21, the pressure in the hot water storage tank 21 increases. Accordingly, hot water is discharged from the top of the hot water storage tank 21 and supplied from the hot water supply port 57. In this circuit, the pipe 39 used when hot water is supplied from the hot water storage tank 21 is also commonly used when hot water is stored in the hot water storage tank 21 in the hot water storage circuit. For example, the pipe 39 is separated into two, You may make it make piping communicate.

風呂湯張り回路は、給水口41が、減圧弁43を備えた配管47を介して水比例弁45に接続され、続いて、配管49,給水逆止弁51,配管29,給水側伝熱管9cおよび9d,配管31,熱交側流量調整弁33,配管35,53,注湯電磁弁56,配管58,風呂水量センサ59,配管61,風呂給湯金具63,浴槽65の順に直列接続されて構成される。これにより、給水口から流入した給水が、水−冷媒熱交換器15に導かれて熱交換され、加熱された後に浴槽内に給湯されるようになっている。また、風呂湯張り時は、風呂湯張り回路による直接給湯とともに、貯湯タンク21の貯湯量が、予め設定された最小貯湯量未満にならない範囲で、貯湯タンク21による給湯を行うことができる。   In the hot water bathing circuit, a water supply port 41 is connected to a water proportional valve 45 through a pipe 47 provided with a pressure reducing valve 43, and then a pipe 49, a water supply check valve 51, a pipe 29, and a water supply side heat transfer pipe 9c. And 9d, piping 31, heat exchange side flow rate adjustment valve 33, piping 35, 53, pouring solenoid valve 56, piping 58, bath water amount sensor 59, piping 61, bath water heater 63, and bathtub 65 are connected in series in this order. Is done. As a result, the water supplied from the water supply port is guided to the water-refrigerant heat exchanger 15 for heat exchange, and after being heated, hot water is supplied into the bathtub. In addition, during hot water bathing, hot water can be supplied from the hot water storage tank 21 within the range where the hot water storage amount of the hot water storage tank 21 does not become less than the preset minimum hot water storage amount, as well as direct hot water supply by the hot water bathing circuit.

風呂追焚回路は、浴槽65の水接続口が、風呂出湯金具67を備えた配管69を介して風呂循環ポンプ71に接続され、続いて、配管73,風呂水伝熱管77,配管81,61,風呂給湯金具63,浴槽65の順に直列接続されて構成される。すなわち、風呂追焚回路は、風呂循環ポンプ71が、浴槽65内の湯を強制的に抜き出した後、風呂熱交換器75を介して再び浴槽65内に戻すようになっている。なお、風呂熱交換器75は、水−冷媒熱交換器15により加熱された湯の一部を温水伝熱管79に導いて、風呂水伝熱管77との間で熱交換するようになっている。   In the bath memorial circuit, the water connection port of the bathtub 65 is connected to the bath circulation pump 71 via a pipe 69 provided with a bath outlet metal fitting 67, and then a pipe 73, a bath water heat transfer pipe 77, and pipes 81 and 61. , Bath water heater 63 and bathtub 65 are connected in series in this order. That is, in the bath memory circuit, the bath circulation pump 71 forcibly extracts the hot water in the bathtub 65 and then returns it to the bathtub 65 again through the bath heat exchanger 75. The bath heat exchanger 75 guides part of the hot water heated by the water-refrigerant heat exchanger 15 to the hot water heat transfer tube 79 and exchanges heat with the bath water heat transfer tube 77. .

風呂熱交換器75における温水伝熱管79の給水口は、水−冷媒熱交換器15の給湯口と配管31,35,83を介して接続され、配管83は、水開閉弁85を備えている。水開閉弁85は、風呂追焚時以外は閉じることにより、水−冷媒熱交換器15から風呂熱交換器75への熱の漏洩を防ぐようにしている。また、配管81と配管73を渡してなる配管87には、風呂逆止弁89が設けられ、風呂給湯時に風呂循環ポンプ71に呼び水を供給するようになっている。また、貯湯タンク21の給水側の配管39を分岐させてなる配管91は、逃し弁93を設けることにより、貯湯タンク21内の湯圧が所定以上に上昇した場合に作動して圧力保護を行うようになっている。   The water supply port of the hot water heat transfer pipe 79 in the bath heat exchanger 75 is connected to the hot water supply port of the water-refrigerant heat exchanger 15 through the pipes 31, 35, 83, and the pipe 83 includes a water opening / closing valve 85. . The water on / off valve 85 is closed except during bath chase to prevent heat leakage from the water-refrigerant heat exchanger 15 to the bath heat exchanger 75. The pipe 87 formed by passing the pipe 81 and the pipe 73 is provided with a bath check valve 89 so that priming water is supplied to the bath circulation pump 71 when hot water is supplied to the bath. In addition, the pipe 91 formed by branching the water supply side pipe 39 of the hot water storage tank 21 is provided with a relief valve 93, so that it operates when the hot water pressure in the hot water storage tank 21 rises to a predetermined level or more to provide pressure protection. It is like that.

貯湯タンク21は、円筒状で縦長に形成された小容量のタンクで構成され、従来の貯湯方式における貯湯タンクと比べて1/3〜1/5程度の小容量のものである。この貯湯タンク21内には、水と湯が比重差により上下に分離して貯蔵されている。つまり、タンクの下層には、給水された水が貯蔵され、上層には、下層の水を加熱してなる湯が貯蔵されている。貯湯タンク21内には、高さ方向に複数の温度検知サーミスタなどが取り付けられ、貯湯タンク21内の温度分布を直接または間接的に検知して、設定温度以上の貯湯量を検出するようになっている。ここで、温度検知サーミスタは、貯湯タンク21内に配置し直接的に温度を検知するようにしてもよいが、組立性およびサービス性の点で、側壁の外側に配置し間接的に温度を検知するようにしてもよい。   The hot water storage tank 21 is constituted by a small tank having a cylindrical shape which is formed vertically and has a small capacity of about 1/3 to 1/5 of the hot water storage tank in the conventional hot water storage system. In the hot water storage tank 21, water and hot water are stored separately in the vertical direction due to the difference in specific gravity. That is, the supplied water is stored in the lower layer of the tank, and hot water obtained by heating the lower layer water is stored in the upper layer. A plurality of temperature detection thermistors and the like are attached in the hot water storage tank 21 in the height direction, and the temperature distribution in the hot water storage tank 21 is detected directly or indirectly to detect the amount of hot water stored above the set temperature. ing. Here, the temperature detection thermistor may be arranged in the hot water storage tank 21 so as to directly detect the temperature. However, in terms of assemblability and serviceability, the temperature detection thermistor is arranged outside the side wall and indirectly detects the temperature. You may make it do.

運転制御手段5は、各部の温度状態を検出する温度センサ、圧縮機7a、7bの吐出圧力を検知する圧力センサ、浴槽65内の水位を検出する水位センサなどから検出信号を受け取り、これらの信号に基づいて各機器を制御している。例えば、台所リモコン101および風呂リモコン103の操作設定により、ヒートポンプ冷媒回路1の運転停止、圧縮機7a,7bの回転数制御などを行うとともに、タンク循環ポンプ23、風呂循環ポンプ71などの運転停止、水比例弁45、熱交側流量調整弁33、タンク側流量調整弁37、注湯電磁弁56、水開閉弁85などを周知の方法で制御することにより、タンク貯湯運転、直接給湯運転、タンク給湯運転、タンク追焚運転、風呂湯張り運転、風呂追焚運転を、それぞれ切換制御している。なお、運転制御手段5は、ヒートポンプ冷媒回路1の運転開始直後は、加熱立ち上げ時間を早めるため、圧縮器7a,7bの回転数を所定の高速回転数で運転制御するようになっている。   The operation control means 5 receives detection signals from a temperature sensor that detects the temperature state of each part, a pressure sensor that detects the discharge pressure of the compressors 7a and 7b, a water level sensor that detects the water level in the bathtub 65, and the like. Each device is controlled based on the above. For example, the operation setting of the kitchen remote controller 101 and the bath remote controller 103 is used to stop the operation of the heat pump refrigerant circuit 1, control the rotation speed of the compressors 7 a and 7 b, and stop the operation of the tank circulation pump 23 and the bath circulation pump 71. By controlling the water proportional valve 45, the heat exchange side flow rate adjustment valve 33, the tank side flow rate adjustment valve 37, the hot water solenoid valve 56, the water on / off valve 85, etc. in a well-known manner, tank hot water storage operation, direct hot water supply operation, tank A hot water supply operation, a tank chasing operation, a bath hot water driving operation, and a bath chasing operation are respectively switched and controlled. The operation control means 5 controls the operation of the compressors 7a and 7b at a predetermined high speed in order to shorten the heating start-up time immediately after the heat pump refrigerant circuit 1 is started.

また、運転制御手段5は、タンク給湯運転後は、タンク貯湯運転を行い、貯湯タンク21内の貯湯量を設定量以上に蓄えてから運転を停止するように、毎回貯湯運転の機能を備えている。すなわち、上述した方法により貯湯タンク21内における設定温度以上の貯湯量を検出し、その貯湯量が設定量未満の場合、ヒートポンプ冷媒回路1とタンク循環ポンプ23を稼動させて、貯湯タンク21の底部から抜き出した水を熱交換してから頂部に戻すことにより、貯湯量を設定量以上に調整するようにしている。   Further, the operation control means 5 has a function of a hot water storage operation every time so as to perform a tank hot water storage operation after the tank hot water supply operation and stop the operation after storing the hot water storage amount in the hot water storage tank 21 to a set amount or more. Yes. That is, when the amount of hot water stored in the hot water storage tank 21 is equal to or higher than the set temperature is detected by the above-described method and the hot water storage amount is less than the predetermined amount, the heat pump refrigerant circuit 1 and the tank circulation pump 23 are operated. The amount of hot water stored is adjusted to a set amount or more by returning the water extracted from the top to the top after heat exchange.

この場合において、貯湯量の設定量は、外気温度と給水温度との少なくとも一方の温度を検知し、その検出温度に基づいて可変に設定するようにする。例えば、外気温度が高い夏場は貯湯量を減らし、外気温度が低い冬場は貯湯量を増やすようにする。すなわち、外気温度などの検出値を予め記憶された関数などで演算処理することにより、最適な湯量が設定され、その結果、貯湯タンク21内には、使用条件に対し過不足のない、必要最小限の湯量が貯蔵される。なお、湯の設定量は、上記の方法に代えて、例えば、夏は50L、春秋は70L、冬は100Lというように、季節に応じて、いくつかの段階で制御するようにしてもよい。また、必要湯量を記憶、学習して制御してもよい。   In this case, the set amount of the hot water storage is set to be variable based on the detected temperature by detecting at least one of the outside air temperature and the feed water temperature. For example, the amount of stored hot water is reduced in summer when the outside air temperature is high, and the amount of stored hot water is increased in winter when the outside air temperature is low. In other words, the optimum amount of hot water is set by calculating the detected value such as the outside air temperature with a function stored in advance, and as a result, the hot water storage tank 21 has a minimum necessary amount that is not excessive or insufficient for the use conditions. A limited amount of hot water is stored. The set amount of hot water may be controlled in several stages according to the season, for example, 50 L in summer, 70 L in spring and autumn, and 100 L in winter, instead of the above method. Further, the required amount of hot water may be stored and learned and controlled.

図2は、本実施形態における水−冷媒熱交換器15の一例を示す模式図である。図に示すように、水−冷媒熱交換器15は、風呂熱交換器75を分離した給湯専用の熱交換器で、2本の冷媒伝熱管9a、9bと、2本の給水伝熱管2c、2dとからなり、冷媒伝熱管9a、9bと給水伝熱管9e、9fとを交互に接触させて円筒状に巻き上げた構造になっている。なお、図示しないが、本実施形態においては、円筒状の貯湯タンク21の外周壁に、水−冷媒熱交換器15を巻き付け、または同心円状に配置してもよい。これによれば、貯湯タンク21からの放熱を抑制し、熱損失を低減することができる。また、本実施形態の給水伝熱管は、内部圧損を少なくするため2本に分岐させているが、これに限られるものではない。   FIG. 2 is a schematic diagram illustrating an example of the water-refrigerant heat exchanger 15 in the present embodiment. As shown in the figure, the water-refrigerant heat exchanger 15 is a heat exchanger dedicated to hot water supply separated from the bath heat exchanger 75, and includes two refrigerant heat transfer tubes 9a and 9b, two water supply heat transfer tubes 2c, The refrigerant heat transfer tubes 9a and 9b and the feed water heat transfer tubes 9e and 9f are alternately brought into a cylindrical shape. Although not shown, in the present embodiment, the water-refrigerant heat exchanger 15 may be wound around the outer peripheral wall of the cylindrical hot water storage tank 21 or arranged concentrically. According to this, heat dissipation from the hot water storage tank 21 can be suppressed, and heat loss can be reduced. Moreover, although the water supply heat exchanger tube of this embodiment is branched into two in order to reduce internal pressure loss, it is not restricted to this.

図3は、本実施形態における風呂熱交換器75の一例を示す模式図であり、(a)は側面からの断面図を示し、(b)は正面からの断面図を示す。図に示すように、風呂熱交換器75は、銅管からなる温水伝熱管79の内部に、中空断面が異形の風呂水伝熱管77を挿入した2重管構造を有し、温水伝熱管79の両端側を絞って、風呂水伝熱管77の両端に形成される径小管77a,77bを外周側からそれぞれ気密に接合して形成される。水−冷媒熱交換器15で加熱された湯は、温水伝熱管79の一端の側壁を穿設させて形成される温水配管79aを介して内部に導かれ、温水配管79と風呂水伝熱管77との隙間の空間を通り、他端の側壁に形成される温水配管79bを介して外部に流出される一方、風呂水は、一端の径小管77aを介して風呂水伝熱管77内に導かれ、他端の径小管77bを介して外部に流出されるようになっている。なお、風呂水伝熱管77は、湯との接触面積を大きく取るため、断面円周を凹凸状、星型状、または多葉管等に形成することが望ましい。このようにして2重管構造を取ることにより、風呂水伝熱管77は、全外周で伝熱され、コンパクトで伝熱性の良い風呂熱交換器75を得ることができる。   FIG. 3 is a schematic diagram showing an example of the bath heat exchanger 75 in the present embodiment, where (a) shows a cross-sectional view from the side, and (b) shows a cross-sectional view from the front. As shown in the figure, the bath heat exchanger 75 has a double pipe structure in which a bath water heat transfer tube 77 having a hollow hollow section is inserted into a hot water heat transfer tube 79 made of a copper tube. The small diameter pipes 77a and 77b formed at both ends of the bath water heat transfer pipe 77 are airtightly joined from the outer peripheral side. Hot water heated by the water-refrigerant heat exchanger 15 is guided to the inside through a hot water pipe 79 a formed by drilling a side wall of one end of the hot water heat transfer pipe 79, and the hot water pipe 79 and the bath water heat transfer pipe 77. The bath water flows out to the outside through the hot water pipe 79b formed on the side wall at the other end, while the bath water is led into the bath water heat transfer pipe 77 through the small diameter pipe 77a at one end. In addition, it flows out to the outside through the small diameter pipe 77b at the other end. It is desirable that the bath water heat transfer tube 77 be formed in a concave-convex shape, a star shape, a multi-leaf tube or the like in order to increase the contact area with hot water. By taking a double tube structure in this way, the bath water heat transfer tube 77 is transferred on the entire outer periphery, and a bath heat exchanger 75 having a compact size and good heat transfer can be obtained.

すなわち、従来の風呂追焚用熱交換器は、ヒートポンプの冷媒伝熱管と風呂水伝熱管で熱交換を行なうため、万一、内側管が破損した場合、高圧冷媒が水回路に浸入し、洗面給湯水や台所給湯水を汚染させるおそれがある。このため、2重管構造は採用されず、冷媒管と水配管とを各々独立させた配管構造にする必要があった。これに対し、本実施形態によれば、風呂熱交換器20を水−冷媒熱交換器15から分離して、加熱循環水と熱交換する構造にしているため、2重管構造を取ることができる。   In other words, the conventional heat exchanger for bath remedy performs heat exchange between the refrigerant heat transfer tube of the heat pump and the bath water heat transfer tube, so that in the unlikely event that the inner tube is damaged, the high-pressure refrigerant enters the water circuit and the wash surface May contaminate hot water and kitchen hot water. For this reason, the double pipe structure is not adopted, and it is necessary to have a pipe structure in which the refrigerant pipe and the water pipe are made independent of each other. On the other hand, according to this embodiment, since the bath heat exchanger 20 is separated from the water-refrigerant heat exchanger 15 and is configured to exchange heat with the heated circulating water, a double pipe structure can be taken. it can.

以上のような構成により、本実施形態のヒートポンプ給湯装置は、給湯が開始されると、まずタンク貯湯運転により設定量の湯が貯留された貯湯タンク21から給湯を行い、これと同時に、ヒートポンプを稼動させ、ヒートポンプ冷媒回路1の加熱能力が安定したところで、直接給湯運転に切り換えて、水−冷媒熱交換器15で沸上げた湯を直接給湯口から給湯するように制御するものである。さらに、必要であれば、浴槽65の湯を2重管構造の風呂熱交換器75で追焚きするようにしている。   With the configuration as described above, when the hot water supply is started, the heat pump hot water supply apparatus of the present embodiment first supplies hot water from the hot water storage tank 21 in which a set amount of hot water is stored by the tank hot water storage operation. When the heating capacity of the heat pump refrigerant circuit 1 is stabilized, the operation is switched to the direct hot water supply operation, and the hot water boiled by the water-refrigerant heat exchanger 15 is controlled to be directly supplied from the hot water supply port. Furthermore, if necessary, the hot water in the bathtub 65 is chased by a bath heat exchanger 75 having a double pipe structure.

次に、本実施形態のヒートポンプ給湯装置の動作について説明する。初めに、本装置の据付時における運転動作を図4のフローチャートを用いて説明する。   Next, operation | movement of the heat pump hot-water supply apparatus of this embodiment is demonstrated. Initially, the operation | movement operation | movement at the time of installation of this apparatus is demonstrated using the flowchart of FIG.

まず、ステップS101で、ヒートポンプ給湯装置を製造場所から運搬し使用される設置場所に据付ける。そして、ステップS102で、給水口41の給水金具が水道等の給水源に接続され、逃し弁93を開放にした後、元栓が開放されると、給水源から給水が開始され、水は減圧弁43によって一定圧力に減圧調整された後、貯湯タンク21及び水−冷媒熱交換器15並びに各配管内に流入する。また、これと同時に、給湯装置の水サイクル内の空気が逃し弁から大気中に追い出される。この場合において、ヒートポンプ給湯装置の据付時の各機器は、次の初期状態に設定されている。すなわち、水比例弁45は貯湯タンク21側が開、給湯口57側が閉、熱交側流量調整弁33、タンク側流量調整弁37、水開閉弁85はいずれも開、注湯電磁弁56は閉の状態になっている。   First, in step S101, the heat pump hot-water supply device is transported from the manufacturing location and installed in an installation location. In step S102, after the water supply fitting of the water supply port 41 is connected to a water supply source such as a water supply and the relief valve 93 is opened, when the main plug is opened, water supply is started from the water supply source, and the water is supplied to the pressure reducing valve. After the pressure is reduced to a constant pressure by 43, the hot water is stored in the hot water storage tank 21, the water-refrigerant heat exchanger 15, and each pipe. At the same time, air in the water cycle of the hot water supply device is expelled from the relief valve into the atmosphere. In this case, each device at the time of installation of the heat pump water heater is set to the following initial state. That is, the water proportional valve 45 is open on the hot water storage tank 21 side, the hot water supply port 57 side is closed, the heat exchange side flow rate adjustment valve 33, the tank side flow rate adjustment valve 37, and the water on / off valve 85 are all open, and the pouring solenoid valve 56 is closed. It is in the state.

給湯装置の水サイクル内がすべて水に満たされ、逃し弁93から水が流出し始めると、ステップS103で給水が完了したものと判定され、逃し弁93が閉じられる。続いて、ステップS104では、装置の電源スイッチが投入され、運転制御手段5の制御によりヒートポンプ冷媒回路1および給湯回路3の運転が開始され、タンク貯湯運転が行なわれる。すなわち、ヒートポンプ冷媒回路1においては、圧縮機7a、7bの運転が開始され、圧縮機7a、7b内のガス状冷媒が圧縮加熱され、高温高圧の冷媒となり水−冷媒熱交換器15に送り込まれる。これにより、水−冷媒熱交換器15では、冷媒側伝熱管9a、9b内を流れる高温冷媒と、給水側伝熱管9c、9d内を流れる給水とが熱交換し、冷媒は放熱し、水は加熱される。放熱された冷媒は、減圧装置11a、11bで減圧され、次いで蒸発器13a、13bで膨脹蒸発してガス状態となり、再び圧縮機7a、7bに戻る。   When the entire water cycle of the hot water supply apparatus is filled with water and water begins to flow out of the relief valve 93, it is determined in step S103 that the water supply has been completed, and the relief valve 93 is closed. Subsequently, in step S104, the power switch of the apparatus is turned on, the operation of the heat pump refrigerant circuit 1 and the hot water supply circuit 3 is started under the control of the operation control means 5, and the tank hot water storage operation is performed. That is, in the heat pump refrigerant circuit 1, the operation of the compressors 7a and 7b is started, and the gaseous refrigerant in the compressors 7a and 7b is compressed and heated to be a high-temperature and high-pressure refrigerant and sent to the water-refrigerant heat exchanger 15. . Thereby, in the water-refrigerant heat exchanger 15, the high temperature refrigerant flowing in the refrigerant side heat transfer tubes 9a and 9b and the water supply flowing in the water supply side heat transfer tubes 9c and 9d exchange heat, the refrigerant dissipates heat, Heated. The radiated refrigerant is depressurized by the decompression devices 11a and 11b, and then is expanded and evaporated by the evaporators 13a and 13b to be in a gas state, and returns to the compressors 7a and 7b again.

一方、タンク循環ポンプ23の運転が開始されると、貯湯タンク21の底部から強制的に抜き出された水は、タンク循環ポンプ23、水−冷媒熱交換器15、熱交側流量調整弁33、タンク側流量調整弁37を順次経由して貯湯タンク21の頂部に戻される。これにより、水−冷媒熱交換器15で加熱された湯が、貯湯タンク21の上部に次第に貯湯され、貯湯タンク21の高さ方向に複数取付けられた温度検知サーミスタ110のうち、貯湯タンク21の高い位置に取付けられたものから順に、設定温度以上の温度を検知し、貯湯量を検知する。   On the other hand, when the operation of the tank circulation pump 23 is started, the water forcibly extracted from the bottom of the hot water storage tank 21 is the tank circulation pump 23, the water-refrigerant heat exchanger 15, and the heat exchange side flow rate adjustment valve 33. Then, the water is returned to the top of the hot water storage tank 21 via the tank side flow rate adjusting valve 37 in order. As a result, hot water heated by the water-refrigerant heat exchanger 15 is gradually stored in the upper part of the hot water storage tank 21, and among the temperature detection thermistors 110 attached in the height direction of the hot water storage tank 21, In order from the one installed at a higher position, the temperature above the set temperature is detected and the amount of hot water stored is detected.

ステップS105において、貯湯量が設定量に達し、貯湯完了と判定されると、ステップS106に進み、運転を停止する。なお、貯湯量は、温度検知サーミスタ110で検知した高温水のタンク高さ位置が判れば、貯湯タンクの内径寸法により、容易に判定することができる。また、貯湯量の検出方法は、温度検知サーミスタ110に限らず、例えば、貯湯回路中に流量センサなどを設け、流量を直接測定してもよい。さらに、温度検知サーミスタの設置数を増加させ、季節の他に昼、夜の時間帯も含めて、貯湯量を細かく設定してもよい。   In step S105, when the hot water storage amount reaches the set amount and it is determined that the hot water storage is completed, the process proceeds to step S106, and the operation is stopped. Note that the amount of hot water storage can be easily determined from the inner diameter of the hot water storage tank if the tank height position detected by the temperature detection thermistor 110 is known. The method for detecting the amount of hot water storage is not limited to the temperature detection thermistor 110. For example, a flow rate sensor or the like may be provided in the hot water storage circuit to directly measure the flow rate. Further, the number of temperature detection thermistors may be increased, and the amount of hot water stored may be set finely including the daytime and night time zones in addition to the season.

次に、給湯時の動作を図5のフローチャートを用いて説明する。ステップS111で、給湯口41の蛇口が開放され、湯が給湯されると、ステップS112とS113に進み、直接給湯運転およびタンク給湯運転が同時に開始される。すなわち、直接給湯運転では、運転制御手段5により、圧縮機7a、7bを起動させてヒートポンプ回路1の運転を開始させるとともに、直接給湯回路に水を流し、熱交換するようにする。一方、タンク給湯運転では、タンク給湯回路に水を流し、貯湯タンク21内の湯を給湯するようにする。   Next, the operation during hot water supply will be described with reference to the flowchart of FIG. When the faucet of the hot water supply port 41 is opened and hot water is supplied in step S111, the process proceeds to steps S112 and S113, and the direct hot water supply operation and the tank hot water supply operation are started simultaneously. That is, in the direct hot water supply operation, the operation control means 5 starts the compressors 7a and 7b to start the operation of the heat pump circuit 1, and allows water to flow directly through the hot water supply circuit to exchange heat. On the other hand, in the tank hot water supply operation, water is supplied to the tank hot water supply circuit to supply hot water in the hot water storage tank 21.

ここで、ヒートポンプ冷媒回路1は、圧縮機7a、7bで圧縮された高温冷媒を水−冷媒熱交換器15に送り込み、時間の経過とともに、給水配管9c,9dを流れる水の加熱能力が増加されるが、運転立ち上がり時は、水−冷媒熱交換器15に送り込まれてくる冷媒が充分な高温高圧に至らず、かつ水−冷媒熱交換器15全体が冷えているため、水を加熱する加熱能力が充分でない。   Here, the heat pump refrigerant circuit 1 sends the high-temperature refrigerant compressed by the compressors 7a and 7b to the water-refrigerant heat exchanger 15, and the heating capacity of the water flowing through the water supply pipes 9c and 9d is increased with time. However, at the start of operation, the refrigerant sent to the water-refrigerant heat exchanger 15 does not reach a sufficiently high temperature and pressure, and the entire water-refrigerant heat exchanger 15 is cooled. The ability is not enough.

そこで、運転開始直後の所定時間(約1〜2分程度)は、貯湯タンク21から湯を供給するタンク給湯運転を行ない、ステップS114において、運転制御手段5がヒートポンプ冷媒回路1の加熱能力が安定したか否かを検知し、タンク給湯運転の継続または停止を判定する。ここで運転停止の判定がされた場合、ステップS115に進み、タンク給湯運転が停止され、直接給湯運転のみに切換えられる。ヒートポンプ冷媒回路1の加熱能力を判定する方法としては、ステップS116に示すように、例えば、水−冷媒熱交換器15内の給水側伝熱管9c,9dから流出する湯の温度を検知する温度検知サーミスタ112または伝熱管から流出する湯の流量を検知する流量センサ114などにより検知された検出値が所定値以上であるか否かを判定し、所定以上であれば、加熱能力が安定したものと判断するようにする。   Therefore, a tank hot water supply operation for supplying hot water from the hot water storage tank 21 is performed for a predetermined time immediately after the start of operation (about 1 to 2 minutes), and the operation control means 5 stabilizes the heating capacity of the heat pump refrigerant circuit 1 in step S114. It is detected whether or not the tank hot water supply operation is continued or stopped. If it is determined that the operation has been stopped, the process proceeds to step S115, where the tank hot water supply operation is stopped and the direct hot water supply operation is switched to only. As a method of determining the heating capacity of the heat pump refrigerant circuit 1, as shown in step S116, for example, temperature detection for detecting the temperature of hot water flowing out from the water supply side heat transfer tubes 9c and 9d in the water-refrigerant heat exchanger 15 It is determined whether or not the detection value detected by the thermistor 112 or the flow rate sensor 114 for detecting the flow rate of hot water flowing out of the heat transfer tube is equal to or greater than a predetermined value. Try to judge.

このように、運転開始時は、貯湯タンク21から過渡的に給湯し、その後は水−冷媒熱交換器15で加熱された湯を直接給湯する、2系統の給湯方式を採用しているため、運転立ち上がり時の加熱遅れが解消されるとともに、貯湯タンク21の容量を格段に小さくすることができる。なお、運転制御手段5は、貯湯タンク21の残湯量が所定値以下になった時には、タンク給湯運転を停止させ、直接給湯運転のみで運転するようになっている。   As described above, since the hot water supply is transiently supplied from the hot water storage tank 21 at the start of operation and then the hot water heated by the water-refrigerant heat exchanger 15 is directly supplied, a two-system hot water supply method is employed. The heating delay at the start of operation is eliminated, and the capacity of the hot water storage tank 21 can be significantly reduced. The operation control means 5 stops the tank hot water supply operation when the remaining hot water amount in the hot water storage tank 21 becomes a predetermined value or less, and operates only with the direct hot water supply operation.

給湯が終了し、給湯口57の蛇口が閉じられると、給湯直後でタンク給湯運転と直接給湯運転とが行われている場合は、ステップS115およびステップS117によりタンク給湯運転と直接給湯運転の両方を停止し、タンク給湯運転が停止され直接給湯運転のみであれば、ステップS117で直接給湯運転を停止する。   When the hot water supply is completed and the faucet of the hot water supply port 57 is closed, if the tank hot water supply operation and the direct hot water supply operation are performed immediately after the hot water supply, both the tank hot water supply operation and the direct hot water supply operation are performed in steps S115 and S117. If the tank hot water supply operation is stopped and only the direct hot water supply operation is performed, the direct hot water supply operation is stopped in step S117.

次に、運転制御手段5は、タンク給湯運転と直接給湯運転を停止させた後、ステップS118においてタンク貯湯運転を開始する。すなわち、貯湯タンク21に複数配設される温度検知サーミスタ110により設定温度以上の貯湯量を検知し、ステップS119で貯湯量を判定する。ここで、貯湯量が設定量以上の場合、ステップS120に進み、運転を終了する。一方、設定量未満の場合、ヒートポンプ冷媒回路1に加え、タンク循環ポンプ23を稼動させ、貯湯量が設定量以上になるように流量調整する。なお、給湯が停止された後でも、極めて短時間使用のため、貯湯タンク21内の湯温および湯量が、予め設定された値とほぼ同等である場合は、貯湯完了状態と判定し、タンク貯湯運転を行わないようにする。   Next, the operation control means 5 stops the tank hot water supply operation and the direct hot water supply operation, and then starts the tank hot water storage operation in step S118. That is, a hot water storage amount equal to or higher than the set temperature is detected by a plurality of temperature detection thermistors 110 arranged in the hot water storage tank 21, and the hot water storage amount is determined in step S119. Here, when the amount of stored hot water is equal to or greater than the set amount, the process proceeds to step S120 and the operation is terminated. On the other hand, when the amount is less than the set amount, the tank circulation pump 23 is operated in addition to the heat pump refrigerant circuit 1, and the flow rate is adjusted so that the amount of stored hot water is equal to or greater than the set amount. Even after the hot water supply is stopped, if the hot water temperature and the amount of hot water in the hot water storage tank 21 are substantially equal to the preset values, the hot water storage is completed, and the hot water storage in the tank is determined. Do not drive.

以上説明したように、運転制御手段5は、いずれの運転においても、その運転終了後、外気温や給水温度などに応じて設定された設定量の貯湯量に達するまで、タンク貯湯運転を行う毎回湯運転の機能を備えている。そのため、貯湯タンク21内には、常に設定温度および設定量の湯が貯湯され、運転立上がり時の湯温低下を解消するとともに、過剰な貯湯による熱損失が低減される。また、必要以上に高温の湯を貯留させておく必要がないため、ヒートポンプのエネルギ効率が向上する。   As described above, every time the operation control means 5 performs the tank hot water storage operation until the set amount of hot water storage set according to the outside air temperature, the feed water temperature, or the like is reached after the end of the operation. It has a hot water operation function. Therefore, a set temperature and a set amount of hot water are always stored in the hot water storage tank 21, so that a decrease in hot water temperature at the start of operation is eliminated and heat loss due to excessive hot water storage is reduced. Moreover, since it is not necessary to store hot water higher than necessary, the energy efficiency of the heat pump is improved.

さらに、ヒートポンプ運転の加熱能力が高温安定状態に達するまでの時間は、通常、約5〜6分掛かるため、それまでの間、貯湯タンク21内の湯量ですべてをまかなう必要がある。しかし、本実施形態によれば、二つのヒートポンプ冷媒回路1を併設させた2サイクル方式を採用しているため、加熱能力が倍増され、さらに、圧縮機の回転数を通常より高速回転で運転制御することにより、運転開始直後から高温安定状態に達するまでの所定時間を約1〜2分に短縮できる。これにより、ヒートポンプ方式による直接給湯が実現可能となり、貯湯タンク21を一層小形化することができる。   Furthermore, since it takes about 5 to 6 minutes for the heating capacity of the heat pump operation to reach a high temperature stable state, it is necessary to cover all of it with the amount of hot water in the hot water storage tank 21 until then. However, according to the present embodiment, since a two-cycle system in which two heat pump refrigerant circuits 1 are provided is adopted, the heating capacity is doubled, and the operation speed of the compressor is controlled at a higher speed than usual. By doing so, the predetermined time from the start of operation until reaching the high temperature stable state can be shortened to about 1-2 minutes. Thereby, direct hot water supply by a heat pump system can be realized, and the hot water storage tank 21 can be further miniaturized.

次に、風呂自動運転における湯張り動作を図6のフローチャートを用いて説明する。なお、図5と同様の操作についは説明を簡略化する。まず、ステップS121で、風呂自動ボタンを押すと、タイマ121が時間測定を開始する。続いてステップS123で、セット時間が来たことを判定すると、ステップS124とS125に進み、風呂給湯運転とタンク給湯運転が同時に行なわれる。風呂給湯運転は、上述した直接給湯運転により風呂浴槽内に給湯する。すなわち、ヒートポンプ運転開始直後1〜2分間は、風呂給湯運転とタンク給湯運転を同時に行い、その間、温度検知サーミスタ112および流量センサ114により風呂給湯量および給湯温度が検知される。そして、ステップS127でタンク給湯運転の停止が判定され、ステップS129でタンク給湯運転が停止されると、風呂給湯運転のみの運転となる。風呂給湯運転中は、風呂給湯温度と浴槽内湯量が連続的又は定期的に検知され、運転制御手段5により以下の制御が行われる。   Next, the hot water filling operation in the bath automatic operation will be described with reference to the flowchart of FIG. Note that description of operations similar to those in FIG. 5 is simplified. First, in step S121, when the bath automatic button is pressed, the timer 121 starts time measurement. Subsequently, when it is determined in step S123 that the set time has come, the process proceeds to steps S124 and S125, and the bath hot water supply operation and the tank hot water supply operation are performed simultaneously. In the bath hot water supply operation, hot water is supplied into the bath tub by the direct hot water supply operation described above. That is, for 1 to 2 minutes immediately after the start of the heat pump operation, the bath hot water supply operation and the tank hot water supply operation are performed simultaneously, and during that time, the temperature detection thermistor 112 and the flow rate sensor 114 detect the bath hot water supply amount and the hot water supply temperature. If it is determined in step S127 that the tank hot water supply operation is stopped, and if the tank hot water supply operation is stopped in step S129, only the bath hot water operation is performed. During the bath water supply operation, the bath hot water temperature and the amount of hot water in the bathtub are detected continuously or periodically, and the following control is performed by the operation control means 5.

まず、ヒートポンプ冷媒回路1は、ステップS131で、圧縮機7a,7bの回転数および給水流量を制御し、次いで、ステップ133で、風呂給湯温度が設定温度の範囲内であるか否かを判定する。そして、設定温度の範囲内にある場合はステップS135に進み、範囲外の場合は範囲内になるようにステップ131の制御を繰り返す。続いて、ステップS135では、浴槽65内の湯温および湯量を、それぞれ温度検知サーミスタ126および水位センサ127で検知し、その検出値に基づいて判定する。湯温および湯量が設定量に達した場合は、ステップS137に進んで風呂給湯運転が停止され、設定量に満たない場合は給湯が継続される。   First, in step S131, the heat pump refrigerant circuit 1 controls the rotation speed and the feed water flow rate of the compressors 7a and 7b, and then in step 133, determines whether or not the bath hot water temperature is within the set temperature range. . If the temperature is within the set temperature range, the process proceeds to step S135. If the temperature is out of the range, the control in step 131 is repeated so that the temperature is within the range. Subsequently, in step S135, the hot water temperature and the hot water amount in the bathtub 65 are detected by the temperature detection thermistor 126 and the water level sensor 127, respectively, and are determined based on the detected values. When the hot water temperature and the hot water amount reach the set amount, the process proceeds to step S137, the bath hot water supply operation is stopped, and when the hot water temperature and the hot water amount do not reach the set amount, the hot water supply is continued.

次に、風呂自動運転における風呂追焚の動作を図7のフローチャートを用いて説明する。まず、ステップS141で、風呂自動ボタンを押すと、浴槽65内の湯温および湯量を温度検知サーミスタ126および水位センサ127で検知し、次いで、ステップS143で、検知された湯温および湯量がそれぞれ設定値の範囲内であるか否かを判定する。そして、これらの検出値が設定値の範囲内にある場合は、ステップS153に進んで風呂追焚運転を省略し、範囲外の場合はステップS145に進み、風呂追焚運転を開始する。   Next, the bath memorial operation in bath automatic operation will be described using the flowchart of FIG. First, when the bath automatic button is pressed in step S141, the hot water temperature and hot water amount in the bathtub 65 are detected by the temperature detection thermistor 126 and the water level sensor 127, and then in step S143, the detected hot water temperature and hot water amount are set. It is determined whether the value is within the range. If these detected values are within the set value range, the process proceeds to step S153 to omit the bath chase operation, and if outside the range, the process proceeds to step S145 to start the bath chase operation.

風呂追焚運転中は、風呂給湯温度と浴槽内湯量が連続的又は定期的に検知され、これらの検出値に基づいて、ステップS147において圧縮機7a,7bの回転数および給水流量が制御される。そして、図6と同様に、ステップS149、S151で、風呂給湯温度、浴槽65内の湯温および湯量を判定し、設定値の範囲内であれば、ステップS153に進み、風呂追焚運転を停止する。   During the bath memorial operation, the bath hot water temperature and the amount of hot water in the bathtub are detected continuously or periodically, and based on these detected values, the rotation speed and the feed water flow rate of the compressors 7a and 7b are controlled in step S147. . Then, as in FIG. 6, in steps S149 and S151, the bath hot water temperature, the hot water temperature and the amount of hot water in the bathtub 65 are determined, and if within the set value range, the process proceeds to step S153 to stop the bath chase operation. To do.

以上説明したように、貯湯タンク21の貯湯量を外気温度や給水温度などの外的条件に応じて適宜可変に設定することにより、貯湯量が低減され、かつ貯湯温度が低下する。その結果、貯湯タンクからの放熱ロスを低減し、省エネを図ることができる。   As described above, the hot water storage amount is reduced and the hot water storage temperature is lowered by setting the hot water storage amount of the hot water storage tank 21 to be appropriately variable according to external conditions such as the outside air temperature and the water supply temperature. As a result, heat loss from the hot water storage tank can be reduced and energy can be saved.

また、給湯回路をタンク給湯および直接給湯の2系統設けることにより、単独回路および2回路同時運転の合計3通りの給湯回路を有し、これにより、給湯機利用の多様化を図ることができる。すなわち、通常は、直接給湯運転のみの省エネ運転を行い、冬場やシャワー使用などで給湯使用量が多い場合は、直接給湯回路とタンク給湯回路を同時に使用して対応することができる。そのため、小容量の貯湯タンクで大きな機能を有することができる。   In addition, by providing two hot water supply circuits, tank hot water supply and direct hot water supply, there are a total of three types of hot water supply circuits, that is, a single circuit and two-circuit simultaneous operation, thereby making it possible to diversify the use of water heaters. That is, normally, an energy-saving operation of only a direct hot water supply operation is performed, and when there is a large amount of hot water supply in winter or when using a shower, the direct hot water supply circuit and the tank hot water supply circuit can be used at the same time. Therefore, a small capacity hot water storage tank can have a large function.

また、直接給湯を行うためには、ヒートポンプサイクル全体を大容量化しなければならず、多くの問題点を有しているが、本実施形態では、冷媒回路を併設させているため、従来部品がそのまま利用でき、さらに、万一1台が故障しても、残りの回路で給湯を補うことができる。   In addition, in order to directly supply hot water, the entire heat pump cycle has to have a large capacity, and there are many problems. It can be used as it is, and even if one unit breaks down, the remaining circuit can make up for hot water supply.

なお、本実施形態では、ヒートポンプ運転開始直後に貯湯タンクの湯を使用する直接給湯方式において多大な効果を有するが、貯湯タンクに貯蔵する湯ですべての給湯分を賄う従来のタンク貯湯方式においても同様の効果が得られることはいうまでもない。   In this embodiment, there is a great effect in the direct hot water supply method using the hot water in the hot water storage tank immediately after the start of the heat pump operation, but also in the conventional tank hot water method in which the hot water stored in the hot water storage tank covers all the hot water supply. Needless to say, similar effects can be obtained.

本発明を適用してなるヒートポンプ給湯装置の一例を示す構成図である。It is a block diagram which shows an example of the heat pump hot-water supply apparatus to which this invention is applied. 図1の水−冷媒熱交換器の一例を示す模式図である。It is a schematic diagram which shows an example of the water-refrigerant heat exchanger of FIG. 図1の風呂熱交換器の一例であり、(a)は側面からの断面図を示し、(b)は正面からの断面図を示す。It is an example of the bath heat exchanger of FIG. 1, (a) shows sectional drawing from a side surface, (b) shows sectional drawing from the front. 本実施形態に係る給湯装置の据付時の運転動作を示すフローチャートである。It is a flowchart which shows the driving | operation operation | movement at the time of installation of the hot water supply apparatus which concerns on this embodiment. 本実施形態に係る給湯装置の給湯時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the hot water supply of the hot water supply apparatus which concerns on this embodiment. 本実施形態に係る給湯装置の風呂自動運転における湯張り動作を示すフローチャートである。It is a flowchart which shows the hot water filling operation | movement in the bath automatic operation of the hot water supply apparatus which concerns on this embodiment. 本実施形態に係る給湯装置の風呂自動運転における風呂追焚の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the bath memorial in the bath automatic operation of the hot water supply apparatus which concerns on this embodiment.

符号の説明Explanation of symbols

1 ヒートポンプ冷媒回路
3 給湯回路
5 運転制御手段
15 水−冷媒熱交換器
21 貯湯タンク
23 タンク循環ポンプ
41 給水口
57 給湯口
75 風呂熱交換器
DESCRIPTION OF SYMBOLS 1 Heat pump refrigerant circuit 3 Hot water supply circuit 5 Operation control means 15 Water-refrigerant heat exchanger 21 Hot water storage tank 23 Tank circulation pump 41 Water supply port 57 Hot water supply port 75 Bath heat exchanger

Claims (6)

給水を加熱するヒートポンプと、該ヒートポンプで加熱された湯を貯留する貯湯槽と、前記ヒートポンプの湯出口と前記貯湯槽の頂部とを連通する第一の給湯管と、前記貯湯槽の頂部と給湯口とを連通する第二の給湯管と、給水源と前記貯湯槽の底部とを連通する給水管と、前記貯湯槽の底部から前記ヒートポンプに給水する給水ポンプと、前記貯湯槽の設定温度以上の湯量を検知して、その検出値が設定量未満の場合、前記ヒートポンプと前記給水ポンプとを稼動させて、前記湯量が設定量以上になるように調整する湯量調整手段とを備えてなるヒートポンプ給湯装置。 A heat pump for heating the hot water; a hot water storage tank for storing hot water heated by the heat pump; a first hot water supply pipe communicating with the hot water outlet of the heat pump and the top of the hot water storage tank; More than the set temperature of the hot water tank, a second hot water pipe communicating with the mouth, a water supply pipe communicating with the water source and the bottom of the hot water tank, a water supply pump supplying water to the heat pump from the bottom of the hot water tank A heat pump comprising a hot water amount adjusting means for detecting the amount of hot water and adjusting the hot water amount to be equal to or higher than a predetermined amount by operating the heat pump and the water supply pump when the detected value is less than a set amount. Hot water supply device. 前記第一と第二の給湯管を連通させてなることを特徴とする請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the first and second hot water supply pipes are communicated with each other. 給水を加熱するヒートポンプと、該ヒートポンプで加熱された湯を貯留する貯湯槽と、前記ヒートポンプの湯出口と前記貯湯槽の頂部とを連通する第一の給湯管と、該第一の給湯管と給湯口とを連通する第二の給湯管と、給水源と前記貯湯槽の底部とを連通する給水管と、前記貯湯槽の底部から前記ヒートポンプに給水する給水ポンプと、前記貯湯槽の設定温度以上の湯量を検知して、その検出値が設定量未満の場合、前記ヒートポンプと前記給水ポンプとを稼動させて、前記湯量が設定量以上になるように調整する湯量調整手段と、前記給湯口の開放を検知して前記ヒートポンプを起動させ、前記ヒートポンプの加熱能力が安定後に前記ヒートポンプに給水を開始する制御手段とを備えてなるヒートポンプ給湯装置。 A heat pump for heating the hot water, a hot water storage tank for storing hot water heated by the heat pump, a first hot water supply pipe communicating with the hot water outlet of the heat pump and the top of the hot water storage tank, and the first hot water supply pipe, A second hot water pipe communicating with the hot water outlet, a water pipe communicating between the water source and the bottom of the hot water tank, a water pump for supplying water to the heat pump from the bottom of the hot water tank, and a set temperature of the hot water tank Hot water amount adjusting means for detecting the amount of hot water as described above and operating the heat pump and the feed water pump to adjust the hot water amount to be equal to or greater than a set amount when the detected value is less than the set amount; A heat pump hot water supply apparatus comprising: control means for detecting the release of the heat pump, starting the heat pump, and starting water supply to the heat pump after the heating capacity of the heat pump is stabilized. 前記湯量調整手段は、外気温度と給水温度との少なくとも一方の温度を検知し、その検出温度に基づいて前記設定量を可変に設定することを特徴とする請求項1乃至3のいずれかに記載のヒートポンプ給湯装置。 The hot water amount adjusting means detects at least one of an outside air temperature and a feed water temperature, and variably sets the set amount based on the detected temperature. Heat pump water heater. 前記貯湯槽は、該貯湯槽の高さ方向に複数の温度センサを取り付けて、前記温度センサが直接または間接的に検知した検出温度に基づいて前記設定温度以上の湯量を検知してなる請求項1乃至4のいずれかに記載のヒートポンプ給湯装置。 The hot water tank is formed by attaching a plurality of temperature sensors in the height direction of the hot water tank and detecting a hot water amount equal to or higher than the set temperature based on a detected temperature detected directly or indirectly by the temperature sensor. The heat pump hot-water supply apparatus in any one of 1-4. 前記ヒートポンプは、複数並列に設けられてなる請求項1乃至5のいずれかに記載のヒートポンプ給湯装置。
The heat pump hot water supply apparatus according to any one of claims 1 to 5, wherein a plurality of the heat pumps are provided in parallel.
JP2003306875A 2003-08-29 2003-08-29 Heat pump hot water supplier Pending JP2005076964A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003306875A JP2005076964A (en) 2003-08-29 2003-08-29 Heat pump hot water supplier
CN200410070838A CN100587355C (en) 2003-08-29 2004-07-20 Hot water supplying device for heat pump
KR1020040059466A KR100563179B1 (en) 2003-08-29 2004-07-29 Heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306875A JP2005076964A (en) 2003-08-29 2003-08-29 Heat pump hot water supplier

Publications (2)

Publication Number Publication Date
JP2005076964A true JP2005076964A (en) 2005-03-24
JP2005076964A5 JP2005076964A5 (en) 2007-03-08

Family

ID=34409836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306875A Pending JP2005076964A (en) 2003-08-29 2003-08-29 Heat pump hot water supplier

Country Status (3)

Country Link
JP (1) JP2005076964A (en)
KR (1) KR100563179B1 (en)
CN (1) CN100587355C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139368A (en) * 2005-11-22 2007-06-07 Sanden Corp Hot water supply system
JP2007303754A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2010175142A (en) * 2009-01-29 2010-08-12 Chofu Seisakusho Co Ltd Operating method of water heater
JP4779052B1 (en) * 2010-09-16 2011-09-21 三上 征宏 Air-conditioning water heater
JP2014119181A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Storage type water heater, and solar system
CN105352195A (en) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 Method and device for controlling electric heating of water heater, water heater and heat pump water heater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138414B2 (en) * 2008-02-22 2013-02-06 サンデン株式会社 Hot water storage water heater
KR101636130B1 (en) * 2014-07-10 2016-07-04 린나이코리아 주식회사 Device for supplying hot water
CN105202756B (en) * 2015-09-22 2018-07-20 合肥美的暖通设备有限公司 A kind of integrated heat pump water heater and leaving water temperature control method
CN112629022B (en) * 2020-12-21 2022-03-01 珠海格力电器股份有限公司 Multi-split water heater control method and device and multi-split water heater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139368A (en) * 2005-11-22 2007-06-07 Sanden Corp Hot water supply system
JP2007303754A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2010175142A (en) * 2009-01-29 2010-08-12 Chofu Seisakusho Co Ltd Operating method of water heater
JP4779052B1 (en) * 2010-09-16 2011-09-21 三上 征宏 Air-conditioning water heater
JP2014119181A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Storage type water heater, and solar system
CN105352195A (en) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 Method and device for controlling electric heating of water heater, water heater and heat pump water heater
CN105352195B (en) * 2015-11-24 2018-04-13 珠海格力电器股份有限公司 Control water heater electrically heated method, apparatus, water heater and Teat pump boiler

Also Published As

Publication number Publication date
CN100587355C (en) 2010-02-03
KR20050022288A (en) 2005-03-07
KR100563179B1 (en) 2006-03-27
CN1590912A (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP4215735B2 (en) Heat pump water heater
US20030178498A1 (en) Heat pump hot-water supply system
JP2005076964A (en) Heat pump hot water supplier
JP2006300489A (en) Hot water storage type water heater
JP2003139392A (en) Water heater
JP4956731B2 (en) Hot water system
JP2008002776A (en) Heat pump hot water supply system
JP3887781B2 (en) Heat pump water heater
JP3909311B2 (en) Heat pump water heater
JP2009270780A (en) Heat pump water heater
JP2006234314A (en) Heat pump water heater
JP2007322084A (en) Heat pump water heater
JP2010054145A (en) Heat pump water heater
JP3896378B2 (en) Heat pump water heater
JP3909312B2 (en) Heat pump water heater
JP2006010284A (en) Heat pump water heater
JP4207867B2 (en) Hot water storage water heater
JP4740284B2 (en) Heat pump water heater
JP4284292B2 (en) Heat pump water heater
JP4045266B2 (en) Heat pump water heater
JP3909310B2 (en) Heat pump water heater
JP5210906B2 (en) Water heater
JP2006138513A (en) Heat pump type hot water supply heating device
JP3812588B2 (en) Heat pump water heater
JP5017355B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016