JP4779052B1 - Air-conditioning water heater - Google Patents

Air-conditioning water heater Download PDF

Info

Publication number
JP4779052B1
JP4779052B1 JP2010207698A JP2010207698A JP4779052B1 JP 4779052 B1 JP4779052 B1 JP 4779052B1 JP 2010207698 A JP2010207698 A JP 2010207698A JP 2010207698 A JP2010207698 A JP 2010207698A JP 4779052 B1 JP4779052 B1 JP 4779052B1
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010207698A
Other languages
Japanese (ja)
Other versions
JP2012063082A (en
Inventor
三上征宏
Original Assignee
三上 征宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三上 征宏 filed Critical 三上 征宏
Priority to JP2010207698A priority Critical patent/JP4779052B1/en
Application granted granted Critical
Publication of JP4779052B1 publication Critical patent/JP4779052B1/en
Publication of JP2012063082A publication Critical patent/JP2012063082A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】
湯の生成と冷房を統合し、熱効率の高い冷房給湯装置を提供する。
【解決手段】
本発明の冷房給湯装置260は、最大の湯量を貯える冬期モードと、冬期モードより少ない湯量を貯える中間期モードと、大量の冷房の排熱を蓄える冷房モードを有し、冬期モードと中間期モード間は日付で移行し、中間期モードと冷房モード間は冷房の排熱量に基づいて移行する。冷房給湯装置260は、外気から熱を吸収し湯を生成する冷媒回路91と、強冷房の指示で運転され、湯を生成する冷媒回路95と、弱冷房の指示で運転され、中温水を生成する冷媒回路94と、冷媒回路94または暖房装置140の運転で生成される中温水の熱を吸収し、湯を生成する冷媒回路92Aと96を備えるので冷房と湯の生成の熱効率が極めて高く、中温水による湯の生成の熱効率の低下がない。
【選択図】 図24
【Task】
It integrates hot water generation and cooling to provide a highly efficient cooling hot water supply system.
[Solution]
The cooling water heater 260 of the present invention has a winter mode in which the maximum amount of hot water is stored, an intermediate period mode in which less hot water is stored than in the winter mode, and a cooling mode in which a large amount of exhaust heat is stored. The interval shifts by date, and the interval mode and the cooling mode shift based on the amount of exhaust heat. The cooling water heater 260 is operated by a refrigerant circuit 91 that absorbs heat from outside air and generates hot water, and is operated by a strong cooling instruction, and is operated by a refrigerant circuit 95 that generates hot water and a weak cooling instruction, and generates medium-temperature water. The refrigerant circuit 94 and the refrigerant circuit 92A and 96 that absorb the heat of the medium temperature water generated by the operation of the refrigerant circuit 94 or the heating device 140 and generate hot water are provided, so that the thermal efficiency of cooling and hot water generation is extremely high, There is no reduction in the thermal efficiency of hot water generation by medium temperature water.
[Selection] FIG.

Description

本発明は、建物を冷房する冷房装置と湯を生成する湯生成装置と水を貯える貯水装置を統合した冷房給湯装置に関する。 The present invention relates to a cooling water heater that integrates a cooling device that cools a building, a hot water generation device that generates hot water, and a water storage device that stores water.

消費エネルギーと運用コストの削減のために、冷房の排熱や太陽熱等を湯の生成や暖房等に利用する技術は多数開示されている。
特許文献1に記載されたヒートポンプ冷暖房給湯機は、冷凍サイクルと高温タンクと低温タンクを有し、深夜電力運転中に高温タンクに高温の湯を貯え、昼間の冷房貯湯運転中に冷房の排熱で低温タンクに低温の湯を貯え、高温タンク及び低温タンクの湯を混合して湯を供給することにより冷房の排熱を湯の生成に利用している。
特許文献2に記載された給湯装置は、湯を生成する時に、貯湯タンク内の中温水を取り出して補助蒸発器で冷却した後に、貯湯タンクの下部に戻すことにより、貯湯タンクの底部の水を低温に保つ。冷媒回路は貯湯タンクの底部の低温の水から湯を生成するので、冷媒回路のCOPの低下を防止することができる。
特許文献3に記載された給湯装置は、貯湯タンクの上部出湯口近傍口からの湯水は1次側温水循環管路を介して暖房用熱交換器へ流れ、下部戻し口へと戻る。下部戻し口へ戻るまでには暖房1次ポンプ があり湯水を循環している。一方、暖房用熱交換器は2次側温水循環管路上に暖房2次ポンプ、暖房端末が接続されていて、暖房端末を通して床暖房として利用できる。
In order to reduce energy consumption and operation costs, many technologies that use exhaust heat from cooling, solar heat, and the like for hot water generation and heating have been disclosed.
The heat pump air-conditioning / heating water heater described in Patent Document 1 has a refrigeration cycle, a high-temperature tank, and a low-temperature tank, stores hot water in the high-temperature tank during midnight power operation, and exhausts heat from the cooling during daytime cooling / storage operation. The low temperature hot water is stored in the low temperature tank, the hot water in the high temperature tank and the low temperature tank is mixed, and the hot water is supplied.
The hot water supply device described in Patent Document 2 takes out the warm water in the hot water storage tank, cools it with an auxiliary evaporator, and returns it to the lower part of the hot water storage tank to generate water at the bottom of the hot water storage tank. Keep at low temperature. Since the refrigerant circuit generates hot water from low-temperature water at the bottom of the hot water storage tank, it is possible to prevent the COP of the refrigerant circuit from decreasing.
In the hot water supply apparatus described in Patent Literature 3, hot water from the vicinity of the upper outlet of the hot water storage tank flows to the heating heat exchanger via the primary-side hot water circulation conduit and returns to the lower return port. Before returning to the lower return port, there is a primary heating pump that circulates hot water. On the other hand, the heating heat exchanger has a secondary heating pump and a heating terminal connected to the secondary hot water circulation pipe, and can be used as floor heating through the heating terminal.

特開2008−241203号公報JP 2008-241203 A 特開2007−10207号公報JP 2007-10207 A 特開2006−343008号公報JP 2006-343008 A

特許文献1に記載されたヒートポンプ冷暖房給湯機は、冷房の排熱を湯の生成に利用しているが、高温タンクと低温タンクがあるので配管や設置や湯の温度調整が複雑で高価である。更に、低温タンクに蓄えることができる冷房の排熱量は少ない。次にその理由を説明する。冷房の排熱で全ての潜熱蓄熱材が融解された後に、低温タンクに蓄えることができる熱量は、その後湯が使用された時に低温タンクに流れる水が冷やした熱量である。その熱量は低温タンクに流れる水量と、潜熱蓄熱材の凝固温度と水道水の温度の温度差と、水の比熱と密度を乗算して得られる熱量に略等しい。一方、使用した湯量を生成するために必要とする熱量は使用した湯量と、湯と水道水の温度差と、水の比熱と密度を乗算して得られる熱量である。給湯の湯量(特許文献1の図1の給湯管43に流れ、使用される湯量)は低温タンクに流れる水量より多く、給湯の温度と水道水の温度の温度差は凝固温度と水道水の温度の温度差より遥かに大きい。従って、低温タンクに蓄えることができる冷房の排熱量は、給湯の湯量を生成するために必要とする熱量より遥かに少ない。例えば、水道水の温度を20度、凝固温度を35度、高温タンクの湯の温度を65度、給湯の温度を45度とすると、使用される冷房の排熱量は給湯の湯量を生成するために必要とする熱量の略40%である。つまり、湯の大部分は外気の熱を吸収して生成され、冷房の排熱はその一部分が湯の生成に利用されるだけである。
また、低温タンクに収容されている複数のカプセルに封入された潜熱蓄熱材の潜熱を最大限利用するためには低温タンク全体に略均一に水を流す必要があるがその手段が記載されていない。
The heat pump air-conditioning / water heater described in Patent Document 1 uses the exhaust heat of cooling for hot water generation, but because there are a high-temperature tank and a low-temperature tank, piping, installation, and temperature adjustment of hot water are complicated and expensive. . Furthermore, the amount of exhaust heat that can be stored in the low-temperature tank is small. Next, the reason will be described. The amount of heat that can be stored in the low-temperature tank after all the latent heat storage material has been melted by the exhaust heat of the cooling is the amount of heat that the water that flows to the low-temperature tank cools when hot water is subsequently used. The amount of heat is substantially equal to the amount of water that flows through the low-temperature tank, the temperature difference between the solidification temperature of the latent heat storage material and the temperature of tap water, and the specific heat and density of water. On the other hand, the amount of heat required to generate the amount of hot water used is the amount of heat obtained by multiplying the amount of hot water used, the temperature difference between hot water and tap water, the specific heat of water and the density. The amount of hot water (the amount of hot water that flows and is used in the hot water supply pipe 43 in FIG. 1 of Patent Document 1) is larger than the amount of water that flows in the low-temperature tank. Much larger than the temperature difference. Therefore, the amount of heat exhausted by the cooling that can be stored in the low temperature tank is much less than the amount of heat required to generate the amount of hot water for hot water supply. For example, assuming that the temperature of tap water is 20 degrees, the solidification temperature is 35 degrees, the temperature of hot water in a high-temperature tank is 65 degrees, and the temperature of hot water supply is 45 degrees, the exhaust heat amount of the cooling system used generates the amount of hot water for hot water supply. This is approximately 40% of the amount of heat required. That is, most of the hot water is generated by absorbing the heat of the outside air, and only a part of the exhaust heat from the cooling is used for the generation of hot water.
Further, in order to make maximum use of the latent heat of the latent heat storage material enclosed in a plurality of capsules accommodated in the low temperature tank, it is necessary to flow water substantially uniformly throughout the low temperature tank, but no means for that is described. .

特許文献2に記載された給湯装置は、冷媒回路が貯湯タンクの底部の低温の水から湯を生成するので、冷媒回路のCOP(湯の生成能力/冷媒回路の消費電力)の低下を防止することができるが、冷却回路のポンプの運転はエネルギーを消費するので湯の生成の熱効率(湯の生成能力/(冷媒回路の消費電力+冷却回路のポンプの消費電力))を下げる。 In the hot water supply apparatus described in Patent Document 2, since the refrigerant circuit generates hot water from the low-temperature water at the bottom of the hot water storage tank, the COP (hot water generation capacity / power consumption of the refrigerant circuit) of the refrigerant circuit is prevented from decreasing. However, since the operation of the cooling circuit pump consumes energy, the thermal efficiency of hot water generation (hot water generation capacity / (power consumption of the refrigerant circuit + power consumption of the cooling circuit pump)) is reduced.

特許文献3に記載された給湯装置は、暖房用熱交換器で熱を奪われた水が戻し口から貯湯槽に戻り、貯湯槽内の冷水または高温水と混合する。混合すると中温水が増加し、利用可能な高温水の量が減少する。例えば、暖房用熱交換器で熱を奪われて戻し口に戻った水の温度が暖房に利用可能な温度であり、貯湯槽内の戻し口付近の水が冷水である場合、戻し口に戻った水は冷水と混合し、その温度は暖房に利用可能な温度以下になり暖房に利用できない。つまり、戻り水と貯湯槽内の冷水と混合は暖房に利用可能な高温水の量を減少させる。 In the hot water supply apparatus described in Patent Document 3, the water deprived of heat by the heating heat exchanger returns to the hot water storage tank from the return port, and is mixed with cold water or high temperature water in the hot water storage tank. Mixing increases the medium temperature water and reduces the amount of hot water available. For example, if the temperature of water that has been deprived of heat by the heat exchanger for heating and returned to the return port is a temperature that can be used for heating, and the water near the return port in the hot water tank is cold water, it returns to the return port. Water is mixed with cold water, and its temperature falls below the temperature that can be used for heating and cannot be used for heating. That is, mixing the return water with the cold water in the hot water tank reduces the amount of hot water available for heating.

本発明の目的は、上記の課題を鑑みてなされたものであり、強冷房時に湯を生成し、弱冷房時に冷房の排熱で中温水を生成し、中温水が貯えられている場合は、その中温水の熱を吸収して湯を生成し、貯水槽に中温水が貯えられていない場合は、外部から熱を吸収して湯を生成することにより冷房の熱効率と湯の生成の熱効率を共に極めて高くすることである。 The object of the present invention has been made in view of the above-described problems, and generates hot water during strong cooling, generates warm water with exhaust heat during weak cooling, and stores warm water when If the hot water is generated by absorbing the heat of the medium-temperature water, and the intermediate-temperature water is not stored in the water storage tank, the heat efficiency of the cooling and the generation efficiency of the hot water are improved by absorbing the heat from the outside and generating the hot water. Both are extremely high.

なお、中温度は、その温度の水から湯が生成された場合、湯の生成の熱効率が低下する温度(例えば、35度以上で湯の温度未満)であり、中温水は中温度の水である。中温度未満の水を冷水と呼ぶ。 The medium temperature is a temperature at which the thermal efficiency of hot water generation is reduced when hot water is generated from water at that temperature (for example, 35 degrees or more and less than the temperature of hot water). is there. Water below the medium temperature is called cold water.

本発明の冷房給湯装置は、貯水槽と、熱伝達手段で熱を吸収し湯を生成する第一冷媒回路と、貯水槽内の所定の位置の下方の水の熱を吸熱手段で吸収し、湯を生成する第二冷媒回路と、建物を弱冷房し、その冷房の排熱を貯水槽内の水に放熱手段で放出する第四冷媒回路と、建物を強冷房し、その冷房の排熱で湯を生成する第五冷媒回路と、生成された湯を貯水槽の上部に送るための湯生成水循環路を備える。
本発明の冷房給湯装置は、強冷房時に第五冷媒回路を運転し冷房の排熱で湯を生成し、弱冷房時に第四冷媒回路を運転し冷房の排熱を貯水槽内の水に放出し、貯水槽内に弱冷房の排熱で生成された中温水がある場合、第二冷媒回路を運転し、中温水の熱を吸収し湯を生成し中温水を冷水に変えるので、本発明の冷房給湯装置の湯の生成と冷房の熱効率は極めて高い。
The cooling hot water supply apparatus of the present invention absorbs the heat of the water below the predetermined position in the water storage tank, the first refrigerant circuit that generates heat by absorbing heat by the heat transfer means, and the heat absorption means, A second refrigerant circuit that generates hot water, a fourth refrigerant circuit that weakly cools the building and releases the exhaust heat of the cooling to the water in the water storage tank by means of heat dissipation, and an exhaust heat of the cooling that strongly cools the building And a fifth refrigerant circuit for generating hot water and a hot water generating water circulation path for sending the generated hot water to the upper part of the water storage tank.
The cooling water heater of the present invention operates the fifth refrigerant circuit during strong cooling to generate hot water by exhaust heat from the cooling, and operates the fourth refrigerant circuit during weak cooling to release the exhaust heat from the cooling to the water in the water storage tank. However, when there is medium temperature water generated by the exhaust heat of weak cooling in the water tank, the second refrigerant circuit is operated to absorb the heat of the medium temperature water to generate hot water and change the medium temperature water to cold water. The production of hot water and the thermal efficiency of cooling are extremely high.

本発明の冷房給湯装置は、貯水槽に蓄えられた冷房の排熱を吸収して湯を生成する冷媒回路を備えることにより、従来技術より遥かに高い熱効率で、建物を冷房すると共に湯を生成する。 The cooling hot water supply apparatus of the present invention includes a refrigerant circuit that generates hot water by absorbing the exhaust heat of the cooling stored in the water storage tank, thereby cooling the building and generating hot water with much higher thermal efficiency than the prior art. To do.

冷房給湯装置の第一参考例である冷房給湯装置210を示す。The cooling hot-water supply apparatus 210 which is the 1st reference example of a cooling-hot-water supply apparatus is shown. 冷房給湯装置の第二参考例である冷房給湯装置210Aを示す。The cooling hot water supply apparatus 210A which is the 2nd reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第三参考例である冷房給湯装置210Bを示す。The cooling hot water supply apparatus 210B which is the 3rd reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第四参考例である冷房給湯装置210Cを示す。The cooling hot water supply apparatus 210C which is the 4th reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第五参考例である冷房給湯装置210Dを示す。10 shows a cooling water heater 210D, which is a fifth reference example of the cooling water heater. 冷房給湯装置の第六参考例である冷房給湯装置210Eを示す。The cooling hot water supply apparatus 210E which is the 6th reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第七参考例である冷房給湯装置210Fを示す。The cooling hot water supply apparatus 210F which is the 7th reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第八参考例である冷房給湯装置210Gを示す。The cooling hot water supply apparatus 210G which is the 8th reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第九参考例である冷房給湯装置210Hを示す。The cooling hot water supply apparatus 210H which is the 9th reference example of a cooling hot water supply apparatus is shown. 冷房給湯装置の第十参考例である冷房給湯装置220を示す。The cooling hot-water supply apparatus 220 which is a 10th reference example of a cooling-hot-water supply apparatus is shown. 本発明の冷房給湯装置の第一実施形態である冷房給湯装置230を示す。The cooling hot-water supply apparatus 230 which is 1st embodiment of the cooling-hot-water supply apparatus of this invention is shown. 本発明の冷房給湯装置の第二実施形態である冷房給湯装置230Aを示す。The cooling hot water supply apparatus 230A which is 2nd embodiment of the cooling hot water supply apparatus of this invention is shown. 本発明の冷房給湯装置の第三実施形態である冷房給湯装置230Bを示す。The cooling hot water supply apparatus 230B which is 3rd embodiment of the cooling hot water supply apparatus of this invention is shown. 本発明の冷房給湯装置の第四実施形態である冷房給湯装置230Cを示す。The cooling hot water supply apparatus 230C which is 4th embodiment of the cooling hot water supply apparatus of this invention is shown. 本発明の冷房給湯装置の第五実施形態である冷房給湯装置240を示す。The cooling hot water supply apparatus 240 which is 5th embodiment of the cooling hot water supply apparatus of this invention is shown. 本発明の冷房給湯装置の第十一参考例である冷房給湯装置250を示す。The cooling hot water supply apparatus 250 which is the 11th reference example of the cooling hot water supply apparatus of this invention is shown. 給湯装置の第一参考例である給湯装置310を示す。The hot water supply apparatus 310 which is a 1st reference example of a hot water supply apparatus is shown. 給湯装置の第二参考例である給湯装置320を示す。The hot water supply apparatus 320 which is the 2nd reference example of a hot water supply apparatus is shown. 給湯装置の第三参考例である給湯装置320Aを示す。A hot water supply device 320A, which is a third reference example of the hot water supply device, is shown. 給湯装置の第四参考例である給湯装置330を示す。The hot-water supply apparatus 330 which is the 4th reference example of a hot-water supply apparatus is shown. 給湯装置の第五参考例である給湯装置330Aを示す。The hot-water supply apparatus 330A which is the 5th reference example of a hot-water supply apparatus is shown. 給湯装置の第六参考例である給湯装置340を示す。The hot water supply apparatus 340 which is the 6th reference example of a hot water supply apparatus is shown. 給湯装置の第七参考例である給湯装置340Aを示す。A hot water supply device 340A which is a seventh reference example of the hot water supply device is shown. 本発明の冷房給湯装置の第実施形態である冷房給湯装置260を示す。The cooling hot water supply apparatus 260 which is 6th embodiment of the cooling hot water supply apparatus of this invention is shown. 渦巻き管22の平面図とコイル状の管23の斜視図を示す。A plan view of the spiral tube 22 and a perspective view of the coiled tube 23 are shown. 分散器24の一実施例の斜視図を示す。A perspective view of one embodiment of a disperser 24 is shown. 貯水槽11の断面図と仕切り部材17の斜視図を示す。A sectional view of the water storage tank 11 and a perspective view of the partition member 17 are shown. 貯水槽11の断面図と流路分岐管18の斜視図を示す。A sectional view of water storage tank 11 and a perspective view of channel branch pipe 18 are shown. 貯水槽11の断面図と仕切り部材17Aの斜視図を示す。Sectional drawing of the water storage tank 11 and the perspective view of the partition member 17A are shown. 貯水槽11の断面図と流路分岐管18Aの斜視図を示す。Sectional drawing of the water storage tank 11 and the perspective view of 18 A of flow-path branch pipes are shown.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1に冷房給湯装置の第一参考例である冷房給湯装置210を示す。冷房給湯装置210は貯水装置110と湯生成装置130と冷房装置150を備える。
貯水装置110は、水で充填された貯水槽11を備え、貯水槽11は上部に配置された給湯口12と下部に配置された給水口13と貯水槽11内の熱交換器37と54に冷媒を流す管を貫通させる孔を有する。図1に示した貯水槽11は貯水槽11の垂直断面を模式的に示し、貯水槽11は円筒と上蓋と下蓋で構成された形状とする。
湯生成装置130は、給水口13と給湯口12を結ぶ水循環路38と、水循環路38に水を循環させるポンプ36と、冷媒回路91と92と、温度検出器39と39Aを備える。冷媒回路91は冷媒を圧縮する圧縮機31と、水流路に流れる水と冷媒流路に流れる冷媒との熱交換を行なう熱交換器34と、冷媒の流量を制御するバルブ35と、冷媒を膨張する膨張器32と、冷媒と外気との熱交換を行なう熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路92は圧縮機31と熱交換器34と冷媒の流量を制御するバルブ35Aと冷媒を膨張する膨張器32Aと温度検出器39の位置より下方の貯水槽11内に配置され、冷媒と水との熱交換を行なう熱交換器37を備え、それらに冷媒を循環させて冷凍サイクルを形成する。なお、熱交換器34の水流路は水循環路38の途中に配置される。冷媒回路91と92に循環する冷媒は二酸化炭素が好ましい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a cooling water heater 210 as a first reference example of the cooling water heater. The cooling hot water supply apparatus 210 includes a water storage device 110, a hot water generation device 130, and a cooling device 150.
The water storage device 110 includes a water storage tank 11 filled with water. The water storage tank 11 is connected to a hot water supply port 12 arranged at the upper part, a water supply port 13 arranged at the lower part, and heat exchangers 37 and 54 in the water storage tank 11. It has a hole that penetrates the pipe through which the refrigerant flows. The water tank 11 shown in FIG. 1 schematically shows a vertical cross section of the water tank 11, and the water tank 11 has a shape composed of a cylinder, an upper lid, and a lower lid.
The hot water generator 130 includes a water circulation path 38 that connects the water supply port 13 and the hot water supply port 12, a pump 36 that circulates water through the water circulation path 38, refrigerant circuits 91 and 92, and temperature detectors 39 and 39A. The refrigerant circuit 91 includes a compressor 31 that compresses refrigerant, a heat exchanger 34 that performs heat exchange between water flowing in the water flow path and refrigerant flowing in the refrigerant flow path, a valve 35 that controls the flow rate of the refrigerant, and expands the refrigerant. And a heat exchanger 33 for exchanging heat between the refrigerant and the outside air. A refrigerant is circulated through them to form a refrigeration cycle. The refrigerant circuit 92 is disposed in the water storage tank 11 below the position of the compressor 31, the heat exchanger 34, the valve 35 </ b> A that controls the flow rate of the refrigerant, the expander 32 </ b> A that expands the refrigerant, and the temperature detector 39. And a heat exchanger 37 that performs heat exchange with the refrigerant, and a refrigerant is circulated through them to form a refrigeration cycle. The water flow path of the heat exchanger 34 is disposed in the middle of the water circulation path 38. The refrigerant circulating in the refrigerant circuits 91 and 92 is preferably carbon dioxide.

冷房装置150は冷媒回路93と温度検出器59を備える。冷媒回路93は他の冷媒を圧縮する圧縮機51と、熱交換器37の下方に配置され、他の冷媒と水との熱交換を行なう熱交換器54と、他の冷媒を膨張する膨張器52と、他の冷媒と建物内の空気との熱交換を行なう熱交換器53を備え、それらに他の冷媒を循環させて冷凍サイクルを形成する。なお、他の冷媒はHFC系冷媒が好ましい。以下、他の冷媒を冷媒と記述する場合がある。
熱交換器37と熱交換器54は図25(A)に示すような渦巻き管22でも良いし、図25(B)に示すようなコイル状の管23でも良い。
以下、高温の水または湯の最低温度を第一温度(例えば60度)と呼び、給水口13に供給される水の温度を第三温度(例えば20度)と呼ぶ。冷媒回路93の熱効率は、高圧の冷媒を冷却する熱交換器54に接触する水の温度が特定の温度以上になると急激に低下する。その特定の温度を第四温度(例えば35度)と呼ぶ。中温度の最低温度を第五温度(例えば35度)と呼び、第三温度以上で第五温度未満の所定の温度を第二温度(例えば30度)と呼ぶ。湯と中温水と冷水を言い換えれば、湯は第一温度以上の水であり、中温水は第一温度未満で第五温度以上の水であり、冷水は第五温度未満の水である。
The cooling device 150 includes a refrigerant circuit 93 and a temperature detector 59. The refrigerant circuit 93 is disposed below the heat exchanger 37, the compressor 51 that compresses another refrigerant, the heat exchanger 54 that exchanges heat between the other refrigerant and water, and the expander that expands the other refrigerant. 52 and a heat exchanger 53 that performs heat exchange between the other refrigerant and the air in the building, and the other refrigerant is circulated through them to form a refrigeration cycle. The other refrigerant is preferably an HFC refrigerant. Hereinafter, other refrigerants may be referred to as refrigerants.
The heat exchanger 37 and the heat exchanger 54 may be a spiral tube 22 as shown in FIG. 25A or a coiled tube 23 as shown in FIG.
Hereinafter, the minimum temperature of hot water or hot water is referred to as a first temperature (for example, 60 degrees), and the temperature of water supplied to the water supply port 13 is referred to as a third temperature (for example, 20 degrees). The thermal efficiency of the refrigerant circuit 93 rapidly decreases when the temperature of the water in contact with the heat exchanger 54 that cools the high-pressure refrigerant exceeds a specific temperature. The specific temperature is called a fourth temperature (for example, 35 degrees). The lowest intermediate temperature is called a fifth temperature (for example, 35 degrees), and a predetermined temperature that is not less than the third temperature and less than the fifth temperature is called a second temperature (for example, 30 degrees). In other words, hot water, medium-temperature water, and cold water are hot water that is at or above the first temperature, medium-temperature water is water that is below the first temperature and at or above the fifth temperature, and cold water is water that is below the fifth temperature.

温度検出器39は、一日に使用される湯量等に基づいて算出された湯量がその上部の貯水槽11に貯えられる位置に配置される。冷媒回路91とポンプ36が運転されると、熱交換器34で生成された湯は給湯口12から貯水槽11に流入し、貯水槽11内の温度成層は流入した湯の体積分だけ下がる。貯水槽11の最上部から温度検出器39の位置まで湯が生成された場合、温度検出器39の直下に温度成層が形成される。熱交換器37は、その温度成層の第二温度より低い温度の層の位置に配置される。但し、貯水槽11内の水は全て第三温度の水で充填されてから湯が生成されたとする。
温度検出器39Aは、熱交換器37に接する水の温度(熱交換器37に冷媒が流れていない場合は熱交換器37の温度と略等温度の水の温度、熱交換器37に冷媒が流れている場合は熱交換器37により冷された水が生成する自然対流の戻りの経路(上昇経路)上の水の温度)を検出する位置に配置される。例えば熱交換器37が渦巻き管22の場合、温度検出器39Aは貯水槽11の中央付近で渦巻き管22より少し下方に配置される。
熱交換器54は貯水槽11の底部付近に配置される。温度検出器59は、熱交換器54に接する水の温度(熱交換器54に冷媒が流れていない場合は熱交換器54の温度と略等温度の水の温度、熱交換器54に冷媒が流れている場合は熱交換器54により加熱された水が生成する自然対流の戻りの経路(下降経路)上の水の温度)を検出する位置に配置される。例えば熱交換器54が渦巻き管22の場合、温度検出器59は貯水槽11の中央付近で、渦巻き管22より少し上方に配置される。
The temperature detector 39 is disposed at a position where the amount of hot water calculated based on the amount of hot water used in one day is stored in the upper water storage tank 11. When the refrigerant circuit 91 and the pump 36 are operated, the hot water generated in the heat exchanger 34 flows into the water storage tank 11 from the hot water supply port 12, and the temperature stratification in the water storage tank 11 is lowered by the volume of the hot water that has flowed in. When hot water is generated from the top of the water storage tank 11 to the position of the temperature detector 39, a temperature stratification is formed immediately below the temperature detector 39. The heat exchanger 37 is disposed at the position of the layer having a temperature lower than the second temperature of the temperature stratification. However, it is assumed that hot water is generated after all the water in the water storage tank 11 is filled with water of the third temperature.
The temperature detector 39A detects the temperature of water in contact with the heat exchanger 37 (if the refrigerant does not flow through the heat exchanger 37, the temperature of the water is approximately equal to the temperature of the heat exchanger 37, and the refrigerant flows into the heat exchanger 37. When it is flowing, it is arranged at a position to detect the temperature of water on the return path (upward path) of natural convection generated by the water cooled by the heat exchanger 37. For example, when the heat exchanger 37 is the spiral tube 22, the temperature detector 39 </ b> A is disposed slightly below the spiral tube 22 near the center of the water storage tank 11.
The heat exchanger 54 is disposed near the bottom of the water storage tank 11. The temperature detector 59 detects the temperature of the water in contact with the heat exchanger 54 (if no refrigerant flows through the heat exchanger 54, the temperature of the water is approximately equal to the temperature of the heat exchanger 54, and the refrigerant flows into the heat exchanger 54). When it is flowing, it is arranged at a position to detect the temperature of water on the return path (downward path) of natural convection generated by the water heated by the heat exchanger 54. For example, when the heat exchanger 54 is the spiral tube 22, the temperature detector 59 is disposed near the center of the water storage tank 11 and slightly above the spiral tube 22.

なお、外気の熱を冷媒に伝達する熱交換器33を、水や土壌やガス等の熱を冷媒に伝達する装置で置換しても良い。更に、熱交換器33を、図9に示す冷房給湯装置の第九参考例である冷房給湯装置210Hのように、熱媒体流路に流れる熱媒体と冷媒流路に流れる冷媒との熱交換を行なう熱交換器33Aと、外気と熱媒体の熱交換を行なう熱交換器33Bと、熱交換器33Aと熱交換器33Bとの間に熱媒体を循環させるための熱媒体循環路38Bと熱媒体循環路38Bに熱媒体を循環させるポンプ36Bで置換しても良い。つまり、熱交換器33を、外気の熱を熱媒体を介して冷媒に伝達する装置で置換しても良い。更に、熱交換器33Bを、水や土壌やガス等の熱を熱媒体に伝達する装置で置換しても良い。
更に、熱交換器53を、冷房給湯装置210Hのように、熱媒体と建物内の空気との熱交換を行なう熱交換器53Bと、熱媒体流路に流れる熱媒体と冷媒流路に流れる冷媒との熱交換を行なう熱交換器53Aと、熱交換器53Bと熱交換器53Aとの間に熱媒体を循環させるための熱媒体循環路57と、熱媒体循環路57に熱媒体を循環させるポンプ56Aで置換しても良い。つまり、熱交換器53を、建物内の空気の熱を熱媒体を介して冷媒に伝達する装置で置換しても良い。
In addition, you may substitute the heat exchanger 33 which transmits the heat of external air to a refrigerant | coolant with the apparatus which transmits heat, such as water, soil, and gas, to a refrigerant | coolant. Further, the heat exchanger 33 exchanges heat between the heat medium flowing in the heat medium flow path and the refrigerant flowing in the refrigerant flow path as in the cooling water heater 210H which is the ninth reference example of the cooling water heater shown in FIG. The heat exchanger 33A to be performed, the heat exchanger 33B to perform heat exchange between the outside air and the heat medium, the heat medium circulation path 38B and the heat medium for circulating the heat medium between the heat exchanger 33A and the heat exchanger 33B You may substitute by the pump 36B which circulates a thermal medium to the circulation path 38B. That is, the heat exchanger 33 may be replaced with a device that transfers the heat of the outside air to the refrigerant through the heat medium. Furthermore, the heat exchanger 33B may be replaced with a device that transfers heat such as water, soil, and gas to the heat medium.
Further, the heat exchanger 53 includes a heat exchanger 53B that performs heat exchange between the heat medium and the air in the building, as in the cooling water heater 210H, and a heat medium that flows through the heat medium flow path and a refrigerant that flows through the refrigerant flow path. A heat exchanger 53A for performing heat exchange with the heat exchanger, a heat medium circulation path 57 for circulating the heat medium between the heat exchanger 53B and the heat exchanger 53A, and a heat medium circulating in the heat medium circulation path 57. It may be replaced with the pump 56A. That is, the heat exchanger 53 may be replaced with a device that transfers the heat of air in the building to the refrigerant through the heat medium.

一日に使用される平均の湯量等に基づいて算出された湯量がその上部の貯水槽11に貯えられる位置(温度検出器39が配置される位置)が本発明の所定の位置に相当する。
膨張器には電子膨張弁のように外部信号により開度が調整される機能を有するものと外部信号により開度が調整される機能を有さないものがある。
The position where the amount of hot water calculated based on the average amount of hot water used in a day is stored in the upper water storage tank 11 (the position where the temperature detector 39 is disposed) corresponds to the predetermined position of the present invention.
Some expanders, such as an electronic expansion valve, have a function of adjusting the opening degree by an external signal, and others do not have a function of adjusting the opening degree by an external signal.

以下、冷房給湯装置と給湯装置は、CPU、ROM、RAM、プログラム、I/Oインターフェース等を備える制御部(不図示)を有し、制御部は温度検出器等からの信号に基づいて、それぞれの装置を適正に制御または運転するとする。
次に、冷房給湯装置210の動作を説明する。冷媒回路を運転するとは、圧縮機を適正な回転速度で運転し、外気と冷媒との熱交換を行なう熱交換器がファンを有する場合はそのファンを適正な回転速度で運転して冷媒回路が冷凍サイクルを形成するようにすることである。冷媒回路は冷媒の流量や圧力等が適正に調整されて運転されるとする。
(1)膨張器32と32Aが外部信号により開度が調整される機能を有さない場合
所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度未満の場合、制御部はバルブ35を開きバルブ35Aを閉じ、冷媒回路91とポンプ36を運転する。冷媒回路91とポンプ36が運転されると、熱交換器33は外気から熱を吸収し、熱交換器34はその熱を水循環路38の水に伝達し、湯を生成する。その湯はポンプ36で貯水槽11の上部に送られ、貯水槽11の上部に貯えられ、貯水槽11内の湯の量は増加し、冷水の量はその湯の増加分だけ減少する。貯水槽11の上部の湯と下部の冷水の間に温度成層が形成され、温度成層は湯が増加するにつれて下降する。そして温度検出器39の検出温度が第一温度に達した場合に冷媒回路91とポンプ36の運転が停止される。この時に貯水槽11の最上部から温度検出器39までが湯である。
なお、所定の湯生成条件とは、深夜電力が適用される時刻、湯量が所定の量未満等である。
Hereinafter, the cooling and hot water supply apparatus and the hot water supply apparatus have a control unit (not shown) including a CPU, ROM, RAM, a program, an I / O interface, etc. Suppose that the device is properly controlled or operated.
Next, the operation of the cooling water heater 210 will be described. When the refrigerant circuit is operated, the compressor is operated at an appropriate rotational speed, and if the heat exchanger for exchanging heat between the outside air and the refrigerant has a fan, the refrigerant circuit is operated by operating the fan at an appropriate rotational speed. Is to form a refrigeration cycle. It is assumed that the refrigerant circuit is operated with the refrigerant flow rate and pressure adjusted appropriately.
(1) When the expanders 32 and 32A do not have a function of adjusting the opening degree by an external signal, a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and temperature detection When the detected temperature of the container 39A is lower than the second temperature, the control unit opens the valve 35 and closes the valve 35A, and operates the refrigerant circuit 91 and the pump 36. When the refrigerant circuit 91 and the pump 36 are operated, the heat exchanger 33 absorbs heat from the outside air, and the heat exchanger 34 transmits the heat to the water in the water circulation path 38 to generate hot water. The hot water is sent to the upper part of the water storage tank 11 by the pump 36 and stored in the upper part of the water storage tank 11, the amount of hot water in the water storage tank 11 increases, and the amount of cold water decreases by the increase of the hot water. A temperature stratification is formed between the hot water in the upper part of the water storage tank 11 and the cold water in the lower part, and the temperature stratification descends as the hot water increases. When the temperature detected by the temperature detector 39 reaches the first temperature, the operation of the refrigerant circuit 91 and the pump 36 is stopped. At this time, the hot water from the top of the water storage tank 11 to the temperature detector 39 is hot water.
The predetermined hot water generation conditions include the time at which midnight power is applied, the amount of hot water less than a predetermined amount, and the like.

所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度以上の場合、制御部はバルブ35Aを開き、バルブ35を閉じ、冷媒回路92とポンプ36を運転する。冷媒回路92とポンプ36が運転されると、貯水槽11内の熱交換器37の付近の水から熱交換器37で熱が吸収され、熱交換器34で湯が生成され、湯は貯水槽11の上部に送られる。貯水槽11内の温度成層は湯が生成されるにつれて下降する。熱交換器37で熱が吸収され、冷やされた水は下降し、自然対流が生じる。つまり、熱交換器37は熱交換器37付近及びその下方の水から熱を吸収する。
そして温度検出器39の検出温度が第一温度未満で温度検出器39Aの検出温度が第三温度に達した場合、冷媒回路92が停止され、冷媒回路91が運転される(バルブ35が開かれ、バルブ35Aが閉じられる)。温度検出器39の検出温度が第一温度に達した場合、冷媒回路91または92とポンプ36の運転は停止される。
なお、バルブ35と35Aは三方弁で代替しても良い。
When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is equal to or higher than the second temperature, the control unit opens the valve 35A, The refrigerant circuit 92 and the pump 36 are operated. When the refrigerant circuit 92 and the pump 36 are operated, heat is absorbed by the heat exchanger 37 from the water in the vicinity of the heat exchanger 37 in the water tank 11, hot water is generated by the heat exchanger 34, and the hot water is stored in the water tank. 11 is sent to the top. The temperature stratification in the water storage tank 11 descends as hot water is generated. Heat is absorbed by the heat exchanger 37, the cooled water descends, and natural convection occurs. That is, the heat exchanger 37 absorbs heat from the water near and below the heat exchanger 37.
When the detected temperature of the temperature detector 39 is lower than the first temperature and the detected temperature of the temperature detector 39A reaches the third temperature, the refrigerant circuit 92 is stopped and the refrigerant circuit 91 is operated (the valve 35 is opened). The valve 35A is closed). When the temperature detected by the temperature detector 39 reaches the first temperature, the operation of the refrigerant circuit 91 or 92 and the pump 36 is stopped.
The valves 35 and 35A may be replaced with a three-way valve.

冷媒回路92が運転された場合、熱交換器37のみで貯水槽11内の熱を吸収して湯を生成するので熱交換器37付近の水の温度は下降する。これは、湯が生成された量だけ貯水槽11内の水が下降するが、湯の生成に必要な熱量を熱交換器37が水から吸収するからである。熱交換器37付近の水の温度が第三温度未満に下降すると冷媒回路92が停止され、冷媒回路91が運転される。冷媒回路91が運転されると外気の熱で湯が生成され、貯水槽11内の水が下降する。貯水槽11内の水の温度は上方ほど高いので湯が生成されるにつれて温度検出器39Aの温度が上がる。温度検出器39Aの検出温度が第二温度以上になると、冷媒回路91が停止され、冷媒回路92が運転される。つまり、冷媒回路91と92が交互に運転され、貯水槽11内の下部の水温は第二温度付近またはそれ以下に保たれる。従って、冷房給湯装置210は熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができる。
この運転(一方の冷媒回路に流す冷媒の割合が100%で、他方の冷媒回路に流す冷媒の割合が0%の運転)をオンオフ運転と呼ぶ。オンオフ運転は運転が切り替わる毎に過渡現象を起こし、その過渡現象は湯の生成の速度と熱効率を下げる。
When the refrigerant circuit 92 is operated, only the heat exchanger 37 absorbs heat in the water storage tank 11 to generate hot water, so that the temperature of water near the heat exchanger 37 is lowered. This is because the water in the water storage tank 11 is lowered by the amount of hot water generated, but the heat exchanger 37 absorbs the amount of heat necessary for hot water generation from the water. When the temperature of the water near the heat exchanger 37 falls below the third temperature, the refrigerant circuit 92 is stopped and the refrigerant circuit 91 is operated. When the refrigerant circuit 91 is operated, hot water is generated by the heat of the outside air, and the water in the water storage tank 11 is lowered. Since the temperature of the water in the water storage tank 11 is higher as it goes upward, the temperature of the temperature detector 39A increases as hot water is generated. When the temperature detected by the temperature detector 39A becomes equal to or higher than the second temperature, the refrigerant circuit 91 is stopped and the refrigerant circuit 92 is operated. That is, the refrigerant circuits 91 and 92 are alternately operated, and the water temperature in the lower part of the water storage tank 11 is maintained near or below the second temperature. Therefore, the cooling hot water supply apparatus 210 can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency.
This operation (operation in which the ratio of refrigerant flowing through one refrigerant circuit is 100% and the ratio of refrigerant flowing through the other refrigerant circuit is 0%) is referred to as on / off operation. On-off operation causes a transient phenomenon every time the operation is switched, and the transient phenomenon reduces the rate of hot water generation and thermal efficiency.

(2)膨張器32と32Aが外部信号により開度が調整される機能を有する場合
バルブ35とバルブ35Aは常に開いた状態である。所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度未満の場合、制御部は膨張器32Aを閉じ、冷媒回路91とポンプ36を運転し、湯を生成する。
所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度以上の場合、制御部は、冷媒回路91と92とポンプ36を運転し、冷媒回路91と92に流す冷媒の流量の割合を温度検出器39Aの検出温度と第二温度の温度差に基づいて算出し、その割合になるように膨張器32と32Aの開度を調整する。例えば、制御部は、冷媒回路92に循環させる冷媒の割合が、温度検出器39Aの検出温度が第二温度以上で第一温度未満の場合、第二温度と温度検出器39Aの検出温度の温度差に比例し、温度検出器39Aの検出温度が第一温度の場合100%になるように膨張器32と32Aの開度を調整する。なお、膨張器32と32Aに流れる冷媒の合計の流量は圧縮機31で圧縮される冷媒の流量であり、その流量は熱負荷や過熱度や冷媒の温度や圧力等に基づいて制御部が調整する。
冷媒回路91と92とポンプ36が運転されると、湯の生成に必要な熱量の一部が熱交換器37で吸収され、残りの熱は熱交換器33で外気から吸収されて湯が生成され、熱交換器37付近の温度は第二温度付近まで下がる。この運転を同時運転と呼ぶ。同時運転は、過渡現象を回避できると共に貯水槽11内の下部の水温を第二温度付近またはそれ以下に保つことができる。従って、冷房給湯装置210は熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができる。
(2) When the expanders 32 and 32A have a function of adjusting the opening degree by an external signal, the valve 35 and the valve 35A are always open. When the predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is lower than the second temperature, the control unit closes the expander 32A, and the refrigerant circuit 91 and the pump 36 are operated to generate hot water.
When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is equal to or higher than the second temperature, the control unit includes the refrigerant circuits 91 and 92, the pump 36 is operated, and the ratio of the flow rate of the refrigerant flowing through the refrigerant circuits 91 and 92 is calculated based on the temperature difference between the temperature detected by the temperature detector 39A and the second temperature, and the expanders 32 and 32A are adjusted to have the ratio. Adjust the opening. For example, when the ratio of the refrigerant circulated through the refrigerant circuit 92 is such that the temperature detected by the temperature detector 39A is equal to or higher than the second temperature and lower than the first temperature, the temperature between the second temperature and the temperature detected by the temperature detector 39A. In proportion to the difference, the opening degrees of the expanders 32 and 32A are adjusted so that the temperature detected by the temperature detector 39A is 100% when the temperature is the first temperature. The total flow rate of the refrigerant flowing through the expanders 32 and 32A is the flow rate of the refrigerant compressed by the compressor 31, and the flow rate is adjusted by the control unit based on the thermal load, the degree of superheat, the refrigerant temperature, pressure, and the like. To do.
When the refrigerant circuits 91 and 92 and the pump 36 are operated, a part of the amount of heat necessary for producing hot water is absorbed by the heat exchanger 37, and the remaining heat is absorbed from the outside air by the heat exchanger 33 to produce hot water. Then, the temperature in the vicinity of the heat exchanger 37 decreases to near the second temperature. This operation is called simultaneous operation. Simultaneous operation can avoid a transient phenomenon, and can keep the water temperature of the lower part in the water tank 11 in the vicinity of the second temperature or lower. Therefore, the cooling hot water supply apparatus 210 can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency.

同時運転において、温度検出器39Aの検出温度が第二温度以上で第一温度未満の場合、冷媒回路92に流れる冷媒の割合を第二温度と温度検出器39Aの検出温度の温度差に比例するように調整したが、冷媒回路92に流れる冷媒の割合を第二温度と温度検出器39Aの検出温度の温度差が大きくなるにつれて階段状に多くするように調整しても良い。膨張器32と32Aに電子膨張器を使用した場合、膨張器32と32Aは階段状に開度が制御されるが階段の段数を多くすれば過渡現象の問題は殆ど生じない。
熱交換器37から流出した冷媒と熱交換器33から流出した冷媒は状態(乾き度や過熱度)が異なる。過熱度で冷媒の流量を制御する場合、異なる状態の冷媒を同一の状態の冷媒にした後に、その冷媒の温度を検出する必要がある。また異なる状態の冷媒を同一の状態の冷媒にした後に、気相冷媒を圧縮機31に入れるのが好ましい。
In the simultaneous operation, when the detected temperature of the temperature detector 39A is equal to or higher than the second temperature and lower than the first temperature, the ratio of the refrigerant flowing through the refrigerant circuit 92 is proportional to the temperature difference between the second temperature and the detected temperature of the temperature detector 39A. However, the ratio of the refrigerant flowing through the refrigerant circuit 92 may be adjusted so as to increase stepwise as the temperature difference between the second temperature and the temperature detected by the temperature detector 39A increases. When electronic expanders are used as the expanders 32 and 32A, the opening degrees of the expanders 32 and 32A are controlled stepwise, but if the number of steps is increased, the problem of transient phenomenon hardly occurs.
The refrigerant flowing out from the heat exchanger 37 and the refrigerant flowing out from the heat exchanger 33 have different states (dryness and superheat degree). When the flow rate of the refrigerant is controlled by the degree of superheat, it is necessary to detect the temperature of the refrigerant after changing the refrigerant in different states to the refrigerant in the same state. Further, it is preferable to put the gas-phase refrigerant into the compressor 31 after changing the refrigerant in different states to the refrigerant in the same state.

冷房運転の指示があり温度検出器59の検出温度が第四温度未満の場合、冷媒回路93が運転される。冷媒回路93が運転されると建物内の空気の熱が熱交換器53で吸収され、熱交換器54でその熱が貯水槽11内の水に放出される。熱交換器54で加熱された水は上昇し、自然対流が生じる。つまり、熱交換器54は熱交換器54より上方の水を加熱する。熱交換器54の上方に第四温度より低温の水が充分ある場合、温度検出器59の検出温度は第四温度まで上昇しない。
温度検出器59の検出温度が第四温度以上にまで上昇した場合、所定の第一排熱処理を行なう。第一排熱処理は、給湯口12に接続した排水弁(不図示)を開き貯水槽11の湯を排出する(図10の排水弁73A参照)、または温度検出器39と温度検出器59の間の貯水槽11に排水口(不図示)を設け、その排水口に接続した排水弁(不図示)を開けて貯水槽11の水を排出する(図16の排水装置170参照)処理である。いずれの排水弁が開かれた場合でも、給水口13から給水され、温度検出器59の検出温度が第四温度未満に下がり、冷媒回路93は熱効率良く運転される。つまり、冷房の排熱は、外気に放出せず、排水により貯水槽11外に放出される。熱交換器37と54の間に、融解温度が第三温度より高く第四温度より低い潜熱蓄熱材を有する潜熱蓄熱体が配置された場合(図5参照)、冷房の排熱はその潜熱蓄熱体に蓄えられ、排水量が減少するまたは排水がされない。
When there is an instruction for cooling operation and the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 93 is operated. When the refrigerant circuit 93 is operated, the heat of the air in the building is absorbed by the heat exchanger 53, and the heat is released to the water in the water storage tank 11 by the heat exchanger 54. The water heated by the heat exchanger 54 rises and natural convection occurs. That is, the heat exchanger 54 heats the water above the heat exchanger 54. When there is sufficient water below the fourth temperature above the heat exchanger 54, the temperature detected by the temperature detector 59 does not rise to the fourth temperature.
When the temperature detected by the temperature detector 59 rises to the fourth temperature or higher, a predetermined first heat treatment is performed. In the first waste heat treatment, a drain valve (not shown) connected to the hot water inlet 12 is opened to drain the hot water in the water storage tank 11 (see the drain valve 73A in FIG. 10), or between the temperature detector 39 and the temperature detector 59. The water tank 11 is provided with a drain port (not shown), and a drain valve (not shown) connected to the drain port is opened to discharge the water in the water tank 11 (see drainage device 170 in FIG. 16). Regardless of which drain valve is opened, water is supplied from the water supply port 13, the temperature detected by the temperature detector 59 falls below the fourth temperature, and the refrigerant circuit 93 is operated with high thermal efficiency. That is, the exhaust heat of the cooling is not released to the outside air, but is discharged outside the water storage tank 11 by the drainage. When a latent heat storage body having a latent heat storage material having a melting temperature higher than the third temperature and lower than the fourth temperature is disposed between the heat exchangers 37 and 54 (see FIG. 5), the exhaust heat of the cooling is the latent heat storage It is stored in the body and the amount of drainage is reduced or not drained.

長時間湯が使われない場合、貯水槽11の断熱材を通して湯が放熱され、中温水が生成される場合がある。そして所定の湯生成条件が満たされ、湯が生成され、中温水が温度検出器39Aの位置まで下降した場合、冷媒回路91と92がオンオフ運転または同時運転され、高い熱効率で湯が生成される。
冷房給湯装置210は、冷媒回路93が運転され、深夜に湯生成装置130が運転される場合、冷媒回路93の運転で生成された中温水は、深夜の湯生成装置130の運転により冷水になるので、翌日冷房装置150は高い熱効率で運転される。従って、冷房給湯装置210は熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができる。
When hot water is not used for a long time, the hot water may be radiated through the heat insulating material of the water storage tank 11 to generate medium-temperature water. When predetermined hot water generation conditions are satisfied, hot water is generated, and the medium-temperature water is lowered to the position of the temperature detector 39A, the refrigerant circuits 91 and 92 are turned on / off or simultaneously operated to generate hot water with high thermal efficiency. .
In the cooling water heater 210, when the refrigerant circuit 93 is operated and the hot water generator 130 is operated at midnight, the medium-temperature water generated by the operation of the refrigerant circuit 93 becomes cold water by the operation of the hot water generator 130 at midnight. Therefore, the next day cooling device 150 is operated with high thermal efficiency. Therefore, the cooling hot water supply apparatus 210 can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency.

図2に冷房給湯装置の第二参考例である冷房給湯装置210Aを示す。冷房給湯装置210Aは貯水装置110と湯生成装置130Aと冷房装置150を備える。貯水装置110と冷房装置150は既に説明されている。湯生成装置130Aは、冷媒回路91と92Aと水循環路38とポンプ36を備える。膨張器32Bと32Cは外部信号により開度が調整される機能を有するとする。
冷媒回路91は圧縮機31と熱交換器34と膨張器32Bと熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成し、湯生成装置130の冷媒回路91と同等である。冷媒回路92Aは圧縮機31と熱交換器34と膨張器32Cと熱交換器37と33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路92Aが運転されると冷媒回路92Aは熱交換器37と33で熱を吸収し、熱交換器34で熱を放出する。
なお、外部信号により開度が調整される機能を有する膨張器は、外部信号により開度が調整される機能を有さない膨張器と、外部信号により流量が調整される機能を有するバルブで置換可能である。
FIG. 2 shows a cooling hot water supply apparatus 210A which is a second reference example of the cooling hot water supply apparatus. The cooling hot water supply apparatus 210A includes a water storage device 110, a hot water generation device 130A, and a cooling device 150. The water storage device 110 and the cooling device 150 have already been described. The hot water generator 130A includes refrigerant circuits 91 and 92A, a water circulation path 38, and a pump 36. It is assumed that the expanders 32B and 32C have a function of adjusting the opening degree by an external signal.
The refrigerant circuit 91 includes a compressor 31, a heat exchanger 34, an expander 32 </ b> B, and a heat exchanger 33. The refrigerant is circulated through them to form a refrigeration cycle, and is equivalent to the refrigerant circuit 91 of the hot water generator 130. The refrigerant circuit 92A includes a compressor 31, a heat exchanger 34, an expander 32C, and heat exchangers 37 and 33, and circulates refrigerant through them to form a refrigeration cycle. When the refrigerant circuit 92A is operated, the refrigerant circuit 92A absorbs heat by the heat exchangers 37 and 33 and releases heat by the heat exchanger 34.
The expander that has the function of adjusting the opening degree by an external signal is replaced with an expander that does not have the function of adjusting the opening degree by an external signal and a valve that has a function of adjusting the flow rate by an external signal. Is possible.

所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度未満の場合、制御部は膨張器32C閉じ、冷媒回路91とポンプ36を運転する。制御部は所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路91と92Aとポンプ36を運転し、冷媒回路91と92Aに流す冷媒の流量の割合を、温度検出器39Aの検出温度と第二温度の差に基づいて算出し、その割合になるように膨張器32Bと32Cの開度を調整する。つまり、冷媒回路91と92Aは同時運転され、貯水槽11内の下部の水温が第二温度付近またはそれ以下に保たれる。従って、冷房給湯装置210Aは熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができる。
なお、熱交換器37から冷媒と膨張器32Bから流出した冷媒は、熱交換器33内で混合されるので熱交換器33の出口において同一の状態となり、過熱度の検出が容易にできる。冷媒回路91と92Aはオンオフ運転も可能である。
When a predetermined hot water generation condition is satisfied, the detected temperature of the temperature detector 39 is lower than the first temperature, and the detected temperature of the temperature detector 39A is lower than the second temperature, the control unit closes the expander 32C, and the refrigerant circuit 91 And the pump 36 is operated. When the predetermined hot water generation condition is satisfied, the detected temperature of the temperature detector 39 is lower than the first temperature, and the detected temperature of the temperature detector 39A is equal to or higher than the second temperature, the controller is configured to use the refrigerant circuits 91 and 92A and the pump 36. The flow rate of the refrigerant flowing through the refrigerant circuits 91 and 92A is calculated based on the difference between the temperature detected by the temperature detector 39A and the second temperature, and the expanders 32B and 32C are opened so as to be the ratio. Adjust the degree. That is, the refrigerant circuits 91 and 92A are simultaneously operated, and the water temperature in the lower part of the water storage tank 11 is maintained near or below the second temperature. Therefore, the cooling hot water supply apparatus 210A can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency.
In addition, since the refrigerant | coolant which flowed out from the heat exchanger 37 and the expander 32B from the heat exchanger 37 is mixed in the heat exchanger 33, it will be in the same state in the exit of the heat exchanger 33, and can detect a superheat degree easily. The refrigerant circuits 91 and 92A can be turned on and off.

図3に冷房給湯装置の第三参考例である冷房給湯装置210Bを示す。冷房給湯装置210Bは貯水装置110と湯生成装置130Bと冷房装置150を備える。貯水装置110と冷房装置150は既に説明されている。湯生成装置130Bは冷媒回路91と92Bと水循環路38とポンプ36を備える。
冷媒回路91は圧縮機31と熱交換器34と膨張器32Bと熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成し、湯生成装置130の冷媒回路91と同等である。冷媒回路92Bは圧縮機31と熱交換器34と膨張器32Cと熱交換器37と膨張器32Bと熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路92Bが運転されると冷媒回路92Bは、冷媒回路92Aと同様に熱交換器33と37で熱を吸収し、熱交換器34で熱を放出する。冷媒回路92Bにおいて冷媒は膨張器32Bと32Cで減圧(膨張)されるので熱交換器37内の圧力は熱交換器34と33の圧力の中間であり、熱交換器37内の冷媒の温度は熱交換器34と33内の冷媒の温度の中間である。そして熱交換器37内の圧力と冷媒の温度は膨張器32Bと32Cの開度により調整可能である。
FIG. 3 shows a cooling water heater 210B as a third reference example of the cooling water heater. The cooling hot water supply apparatus 210B includes a water storage device 110, a hot water generation device 130B, and a cooling device 150. The water storage device 110 and the cooling device 150 have already been described. The hot water generator 130B includes refrigerant circuits 91 and 92B, a water circulation path 38, and a pump 36.
The refrigerant circuit 91 includes a compressor 31, a heat exchanger 34, an expander 32 </ b> B, and a heat exchanger 33. The refrigerant is circulated through them to form a refrigeration cycle, and is equivalent to the refrigerant circuit 91 of the hot water generator 130. The refrigerant circuit 92B includes a compressor 31, a heat exchanger 34, an expander 32C, a heat exchanger 37, an expander 32B, and a heat exchanger 33, and circulates refrigerant through them to form a refrigeration cycle. When the refrigerant circuit 92B is operated, the refrigerant circuit 92B absorbs heat by the heat exchangers 33 and 37 and releases heat by the heat exchanger 34, similarly to the refrigerant circuit 92A. In the refrigerant circuit 92B, since the refrigerant is decompressed (expanded) by the expanders 32B and 32C, the pressure in the heat exchanger 37 is intermediate between the pressures of the heat exchangers 34 and 33, and the temperature of the refrigerant in the heat exchanger 37 is The temperature of the refrigerant in the heat exchangers 34 and 33 is intermediate. And the pressure in the heat exchanger 37 and the temperature of a refrigerant | coolant can be adjusted with the opening degree of the expanders 32B and 32C.

所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度未満の場合、制御部はバルブ35を開け膨張器32Cを閉じ、冷媒回路91とポンプ36を運転する。
所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度以上の場合、制御部はバルブ35を閉じ、冷媒回路92Bとポンプ36を運転し、膨張器32Bと32Cの開度を、膨張器32Cの出口の冷媒の温度が第二温度付近の温度になるように調整する。冷媒回路92Bとポンプ36が運転されると、熱交換器37が熱交換器37の下方の水から熱を吸収し、熱交換器33が外気から熱を吸収して、熱交換器34で湯を生成する。そして温度検出器39Aの検出温度が第三温度未満になった場合、冷媒回路92Bの運転は停止され、冷媒回路91が運転される。つまり、冷媒回路91と冷媒回路92Bはオンオフ運転され、貯水槽11内の下部の水温が第二温度付近またはそれ以下に保たれる。従って、冷房給湯装置210Bは熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができる。
When predetermined hot water generation conditions are satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is lower than the second temperature, the control unit opens the valve 35 and opens the expander 32C. Then, the refrigerant circuit 91 and the pump 36 are operated.
When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is equal to or higher than the second temperature, the control unit closes the valve 35, and the refrigerant circuit 92B And the pump 36 is operated, and the opening degrees of the expanders 32B and 32C are adjusted so that the temperature of the refrigerant at the outlet of the expander 32C becomes a temperature near the second temperature. When the refrigerant circuit 92B and the pump 36 are operated, the heat exchanger 37 absorbs heat from the water below the heat exchanger 37, the heat exchanger 33 absorbs heat from the outside air, and the heat exchanger 34 Is generated. When the temperature detected by the temperature detector 39A becomes less than the third temperature, the operation of the refrigerant circuit 92B is stopped and the refrigerant circuit 91 is operated. That is, the refrigerant circuit 91 and the refrigerant circuit 92B are turned on / off, and the water temperature in the lower part of the water storage tank 11 is maintained near or below the second temperature. Therefore, the cooling hot water supply apparatus 210B can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency.

図4に冷房給湯装置の第四参考例である冷房給湯装置210Cを示す。冷房給湯装置210Cは貯水装置110Aと湯生成装置130Cと冷房装置150Aを備える。
貯水装置110Aは水で充填された貯水槽11Aを備え、貯水槽11Aは給湯口12と給水口13と温度検出器39の下方に配置された中間口14を有する。中間口14の位置は、最上部から温度検出器39の位置まで湯が生成された時にできる温度成層の第二温度より低い温度の層の位置に配置される。つまり、中間口14は熱交換器37が配置される位置と同様な水平位置に配置される。なお、温度検出器39Aは中間口14の少し下方に、温度検出器59は貯水槽11Aの底部付近に配置される。
湯生成装置130Cは、湯生成装置130Aの熱交換器37を、水流路に流れる水と冷媒流路に流れる冷媒との熱交換を行なう熱交換器37Aと、熱交換器37Aを経由し中間口14と給水口13を結ぶ水循環路38Aと、水循環路38Aの途中に配置されたポンプ36Aで置換したものである。
冷媒回路92Cは、圧縮機31と熱交換器34と膨張器32Cと熱交換器37Aと33を備え、それらに冷媒を循環させて冷凍サイクルを形成し、熱交換器37Aを介して、中間口14から取り入れた水から熱を吸収し、その水は給水口13に戻される。つまり、冷媒回路92Cは、冷媒回路92Aと同様に貯水槽11内の温度検出器39の下方の水の熱を吸収し、熱交換器34で湯を生成する。
湯生成装置130Cは湯生成装置130Aと同様に動作する。但し、冷媒回路92Cが運転される場合にポンプ36Aが運転される。
FIG. 4 shows a cooling hot water supply apparatus 210C which is a fourth reference example of the cooling hot water supply apparatus. The cooling hot water supply apparatus 210C includes a water storage device 110A, a hot water generation device 130C, and a cooling device 150A.
The water storage device 110 </ b> A includes a water storage tank 11 </ b> A filled with water, and the water storage tank 11 </ b> A has a hot water supply port 12, a water supply port 13, and an intermediate port 14 disposed below the temperature detector 39. The position of the intermediate port 14 is arranged at the position of the layer having a temperature lower than the second temperature of the temperature stratification generated when hot water is generated from the top to the position of the temperature detector 39. That is, the intermediate port 14 is arranged at a horizontal position similar to the position where the heat exchanger 37 is arranged. The temperature detector 39A is disposed slightly below the intermediate port 14, and the temperature detector 59 is disposed near the bottom of the water tank 11A.
The hot water generator 130C includes a heat exchanger 37A of the hot water generator 130A, a heat exchanger 37A for exchanging heat between water flowing in the water flow path and a refrigerant flowing in the refrigerant flow path, and an intermediate port via the heat exchanger 37A. 14 and a water circulation path 38A connecting the water supply port 13 and a pump 36A arranged in the middle of the water circulation path 38A.
The refrigerant circuit 92C includes a compressor 31, a heat exchanger 34, an expander 32C, and heat exchangers 37A and 33. A refrigerant is circulated through the refrigerant circuit 92C to form a refrigeration cycle, and an intermediate port is provided via the heat exchanger 37A. Heat is absorbed from the water taken from 14, and the water is returned to the water supply port 13. That is, the refrigerant circuit 92C absorbs the heat of the water below the temperature detector 39 in the water storage tank 11 as in the refrigerant circuit 92A, and generates hot water by the heat exchanger 34.
The hot water generator 130C operates in the same manner as the hot water generator 130A. However, the pump 36A is operated when the refrigerant circuit 92C is operated.

冷房装置150Aは、冷房装置150の熱交換器54を、水流路に流れる水と冷媒流路に流れる冷媒との熱交換を行なう熱交換器54Aと、熱交換器54Aを経由し中間口14と給水口13を結ぶ水循環路58と、水循環路58の途中に配置されたポンプ56で置換したものである。
冷媒回路93Aは、圧縮機51と熱交換器54Aと膨張器52と熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成し、熱交換器54Aを介して、給水口13から取り入れた水に熱を放出し、その水は中間口14に戻される。つまり、冷媒回路93Aは、冷媒回路93と同様に貯水槽11内の温度検出器39の下方の水に熱を放出する。
冷房装置150Aは冷房装置150と同様に動作する。但し、冷媒回路93Aが運転される場合にポンプ56が運転される。
The cooling device 150A includes a heat exchanger 54A for performing heat exchange between the water flowing in the water flow path and the refrigerant flowing in the refrigerant flow path, and the intermediate port 14 via the heat exchanger 54A. A water circulation path 58 connecting the water supply ports 13 and a pump 56 disposed in the middle of the water circulation path 58 are replaced.
The refrigerant circuit 93A includes a compressor 51, a heat exchanger 54A, an expander 52, and a heat exchanger 53. A refrigerant is circulated through these circuits to form a refrigeration cycle. Heat is released to the taken-in water, and the water is returned to the intermediate port 14. That is, the refrigerant circuit 93 </ b> A releases heat to water below the temperature detector 39 in the water storage tank 11, similarly to the refrigerant circuit 93.
The cooling device 150A operates in the same manner as the cooling device 150. However, the pump 56 is operated when the refrigerant circuit 93A is operated.

図5に冷房給湯装置の第五参考例である冷房給湯装置210Dを示す。冷房給湯装置210Dは冷房給湯装置210Aに潜熱蓄熱体21を追加した構成であり、潜熱蓄熱体21は貯水槽11内の熱交換器37と熱交換器54の間に配置される。融解温度が第三温度より高く、第四温度より低く、且つ第五温度より低い潜熱蓄熱材が潜熱蓄熱体21の潜熱蓄熱材として使用される。例えば、潜熱蓄熱材として硫酸ナトリウム十水塩(融解温度32.4度)やパラフィン(C18H38、融解温度28.2度)が使用される。融解温度の低い潜熱蓄熱材を使用すると、冷媒回路93の高圧の冷媒の温度を低くできるので、冷房装置150の熱効率は高くなる。更に、潜熱蓄熱体21は大量の熱を蓄えることができるので、貯水槽11を小型にできる。
第三温度以上で潜熱蓄熱体21の融解温度未満の所定の温度を第六温度と呼ぶ。
FIG. 5 shows a cooling water heater 210D which is a fifth reference example of the cooling water heater. The cooling hot water supply apparatus 210D has a configuration in which a latent heat storage body 21 is added to the cooling hot water supply apparatus 210A, and the latent heat storage body 21 is disposed between the heat exchanger 37 and the heat exchanger 54 in the water storage tank 11. A latent heat storage material having a melting temperature higher than the third temperature, lower than the fourth temperature, and lower than the fifth temperature is used as the latent heat storage material of the latent heat storage body 21. For example, sodium sulfate decahydrate (melting temperature 32.4 degrees) or paraffin (C18H38, melting temperature 28.2 degrees) is used as the latent heat storage material. When a latent heat storage material having a low melting temperature is used, the temperature of the high-pressure refrigerant in the refrigerant circuit 93 can be lowered, and the thermal efficiency of the cooling device 150 is increased. Furthermore, since the latent heat storage body 21 can store a large amount of heat, the water storage tank 11 can be reduced in size.
A predetermined temperature that is equal to or higher than the third temperature and lower than the melting temperature of the latent heat storage body 21 is referred to as a sixth temperature.

所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第六温度未満の場合、制御部は膨張器32C閉じ、冷媒回路91とポンプ36を運転する。
所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第六温度以上の場合、制御部は冷媒回路91と92Aとポンプ36を運転し、
冷媒回路91と92Aに流す冷媒の流量の割合を、温度検出器39Aの検出温度と第六温度の差に基づいて算出し、その割合になるように膨張器32Bと32Cの開度を調整する。例えば、制御部は、冷媒回路92Aに循環される冷媒の割合が、温度検出器39Aの検出温度が第六温度以上で融解温度未満の場合、第六温度と温度検出器39Aの検出温度の温度差に比例し、温度検出器39Aの検出温度が融解温度以上の場合、100%になるように膨張器32Bと32Cの開度を調整する。この冷媒回路91と92Aの同時運転で十分な湯量が生成された場合、貯水槽11内の下部の水温は第六温度付近またはそれ以下に下がり、潜熱蓄熱体21は凝固される。
冷房装置150は冷房の排熱を熱交換器54で貯水装置11内の水に放出し、潜熱蓄熱体21を融解する。つまり、潜熱蓄熱体21は冷房の排熱で融解され、湯の生成時に凝固される。潜熱蓄熱体21の潜熱が湯の生成に必要な熱量より多く、湯の生成に必要な熱量が冷房の排熱の熱量より多い場合、冷房の排熱は全て湯の生成に利用され得る。なお、冷房の排熱の熱量が多く、温度検出器59Aの検出温度が第四温度以上になった場合、第一排熱処理が行なわれる。
従って、冷房給湯装置210Dは熱効率の高い冷房を行うと共に熱効率の高い湯の生成を行なうことができ、更に冷房給湯装置210Aより小型にできる。
When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is lower than the sixth temperature, the control unit closes the expander 32C, and the refrigerant circuit 91 And the pump 36 is operated.
When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is equal to or higher than the sixth temperature, the control unit performs the refrigerant circuits 91 and 92A and the pump 36. Drive
The ratio of the flow rate of the refrigerant flowing through the refrigerant circuits 91 and 92A is calculated based on the difference between the detected temperature of the temperature detector 39A and the sixth temperature, and the opening degrees of the expanders 32B and 32C are adjusted so as to be the ratio. . For example, when the ratio of the refrigerant circulated through the refrigerant circuit 92A is such that the temperature detected by the temperature detector 39A is equal to or higher than the sixth temperature and lower than the melting temperature, the temperature of the sixth temperature and the temperature detected by the temperature detector 39A. In proportion to the difference, when the detected temperature of the temperature detector 39A is equal to or higher than the melting temperature, the opening degree of the expanders 32B and 32C is adjusted to be 100%. When a sufficient amount of hot water is generated by the simultaneous operation of the refrigerant circuits 91 and 92A, the water temperature in the lower part of the water storage tank 11 is lowered to around or below the sixth temperature, and the latent heat storage body 21 is solidified.
The cooling device 150 releases the exhaust heat of cooling to the water in the water storage device 11 by the heat exchanger 54 and melts the latent heat storage body 21. That is, the latent heat storage body 21 is melted by the exhaust heat of the cooling and solidified when hot water is generated. When the latent heat of the latent heat storage body 21 is larger than the amount of heat necessary for producing hot water and the amount of heat necessary for producing hot water is larger than the amount of heat of exhaust heat from the cooling, all the exhaust heat from the cooling can be used for producing hot water. In addition, when the heat quantity of the exhaust heat is large and the temperature detected by the temperature detector 59A is equal to or higher than the fourth temperature, the first exhaust heat treatment is performed.
Accordingly, the cooling and hot water supply apparatus 210D can perform cooling with high thermal efficiency and generate hot water with high thermal efficiency, and can be made smaller than the cooling hot water supply apparatus 210A.

図6に冷房給湯装置の第六参考例である冷房給湯装置210Eを示す。冷房給湯装置210Eは貯水装置110と湯生成装置130Dと冷房装置150を備える。貯水装置110と冷房装置150は既に説明されている。
湯生成装置130Dは冷媒回路91Aと92Dと水循環路38とポンプ36を備える。冷媒回路91Aは、低段側回転圧縮要素で中間圧まで圧縮した冷媒を中間連結回路75Cを経由して高段側回転圧縮要素に吸入し、高段側回転圧縮要素で高圧まで圧縮する圧縮機31Aと、熱交換器34と、飽和圧力以下まで減圧する膨張器32Dと、湿りガス状態になった冷媒を気液分離する気液分離器75Aと、気液分離器75Aで分離された液体の冷媒を減圧する膨張器32Bと、熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。気液分離器75Aで分離された気体の冷媒はインジェクション回路75Bを経由して圧縮機31Aにインジェクションされる。冷媒回路91Aが運転されると冷媒回路91Aは、冷媒回路91と同様に熱交換器33で熱を吸収し、熱交換器34で熱を放出する。なお、冷媒回路91Aは超臨界域で動作し、冷媒は二酸化炭素である。
FIG. 6 shows a cooling water heater 210E as a sixth reference example of the cooling water heater. The cooling water heater 210E includes a water storage device 110, a hot water generator 130D, and a cooling device 150. The water storage device 110 and the cooling device 150 have already been described.
The hot water generator 130D includes refrigerant circuits 91A and 92D, a water circulation path 38, and a pump 36. The refrigerant circuit 91A sucks the refrigerant compressed to the intermediate pressure by the low-stage side rotary compression element into the high-stage side rotary compression element via the intermediate coupling circuit 75C, and compresses the refrigerant to a high pressure by the high-stage side rotary compression element. 31A, a heat exchanger 34, an expander 32D for reducing the pressure to a saturation pressure or less, a gas-liquid separator 75A for gas-liquid separation of the refrigerant in a wet gas state, and the liquid separated by the gas-liquid separator 75A An expander 32B for depressurizing the refrigerant and a heat exchanger 33 are provided, and the refrigerant is circulated through them to form a refrigeration cycle. The gaseous refrigerant separated by the gas-liquid separator 75A is injected into the compressor 31A via the injection circuit 75B. When the refrigerant circuit 91 </ b> A is operated, the refrigerant circuit 91 </ b> A absorbs heat by the heat exchanger 33 and releases heat by the heat exchanger 34 as in the refrigerant circuit 91. The refrigerant circuit 91A operates in the supercritical region, and the refrigerant is carbon dioxide.

冷媒回路92Dは、圧縮機31Aと、熱交換器34と、膨張器32Dと気液分離器75Aと、気液分離器75Aで分離された液体の冷媒を減圧する膨張器32Cと、熱交換器37と33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。気液分離器75Aで分離された気体の冷媒はインジェクション回路75Bを経由して圧縮機31Aにインジェクションされる。冷媒回路92Dが運転されると冷媒回路92Dは、冷媒回路92Aと同様に熱交換器33と37で熱を吸収し、熱交換器34で熱を放出する。
冷媒回路91Aと92Dの起動と停止と冷媒の流量の割合の制御は冷媒回路91と92Aの起動と停止と冷媒の流量の割合の制御と同様に行なわれる。
この二段圧縮二段膨張方式(特開2007−178042参照)は熱効率を改善し、安定した運転を提供する。
The refrigerant circuit 92D includes a compressor 31A, a heat exchanger 34, an expander 32D, a gas-liquid separator 75A, an expander 32C that decompresses the liquid refrigerant separated by the gas-liquid separator 75A, and a heat exchanger. 37 and 33 are provided, and a refrigerant is circulated through them to form a refrigeration cycle. The gaseous refrigerant separated by the gas-liquid separator 75A is injected into the compressor 31A via the injection circuit 75B. When the refrigerant circuit 92D is operated, the refrigerant circuit 92D absorbs heat by the heat exchangers 33 and 37 and releases heat by the heat exchanger 34, similarly to the refrigerant circuit 92A.
Control of the ratio of the refrigerant circuits 91A and 92D to start and stop and the flow rate of the refrigerant is performed similarly to the control of the ratio of the refrigerant circuits 91 and 92A to start and stop and the ratio of the refrigerant flow rate.
This two-stage compression and two-stage expansion system (see Japanese Patent Application Laid-Open No. 2007-178042) improves thermal efficiency and provides stable operation.

図7に冷房給湯装置の第七参考例である冷房給湯装置210Fを示す。冷房給湯装置210Fは貯水装置110と湯生成装置130Eと冷房装置150を備える。貯水装置110と冷房装置150は既に説明されている。
湯生成装置130Eは冷媒回路91Bと92Eと水循環路38とポンプ36を備える。冷媒回路91Bは圧縮機31と熱交換器34と、低圧冷媒流路に流れる低圧の冷媒と高圧冷媒流路に流れる高圧の冷媒との熱交換を行なう熱交換器76Aの高圧冷媒流路と、膨張器32Bと、熱交換器33と、気相と液相を分離するアキュームレータ76Bと、熱交換器76Aの低圧冷媒流路を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路91Bが運転されると、冷媒回路91Bは冷媒回路91と同様に、熱交換器33で熱を吸収し、熱交換器34で湯を生成する。
冷媒回路92Eは、圧縮機31と熱交換器34と、熱交換器76Aの高圧冷媒流路と、膨張器32Cと、熱交換器37と33と、アキュームレータ76Bと、熱交換器76Aの低圧冷媒流路を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路92Eが運転されると冷媒回路92Eは冷媒回路92Aと同様に、熱交換器33と37で熱を吸収し、熱交換器34で熱を放出する。
冷媒回路91Bと92Eの起動と停止と冷媒の流量の割合の制御は冷媒回路91と92Aの起動と停止と冷媒の流量の割合の制御と同様に行なわれる。
熱交換器76Aは冷凍サイクルの冷凍能力を向上させる(特開2001−108308参照)。
FIG. 7 shows a cooling water heater 210F which is a seventh reference example of the cooling water heater. The cooling hot water supply apparatus 210F includes a water storage device 110, a hot water generation device 130E, and a cooling device 150. The water storage device 110 and the cooling device 150 have already been described.
The hot water generator 130E includes refrigerant circuits 91B and 92E, a water circulation path 38, and a pump 36. The refrigerant circuit 91B includes a compressor 31, a heat exchanger 34, a high-pressure refrigerant flow path of a heat exchanger 76A that performs heat exchange between the low-pressure refrigerant flowing in the low-pressure refrigerant flow path and the high-pressure refrigerant flowing in the high-pressure refrigerant flow path. An expander 32B, a heat exchanger 33, an accumulator 76B that separates the gas phase and the liquid phase, and a low-pressure refrigerant flow path of the heat exchanger 76A are provided, and a refrigerant is circulated through them to form a refrigeration cycle. When the refrigerant circuit 91B is operated, similarly to the refrigerant circuit 91, the refrigerant circuit 91B absorbs heat by the heat exchanger 33 and generates hot water by the heat exchanger 34.
The refrigerant circuit 92E includes the compressor 31, the heat exchanger 34, the high pressure refrigerant flow path of the heat exchanger 76A, the expander 32C, the heat exchangers 37 and 33, the accumulator 76B, and the low pressure refrigerant of the heat exchanger 76A. A flow path is provided, and a refrigerant is circulated through them to form a refrigeration cycle. When the refrigerant circuit 92E is operated, the refrigerant circuit 92E absorbs heat by the heat exchangers 33 and 37 and releases heat by the heat exchanger 34, similarly to the refrigerant circuit 92A.
Control of the ratio of the refrigerant circuits 91B and 92E to start and stop and the flow rate of the refrigerant is performed similarly to the control of the ratio of the refrigerant circuits 91 and 92A to start and stop and the ratio of the refrigerant flow rate.
The heat exchanger 76A improves the refrigeration capacity of the refrigeration cycle (see JP 2001-108308 A).

図8に冷房給湯装置の第八参考例である冷房給湯装置210Gを示す。冷房給湯装置210Gは貯水装置110と湯生成装置130Fと冷房装置150を備える。貯水装置110と冷房装置150は既に説明されている。
湯生成装置130Fは、冷媒回路91Cと冷媒回路92Fと水循環路38とポンプ36を備える。エジェクタ77Bは熱交換器34から流出する冷媒を減圧膨張させて熱交換器33にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機31の吸入圧を上昇させる装置であり、気液分離器77Aは冷媒を気相冷媒と液相冷媒とに分離して冷媒を貯える装置である。
冷媒回路91Cは圧縮機31と熱交換器34とエジェクタ77Bと気液分離器77Aと膨張器32Bと熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路91Cにおいて、圧縮機31で圧縮された高温の冷媒は熱交換器34で冷却され、エジェクタ77Bにより減圧される。エジェクタ77Bにより減圧された冷媒は気液分離器77Aにより気相と液相に分離され、気相の冷媒は圧縮機31に吸引され、液相の冷媒は膨張器32Bにより減圧され、熱交換器33で外気と熱交換し、エジェクタ77Bに吸引される。冷媒回路91Cが運転されると冷媒回路91Cは、冷媒回路91と同様に熱交換器33で熱を吸収し、熱交換器34で熱を放出する。
FIG. 8 shows a cooling hot water supply apparatus 210G as an eighth reference example of the cooling hot water supply apparatus. The cooling hot water supply apparatus 210G includes a water storage device 110, a hot water generation device 130F, and a cooling device 150. The water storage device 110 and the cooling device 150 have already been described.
The hot water generator 130F includes a refrigerant circuit 91C, a refrigerant circuit 92F, a water circulation path 38, and a pump 36. The ejector 77B decompresses and expands the refrigerant flowing out of the heat exchanger 34 and sucks the vapor phase refrigerant evaporated in the heat exchanger 33, and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 31. The gas-liquid separator 77A is a device that separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant and stores the refrigerant.
The refrigerant circuit 91 </ b> C includes a compressor 31, a heat exchanger 34, an ejector 77 </ b> B, a gas-liquid separator 77 </ b> A, an expander 32 </ b> B, and a heat exchanger 33. In the refrigerant circuit 91C, the high-temperature refrigerant compressed by the compressor 31 is cooled by the heat exchanger 34 and depressurized by the ejector 77B. The refrigerant decompressed by the ejector 77B is separated into a gas phase and a liquid phase by the gas-liquid separator 77A, the gas phase refrigerant is sucked into the compressor 31, and the liquid phase refrigerant is decompressed by the expander 32B. At 33, heat is exchanged with the outside air and sucked into the ejector 77B. When the refrigerant circuit 91 </ b> C is operated, the refrigerant circuit 91 </ b> C absorbs heat by the heat exchanger 33 and releases heat by the heat exchanger 34, similarly to the refrigerant circuit 91.

冷媒回路92Fは圧縮機31と熱交換器34とエジェクタ77Bと気液分離器77Aと膨張器32Cと熱交換器37と33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路92Fにおいて、圧縮機31で圧縮された高温の冷媒は熱交換器34で冷却され、エジェクタ77Bにより減圧される。エジェクタ77Bにより減圧された冷媒は気液分離器77Aにより気相と液相に分離され、気相の冷媒は圧縮機31に吸引され、液相の冷媒は膨張器32Cにより減圧され、熱交換器37で貯水槽11内の水の熱を吸収し、熱交換器33で外気の熱を吸収し、エジェクタ77Bに吸引される。冷媒回路92Fが運転されると冷媒回路92Fは、冷媒回路92Aと同様に熱交換器37と33で熱を吸収し、熱交換器34で熱を放出する。
冷媒回路91Cと92Fの起動と停止と冷媒の流量の割合の制御は冷媒回路91と92Aの起動と停止と冷媒の流量の割合の制御と同様に行なわれる。
冷媒回路91Cと92Fは、減圧時に発生する膨張エネルギーをより確実に回収するので冷凍サイクルの熱効率を上げることができる(特開2002−318019参照)。
The refrigerant circuit 92F includes a compressor 31, a heat exchanger 34, an ejector 77B, a gas-liquid separator 77A, an expander 32C, and heat exchangers 37 and 33, and circulates refrigerant through them to form a refrigeration cycle. In the refrigerant circuit 92F, the high-temperature refrigerant compressed by the compressor 31 is cooled by the heat exchanger 34 and depressurized by the ejector 77B. The refrigerant decompressed by the ejector 77B is separated into a gas phase and a liquid phase by the gas-liquid separator 77A, the gas phase refrigerant is sucked into the compressor 31, and the liquid phase refrigerant is decompressed by the expander 32C, and the heat exchanger The heat of the water in the water storage tank 11 is absorbed by 37, the heat of the outside air is absorbed by the heat exchanger 33, and is sucked into the ejector 77B. When the refrigerant circuit 92F is operated, the refrigerant circuit 92F absorbs heat by the heat exchangers 37 and 33 and releases heat by the heat exchanger 34, similarly to the refrigerant circuit 92A.
Control of the ratio of the refrigerant circuits 91C and 92F to start and stop and the flow rate of the refrigerant is performed similarly to the control of the ratio of the refrigerant circuits 91 and 92A to start and stop and the ratio of the refrigerant flow rate.
The refrigerant circuits 91C and 92F can more reliably recover the expansion energy generated at the time of depressurization, so that the thermal efficiency of the refrigeration cycle can be increased (see JP 2002-318019).

図10に冷房給湯装置の第十参考例である冷房給湯装置220を示す。冷房給湯装置220は貯水装置110と湯生成装置130Hと冷房装置150と湯の排出を制御する排水弁73Aを備える。貯水装置110と冷房装置150は既に説明されている。
湯生成装置130Hは湯生成装置130Aに温度検出器39Bと39Cを追加した構成である。
温度検出器39Cは、湯切れを起こさないために、湯生成装置130Hが起動されてから熱交換器34で湯が生成されるまでの間に使用される湯量が、その上部の貯水槽11内に貯えられる位置に配置される。温度検出器39Bは、湯生成装置130Hの起動の頻度を適正にするために、または安価に湯を生成するために、温度検出器39Cから所定の距離下方に配置される。
FIG. 10 shows a cooling water heater 220 as a tenth reference example of the cooling water heater. The cooling hot water supply device 220 includes a water storage device 110, a hot water generation device 130H, a cooling device 150, and a drain valve 73A that controls discharge of hot water. The water storage device 110 and the cooling device 150 have already been described.
The hot water generator 130H is configured by adding temperature detectors 39B and 39C to the hot water generator 130A.
In the temperature detector 39C, in order to prevent hot water from running out, the amount of hot water used between the time when the hot water generator 130H is activated and the time when hot water is generated by the heat exchanger 34 is determined in the water tank 11 above the hot water generator 11C. It is arranged at the position where it is stored. The temperature detector 39B is disposed below a predetermined distance from the temperature detector 39C in order to make the hot water generating device 130H start up at an appropriate frequency or generate hot water at a low cost.

冷房給湯装置220は冬期モードと中間期モードと冷房モードのいずれかのモードで運転される。冷房給湯装置220は所定の日時(例えば11月1日午前0時)に冬期モードに移行し、別の所定の日時(例えば5月1日午前0時)に中間期モードに移行する。冷房給湯装置220は、中間期モードにおいて排湯がある場合、その時以降の午前0時に冷房モードに移行し、冷房モードにおいて午前0時の直前に、過去24時間の冷房の排熱量を冷媒回路93の運転履歴から算出し、その冷房の排熱量が所定の熱量未満の場合、午前0時に中間期モード(但し、10月31日の場合は冬期モード)に移行する。所定の熱量は、例えば温度検出器59と39の間の貯水槽11の体積と、第三温度と第四温度の温度差と、水の比熱と密度を乗算して得られる熱量である。
(1)冬期モードの動作
冬期モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器59の検出温度が第一温度未満の場合に出力される。所定の湯生成条件とは所定の時刻、温度検出器39Cが第一温度未満等である。
湯の生成の運転の指示がある場合の動作:
温度検出器59の検出温度が第一温度になるまで冷媒回路91が運転される。
冷房運転の指示がある場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路93が運転され、温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59が第四温度未満を検出した後に冷媒回路93が運転される。
The cooling water heater 220 is operated in any one of the winter mode, the intermediate period mode, and the cooling mode. The cooling water heater 220 shifts to the winter mode at a predetermined date and time (for example, midnight on November 1), and shifts to the intermediate mode at another predetermined date and time (for example, at midnight on May 1). When there is hot water in the intermediate period mode, the cooling water heater 220 shifts to the cooling mode at midnight after that time, and immediately before midnight in the cooling mode, the cooling circuit 93 supplies the exhaust heat amount of the past 24 hours. When the exhaust heat amount of the cooling is less than the predetermined heat amount, the mode shifts to the intermediate mode at midnight (in the case of October 31, the winter mode). The predetermined amount of heat is, for example, the amount of heat obtained by multiplying the volume of the water storage tank 11 between the temperature detectors 59 and 39, the temperature difference between the third temperature and the fourth temperature, the specific heat and density of water.
(1) Operation in Winter Mode In the winter mode, an instruction to generate hot water is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 59 is lower than the first temperature. The predetermined hot water generation condition is a predetermined time, such that the temperature detector 39C is less than the first temperature.
Operation when there is an instruction for hot water generation:
The refrigerant circuit 91 is operated until the temperature detected by the temperature detector 59 reaches the first temperature.
Operation when there is an instruction for cooling operation:
When the detected temperature of the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 93 is operated. When the detected temperature of the temperature detector 59 is higher than the fourth temperature, the drain valve 73A is opened and drained, and the temperature detector The refrigerant circuit 93 is operated after 59 detects less than the fourth temperature.

(2)中間期モードの動作
中間期モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満の場合に出力される。所定の湯生成条件とは所定の時刻、温度検出器39Cが第一温度未満等である。
湯の生成の運転の指示がある場合の動作:
温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91が運転され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路91と92Aが同時運転され、温度検出器39の検出温度が第一温度以上になるまで湯が生成される。
冷房運転の指示がある場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路93が運転され、温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59が第四温度未満を検出した後に冷媒回路93が運転される。
(3)冷房モードの動作
冷房モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器39Bの検出温度が第一温度未満の場合に出力される。所定の湯生成条件とは所定の時刻、温度検出器39Cが第一温度未満等である。
湯の生成の運転の指示がある場合の動作:
温度検出器39Aの検出温度が第二温度未満ある場合、冷媒回路91が運転され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路91と92Aが同時運転され、温度検出器39Bが第一温度以上を検出するまで湯が生成される。
冷房運転の指示がある場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路93が運転され、温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59が第四温度未満を検出した後に冷媒回路93が運転される。
なお、冷房給湯装置220は排水弁73Aを開いて排水するが冷房給湯装置260に示すように排水口を温度検出器59と39Aの間に配置し、その排水口に排水弁を接続し、その排水弁を開けて排水しても良い。
(2) Operation in the intermediate period mode In the intermediate period mode, an instruction to generate hot water is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 39 is lower than the first temperature. The predetermined hot water generation condition is a predetermined time, such that the temperature detector 39C is less than the first temperature.
Operation when there is an instruction for hot water generation:
When the detected temperature of the temperature detector 39A is lower than the second temperature, the refrigerant circuit 91 is operated. When the detected temperature of the temperature detector 39A is equal to or higher than the second temperature, the refrigerant circuits 91 and 92A are operated simultaneously. Hot water is generated until the detected temperature of 39 is equal to or higher than the first temperature.
Operation when there is an instruction for cooling operation:
When the detected temperature of the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 93 is operated. When the detected temperature of the temperature detector 59 is higher than the fourth temperature, the drain valve 73A is opened and drained, and the temperature detector The refrigerant circuit 93 is operated after 59 detects less than the fourth temperature.
(3) Operation in the cooling mode In the cooling mode, the hot water generation instruction is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 39B is lower than the first temperature. The predetermined hot water generation condition is a predetermined time, such that the temperature detector 39C is less than the first temperature.
Operation when there is an instruction for hot water generation:
When the detected temperature of the temperature detector 39A is lower than the second temperature, the refrigerant circuit 91 is operated. When the detected temperature of the temperature detector 39A is equal to or higher than the second temperature, the refrigerant circuits 91 and 92A are operated simultaneously, and the temperature detector Hot water is generated until 39B detects the first temperature or higher.
Operation when there is an instruction for cooling operation:
When the detected temperature of the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 93 is operated. When the detected temperature of the temperature detector 59 is higher than the fourth temperature, the drain valve 73A is opened and drained, and the temperature detector The refrigerant circuit 93 is operated after 59 detects less than the fourth temperature.
The cooling water heater 220 opens the drain valve 73A to drain water, but as shown in the cooling water heater 260, a drain port is disposed between the temperature detectors 59 and 39A, and a drain valve is connected to the drain port. You may drain by opening the drain valve.

冷房給湯装置220は、温度検出器39と温度検出器39Bの位置と、冬期モードと中間期モード間の移行の日時を地域の気候に応じて適正な値の設定することにより、気候の異なる地域で貯水槽11の容量を最大限活用できる。例えば、温度検出器39を、その上方の貯水槽11に貯水槽11の最大貯水量の80%を貯える位置に配置し、温度検出器39Bを、その上方の貯水槽11に貯水槽11の最大貯水量の30%を貯える位置に配置する。冷房給湯装置220は、湯の使用量が多い冬期において、深夜電力料金が適用される深夜に貯水槽11の略最大貯水量の湯を貯えて冬期に必要な一日分の湯量を供給し、湯の使用量が少し減少する中間期において、深夜電力料金が適用される深夜に80%の貯水量の湯を貯えて中間期に必要な一日分の湯量を供給すると共に中間期の冷房の排熱を蓄える冷水の容積を確保し、湯の使用量が少なく、冷房の排熱量が大きい冷房期において、深夜電力料金が適用される深夜に少ない湯量を貯えて、冷房の大量の排熱を蓄えられるようにすると共に強冷房により生成される湯で冷房期に必要な湯量を補完する。
従って、冷房給湯装置220は、湯の生成の指示により生成される湯を貯える容積と冷房の排熱を蓄える容積の割合を季節により変えることにより貯水槽11の容量を有効に活用し、貯水槽11のサイズを最小にできる。更に、冷房給湯装置220は、排水がある場合に中間期モードから冷房モードへ移行し、冷房の排熱量が所定の熱量により少ない場合に冷房モードから中間期モードへ移行するので気温の変動に柔軟に対応できる。更に冷房給湯装置220は中温水の熱を吸収し、湯を生成するのでその湯の生成と冷房の熱効率は高い。
The cooling water heater 220 sets the temperature detector 39 and the position of the temperature detector 39B, and the date and time of transition between the winter mode and the intermediate mode to appropriate values according to the local climate, so that regions with different climates are set. The maximum capacity of the water storage tank 11 can be utilized. For example, the temperature detector 39 is disposed at a position where 80% of the maximum water storage amount of the water storage tank 11 is stored in the water storage tank 11 above, and the temperature detector 39B is disposed in the water storage tank 11 above the maximum water storage tank 11. Arrange 30% of the amount of water stored. The cooling and hot water supply apparatus 220 stores hot water of approximately the maximum water storage capacity of the water storage tank 11 at midnight when the late-night electricity charge is applied in the winter when there is a large amount of hot water used, and supplies the amount of hot water required for the winter. In the intermediate period when the amount of hot water used is slightly reduced, 80% of hot water is stored at midnight when the late-night electricity rate is applied, and the amount of hot water required for the intermediate period is supplied and the cooling of the intermediate period Ensuring the volume of chilled water to store waste heat, using less hot water, and storing large amounts of cooling heat by storing a small amount of hot water in the middle of the night when midnight electricity charges are applied during the cooling season when the amount of exhaust heat is large The amount of hot water necessary for the cooling period is supplemented with hot water generated by strong cooling while being stored.
Therefore, the cooling water heater 220 effectively uses the capacity of the water storage tank 11 by changing the ratio of the volume of hot water generated by the hot water generation instruction and the capacity of storing the exhaust heat of the cooling according to the season. 11 sizes can be minimized. Further, the cooling water heater 220 shifts from the intermediate mode to the cooling mode when there is drainage, and shifts from the cooling mode to the intermediate mode when the exhaust heat amount of the cooling is smaller by a predetermined amount of heat. It can correspond to. Furthermore, since the cooling water heater 220 absorbs the heat of the medium temperature water and generates hot water, the generation of the hot water and the thermal efficiency of the cooling are high.

図11に本発明の冷房給湯装置の第一実施形態である冷房給湯装置230を示す。冷房給湯装置230は貯水装置110と湯生成装置131を備える。貯水装置110は既に説明されている。湯生成装置131は湯生成装置130Aに冷媒回路94と95を追加した構成である。
冷媒回路94は圧縮機31と熱交換器54と膨張器52と熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路94が運転されると、熱交換器53で建物が冷房され、冷房の排熱が熱交換器54で貯水槽11の水に放出される。冷媒回路95は圧縮機31と熱交換器34と膨張器52Aと熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成する。冷媒回路95が運転されると、熱交換器53で建物が冷房され、熱交換器34で湯が生成される。なお、膨張器52と52Aは外部信号により開度が調整されるとする。
制御部は、冷媒回路91を運転する場合、膨張器32Cと52と52Aを閉じ、冷媒回路92Aを運転する場合、膨張器32Bと52と52Aを閉じ、冷媒回路91と92Aを同時運転する場合、膨張器52と52Aを閉じ、冷媒回路94を運転する場合、膨張器32Bと32Cと52Aを閉じ、冷媒回路95を運転する場合、膨張器32Bと32Cと52を閉じ、冷媒回路91と95を同時運転する場合、膨張器32Cと52を閉じ、冷媒回路92Aと95を同時運転する場合、膨張器32Bと52を閉じる。
冷媒回路91と92Aと94と95と膨張器32Bと32Cと52と52Aと熱交換器33と34と37と54と53がそれぞれ本発明の第一冷媒回路と第二冷媒回路と第四冷媒回路と第五冷媒回路と第一膨張器と第二膨張器と第三膨張器と第四膨張器と熱伝達手段と湯生成熱交換器と吸熱手段と放熱手段と建物熱交換手段に相当する。
FIG. 11 shows a cooling hot water supply apparatus 230 which is a first embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 230 includes a water storage device 110 and a hot water generation device 131. The water storage device 110 has already been described. The hot water generator 131 is configured by adding refrigerant circuits 94 and 95 to the hot water generator 130A.
The refrigerant circuit 94 includes a compressor 31, a heat exchanger 54, an expander 52, and a heat exchanger 53, and circulates refrigerant through them to form a refrigeration cycle. When the refrigerant circuit 94 is operated, the building is cooled by the heat exchanger 53, and the exhaust heat of the cooling is released to the water in the water storage tank 11 by the heat exchanger 54. The refrigerant circuit 95 includes a compressor 31, a heat exchanger 34, an expander 52A, and a heat exchanger 53, and forms a refrigeration cycle by circulating a refrigerant through them. When the refrigerant circuit 95 is operated, the building is cooled by the heat exchanger 53, and hot water is generated by the heat exchanger 34. It is assumed that the opening of the expanders 52 and 52A is adjusted by an external signal.
When operating the refrigerant circuit 91, the control unit closes the expanders 32C, 52, and 52A, operates the refrigerant circuit 92A, closes the expanders 32B, 52, and 52A, and operates the refrigerant circuits 91 and 92A simultaneously. When the expanders 52 and 52A are closed and the refrigerant circuit 94 is operated, the expanders 32B and 32C and 52A are closed, and when the refrigerant circuit 95 is operated, the expanders 32B, 32C and 52 are closed, and the refrigerant circuits 91 and 95 are operated. Are simultaneously operated, the expanders 32C and 52 are closed, and when the refrigerant circuits 92A and 95 are simultaneously operated, the expanders 32B and 52 are closed.
Refrigerant circuits 91, 92A, 94, 95, expanders 32B, 32C, 52, 52A, heat exchangers 33, 34, 37, 54, and 53 are the first refrigerant circuit, second refrigerant circuit, and fourth refrigerant of the present invention, respectively. Corresponds to circuit, fifth refrigerant circuit, first expander, second expander, third expander, fourth expander, heat transfer means, hot water generating heat exchanger, heat absorption means, heat dissipation means, and building heat exchange means. .

冷媒回路91と92Aと95が運転される場合、圧縮機31は冷媒を高圧、高温度(例えば90度)に圧縮する高速運転で運転され、湯が生成される。冷媒回路94が運転される場合、圧縮機31は高速運転より低速な低速運転で運転され、圧縮された冷媒の圧力と温度は高速運転の場合より低く、その温度は例えば50度である。冷媒として二酸化炭素が使用された場合、圧縮機31が高速運転されると、臨界点を超える超臨界冷凍サイクルが形成され、圧縮機31が低速運転されると、臨界点を超えない冷凍サイクルが形成されるのが好ましい。なお、使用される冷媒はHFC系冷媒でも他の冷媒でも良い。
冷媒回路95の運転は冷房能力の高い強冷房運転であり、冷媒回路94の運転は冷房能力の低い弱冷房運転である。なお、弱冷房運転は冷媒回路95と冷媒回路91または92Aとの同時運転により可能である。冷媒回路91と95の同時運転は、圧縮機31が高速運転され、熱交換器53に流れる冷媒の流量を弱冷房に対応する流量になるように膨張器32Bと52Aの開度が調整されて、弱冷房を行うと共に弱冷房の排熱と外気の熱から湯を生成する。冷媒回路92Aと95の同時運転は、圧縮機31が高速運転され、熱交換器53に流れる冷媒の流量を弱冷房に対応する流量になるように膨張器32Cと52Aの開度が調整され、弱冷房を行うと共に弱冷房の排熱と貯水槽11の水の熱から湯を生成する。
なお、熱交換器53と33から流出した冷媒は状態(乾き度や過熱度)が異なるので同一の状態の冷媒にした後に過熱度等の検出を行い、気相冷媒を圧縮機31に入れるのが好ましい。
When the refrigerant circuits 91, 92A, and 95 are operated, the compressor 31 is operated at a high speed operation that compresses the refrigerant to a high pressure and a high temperature (for example, 90 degrees), and hot water is generated. When the refrigerant circuit 94 is operated, the compressor 31 is operated at a low speed operation that is slower than the high speed operation, and the pressure and temperature of the compressed refrigerant are lower than that at the high speed operation, and the temperature is, for example, 50 degrees. When carbon dioxide is used as the refrigerant, a supercritical refrigeration cycle exceeding the critical point is formed when the compressor 31 is operated at high speed, and a refrigeration cycle not exceeding the critical point is formed when the compressor 31 is operated at low speed. Preferably it is formed. The refrigerant used may be an HFC refrigerant or another refrigerant.
The operation of the refrigerant circuit 95 is a strong cooling operation with a high cooling capacity, and the operation of the refrigerant circuit 94 is a weak cooling operation with a low cooling capacity. The weak cooling operation can be performed by simultaneous operation of the refrigerant circuit 95 and the refrigerant circuit 91 or 92A. In the simultaneous operation of the refrigerant circuits 91 and 95, the opening degree of the expanders 32B and 52A is adjusted so that the compressor 31 operates at high speed and the flow rate of the refrigerant flowing through the heat exchanger 53 becomes a flow rate corresponding to weak cooling. In addition to performing weak cooling, hot water is generated from the exhaust heat of the weak cooling and the heat of the outside air. In the simultaneous operation of the refrigerant circuits 92A and 95, the opening degree of the expanders 32C and 52A is adjusted so that the compressor 31 is operated at a high speed and the flow rate of the refrigerant flowing through the heat exchanger 53 becomes a flow rate corresponding to weak cooling. While performing the weak cooling, hot water is generated from the exhaust heat of the weak cooling and the heat of the water in the water storage tank 11.
Since the refrigerants flowing out of the heat exchangers 53 and 33 have different states (dryness and superheat degree), the superheat degree and the like are detected after making the refrigerant in the same state, and the gas-phase refrigerant is put into the compressor 31. Is preferred.

冷房給湯装置230は一つの圧縮機で湯の生成と冷房を行うために湯の生成中に冷房の指示がある場合もあるし、冷房中に湯の生成の指示がある場合もある。なお、湯の生成中とは冷媒回路91または冷媒回路92Aの運転中または冷媒回路91と92Aの同時運転中を意味する。冷房指示には強冷房運転の指示と弱冷房運転の指示がある。
(A)冷房中でない時に湯の生成の指示がある場合の動作
湯生成装置131は湯生成装置130Aと同様に動作する。
(B)湯の生成中でない時に冷房の指示がある場合の動作
弱冷房運転の指示の場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路94が運転される。温度検出器59の検出温度が第四温度以上の場合、第一排熱処理または第二排熱処理が行なわれる。第一排熱処理は既に説明されている。第二排熱処理は、バルブや四方弁等を冷媒の経路に追加することにより圧縮機31と熱交換器33と膨張器52Aと熱交換器53を順次接続して冷凍サイクルを形成する冷媒回路を運転し、冷房の排熱を外気に放出する処理である。なお、弱冷房運転における第四温度は、冷媒回路94の熱効率が低くなる温度である。
強冷房運転の指示の場合の動作:
温度検出器59の検出温度が第五温度未満の場合、冷媒回路95が運転され、温度検出器59の検出温度が第五温度以上の場合、第一排熱処理または第二排熱処理が行なわれ、温度検出器59の検出温度が第五温度未満にされる。
In order to generate and cool hot water with one compressor, the cooling / hot water supply device 230 may be instructed to cool while hot water is being generated, or may be instructed to generate hot water during cooling. Note that hot water generation means that the refrigerant circuit 91 or the refrigerant circuit 92A is in operation or the refrigerant circuits 91 and 92A are in operation at the same time. The cooling instruction includes a strong cooling operation instruction and a weak cooling operation instruction.
(A) Operation when hot water is instructed when not in cooling The hot water generator 131 operates in the same manner as the hot water generator 130A.
(B) Operation when there is a cooling instruction when hot water is not being generated Operation when a weak cooling operation is instructed:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 94 is operated. When the temperature detected by the temperature detector 59 is equal to or higher than the fourth temperature, the first exhaust heat treatment or the second exhaust heat treatment is performed. The first waste heat treatment has already been described. In the second exhaust heat treatment, a refrigerant circuit that forms a refrigeration cycle by sequentially connecting the compressor 31, the heat exchanger 33, the expander 52A, and the heat exchanger 53 by adding a valve, a four-way valve, or the like to the refrigerant path. This is a process of operating and releasing the exhaust heat of the cooling to the outside air. Note that the fourth temperature in the weak cooling operation is a temperature at which the thermal efficiency of the refrigerant circuit 94 is lowered.
Operation in case of strong cooling operation instruction:
When the detected temperature of the temperature detector 59 is lower than the fifth temperature, the refrigerant circuit 95 is operated. When the detected temperature of the temperature detector 59 is equal to or higher than the fifth temperature, the first exhaust heat treatment or the second exhaust heat treatment is performed. The temperature detected by the temperature detector 59 is made lower than the fifth temperature.

(C)湯の生成中に冷房の指示がある場合の動作
弱冷房運転の指示の場合の動作:
冷媒回路91の運転中の場合、冷媒回路91の運転は冷媒回路91と95の同時運転に徐々に移行される。冷媒回路92Aの運転中の場合、冷媒回路92Aの運転は冷媒回路92Aと95の同時運転に徐々に移行される。媒回路91と92Aの同時運転中の場合、冷媒回路91と92Aの同時運転は冷媒回路92Aと95の同時運転に徐々に移行される。
強冷房運転の指示の場合の動作:
湯の生成の運転は冷媒回路95の運転に徐々に移行される。
なお、湯の生成の運転とは冷媒回路91または冷媒回路92Aの運転または冷媒回路91と92Aの同時運転である。また、例えば冷媒回路91が冷媒回路95に徐々に移行されるとは、冷媒回路91と95が同時運転され、冷媒回路91に流れる冷媒の量が徐々に減らされ、冷媒回路95に流れる冷媒の量が徐々に増加され、移行の完了時点で冷媒回路91に流れる冷媒の量が無くなり、全ての冷媒が冷媒回路95に流れる。徐々に移行することにより過渡現象が抑制される。
(D)冷房中に湯の生成の指示がある場合の動作
冷媒回路95の運転中に湯の生成指示の場合の動作:
冷媒回路95の運転は継続される。
冷媒回路94の運転中に湯の生成指示の場合の動作:
圧縮機31が低速運転から高速運転に移行され、冷媒回路94の運転は、温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に移行され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路92Aと95の同時運転に移行される。
冷房給湯装置230は、強冷房運転において圧縮機31を高速運転し、冷房の排熱で湯を生成するので冷房と湯の生成の熱効率が極めて高く、弱冷房運転において圧縮機31を低速運転するので冷房の熱効率が高い。更に、冷房給湯装置220は一台の圧縮機で湯の生成と冷房を行うので安価で小型である。
(C) Operation when there is a cooling instruction during hot water generation Operation when a weak cooling operation instruction is given:
When the refrigerant circuit 91 is in operation, the operation of the refrigerant circuit 91 is gradually shifted to simultaneous operation of the refrigerant circuits 91 and 95. When the refrigerant circuit 92A is in operation, the operation of the refrigerant circuit 92A is gradually shifted to simultaneous operation of the refrigerant circuits 92A and 95. During simultaneous operation of the medium circuits 91 and 92A, the simultaneous operation of the refrigerant circuits 91 and 92A is gradually shifted to the simultaneous operation of the refrigerant circuits 92A and 95.
Operation in case of strong cooling operation instruction:
The hot water generation operation is gradually shifted to the operation of the refrigerant circuit 95.
The hot water generation operation is the operation of the refrigerant circuit 91 or the refrigerant circuit 92A or the simultaneous operation of the refrigerant circuits 91 and 92A. Further, for example, when the refrigerant circuit 91 is gradually shifted to the refrigerant circuit 95, the refrigerant circuits 91 and 95 are operated simultaneously, the amount of refrigerant flowing through the refrigerant circuit 91 is gradually reduced, and the refrigerant flowing through the refrigerant circuit 95 is reduced. The amount is gradually increased, and when the transition is completed, the amount of refrigerant flowing through the refrigerant circuit 91 disappears, and all the refrigerant flows through the refrigerant circuit 95. Transient phenomena are suppressed by the gradual transition.
(D) Operation when there is an instruction to generate hot water during cooling Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 95:
The operation of the refrigerant circuit 95 is continued.
Operation in the case of a hot water generation instruction during operation of the refrigerant circuit 94:
When the compressor 31 is shifted from the low speed operation to the high speed operation and the detected temperature of the temperature detector 39A is lower than the second temperature, the operation of the refrigerant circuit 94 is shifted to the simultaneous operation of the refrigerant circuits 91 and 95. When the detected temperature of 39A is equal to or higher than the second temperature, the operation is shifted to the simultaneous operation of the refrigerant circuits 92A and 95.
The cooling hot water supply device 230 operates the compressor 31 at high speed in the strong cooling operation and generates hot water by the exhaust heat of the cooling, so that the thermal efficiency of cooling and hot water generation is extremely high, and the compressor 31 operates at a low speed in the weak cooling operation. So the thermal efficiency of cooling is high. Furthermore, since the cooling and hot water supply apparatus 220 generates and cools hot water with a single compressor, it is inexpensive and small.

図12に本発明の冷房給湯装置の第二実施形態である冷房給湯装置230Aを示す。冷房給湯装置230Aは貯水装置110と湯生成装置131Aを備える。貯水装置110は既に説明されている。
湯生成装置131Aは冷媒回路91と92Aと94と95Aと水循環路38とポンプ36を備える。冷媒回路91と92Aと94は既に説明されている。冷媒回路95Aは圧縮機31と熱交換器34と膨張器32Bと熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成する。
FIG. 12 shows a cooling hot water supply apparatus 230A which is a second embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 230A includes a water storage device 110 and a hot water generation device 131A. The water storage device 110 has already been described.
The hot water generator 131A includes refrigerant circuits 91, 92A, 94, 95A, a water circulation path 38, and a pump 36. Refrigerant circuits 91, 92A and 94 have already been described. The refrigerant circuit 95A includes a compressor 31, a heat exchanger 34, an expander 32B, and a heat exchanger 53, and forms a refrigeration cycle by circulating a refrigerant through them.

制御部は冷媒回路91を運転する場合、バルブ35Bを開け、バルブ35Cと膨張器32Cと52を閉じ、冷媒回路92Aを運転する場合、バルブ35Cと膨張器32Bと52を閉じ、冷媒回路91と92Aを同時運転する場合、バルブ35Bを開け、バルブ35Cと膨張器52を閉じ、冷媒回路94を運転する場合、バルブ35Cと膨張器32Bと32Cを閉じ、冷媒回路95Aを運転する場合、バルブ35Cを開け、バルブ35Bと膨張器32Cと52を閉じ、冷媒回路92Aと95Aを同時運転する場合、バルブ35Bと膨張器52を閉じ、冷媒回路1と95Aを同時運転する場合、膨張器32Cと52を閉じ、バルブ35Bと35Cの開度の割合を制御する。なお、バルブ35Bと35Cは三方弁で置換できる。
冷媒回路91と92Aと94と95Aと膨張器32Bと32Cと52と熱交換器33と34と37と54と53がそれぞれ本発明の第一冷媒回路と第二冷媒回路と第四冷媒回路と第五冷媒回路と第一膨張器と第二膨張器と第三膨張器と熱伝達手段と湯生成熱交換器と吸熱手段と放熱手段と建物熱交換手段に相当する。
冷媒回路91と92Aと94と95Aはそれぞれ湯生成装置131の冷媒回路91と92Aと94と95と同様に機能する。従って、冷房給湯装置230Aは冷房給湯装置230と同様に機能する。
When operating the refrigerant circuit 91, the control unit opens the valve 35B, closes the valve 35C and the expanders 32C and 52, and when operating the refrigerant circuit 92A, closes the valve 35C and the expanders 32B and 52, When operating 92A simultaneously, valve 35B is opened, valve 35C and expander 52 are closed, and when refrigerant circuit 94 is operated, valve 35C and expanders 32B and 32C are closed, and when operating refrigerant circuit 95A, valve 35C is operated. When the refrigerant circuit 92A and 95A are operated simultaneously, the valve 35B and the expander 52 are closed, and when the refrigerant circuit 1 and 95A are operated simultaneously, the expanders 32C and 52 are opened. Is closed and the ratio of the opening degree of the valves 35B and 35C is controlled. The valves 35B and 35C can be replaced with three-way valves.
Refrigerant circuits 91, 92A, 94, 95A, expanders 32B, 32C, 52, heat exchangers 33, 34, 37, 54, and 53 are the first refrigerant circuit, second refrigerant circuit, and fourth refrigerant circuit of the present invention, respectively. It corresponds to a fifth refrigerant circuit, a first expander, a second expander, a third expander, a heat transfer means, a hot water generating heat exchanger, a heat absorption means, a heat dissipation means, and a building heat exchange means.
The refrigerant circuits 91, 92A, 94, and 95A function in the same manner as the refrigerant circuits 91, 92A, 94, and 95 of the hot water generator 131, respectively. Therefore, the cooling water heater 230A functions in the same manner as the cooling water heater 230.

図13に本発明の冷房給湯装置の第三実施形態である冷房給湯装置230Bを示す。冷房給湯装置230Bは貯水装置110と湯生成装置131Bを備える。貯水装置110は既に説明されている。湯生成装置131Bは冷媒回路91と92Aと94と95Bと水循環路38とポンプ36を備える。冷媒回路91と92Aと94は既に説明されている。冷媒回路95Bは圧縮機31と熱交換器34と膨張器32Cと熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成する。
制御部は冷媒回路91を運転する場合、膨張器32Cと52を閉じ、冷媒回路92Aを運転する場合、バルブ35Dを開け、バルブ35Eと膨張器32Bと52を閉じ、冷媒回路91と92Aを同時運転する場合、バルブ35Dを開け、バルブ35Eと膨張器52を閉じ、冷媒回路94を運転する場合、バルブ35Eと膨張器32Bと32Cを閉じ、冷媒回路95Bを運転する場合、バルブ35Eを開け、バルブ35Dと膨張器32Bと52を閉じ、冷媒回路92Aと95Bを同時運転する場合、バルブ35Bと35Eを開け、膨張器32Bと52を閉じ、冷媒回路91と95Bを同時運転する場合、バルブ35Eを開け、バルブ35Dと膨張器52を閉じる。なお、バルブ35Dと35Eは三方弁で置換できる。
FIG. 13 shows a cooling hot water supply apparatus 230B which is a third embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 230B includes a water storage device 110 and a hot water generation device 131B. The water storage device 110 has already been described. The hot water generator 131B includes refrigerant circuits 91, 92A, 94, 95B, a water circulation path 38, and a pump 36. Refrigerant circuits 91, 92A and 94 have already been described. The refrigerant circuit 95B includes a compressor 31, a heat exchanger 34, an expander 32C, and a heat exchanger 53, and forms a refrigeration cycle by circulating a refrigerant through them.
When operating the refrigerant circuit 91, the control unit closes the expanders 32C and 52, and when operating the refrigerant circuit 92A, opens the valve 35D, closes the valve 35E and the expanders 32B and 52, and simultaneously connects the refrigerant circuits 91 and 92A. When operating, the valve 35D is opened, the valve 35E and the expander 52 are closed, and when operating the refrigerant circuit 94, the valve 35E and the expanders 32B and 32C are closed, and when operating the refrigerant circuit 95B, the valve 35E is opened, When the valve 35D and the expanders 32B and 52 are closed and the refrigerant circuits 92A and 95B are simultaneously operated, the valves 35B and 35E are opened, the expanders 32B and 52 are closed, and the refrigerant circuits 91 and 95B are simultaneously operated. And the valve 35D and the inflator 52 are closed. The valves 35D and 35E can be replaced with three-way valves.

冷媒回路91と92Aと94と95Bと膨張器32Bと32Cと52と熱交換器33と34と37と54と53がそれぞれ本発明の第一冷媒回路と第二冷媒回路と第四冷媒回路と第五冷媒回路と第一膨張器と第二膨張器と第三膨張器と熱伝達手段と湯生成熱交換器と吸熱手段と放熱手段と建物熱交換手段に相当する。
冷媒回路91と92Aと94と95Bはそれぞれ湯生成装置131の冷媒回路91と92Aと94と95と同様に機能する。従って、冷房給湯装置230Bは冷房給湯装置230と同様に機能する。
Refrigerant circuits 91, 92A, 94, 95B, expanders 32B, 32C, 52, heat exchangers 33, 34, 37, 54, and 53 are the first refrigerant circuit, second refrigerant circuit, and fourth refrigerant circuit of the present invention, respectively. It corresponds to a fifth refrigerant circuit, a first expander, a second expander, a third expander, a heat transfer means, a hot water generating heat exchanger, a heat absorption means, a heat dissipation means, and a building heat exchange means.
The refrigerant circuits 91, 92A, 94, and 95B function in the same manner as the refrigerant circuits 91, 92A, 94, and 95 of the hot water generator 131, respectively. Therefore, the cooling water heater 230B functions in the same manner as the cooling water heater 230.

図14に本発明の冷房給湯装置の第四実施形態である冷房給湯装置230Cを示す。冷房給湯装置230Dは貯水装置110と湯生成装置131Cを備える。貯水装置110は既に説明されている。
湯生成装置131Cは冷媒回路91と92Aと94と95Cと水循環路38とポンプ36を備える。冷媒回路91と92Aと94は既に説明されている。冷媒回路95Cは圧縮機31と熱交換器34と膨張器52と熱交換器53を備え、それらに冷媒を循環させて冷凍サイクルを形成する。
制御部は冷媒回路91を運転する場合、バルブ35Fと35Gと膨張器32Cを閉じ、冷媒回路92Aを運転する場合、バルブ35Fと35Gと膨張器32Bを閉じ、冷媒回路91と92Aを運転する場合、バルブ35Fと35Gを閉じ、冷媒回路94を運転する場合、バルブ35Fを開け、バルブ35Gと膨張器32Bと32Cを閉じ、冷媒回路95Cを運転する場合、バルブ35Gを開け、バルブ35Fと膨張器32Bと32Cを閉じ、冷媒回路92Aと95Cを運転する場合、バルブ35Gを開け、バルブ35Fと膨張器32Bを閉じ、冷媒回路1と95Cを運転する場合、バルブ35Gを開け、バルブ35Fと膨張器32Cを閉じる。
冷媒回路91と92Aと94と95Cと膨張器32Bと32Cと52と熱交換器33と34と37と54と53がそれぞれ本発明の第一冷媒回路と第二冷媒回路と第四冷媒回路と第五冷媒回路と第一膨張器と第二膨張器と第三膨張器と熱伝達手段と湯生成熱交換器と吸熱手段と放熱手段と建物熱交換手段に相当する。
冷媒回路91と92Aと94と95Cはそれぞれ湯生成装置131の冷媒回路91と92Aと94と95と同様に機能する。従って、冷房給湯装置230Cは冷房給湯装置230と同様に機能する。
FIG. 14 shows a cooling hot water supply apparatus 230C which is a fourth embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 230D includes a water storage device 110 and a hot water generation device 131C. The water storage device 110 has already been described.
The hot water generator 131C includes refrigerant circuits 91, 92A, 94, 95C, a water circulation path 38, and a pump 36. Refrigerant circuits 91, 92A and 94 have already been described. The refrigerant circuit 95C includes the compressor 31, the heat exchanger 34, the expander 52, and the heat exchanger 53, and forms a refrigeration cycle by circulating the refrigerant through them.
When the control unit operates the refrigerant circuit 91, the valves 35F and 35G and the expander 32C are closed, and when the refrigerant circuit 92A is operated, the valve 35F and 35G and the expander 32B are closed and the refrigerant circuits 91 and 92A are operated. When the refrigerant circuit 94 is operated by closing the valves 35F and 35G, the valve 35F is opened, the valve 35G and the expanders 32B and 32C are closed, and when the refrigerant circuit 95C is operated, the valve 35G is opened and the valve 35F and the expander are operated. When 32B and 32C are closed and the refrigerant circuits 92A and 95C are operated, the valve 35G is opened, and the valve 35F and the expander 32B are closed. When the refrigerant circuits 1 and 95C are operated, the valve 35G is opened and the valve 35F and the expander are operated. Close 32C.
Refrigerant circuits 91, 92A, 94, 95C, expanders 32B, 32C, 52, heat exchangers 33, 34, 37, 54, and 53 are the first refrigerant circuit, second refrigerant circuit, and fourth refrigerant circuit of the present invention, respectively. It corresponds to a fifth refrigerant circuit, a first expander, a second expander, a third expander, a heat transfer means, a hot water generating heat exchanger, a heat absorption means, a heat dissipation means, and a building heat exchange means.
The refrigerant circuits 91, 92A, 94, and 95C function in the same manner as the refrigerant circuits 91, 92A, 94, and 95 of the hot water generator 131, respectively. Therefore, the cooling water heater 230C functions in the same manner as the cooling water heater 230.

図15に本発明の冷房給湯装置の第五実施形態である冷房給湯装置240を示す。冷房給湯装置240は貯水装置110と湯生成装置131Dと湯の排出を制御する排水弁73Aを備える。貯水装置110は既に説明されている。
湯生成装置131Dは、湯生成装置131に温度検出器39Bと39Cを追加した構成である。
温度検出器39Cは、湯切れを起こさないために、湯生成装置131Dが起動されてから熱交換器34で湯が生成されるまでの間に使用される湯量が、その上部の貯水槽11に貯えられる位置に配置される。温度検出器39Bは、湯生成装置131Dの起動の頻度を適正にするために、または安価に湯を生成するために、温度検出器39Cから所定の距離下方に配置される。
FIG. 15 shows a cooling hot water supply apparatus 240 which is a fifth embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 240 includes a water storage device 110, a hot water generation device 131D, and a drain valve 73A that controls discharge of hot water. The water storage device 110 has already been described.
The hot water generator 131D has a configuration in which temperature detectors 39B and 39C are added to the hot water generator 131.
In the temperature detector 39C, in order to prevent hot water from running out, the amount of hot water used between the time when the hot water generator 131D is activated and the time when hot water is generated by the heat exchanger 34 is stored in the water storage tank 11 at the upper part thereof. It is arranged at the position where it can be stored. The temperature detector 39B is disposed below a predetermined distance from the temperature detector 39C in order to make the hot water generating device 131D start up at an appropriate frequency or generate hot water at a low cost.

冷房給湯装置240は、冷房給湯装置220と同様な冬期モードと中間期モードと冷房モードのいずれかのモードで運転される。冷房給湯装置240のモード間の移行は冷房給湯装置220と同様に行なわれる。
冷媒回路91と92Aと95が運転される場合、冷房給湯装置230と同様に、圧縮機31が高速運転で運転されて湯が生成され、冷媒回路94が運転される場合、圧縮機31が速運転で運転されて建物が弱冷房される。
従って、冷房給湯装置240の動作は冷房給湯装置220と230を複合した動作となる。
The cooling hot water supply apparatus 240 is operated in any one of the winter mode, the intermediate period mode, and the cooling mode similar to the cooling hot water supply apparatus 220. Transition between modes of the cooling and hot water supply apparatus 240 is performed in the same manner as the cooling and hot water supply apparatus 220.
When the refrigerant circuits 91, 92A, and 95 are operated, similarly to the cooling water heater 230, the compressor 31 is operated at a high speed operation to generate hot water, and when the refrigerant circuit 94 is operated, the compressor 31 is operated at a high speed. Driven by driving, the building is cooled slightly.
Therefore, the operation of the cooling and hot water supply apparatus 240 is an operation in which the cooling and hot water supply apparatuses 220 and 230 are combined.

(1)冬期モードの動作
冷房モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器59の検出温度が第一温度未満の場合に出力され、温度検出器59の検出温度は湯の生成中、第一温度未満である。所定の湯生成条件とは所定の時刻、温度検出器39Cが第一温度未満等である。
(A)冷房中でない時に湯の生成の指示がある場合の動作
冷媒回路91が運転され、温度検出器59の検出温度が第一温度以上になるまで湯が生成される。
(B)湯の生成中でない時に冷房の指示がある場合の動作
弱冷房運転の指示の場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路94が運転される。温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第四温度未満にされた後に冷媒回路94が運転される。
強冷房運転の指示の場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路95が運転される。温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第四温度未満にされた後に冷媒回路95が運転される。
(C)湯の生成中に冷房の指示がある場合の動作
強冷房運転の指示の場合の動作:
湯の生成の運転は冷媒回路95の運転に徐々に移行される。
弱冷房運転に指示の場合の動作:
湯の生成の運転は冷媒回路91と95の同時運転に徐々に移行される。
(D)冷房中に湯の生成の指示がある場合の動作
冷媒回路95の運転中に湯の生成指示がある場合の動作:
冷媒回路95の運転が継続される。
冷媒回路94の運転中に湯の生成指示がある場合の動作:
圧縮機31が低速運転から高速運転に移行され、冷媒回路94の運転は冷媒回路91と95の同時運転に移行する。
(1) Operation in winter mode In the cooling mode, an instruction to generate hot water is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 59 is lower than the first temperature. The detected temperature is less than the first temperature during hot water generation. The predetermined hot water generation condition is a predetermined time, such that the temperature detector 39C is less than the first temperature.
(A) The operating refrigerant circuit 91 is operated when there is an instruction to generate hot water when not in cooling, and hot water is generated until the temperature detected by the temperature detector 59 reaches the first temperature or higher.
(B) Operation when there is a cooling instruction when hot water is not being generated Operation when a weak cooling operation is instructed:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 94 is operated. When the detected temperature of the temperature detector 59 is equal to or higher than the fourth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 94 is operated after the detected temperature of the temperature detector 59 is lower than the fourth temperature.
Operation in case of strong cooling operation instruction:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 95 is operated. When the temperature detected by the temperature detector 59 is equal to or higher than the fourth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 95 is operated after the temperature detected by the temperature detector 59 is lower than the fourth temperature.
(C) Operation when there is a cooling instruction during hot water generation Operation when a strong cooling operation is instructed:
The hot water generation operation is gradually shifted to the operation of the refrigerant circuit 95.
Operation when instructed to cool air operation:
The hot water generation operation is gradually shifted to simultaneous operation of the refrigerant circuits 91 and 95.
(D) Operation when there is an instruction to generate hot water during cooling Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 95:
The operation of the refrigerant circuit 95 is continued.
Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 94:
The compressor 31 is shifted from the low speed operation to the high speed operation, and the operation of the refrigerant circuit 94 is shifted to the simultaneous operation of the refrigerant circuits 91 and 95.

(2)中間期モードの動作
中間モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満の場合に出力され、温度検出器39の検出温度は湯の生成中、第一温度未満である。所定の湯生成条件とは所定の時刻、温度検出器39Cが第一温度未満等である。
(A)冷房中でない時に湯の生成の指示がある場合の動作
温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91が運転され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路91と92Aが同時運転され、温度検出器39の検出温度が第一温度以上になるまで湯が生成される。
(B)湯の生成中でない時に冷房の指示がある場合の動作
弱冷房運転の指示の場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路94が運転される。温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第四温度未満にされた後に冷媒回路94が運転される。
強冷房運転の指示の場合の動作:
温度検出器59の検出温度が第五温度未満の場合、冷媒回路95が運転される。温度検出器59の検出温度が第五温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第五温度未満にされた後に冷媒回路95が運転される。
(2) Operation in Intermediate Mode In the intermediate mode, an instruction to generate hot water is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detector 39 The detected temperature is less than the first temperature during hot water production. The predetermined hot water generation condition is a predetermined time, such that the temperature detector 39C is less than the first temperature.
(A) When the detected temperature of the operating temperature detector 39A is less than the second temperature when there is an instruction to generate hot water when not cooling, the refrigerant circuit 91 is operated and the detected temperature of the temperature detector 39A is the second temperature In the above case, the refrigerant circuits 91 and 92A are operated simultaneously, and hot water is generated until the temperature detected by the temperature detector 39 becomes equal to or higher than the first temperature.
(B) Operation when there is a cooling instruction when hot water is not being generated Operation when a weak cooling operation is instructed:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 94 is operated. When the detected temperature of the temperature detector 59 is equal to or higher than the fourth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 94 is operated after the detected temperature of the temperature detector 59 is lower than the fourth temperature.
Operation in case of strong cooling operation instruction:
When the temperature detected by the temperature detector 59 is lower than the fifth temperature, the refrigerant circuit 95 is operated. When the temperature detected by the temperature detector 59 is equal to or higher than the fifth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 95 is operated after the temperature detected by the temperature detector 59 is lower than the fifth temperature.

(C)湯の生成中に冷房の指示がある場合の動作
強冷房運転の指示の場合の動作:
湯の生成の運転は冷媒回路95の運転に徐々に移行される。
弱冷房運転の指示の場合の動作:
冷媒回路91の運転中の場合、冷媒回路91の運転は冷媒回路91と95の同時運転に徐々に移行される。冷媒回路92Aの運転中の場合、冷媒回路92Aの運転は冷媒回路92Aと95の同時運転に徐々に移行される。媒回路91と92Aの同時運転中の場合、冷媒回路91と92Aの同時運転は冷媒回路92Aと95の同時運転に徐々に移行される。
(D)冷房中に湯の生成の指示がある場合の動作
冷媒回路95の運転中に湯の生成指示がある場合の動作:
冷媒回路95の運転は継続される。
冷媒回路94の運転中に湯の生成指示がある場合の動作:
圧縮機31は低速運転から高速運転に移行され、冷媒回路94の運転は、温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に移行され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路92Aと95の同時運転に移行される。
(C) Operation when there is a cooling instruction during hot water generation Operation when a strong cooling operation is instructed:
The hot water generation operation is gradually shifted to the operation of the refrigerant circuit 95.
Operation in the case of instructions for weak cooling operation:
When the refrigerant circuit 91 is in operation, the operation of the refrigerant circuit 91 is gradually shifted to simultaneous operation of the refrigerant circuits 91 and 95. When the refrigerant circuit 92A is in operation, the operation of the refrigerant circuit 92A is gradually shifted to simultaneous operation of the refrigerant circuits 92A and 95. During simultaneous operation of the medium circuits 91 and 92A, the simultaneous operation of the refrigerant circuits 91 and 92A is gradually shifted to the simultaneous operation of the refrigerant circuits 92A and 95.
(D) Operation when there is an instruction to generate hot water during cooling Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 95:
The operation of the refrigerant circuit 95 is continued.
Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 94:
The compressor 31 is shifted from the low speed operation to the high speed operation, and the operation of the refrigerant circuit 94 is shifted to the simultaneous operation of the refrigerant circuits 91 and 95 when the temperature detected by the temperature detector 39A is lower than the second temperature. When the detected temperature of 39A is equal to or higher than the second temperature, the operation is shifted to the simultaneous operation of the refrigerant circuits 92A and 95.

(3)冷房モードの動作
冷房モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器39Bの検出温度が第一温度未満の場合に出力され、温度検出器39Bの検出温度は湯の生成中、第一温度未満である。所定の湯生成条件とは温度検出器39Cが第一温度未満、所定の時刻等である。
(A)冷房中でない時に湯の生成の指示がある場合の動作
温度検出器39Aの検出温度が第二温度未満ある場合、冷媒回路91が運転され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路91と92Aが同時運転され、温度検出器39Bが第一温度以上を検出するまで湯が生成される。
(B)湯の生成中でない時に冷房の指示がある場合の動作
弱冷房運転の指示場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路94が運転される。温度検出器59の検出温度が第四温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第四温度未満にされた後に冷媒回路94が運転される。
強冷房運転の指示場合の動作:
温度検出器59の検出温度が第五温度未満の場合、冷媒回路95が運転される。温度検出器59の検出温度が第五温度以上の場合、排水弁73Aが開けられて排水され、温度検出器59の検出温度が第五温度未満にされた後に冷媒回路95が運転される。
(3) Operation in the cooling mode In the cooling mode, a hot water generation instruction is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 39B is lower than the first temperature. The detected temperature is less than the first temperature during hot water generation. The predetermined hot water generation condition is that the temperature detector 39C is less than the first temperature, a predetermined time, or the like.
(A) When the detected temperature of the operating temperature detector 39A is less than the second temperature when there is an instruction to generate hot water when not cooling, the refrigerant circuit 91 is operated, and the detected temperature of the temperature detector 39A is the second temperature. In the above case, the refrigerant circuits 91 and 92A are operated simultaneously, and hot water is generated until the temperature detector 39B detects the first temperature or higher.
(B) Operation when there is a cooling instruction when hot water is not being generated Operation when a weak cooling operation is instructed:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 94 is operated. When the detected temperature of the temperature detector 59 is equal to or higher than the fourth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 94 is operated after the detected temperature of the temperature detector 59 is lower than the fourth temperature.
Operation when instructing strong cooling operation:
When the temperature detected by the temperature detector 59 is lower than the fifth temperature, the refrigerant circuit 95 is operated. When the temperature detected by the temperature detector 59 is equal to or higher than the fifth temperature, the drain valve 73A is opened and drained, and the refrigerant circuit 95 is operated after the temperature detected by the temperature detector 59 is lower than the fifth temperature.

(C)湯の生成中に冷房の指示がある場合の動作
強冷房運転の指示の場合の動作:
湯の生成の運転は冷媒回路95の運転に徐々に移行される。
弱冷房運転の指示の場合の動作:
湯の生成の運転は、温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に徐々に移行され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路92Aと95の同時運転に徐々に移行される。
(D)冷房中に湯の生成の指示がある場合の動作
冷媒回路95の運転中に湯の生成の指示がある場合の動作:
冷媒回路95の運転は継続される。
冷媒回路94の運転中に湯の生成の指示がある場合の動作:
圧縮機31は低速運転から高速運転に移行され、冷媒回路94の運転は、温度検出器39Aの検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に移行され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路92Aと95の同時運転に移行される。
(C) Operation when there is a cooling instruction during hot water generation Operation when a strong cooling operation is instructed:
The hot water generation operation is gradually shifted to the operation of the refrigerant circuit 95.
Operation in the case of instructions for weak cooling operation:
The hot water generation operation is gradually shifted to simultaneous operation of the refrigerant circuits 91 and 95 when the detected temperature of the temperature detector 39A is lower than the second temperature, and the detected temperature of the temperature detector 39A is equal to or higher than the second temperature. The operation is gradually shifted to simultaneous operation of the refrigerant circuits 92A and 95.
(D) Operation when there is an instruction to generate hot water during cooling Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 95:
The operation of the refrigerant circuit 95 is continued.
Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 94:
The compressor 31 is shifted from the low speed operation to the high speed operation, and the operation of the refrigerant circuit 94 is shifted to the simultaneous operation of the refrigerant circuits 91 and 95 when the temperature detected by the temperature detector 39A is lower than the second temperature. When the detected temperature of 39A is equal to or higher than the second temperature, the operation is shifted to the simultaneous operation of the refrigerant circuits 92A and 95.

冷房給湯装置240は排水弁73Aを開いて排水するが冷房給湯装置260に示すように排水口を温度検出器59と39Aの間に配置し、その排水口に排水弁を接続し、その排水弁を開けて排水しても良い。
従って、冷房給湯装置240は、湯の生成の指示により生成される湯を貯える容積と冷房の排熱を蓄える容積の割合を季節により変えることにより貯水槽11の容量を有効に活用し、貯水槽11のサイズを最小にできる。更に、冷房給湯装置240は、排水がある場合に中間期モードから冷房モードへ移行し、冷房の排熱量が所定の熱量により少ない場合に冷房モードから中間期モードへ移行するので気温の変動に柔軟に対応できる。更に冷房給湯装置240は、中温水の熱を吸収し、湯を生成するのでその湯の生成と冷房の熱効率は高く、一台の圧縮機を使用し、安価に構築可能である。
The cooling water heater 240 opens the drain valve 73A to drain water, but as shown in the cooling water heater 260, a drain port is disposed between the temperature detectors 59 and 39A, a drain valve is connected to the drain port, and the drain valve You can open and drain.
Accordingly, the cooling hot water supply device 240 effectively uses the capacity of the water storage tank 11 by changing the ratio of the volume of hot water generated by the hot water generation instruction and the capacity of storing the exhaust heat of the cooling depending on the season. 11 sizes can be minimized. Furthermore, the cooling hot water supply device 240 shifts from the intermediate period mode to the cooling mode when there is drainage, and shifts from the cooling mode to the intermediate period mode when the amount of exhaust heat of the cooling is smaller by a predetermined amount of heat. It can correspond to. Furthermore, since the cooling hot water supply apparatus 240 absorbs the heat of the medium temperature water and generates hot water, the generation of the hot water and the thermal efficiency of the cooling are high, and it can be constructed at low cost by using one compressor.

図16に本発明の冷房給湯装置の第十一参考例である冷房給湯装置250を示す。冷房給湯装置250は貯水装置110Cと湯生成装置180と冷房装置150と排水装置170を備える。冷房装置150は既に説明されている。貯水装置110Cは水で充填された貯水槽11Bを備え、貯水槽11Bは給湯口12と、給水口13と、熱交換器84と温度検出器59の間に配置された排水口71と、貯水槽11内の熱交換器54と84にそれぞれ冷媒と熱媒体を流す管を貫通させる孔を有する。
湯生成装置180は熱源83(例えば、石油ボイラー)と、熱媒体と水との熱交換を行なう熱交換器84と、熱源83と熱交換器84との間に熱媒体を循環させるための熱媒体循環路87と、温度検出器89を備える。温度検出器89は、熱源83が起動されてから湯が生成されるまでの期間に使用される湯量が、その上部の貯水槽11B内に貯えられる位置に配置される。熱交換器84は温度検出器89の少し下方に配置される。これは、温度検出器89が、熱交換器84に接する水の温度(熱交換器84に熱媒体が流れていない場合は熱交換器84の温度と略等温度の水の温度、熱交換器84に熱媒体が流れている場合は熱交換器84により加熱された水が生成する自然対流の戻りの経路(下降経路)上の水の温度)を検出するためである。
排水装置170は排水口71と排水管72と排水を制御する排水弁73を備える。
FIG. 16 shows a cooling hot water supply apparatus 250 as an eleventh reference example of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 250 includes a water storage device 110C, a hot water generation device 180, a cooling device 150, and a drainage device 170. The cooling device 150 has already been described. The water storage device 110C includes a water storage tank 11B filled with water. The water storage tank 11B has a hot water supply port 12, a water supply port 13, a drain port 71 disposed between the heat exchanger 84 and the temperature detector 59, and water storage. The heat exchangers 54 and 84 in the tank 11 have holes through which tubes through which a refrigerant and a heat medium flow are respectively passed.
The hot water generator 180 includes a heat source 83 (for example, an oil boiler), a heat exchanger 84 that performs heat exchange between the heat medium and water, and heat for circulating the heat medium between the heat source 83 and the heat exchanger 84. A medium circulation path 87 and a temperature detector 89 are provided. The temperature detector 89 is disposed at a position where the amount of hot water used in a period from when the heat source 83 is activated until hot water is generated is stored in the upper water storage tank 11B. The heat exchanger 84 is disposed slightly below the temperature detector 89. This is because the temperature detector 89 detects the temperature of the water in contact with the heat exchanger 84 (the temperature of water approximately equal to the temperature of the heat exchanger 84 when no heat medium flows through the heat exchanger 84, the heat exchanger This is because the temperature of water on the return path (downward path) of natural convection generated by the water heated by the heat exchanger 84 is detected when the heat medium is flowing in 84.
The drainage device 170 includes a drainage port 71, a drainage pipe 72, and a drainage valve 73 that controls drainage.

温度検出器89が第一温度未満の場合、熱源83が運転される。熱源83が運転されると熱媒体が熱媒体循環路87に循環され、熱交換器84で水が湯に変えられ、その湯は自然対流により上昇する。そして温度検出器89が第一温度以上になる場合に熱源83の運転が停止される。その時、貯水槽11B内の最上部から温度検出器89の位置までの領域の水は湯に変えられている。
冷房装置150が運転されると冷房の排熱が熱交換器54で貯水槽11内の水に放出され、その水の温度は上昇する。ところで、冷房装置150の熱効率は、熱交換器54に接触する水の温度が第四温度以上になると急激に低下する。温度検出器59が第四温度を検出した場合、排水弁73が開けられて排水口71から水が放出される。給水口13から流入する水で温度検出器59が冷やされ、その検出温度が第四温度未満に下がった場合、排水弁73が閉じられる。つまり、温度検出器59の検出温度は排水弁73を制御することにより第四温度付近に保たれる。従って、冷房装置150の熱効率は高い。なお、排水口71は熱交換器84の下方にあるので湯は排出されない。
更に、冷房の排熱を熱交換器とファンで外気に放出する従来の冷房装置に比べて、ファンの運転が不要であるので冷房装置150の熱効率は従来の冷房装置の熱効率より高い。
従って、冷房給湯装置250は熱効率の高い水冷の冷房を提供し、湯を無駄に排出しない。
When the temperature detector 89 is lower than the first temperature, the heat source 83 is operated. When the heat source 83 is operated, the heat medium is circulated through the heat medium circulation path 87, the water is changed into hot water by the heat exchanger 84, and the hot water rises by natural convection. When the temperature detector 89 becomes equal to or higher than the first temperature, the operation of the heat source 83 is stopped. At that time, the water in the region from the top of the water storage tank 11B to the position of the temperature detector 89 is changed to hot water.
When the cooling device 150 is operated, the exhaust heat of the cooling is released to the water in the water storage tank 11 by the heat exchanger 54, and the temperature of the water rises. By the way, the thermal efficiency of the cooling device 150 rapidly decreases when the temperature of the water in contact with the heat exchanger 54 becomes the fourth temperature or higher. When the temperature detector 59 detects the fourth temperature, the drain valve 73 is opened and water is discharged from the drain port 71. When the temperature detector 59 is cooled by the water flowing in from the water supply port 13 and the detected temperature falls below the fourth temperature, the drain valve 73 is closed. That is, the temperature detected by the temperature detector 59 is kept near the fourth temperature by controlling the drain valve 73. Therefore, the thermal efficiency of the cooling device 150 is high. In addition, since the drain port 71 is below the heat exchanger 84, hot water is not discharged.
Furthermore, compared to a conventional cooling device that releases exhaust heat from the cooling air to the outside with a heat exchanger and a fan, the cooling device 150 has a higher thermal efficiency than the conventional cooling device because the fan does not need to be operated.
Therefore, the cooling hot water supply apparatus 250 provides water cooling with high thermal efficiency, and does not waste hot water.

図17に給湯装置の第一参考例である給湯装置310を示す。給湯装置310は貯水装置110と湯生成装置130Aと集熱装置160を備える。貯水装置110と湯生成装置130Aは既に説明されている。集熱装置160は太陽熱を収集する太陽熱収集器63と、貯水槽11の底部に配置された熱交換器64と、太陽熱収集器63と熱交換器64の間に熱媒体を循環させるための熱媒体循環路67と、熱媒体循環路67に熱媒体を循環させるポンプ66を備える。集熱装置160は中温水を生成する一実施例であり、中温水を生成する他の例は冷房装置150である。
冷媒回路91と92Aに流れる冷媒の流量は膨張器32Bと32Cとそれらを制御する制御部により制御される。
FIG. 17 shows a hot water supply apparatus 310 as a first reference example of the hot water supply apparatus. The hot water supply device 310 includes a water storage device 110, a hot water generation device 130A, and a heat collection device 160. The water storage device 110 and the hot water generation device 130A have already been described. The heat collector 160 is a solar heat collector 63 that collects solar heat, a heat exchanger 64 disposed at the bottom of the water storage tank 11, and heat for circulating a heat medium between the solar heat collector 63 and the heat exchanger 64. A medium circulation path 67 and a pump 66 for circulating the heat medium in the heat medium circulation path 67 are provided. The heat collector 160 is an example that generates medium-temperature water, and another example that generates medium-temperature water is the cooling device 150.
The flow rate of the refrigerant flowing through the refrigerant circuits 91 and 92A is controlled by the expanders 32B and 32C and a controller that controls them.

太陽熱収集器63で温められた熱媒体は熱媒体循環路67を循環し、熱交換器64で貯水槽11内の水を温め、その水の温度を上昇させる。太陽熱収集器63で温められる熱媒体の温度は、気温や日射の強度に依存するので広い温度範囲(例えば20度から80度)内で変化する。従って、熱交換器64により温められる貯水槽11内の水の温度の範囲も広い。つまり、集熱装置160は貯水槽11内に湯を生成すると共に中温水も生成する。
湯生成装置130Aは、所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第二温度以上の場合、水を循環させるポンプを使わずに熱交換器37付近の水の熱を熱交換器37で吸収して熱効率良く湯を生成すると共に熱交換器37付近とその下方の水を冷す。従って、湯生成装置130Aの湯の生成の熱効率は、水を循環させるポンプを使って中温水を冷却する従来の装置の湯の生成の熱効率より、高い。
The heat medium warmed by the solar heat collector 63 circulates in the heat medium circulation path 67, warms the water in the water storage tank 11 by the heat exchanger 64, and raises the temperature of the water. Since the temperature of the heat medium heated by the solar heat collector 63 depends on the temperature and the intensity of solar radiation, it varies within a wide temperature range (for example, 20 to 80 degrees). Therefore, the temperature range of the water in the water tank 11 heated by the heat exchanger 64 is also wide. That is, the heat collecting device 160 generates hot water in the water storage tank 11 and also generates intermediate temperature water.
The hot water generating device 130A is a pump that circulates water when predetermined hot water generating conditions are satisfied, the detected temperature of the temperature detector 39 is lower than the first temperature, and the detected temperature of the temperature detector 39A is equal to or higher than the second temperature. The heat of the water in the vicinity of the heat exchanger 37 is absorbed by the heat exchanger 37 without using the heat, and hot water is generated with high heat efficiency, and the water in the vicinity of the heat exchanger 37 and below is cooled. Therefore, the thermal efficiency of the hot water generation of the hot water generator 130A is higher than the thermal efficiency of the hot water generation of the conventional apparatus that cools the medium-temperature water using a pump that circulates water.

図18に給湯装置の第二参考例である給湯装置320を示す。給湯装置320は貯水装置110Dと湯生成装置130Cと集熱装置160Aを備える。湯生成装置130Cは既に説明されている。
貯水装置110Dは水で充填された貯水槽11Aと、貯水槽11A内に中間口14に接続された分散器24と分散器24の下方に配置された潜熱蓄熱体21Aと分散板27を有する。温度検出器39Aは分散器24の下方に配置される。
集熱装置160Aは太陽熱収集器63と、熱媒体流路に流れる熱媒体と水流路に流れる水との熱交換を行なう熱交換器64Aと、太陽熱収集器63と熱交換器64Aの熱媒体流路との間に熱媒体を循環させるための熱媒体循環路67Aと、熱媒体循環路67Aに水を循環させるポンプ66と、給水口13と中間口14を熱交換器64Aの水流路を経由して結ぶ水循環路68と、水循環路68に水を循環させるポンプ66Aを備える。
FIG. 18 shows a hot water supply device 320 which is a second reference example of the hot water supply device. The hot water supply device 320 includes a water storage device 110D, a hot water generation device 130C, and a heat collection device 160A. The hot water generator 130C has already been described.
The water storage device 110D includes a water storage tank 11A filled with water, a distributor 24 connected to the intermediate port 14 in the water storage tank 11A, a latent heat storage body 21A disposed below the distributor 24, and a dispersion plate 27. The temperature detector 39A is disposed below the disperser 24.
The heat collector 160A includes a solar heat collector 63, a heat exchanger 64A that performs heat exchange between the heat medium flowing in the heat medium flow path and the water flowing in the water flow path, and the heat medium flow of the solar heat collector 63 and the heat exchanger 64A. The heat medium circulation path 67A for circulating the heat medium between the paths, the pump 66 for circulating water through the heat medium circulation path 67A, the water supply port 13 and the intermediate port 14 via the water flow path of the heat exchanger 64A. A water circulation path 68 connected to the water circulation path 68 and a pump 66A for circulating water through the water circulation path 68.

図26に分散器24の一実施例の斜視図を示す。分散器24は二つの環状の分散管25と25Aが略同一平面に配置され、それらと分散器接続口26が連結管25Bで接続された構造である。分散管25と25Aは水を流通させる複数の分散孔26Aを有する。分散器24は略水平に配置され、分散器接続口26は中間口14に接続される。つまり、分散器24は、分散器接続口26と、貯水槽11Aの水平断面付近に分散して配置された複数の分散孔26Aとの間に水を流す流路を形成するものである。言い換えれば、分散器24は、分散器接続口26に流入した水を貯水槽11Aの水平断面付近に分散して吹き出す、または貯水槽11Aの水平断面付近から分散して取り入れた水を分散器接続口26から流出させるものである。
分散板27は水を通す複数の孔を有し、略水平に配置された板状の部材であり、水が貯水槽11A内を上下移動する場合に、貯水槽11Aの水平断面に水を略均一に流すためのものである。
潜熱蓄熱体21Aの潜熱蓄熱材は太陽熱を最大限利用できる特性(融解温度、融解熱、安全性、価格等)を有するものが選択される。太陽熱収集器63が受ける日射量や気温や太陽熱収集器63の特性や湯生成装置130Cの特性等により最適な潜熱蓄熱材の特性は異なる。ここでは潜熱蓄熱体21Aの融解温度は第五温度より高いとする。例えばパラフィンC22H46(融解温度44度)を使用できる。
FIG. 26 shows a perspective view of an embodiment of the disperser 24. The disperser 24 has a structure in which two annular dispersive tubes 25 and 25A are arranged on substantially the same plane, and the disperser connection port 26 is connected by a connecting tube 25B. The dispersion pipes 25 and 25A have a plurality of dispersion holes 26A through which water flows. The disperser 24 is disposed substantially horizontally, and the disperser connection port 26 is connected to the intermediate port 14. That is, the disperser 24 forms a flow path for allowing water to flow between the disperser connection port 26 and the plurality of dispersive holes 26A arranged in the vicinity of the horizontal section of the water storage tank 11A. In other words, the disperser 24 disperses and blows out the water that has flowed into the disperser connection port 26 near the horizontal cross section of the water storage tank 11A, or disperses water taken from the horizontal cross section of the water storage tank 11A. It flows out from the mouth 26.
The dispersion plate 27 is a plate-like member that has a plurality of holes through which water passes and is disposed substantially horizontally. It is for flowing evenly.
As the latent heat storage material of the latent heat storage body 21A, a material having characteristics (melting temperature, heat of fusion, safety, price, etc.) that can utilize solar heat to the maximum is selected. The optimum characteristics of the latent heat storage material differ depending on the amount of solar radiation received by the solar heat collector 63, the temperature, the characteristics of the solar heat collector 63, the characteristics of the hot water generator 130C, and the like. Here, it is assumed that the melting temperature of the latent heat storage body 21A is higher than the fifth temperature. For example, paraffin C22H46 (melting temperature 44 degrees) can be used.

湯が排出されていない場合の給湯装置320の動作を説明する。熱媒体が太陽熱収集器63で加熱され、ポンプ66と66Aが運転された場合、加熱された熱媒体は熱交換器64Aを介して水循環路68に循環する水を温める。温められた水は分散器24の分散孔26Aから貯水槽11Aの水平断面付近に分散して吹出し、潜熱蓄熱体21Aの間を下降し、分散板27の孔を通り、給水口13から水循環路68に流入する。分散器24と分散板27との間の貯水槽11Aの水は、下方に略並行に潜熱蓄熱体21Aの間を流れる。つまり、熱交換器64Aで温められた水は全ての潜熱蓄熱体21Aと略均一に接触し、潜熱蓄熱体21Aに熱を伝達する。潜熱蓄熱体21Aの一部が固相で、潜熱蓄熱体21Aに接触する水の温度が潜熱蓄熱体21Aの融解温度より高い場合、下降する水は潜熱蓄熱体21Aを融解させる。
なお、分散器24から吹出す水の温度が分散器24付近の水の温度より高い場合は、分散器24から吹出す水の一部は上昇し、分散器24の上方に対流が生じる。分散器24から吹出す水の温度が分散器24付近の水の温度より低い場合は、分散器24から吹出す水は下降する。分散器24の下方の水は分散器24から吹出す水の温度にかかわらず下降し、給水口13から水循環路68に入り、水循環路68を循環する。
The operation of hot water supply apparatus 320 when hot water is not discharged will be described. When the heat medium is heated by the solar heat collector 63 and the pumps 66 and 66A are operated, the heated heat medium warms the water circulating in the water circulation path 68 through the heat exchanger 64A. The warmed water is dispersed and blown out from the dispersion hole 26A of the disperser 24 to the vicinity of the horizontal cross section of the water storage tank 11A, descends between the latent heat storage bodies 21A, passes through the holes of the dispersion plate 27, and from the water supply port 13 to the water circulation path. 68. The water in the water storage tank 11A between the disperser 24 and the dispersion plate 27 flows between the latent heat storage bodies 21A substantially in parallel downward. That is, the water warmed by the heat exchanger 64A comes into contact with all the latent heat storage bodies 21A substantially uniformly and transfers heat to the latent heat storage bodies 21A. When a part of the latent heat storage body 21A is a solid phase and the temperature of water in contact with the latent heat storage body 21A is higher than the melting temperature of the latent heat storage body 21A, the descending water melts the latent heat storage body 21A.
In addition, when the temperature of the water blown out from the disperser 24 is higher than the temperature of the water near the disperser 24, a part of the water blown out from the disperser 24 rises and convection occurs above the disperser 24. When the temperature of water blown from the disperser 24 is lower than the temperature of water near the disperser 24, the water blown from the disperser 24 falls. The water below the disperser 24 descends regardless of the temperature of the water blown from the disperser 24, enters the water circulation path 68 from the water supply port 13, and circulates in the water circulation path 68.

湯生成装置130Cが運転される時に温度検出器39Aの検出温度が第二温度以上で第一温度未満の場合、冷媒回路91と92Cが同時運転され、ポンプ36と36Aが運転される。ポンプ36Aの運転により、分散器24から取り入れられた水は、熱交換器37Aで冷媒により冷やされ、給水口13から貯水槽11Aに戻される。貯水槽11Aに戻された水は分散板27で分散され、潜熱蓄熱体21Aの間を上昇し、潜熱蓄熱体21Aで温められて再び分散器24に取り入れられる。つまり、熱交換器37Aで冷やされた水は全ての潜熱蓄熱体21Aと略均一に接触し、潜熱蓄熱体21Aに熱を伝達する。潜熱蓄熱体21Aの一部が液相で、潜熱蓄熱体21Aに接触する水の温度が潜熱蓄熱体21Aの凝固温度より低い場合、上昇する水は潜熱蓄熱体21Aを凝固させる。一方、冷媒回路92Cは熱交換器37Aで水から熱を吸収し、熱交換器34で湯を生成する。つまり、潜熱蓄熱体21Aの凝固熱で湯が生成される。
従って、給湯装置320は太陽熱で温められた水を分散器24と分散板27により全ての潜熱蓄熱体21Aに略均一に接触させて太陽熱を潜熱蓄熱体21Aに蓄えると共に水を全ての潜熱蓄熱体21Aに略均一に接触させて潜熱蓄熱体21Aに蓄えられた熱を取り出して湯を生成する。従って、分散器24により潜熱蓄熱体21Aの熱容量が略最大限有効に利用される。
When the detected temperature of the temperature detector 39A is equal to or higher than the second temperature and lower than the first temperature when the hot water generator 130C is operated, the refrigerant circuits 91 and 92C are operated simultaneously, and the pumps 36 and 36A are operated. By the operation of the pump 36A, the water taken from the disperser 24 is cooled by the refrigerant in the heat exchanger 37A, and returned from the water supply port 13 to the water tank 11A. The water returned to the water storage tank 11A is dispersed by the dispersion plate 27, rises between the latent heat storage bodies 21A, is warmed by the latent heat storage bodies 21A, and is taken into the disperser 24 again. That is, the water cooled by the heat exchanger 37A comes into contact with all the latent heat storage bodies 21A substantially uniformly and transfers heat to the latent heat storage bodies 21A. When a part of the latent heat storage body 21A is in a liquid phase and the temperature of water in contact with the latent heat storage body 21A is lower than the solidification temperature of the latent heat storage body 21A, the rising water solidifies the latent heat storage body 21A. On the other hand, the refrigerant circuit 92C absorbs heat from water by the heat exchanger 37A and generates hot water by the heat exchanger 34. That is, hot water is generated by the solidification heat of the latent heat storage body 21A.
Therefore, the hot water supply device 320 makes the water heated by the solar heat substantially uniformly contact all the latent heat storage bodies 21A by the disperser 24 and the dispersion plate 27 to store the solar heat in the latent heat storage bodies 21A and to store the water in all the latent heat storage bodies. The hot water is generated by taking out the heat stored in the latent heat storage body 21A by bringing it into contact with 21A substantially uniformly. Accordingly, the heat capacity of the latent heat storage body 21A is effectively utilized by the disperser 24 to the maximum.

図19に給湯装置の第三参考例である給湯装置320Aを示す。給湯装置320Aは貯水装置110Eと湯生成装置130Cと冷房装置150Aを備える。冷房装置150Aと湯生成装置130Cは既に説明されている。貯水装置110Eは貯水装置110Dの潜熱蓄熱体21Aを冷房給湯装置210Dに使用されている潜熱蓄熱体21に変更したものである。 FIG. 19 shows a hot water supply device 320A which is a third reference example of the hot water supply device. The hot water supply device 320A includes a water storage device 110E, a hot water generation device 130C, and a cooling device 150A. The cooling device 150A and the hot water generating device 130C have already been described. The water storage device 110E is obtained by changing the latent heat storage body 21A of the water storage device 110D to the latent heat storage body 21 used in the cooling hot water supply device 210D.

湯生成装置130Cの動作は、潜熱蓄熱体21Aが存在するために、冷房給湯装置210Cの湯生成装置130Cの動作と異なるのでそれを説明する。所定の湯生成条件が満たされ、温度検出器39の検出温度が第一温度未満であり、温度検出器39Aの検出温度が第六温度未満である場合、冷媒回路91とポンプ36が運転され、温度検出器39の検出温度が第一温度以上になるまで湯が生成される。温度検出器39Aの検出温度が第六温度以上で第一温度未満の場合、冷媒回路91と92Cが同時運転され、ポンプ36と36Aが運転される。
冷媒回路91と92Cとポンプ36と36Aが運転されると、水が水循環路38Aに循環され、熱交換器37Aで冷やされた水は給水口13から貯水槽11Aに流入し、分散板27により、貯水槽11Aの水平断面に分散されて上昇する。上昇する水は分散器24の分散孔26Aを通り中間口14から水循環路38Aに流れる。分散器24と分散板27の間の水は上方に略均一に流れ、全ての潜熱蓄熱体21に接触する。潜熱蓄熱体21に接触する水の温度が潜熱蓄熱体21の凝固温度より低い場合、液相の潜熱蓄熱体21は凝固する。潜熱蓄熱体21の凝固熱が湯の生成に必要な熱量以下であれば全ての潜熱蓄熱体21は凝固する。
The operation of the hot water generating device 130C is different from the operation of the hot water generating device 130C of the cooling hot water supply device 210C because the latent heat storage body 21A exists, and will be described. When a predetermined hot water generation condition is satisfied, the temperature detected by the temperature detector 39 is lower than the first temperature, and the temperature detected by the temperature detector 39A is lower than the sixth temperature, the refrigerant circuit 91 and the pump 36 are operated, Hot water is generated until the temperature detected by the temperature detector 39 reaches the first temperature or higher. When the temperature detected by the temperature detector 39A is equal to or higher than the sixth temperature and lower than the first temperature, the refrigerant circuits 91 and 92C are operated simultaneously, and the pumps 36 and 36A are operated.
When the refrigerant circuits 91 and 92C and the pumps 36 and 36A are operated, water is circulated through the water circulation path 38A, and the water cooled by the heat exchanger 37A flows into the water storage tank 11A from the water supply port 13 and is dispersed by the dispersion plate 27. The water tank 11 </ b> A is dispersed and rises in the horizontal cross section. The rising water flows from the intermediate port 14 to the water circulation path 38A through the dispersion hole 26A of the disperser 24. The water between the disperser 24 and the dispersal plate 27 flows substantially uniformly upward and comes into contact with all the latent heat storage bodies 21. When the temperature of the water in contact with the latent heat storage body 21 is lower than the solidification temperature of the latent heat storage body 21, the liquid phase latent heat storage body 21 is solidified. If the heat of solidification of the latent heat storage body 21 is equal to or less than the amount of heat necessary for producing hot water, all the latent heat storage bodies 21 are solidified.

冷房運転の指示がある場合、冷媒回路93Aとポンプ56が運転され、熱交換器54Aで温められた水は分散器24により貯水槽11Aの水平断面に分散して吹出される。分散器24と分散板27により、分散器24と分散板27の間の水は略均一に下方に流れ、全ての潜熱蓄熱体21と接触する。熱交換器54Aで温められた水が潜熱蓄熱体21の融解温度より高い場合、固相の潜熱蓄熱体21は融解する。潜熱蓄熱体21の融解熱が冷房の排熱量以上であれば潜熱蓄熱体21は冷房の排熱を全て蓄える。
つまり、冷房装置150Aの排熱は分散器24と分散板27により略最大限潜熱蓄熱体21に蓄えられる。そして湯生成装置130Cは、分散器24と分散板27により潜熱蓄熱体21に蓄えられた熱を略最大限吸収し、湯を生成する。従って、分散器24により潜熱蓄熱体21の熱容量が略最大限有効に利用される。
When there is an instruction for cooling operation, the refrigerant circuit 93A and the pump 56 are operated, and the water warmed by the heat exchanger 54A is dispersed and blown out by the disperser 24 to the horizontal section of the water storage tank 11A. By means of the disperser 24 and the disperser plate 27, the water between the disperser 24 and the disperser plate 27 flows substantially uniformly downward and contacts all the latent heat storage bodies 21. When the water heated by the heat exchanger 54A is higher than the melting temperature of the latent heat storage body 21, the solid phase latent heat storage body 21 melts. If the heat of fusion of the latent heat storage body 21 is equal to or greater than the amount of exhaust heat of the cooling, the latent heat storage body 21 stores all the exhaust heat of the cooling.
In other words, the exhaust heat of the cooling device 150 </ b> A is stored in the latent heat storage body 21 by the disperser 24 and the dispersion plate 27 to the maximum extent. And the hot water production | generation apparatus 130C absorbs the heat | fever stored in the latent heat storage body 21 by the disperser 24 and the dispersion plate 27 substantially to the maximum, and produces | generates hot water. Therefore, the heat capacity of the latent heat storage body 21 is effectively utilized by the disperser 24 to the maximum extent.

図20に給湯装置の第四参考例である給湯装置330を示す。給湯装置330は貯水装置110Fと湯生成装置132を備える。
貯水装置110Fは水で充填された貯水槽11Cと仕切り部材17を備え、貯水槽11Cは給湯口12と、給水口13と、温度検出器39Bの垂直位置より上方に配置された流入口15を有する。仕切り部材17は流入口15から流入した水が上昇または下降する流路を形成するものである。
湯生成装置132は、給水口13と流入口15を結ぶ水循環路38Bと、水循環路38Bに水を循環させるポンプ36と、冷媒回路91と、温度検出器39Dと、貯水槽11Cの底部付近に配置された温度検出器39Eを備える。なお、冷媒回路91は圧縮機31と熱交換器34と膨張器32Bと熱交換器33を備え、それらに冷媒を循環させて冷凍サイクルを形成し、冷房給湯装置210Aの冷媒回路91と同一である。温度検出器39Dは、冷媒回路91が起動されてから湯が生成されるまでの期間に使用される湯量が、その上部の貯水槽11Cに貯えられる位置に配置される。
FIG. 20 shows a hot water supply apparatus 330 which is a fourth reference example of the hot water supply apparatus. The hot water supply device 330 includes a water storage device 110F and a hot water generation device 132.
The water storage device 110F includes a water storage tank 11C filled with water and a partition member 17, and the water storage tank 11C includes a hot water supply port 12, a water supply port 13, and an inflow port 15 disposed above a vertical position of the temperature detector 39B. Have. The partition member 17 forms a flow path in which water flowing in from the inlet 15 rises or falls.
The hot water generator 132 is located near the bottom of the water circulation path 38B connecting the water supply port 13 and the inlet 15, the pump 36 for circulating water through the water circulation path 38B, the refrigerant circuit 91, the temperature detector 39D, and the water storage tank 11C. A temperature detector 39E is provided. The refrigerant circuit 91 includes a compressor 31, a heat exchanger 34, an expander 32B, and a heat exchanger 33. A refrigerant is circulated through the refrigerant circuit 91 to form a refrigeration cycle, and the refrigerant circuit 91 is the same as the refrigerant circuit 91 of the cooling water heater 210A. is there. The temperature detector 39D is arranged at a position where the amount of hot water used in the period from when the refrigerant circuit 91 is activated until hot water is generated is stored in the upper water storage tank 11C.

図27(A)に流入口15の位置における貯水槽11Cの断面図を示す。図27(B)に仕切り部材17の斜視図を示す。仕切り部材17は半角筒状であり、軸に平行な両側辺を略垂直に貯水槽11Cの内側に密着し、流入口15が両側辺の間に位置するように配置される。仕切り部材17は、下端の位置が温度検出器39Dの位置に略水平になり、上端が貯水槽11Cの上蓋との間に隙間があるように配置される。流路16は貯水槽11Cと仕切り部材17の間の領域である。流入口15から流入した水は流路16の水と混合しながら流路16を上昇または下降する。仕切り部材17の形状は半円筒状でも良い。 FIG. 27A shows a cross-sectional view of the water storage tank 11 </ b> C at the position of the inlet 15. FIG. 27B shows a perspective view of the partition member 17. The partition member 17 is a half-square cylinder, and is arranged so that both sides parallel to the axis are in close contact with the inside of the water storage tank 11C substantially vertically and the inlet 15 is located between both sides. The partition member 17 is disposed such that the lower end is substantially horizontal to the position of the temperature detector 39D, and the upper end is spaced from the upper lid of the water storage tank 11C. The flow path 16 is an area between the water storage tank 11 </ b> C and the partition member 17. The water flowing in from the inflow port 15 rises or falls along the channel 16 while mixing with the water in the channel 16. The shape of the partition member 17 may be a semi-cylindrical shape.

温度検出器39Dの検出温度が第一温度未満の場合、湯生成装置132が運転され、外気の熱を吸収し、湯を貯水槽11Cに生成する。温度検出器39Eの検出温度が第一温度以上になった場合に湯生成装置132の運転が停止される。なお、湯生成装置132の起動時に温度検出器39Dの上部に貯えられる湯量が充分であるので湯切れは起きない。
貯水槽11Cは、一日に使用する湯を生成し貯える給湯装置の貯水槽より小型にできる。しかし貯水槽11Cが貯える湯量が少ないため湯生成装置132の運転が頻繁に行なわれる。
When the temperature detected by the temperature detector 39D is lower than the first temperature, the hot water generator 132 is operated to absorb the heat of the outside air and generate hot water in the water storage tank 11C. When the temperature detected by the temperature detector 39E becomes equal to or higher than the first temperature, the operation of the hot water generator 132 is stopped. Note that when the hot water generator 132 is activated, the amount of hot water stored in the upper portion of the temperature detector 39D is sufficient, so that hot water does not run out.
The water storage tank 11C can be made smaller than the water storage tank of a hot water supply device that generates and stores hot water used in one day. However, since the amount of hot water stored in the water storage tank 11C is small, the hot water generator 132 is frequently operated.

湯生成装置132が運転されていない間、流入口15と熱交換器34の間の水循環路38A内の水の熱は水循環路38Aを覆う断熱材を通して外気に放出されるので、その水は外気の温度付近まで冷やされる場合がある。湯生成装置132が起動される時、温度検出器39Dの検出温度は第一温度より少し低い温度であり、流入口15は温度検出器39Dの上方にあるので流入口15付近の水の温度は略第一温度である。湯生成装置132が起動されると外気で冷やされた水が流入口15を通って流路16に流入し、流路16の水と混合し下降するが、流路16外の水は、仕切り部材17により流路16の水と混合しない。
湯生成装置132が起動され、所定の起動時間経過後、熱交換器34で湯の生成が開始される。生成された湯は流入口15を通って流路16に流入する。流入口15から流入する湯は、貯水槽11C内の上部の水の温度分布により、流路16を上昇または下降または一部上昇一部下降し、湯の層を増加させる。
従って、仕切り部材17は、湯生成装置132が起動される時に貯水槽11Cに流入する低温の水と貯水槽11C内の湯との混合を抑制し、貯水槽11C内に蓄えられた熱を略最大限利用可能にする。
While the hot water generator 132 is not operated, the heat of the water in the water circulation path 38A between the inlet 15 and the heat exchanger 34 is released to the outside air through the heat insulating material covering the water circulation path 38A. It may be cooled to near the temperature. When the hot water generator 132 is activated, the temperature detected by the temperature detector 39D is slightly lower than the first temperature, and the inlet 15 is above the temperature detector 39D, so the temperature of the water near the inlet 15 is It is approximately the first temperature. When the hot water generator 132 is activated, the water cooled by the outside air flows into the flow path 16 through the inlet 15, mixes with the water in the flow path 16 and falls, but the water outside the flow path 16 The member 17 does not mix with the water in the flow path 16.
The hot water generator 132 is activated, and after a predetermined activation time has elapsed, the production of hot water is started in the heat exchanger 34. The generated hot water flows into the flow path 16 through the inlet 15. The hot water flowing in from the inflow port 15 rises or falls or partly rises and falls partly in the flow path 16 according to the temperature distribution of the water in the upper part of the water storage tank 11C, thereby increasing the hot water layer.
Therefore, the partition member 17 suppresses the mixing of the low-temperature water flowing into the water storage tank 11C when the hot water generator 132 is activated and the hot water in the water storage tank 11C, and substantially reduces the heat stored in the water storage tank 11C. Make it available to the fullest.

図21に給湯装置の第五参考例である給湯装置330Aを示す。給湯装置330Aは給湯装置330の仕切り部材17を流路分岐管18で置換したものである。図28(A)に流入口15の位置における貯水槽11Cの断面図を示す。図28(B)に流路分岐管18の斜視図を示す。流路分岐管18は、途中に管内の水の流れを分岐する分岐口を有し、貯水槽11Cの内側に垂直に配置され、管内に水が流れる垂直管28と、流入口15と分岐口を結び、管内に水が流れる接続管29を備える。垂直管28は、下端の位置が温度検出器39Dの位置に略水平になり、上端が貯水槽11Cの上蓋との間に隙間があるように配置される。流路16Aは垂直管28と接続管29により形成される管内の領域である。流入口15から流入した水は接続管29を経由して垂直管28に流入し、垂直管28内を上昇または下降する。
流路16Aの形状は流路16の形状とは異なるが同様の機能を果たす。従って、給湯装置330Aの動作と効果は給湯装置330の動作と効果と同様である。
FIG. 21 shows a hot water supply apparatus 330A which is a fifth reference example of the hot water supply apparatus. The hot water supply device 330 </ b> A is obtained by replacing the partition member 17 of the hot water supply device 330 with a flow branch pipe 18. FIG. 28A shows a cross-sectional view of the water storage tank 11 </ b> C at the position of the inlet 15. FIG. 28B shows a perspective view of the flow path branch pipe 18. The flow path branch pipe 18 has a branch port that branches the flow of water in the pipe in the middle, and is arranged vertically inside the water storage tank 11C, and a vertical pipe 28 through which water flows in the pipe, an inlet 15 and a branch port. And a connecting pipe 29 through which water flows. The vertical pipe 28 is disposed such that the lower end is substantially horizontal to the position of the temperature detector 39D and the upper end is spaced from the upper lid of the water storage tank 11C. The flow path 16 </ b> A is a region in the pipe formed by the vertical pipe 28 and the connection pipe 29. The water flowing in from the inflow port 15 flows into the vertical pipe 28 via the connection pipe 29 and rises or descends in the vertical pipe 28.
The shape of the flow channel 16A is different from the shape of the flow channel 16, but performs the same function. Therefore, the operation and effect of hot water supply apparatus 330A are the same as the operation and effect of hot water supply apparatus 330.

図22に給湯装置の第六参考例である給湯装置340を示す。給湯装置340は貯水装置110Hと湯生成装置180Aと暖房装置140を備える。
貯水装置110Hは水で充填された貯水槽11Dと仕切り部材17Aを備え、貯水槽11Dは給湯口12と給水口13と給湯口12の下方に配置された流入口15と流入口15の下方に配置された流入口41を有する。図29(A)に流入口41の位置における貯水槽11Dの断面図を示す。図29(B)に仕切り部材17Aの斜視図を示す。
仕切り部材17Aは半角筒状の形状であり、水を通す複数の流通孔19を有する。仕切り部材17Aは、軸に平行な両側辺を略垂直に貯水槽11Dの内側に密着し、流入口41と15が両側辺の間に位置するように配置される。仕切り部材17Aの下端の位置は流入口41の下方であり、仕切り部材17の上端は流入口15の上方で、貯水槽11Dの上蓋との間に隙間があるように配置される。流路16Bは貯水槽11Dと仕切り部材17Aの間の領域である。流入口41と15から流入した水は流路16Bの水と混合しながら流路16Bを上昇または下降する。
仕切り部材17Aの形状は半円筒状でも良い。
FIG. 22 shows a hot water supply device 340 as a sixth reference example of the hot water supply device. The hot water supply device 340 includes a water storage device 110H, a hot water generation device 180A, and a heating device 140.
The water storage device 110 </ b> H includes a water storage tank 11 </ b> D filled with water and a partition member 17 </ b> A. It has an inlet 41 arranged. FIG. 29A shows a cross-sectional view of the water storage tank 11D at the position of the inlet 41. FIG. FIG. 29B is a perspective view of the partition member 17A.
The partition member 17A has a half-tubular shape and includes a plurality of flow holes 19 through which water passes. The partition member 17A is disposed so that both sides parallel to the axis are in close contact with the inside of the water storage tank 11D substantially vertically, and the inflow ports 41 and 15 are located between the both sides. The position of the lower end of the partition member 17A is below the inflow port 41, and the upper end of the partition member 17 is disposed above the inflow port 15 so that there is a gap between the upper lid of the water storage tank 11D. The flow path 16B is an area between the water storage tank 11D and the partition member 17A. The water flowing in from the inflow ports 41 and 15 rises or descends the channel 16B while mixing with the water in the channel 16B.
The shape of the partition member 17A may be a semi-cylindrical shape.

湯生成装置180Aは熱源83A(例えば、燃料電池)と、水流路に流れる水と熱媒体流路に流れる熱媒体との熱交換を行なう熱交換器84Aと、熱源83Aと熱交換器84Aの間に熱媒体を循環させるための熱媒体循環路87Aと、給水口13と流入口15を結ぶ水循環路88と、水循環路88に水を循環させるポンプ86と、貯水槽11Dに温度検出器89Aと89Bを備える。温度検出器89Aは、熱源83Aが起動されてから湯が生成されるまでの期間に使用される湯量が、その上部の貯水槽11Dに貯えられる位置に配置され、温度検出器89Bは貯水槽11Dの底部付近に配置される。
暖房装置140は給湯口12と流入口41を結ぶ水循環路48と、水循環路48の途中に配置され、水流路に流れる水と熱媒体流路に流れる熱媒体との熱交換を行なう熱交換器43と、水循環路48に水を循環させるポンプ46と、室内に熱媒体の熱を放熱する熱交換器44と、熱交換器43と44の間に熱媒体を循環させるための熱媒体循環路47と、熱媒体循環路47に熱媒体を循環させるポンプ46Aを備える。
The hot water generator 180A includes a heat source 83A (for example, a fuel cell), a heat exchanger 84A that performs heat exchange between water flowing in the water flow path and a heat medium flowing in the heat medium flow path, and between the heat source 83A and the heat exchanger 84A. A heat medium circulation path 87A for circulating the heat medium, a water circulation path 88 connecting the water supply port 13 and the inflow port 15, a pump 86 for circulating water in the water circulation path 88, and a temperature detector 89A in the water storage tank 11D. 89B is provided. The temperature detector 89A is disposed at a position where the amount of hot water used in the period from when the heat source 83A is activated until hot water is generated is stored in the upper water storage tank 11D, and the temperature detector 89B is the water storage tank 11D. Near the bottom of the.
The heating device 140 is disposed in the middle of the water circulation path 48 that connects the hot water supply port 12 and the inlet 41, and is a heat exchanger that performs heat exchange between the water flowing in the water flow path and the heat medium flowing in the heat medium flow path. 43, a pump 46 that circulates water in the water circulation path 48, a heat exchanger 44 that radiates heat of the heat medium in the room, and a heat medium circulation path that circulates the heat medium between the heat exchangers 43 and 44. 47, and a pump 46A for circulating the heat medium in the heat medium circulation path 47.

湯生成装置180Aは、温度検出器89Aが第一温度未満を検出した場合に運転が開始され、温度検出器89Bが第一温度以上を検出した場合に運転が停止される。
湯生成装置180Aが起動されると、熱交換器84Aと流入口15の間の、外気に冷やされた低温の水が流入口15を通って流路16Bに流入する。流入口15付近の水の温度は高いので流路16Bに流入した低温の水は流路16B内の水と混合しながら下降する。下降する水は、混合によりその温度が徐々に高くなり、貯水槽11Dの中央部の水の温度がその下降する水の温度と略等しい位置まで下降する。また下降する水の一部は仕切り部材17Aの流通孔19を通って貯水槽11Dの中央部へ流れる。貯水槽11Dに給水の温度から湯の温度に変化する温度成層がある場合、その下降する水はその温度成層まで下降し、その下降する水の温度の温度成層の層の厚さを増加させる。ところで、湯の生成や湯の使用により温度成層の位置は上下に移動する。仕切り部材17Aは、温度成層の位置にかかわらず、湯生成装置180Aの起動時に流入口15から流入する低温の水を温度成層の位置まで、貯水槽11Dの水との混合を抑制して下降させる。
湯生成装置180Aが起動され、所定の起動時間経過後、熱交換器84Aで生成された湯が流入口15から流路16Bに流入する。その湯は、貯水槽11D内の上部の水の温度分布により、流路16Bを上昇または下降または一部上昇一部下降し、湯の層を増加させる。
The hot water generator 180A is started when the temperature detector 89A detects a temperature lower than the first temperature, and is stopped when the temperature detector 89B detects the first temperature or higher.
When the hot water generator 180A is activated, low-temperature water cooled to the outside air between the heat exchanger 84A and the inlet 15 flows into the flow path 16B through the inlet 15. Since the temperature of the water near the inlet 15 is high, the low-temperature water that has flowed into the flow path 16B descends while mixing with the water in the flow path 16B. The temperature of the descending water gradually increases as a result of mixing, and the temperature of the water in the central portion of the water storage tank 11D descends to a position approximately equal to the temperature of the descending water. A part of the descending water flows to the central portion of the water storage tank 11D through the flow hole 19 of the partition member 17A. If the water storage tank 11D has a temperature stratification that changes from the temperature of the feed water to the temperature of the hot water, the descending water descends to the temperature stratification and increases the thickness of the temperature stratification at the temperature of the descending water. By the way, the position of temperature stratification moves up and down by the generation of hot water and the use of hot water. Regardless of the temperature stratification position, the partition member 17A lowers the low-temperature water flowing from the inlet 15 when the hot water generator 180A is started up to the temperature stratification position while suppressing mixing with the water in the water storage tank 11D. .
The hot water generator 180A is activated, and after a predetermined activation time has elapsed, the hot water generated by the heat exchanger 84A flows into the flow path 16B from the inlet 15. Depending on the temperature distribution of the water in the upper part of the water storage tank 11D, the hot water ascends or descends the flow path 16B or partially rises and partially falls to increase the hot water layer.

また、熱源83Aが燃料電池の場合、燃料電池の排熱を放出する熱媒体の温度は、燃料電池の負荷等の使用条件や気温等の環境条件により大きく変わる。熱媒体の温度が大きく変わると熱交換器84Aで生成される湯の温度が大きく変わる。熱交換器84Aで生成された湯の温度が貯水槽11Dの中央部の水の温度より高い場合、流入口15から流入する水は流路16Bの水と混合しながら流路16Bを上昇する。上昇する水の温度はその混合により徐々に低くなり、貯水槽11Dの中央部の水の温度がその上昇する水の温度と略等しい位置まで上昇すると共に上昇する水の一部は、仕切り部材17Aの流通孔19を通って貯水槽11Dの中央部へ流れ、上昇する水の温度の層の厚さを増加させる。
熱交換器84Aで加熱された水の温度が貯水槽11Dの中央部の水の温度より低い場合、流入口15から流入する水は流路16Bの水と混合しながら下降する。下降する水の温度はその混合により徐々に高くなり、貯水槽11Dの中央部の水の温度がその下降する水の温度と略等しい位置まで下降すると共に下降する水の一部は、仕切り部材17Aの流通孔19を通って貯水槽11Dの中央部へ流れ、下降する水の温度の層の厚さを増加させる。
従って、仕切り部材17Aは流入口15から流入する水と貯水槽11Dの中央部の水との混合を抑制し、湯量の減少を抑制し、貯水槽11Dに略最大限の湯量を貯える。
When the heat source 83A is a fuel cell, the temperature of the heat medium that releases the exhaust heat of the fuel cell varies greatly depending on the use conditions such as the load of the fuel cell and the environmental conditions such as the air temperature. When the temperature of the heat medium changes greatly, the temperature of the hot water generated by the heat exchanger 84A changes greatly. When the temperature of the hot water generated by the heat exchanger 84A is higher than the temperature of the water in the central portion of the water storage tank 11D, the water flowing in from the inlet 15 rises through the channel 16B while mixing with the water in the channel 16B. The temperature of the rising water is gradually lowered by the mixing, and the temperature of the water in the central portion of the water storage tank 11D rises to a position substantially equal to the temperature of the rising water, and a part of the rising water is separated from the partition member 17A. Through the flow hole 19 to the central portion of the water storage tank 11D and increase the thickness of the rising water temperature layer.
When the temperature of the water heated by the heat exchanger 84A is lower than the temperature of the water in the central portion of the water storage tank 11D, the water flowing in from the inflow port 15 descends while mixing with the water in the flow path 16B. The temperature of the descending water gradually increases due to the mixing, and the temperature of the water in the central portion of the water storage tank 11D descends to a position substantially equal to the temperature of the descending water, and a part of the descending water is separated from the partition member 17A. The thickness of the layer of the temperature of the water flowing down to the center of the water storage tank 11D and descending is increased.
Therefore, the partition member 17A suppresses the mixing of the water flowing in from the inlet 15 and the water in the central portion of the water storage tank 11D, suppresses the decrease in the amount of hot water, and stores a substantially maximum amount of hot water in the water storage tank 11D.

暖房の指示がある場合、ポンプ46と46Aと熱交換器44のファンが運転される。熱交換器43は水循環路48に流れる水と熱媒体循環路47に流れる熱媒体との熱交換を行なうので、高温の水の熱が熱媒体に伝達され、熱媒体に伝達された熱が熱交換器44により、室内の空気に伝達され、室内が暖房される。一方、熱交換器43により冷やされた水は流入口41から流路16Bに流入する。流路16Bに流入する水の流れは、流入口15から流路16Bに流入する水の流れと同様であるので説明は省略する。
仕切り部材17Aは、流入口41から流路16Bに流入する水と貯水槽11Dの中央部の水との混合を抑制し、貯水槽11D内に蓄えられた熱を略最大限利用可能にする。
なお、流路16Bの水と混合しながら上昇または下降する水の流れと流通孔19を通って貯水槽11Dの中央部へ流れる水の流れは、ポンプ46が起こす水の流れと自然対流により生じる水の流れにより生じる。ポンプ46が水循環路48に循環させる水量が、自然対流の水量より多い場合、流入口41から流路16Bに流入する水は流入口41付近に滞留し、貯水槽11D内の等温度の面は水平面から大きく変わる。また貯水槽11D内の等温度の面の形状は流通孔19のサイズや数量や流路16Bの断面積の大きさ等により大きく変わる。
When there is an instruction for heating, the fans of the pumps 46 and 46A and the heat exchanger 44 are operated. Since the heat exchanger 43 performs heat exchange between the water flowing in the water circulation path 48 and the heat medium flowing in the heat medium circulation path 47, the heat of high-temperature water is transmitted to the heat medium, and the heat transferred to the heat medium is heat. The heat is transmitted to the indoor air by the exchanger 44 to heat the room. On the other hand, the water cooled by the heat exchanger 43 flows into the flow path 16B from the inlet 41. Since the flow of water flowing into the flow path 16B is the same as the flow of water flowing into the flow path 16B from the inflow port 15, the description thereof is omitted.
The partition member 17A suppresses the mixing of the water flowing into the flow path 16B from the inlet 41 and the water in the center of the water storage tank 11D, and makes it possible to use the heat stored in the water storage tank 11D substantially as much as possible.
The flow of water that rises or falls while mixing with the water in the flow path 16B and the flow of water that flows through the circulation hole 19 to the central portion of the water storage tank 11D are generated by the flow of water generated by the pump 46 and natural convection. It is caused by the flow of water. When the amount of water that the pump 46 circulates in the water circulation channel 48 is larger than the amount of natural convection, the water flowing into the flow channel 16B from the inlet 41 stays in the vicinity of the inlet 41, and the isothermal surface in the water storage tank 11D is It changes greatly from the horizontal plane. The shape of the isothermal surface in the water storage tank 11D varies greatly depending on the size and quantity of the flow holes 19 and the size of the cross-sectional area of the flow path 16B.

図23に給湯装置の第七参考例である給湯装置340Aを示す。給湯装置340Aは貯水装置110Iと湯生成装置130Cと暖房装置140を備える。湯生成装置130Cと暖房装置140は既に説明されている。貯水装置110Iは水で充填された貯水槽11Eと流路分岐管18Aを備え、貯水槽11Eは給湯口12と給水口13と中間口14と流入口41を有する。
図30(A)に流入口41の位置における貯水槽11Eの断面図を示す。図30(B)に流路分岐管18Aの斜視図を示す。流路分岐管18Aは途中に分岐口を有し、水が流れる複数の流通孔19Aを有する垂直管28Aと、流入口41と分岐口を結ぶ接続管29Aを備える。垂直管28Aの下端の位置は温度検出器39付近であり、垂直管28の上端は貯水槽11Eの上蓋との間に隙間があるように配置される。流路16Cは垂直管28Aと接続管29Aにより形成される管内の領域である。流入口41から流入した水は接続管29Aを経由して垂直管28Aに流入し、垂直管28A内を上昇または下降する。熱交換器43で冷された水は流入口41から流路16Cに流れる。流路16Cに流入する水の流れは、給湯装置340で説明した流入口15から流路16Bに流入する水の流れと同様であるのでその説明は省略する。暖房装置140が運転されると大量の中温水が生成される。湯生成装置130Cの動作は既に説明されているように、中温水から熱効率良く湯を生成する。
従って、給湯装置340Aは、流路分岐管18Aにより貯水槽11Eに蓄えられた熱を効率よく暖房に使用し、暖房により生成された中温水から熱効率良く湯を生成する。
FIG. 23 shows a hot water supply device 340A which is a seventh reference example of the hot water supply device. The hot water supply device 340A includes a water storage device 110I, a hot water generation device 130C, and a heating device 140. The hot water generator 130C and the heating device 140 have already been described. The water storage device 110I includes a water storage tank 11E filled with water and a flow path branch pipe 18A. The water storage tank 11E includes a hot water supply port 12, a water supply port 13, an intermediate port 14, and an inflow port 41.
FIG. 30A shows a cross-sectional view of the water storage tank 11E at the position of the inflow port 41. FIG. 30B is a perspective view of the flow path branch pipe 18A. The flow path branch pipe 18A has a branch port in the middle, and includes a vertical pipe 28A having a plurality of flow holes 19A through which water flows, and a connection pipe 29A connecting the inflow port 41 and the branch port. The position of the lower end of the vertical pipe 28A is in the vicinity of the temperature detector 39, and the upper end of the vertical pipe 28 is arranged so that there is a gap between the upper lid of the water storage tank 11E. The flow path 16C is an area in the pipe formed by the vertical pipe 28A and the connection pipe 29A. The water flowing in from the inflow port 41 flows into the vertical pipe 28A via the connection pipe 29A, and rises or descends in the vertical pipe 28A. The water cooled by the heat exchanger 43 flows from the inlet 41 to the flow path 16C. Since the flow of water flowing into the flow path 16C is the same as the flow of water flowing into the flow path 16B from the inlet 15 described in the hot water supply device 340, description thereof is omitted. When the heating device 140 is operated, a large amount of medium-temperature water is generated. As described above, the operation of the hot water generator 130C generates hot water from the medium-temperature water with high thermal efficiency.
Accordingly, the hot water supply device 340A efficiently uses the heat stored in the water storage tank 11E by the flow path branch pipe 18A for heating, and generates hot water from the medium-temperature water generated by heating with high efficiency.

図24に本発明の冷房給湯装置の第実施形態である冷房給湯装置260を示す。冷房給湯装置260は貯水装置110Jと湯生成装置131Eと暖房装置140と排水装置170を備える。暖房装置140と排水装置170は既に説明されている。貯水装置110Jは水で充填された貯水槽11Fと仕切り部材17Aを備え、貯水槽11Fは給湯口12と給水口13と中間口14と流入口41と熱交換器37と37Bと54に冷媒を流す管を貫通させる孔を有する。
湯生成装置131Eは湯生成装置131Dに冷媒回路96と温度検出器39Fを追加し、湯生成装置131Dの水循環路38を、給水口13と流入口15を結ぶ水循環路38Bに変更したものである。冷媒回路96は圧縮機31と熱交換器34と膨張器32Eと熱交換器37Bと33を備え、それらに冷媒を循環させて冷凍サイクルを形成する。温度検出器39Fと熱交換器37Bは温度検出器59の上方に、温度検出器39Fと熱交換器37Bと温度検出器59の位置関係が温度検出器39と熱交換器37と温度検出器39Aの位置関係と同様になるように配置される。
冷媒回路96は暖房装置140で生成される中温水の熱を吸収して湯を生成することにより、湯の生成の熱効率を向上する。水循環路38Bは湯生成装置131Dの起動直後に貯水槽11Fに流入する、外気で冷やされた水と貯水槽11F内の湯の混合を抑制する。
FIG. 24 shows a cooling hot water supply apparatus 260 which is a sixth embodiment of the cooling hot water supply apparatus of the present invention. The cooling hot water supply device 260 includes a water storage device 110J, a hot water generation device 131E, a heating device 140, and a drainage device 170. The heating device 140 and the drainage device 170 have already been described. The water storage device 110J includes a water storage tank 11F filled with water and a partition member 17A. The water storage tank 11F supplies refrigerant to the hot water supply port 12, the water supply port 13, the intermediate port 14, the inflow port 41, and the heat exchangers 37, 37B, and 54. It has a hole that penetrates the flow tube.
The hot water generator 131E is obtained by adding a refrigerant circuit 96 and a temperature detector 39F to the hot water generator 131D, and changing the water circulation path 38 of the hot water generator 131D to a water circulation path 38B that connects the water supply port 13 and the inlet 15. . The refrigerant circuit 96 includes a compressor 31, a heat exchanger 34, an expander 32E, and heat exchangers 37B and 33, and circulates refrigerant through them to form a refrigeration cycle. The temperature detector 39F and the heat exchanger 37B are located above the temperature detector 59, and the positional relationship between the temperature detector 39F, the heat exchanger 37B, and the temperature detector 59 is the temperature detector 39, the heat exchanger 37, and the temperature detector 39A. It arrange | positions so that it may become the same as that of positional relationship.
The refrigerant circuit 96 improves the thermal efficiency of hot water generation by absorbing the heat of the medium-temperature water generated by the heating device 140 and generating hot water. The water circulation path 38B suppresses the mixing of the water cooled by the outside air and the hot water in the water storage tank 11F, which flows into the water storage tank 11F immediately after the hot water generator 131D is activated.

冷房給湯装置260は、冷房給湯装置240と同様な冬期モードと中間期モードと冷房モードのいずれかのモードで運転される。冷房給湯装置260のモード間の移行は冷房給湯装置240と同様に行なわれる。
冷房給湯装置260は、冷媒回路91と92Aと95と96を運転する場合、圧縮機31を高速運転で運転し、湯を生成し、冷媒回路94を運転する場合、圧縮機31を速運転で運転し、建物を弱冷房する。
(1)冬期モードの動作
冬期モードにおいて、湯の生成の指示は、所定の湯生成条件が満たされ、温度検出器39Fの検出温度が第一温度未満の場合に出力される。
(A)冷房中でない時に湯の生成の指示がある場合の動作
温度検出器59の検出温度が第二温度未満の場合、冷媒回路91が運転され、温度検出器59の検出温度が第二温度以上の場合、冷媒回路91と96が同時運転され、温度検出器39Fの検出温度が第一温度以上になるまで湯が生成される。
(B)湯の生成中でない時に冷房の指示がある場合の動作
弱冷房運転の指示の場合の動作:
温度検出器59の検出温度が第四温度未満の場合、冷媒回路94が運転される。温度検出器59の検出温度が第四温度以上の場合、排水弁73が開けられて排水され、温度検出器59の検出温度が第四温度未満にされた後に冷媒回路94が運転される。
強冷房運転の指示場合の動作:
温度検出器39Fの検出温度が第一温度未満で、温度検出器59の検出温度が第四温度未満の場合、冷媒回路95が運転される。温度検出器39Fの検出温度が第一温度以上または温度検出器59の検出温度が第四温度以上の場合、排水弁73が開けられて排水された後に冷媒回路95が運転される。
The cooling water heater 260 is operated in any one of the winter mode, the intermediate period mode, and the cooling mode similar to the cooling water heater 240. Transition between modes of the cooling water heater 260 is performed in the same manner as the cooling water heater 240.
When operating the refrigerant circuits 91, 92A, 95, and 96, the cooling water heater 260 operates the compressor 31 at a high speed operation, generates hot water, and operates the refrigerant circuit 94. When operating the refrigerant circuit 94, the compressor 31 is operated at a high speed. Drive and cool the building slightly.
(1) Operation in Winter Mode In the winter mode, an instruction to generate hot water is output when a predetermined hot water generation condition is satisfied and the temperature detected by the temperature detector 39F is lower than the first temperature.
(A) If the detected temperature of the operating temperature detector 59 is less than the second temperature when there is an instruction to generate hot water when not in cooling, the refrigerant circuit 91 is operated, and the detected temperature of the temperature detector 59 is the second temperature. In the above case, the refrigerant circuits 91 and 96 are simultaneously operated, and hot water is generated until the temperature detected by the temperature detector 39F becomes equal to or higher than the first temperature.
(B) Operation when there is a cooling instruction when hot water is not being generated Operation when a weak cooling operation is instructed:
When the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 94 is operated. When the temperature detected by the temperature detector 59 is equal to or higher than the fourth temperature, the drain valve 73 is opened and drained, and the refrigerant circuit 94 is operated after the temperature detected by the temperature detector 59 is lower than the fourth temperature.
Operation when instructing strong cooling operation:
When the temperature detected by the temperature detector 39F is lower than the first temperature and the temperature detected by the temperature detector 59 is lower than the fourth temperature, the refrigerant circuit 95 is operated. When the detected temperature of the temperature detector 39F is equal to or higher than the first temperature or the detected temperature of the temperature detector 59 is equal to or higher than the fourth temperature, the refrigerant circuit 95 is operated after the drain valve 73 is opened and drained.

(C)湯の生成中に冷房の指示がある場合の動作
強冷房運転の指示の場合の動作:
湯の生成の運転は冷媒回路95の運転に徐々に移行される。
弱冷房運転の指示の場合の動作:
湯の生成の運転は、温度検出器59の検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に徐々に移行され、温度検出器39Aの検出温度が第二温度以上の場合、冷媒回路96と95の同時運転に徐々に移行される。
なお、冬期モードにおける湯の生成の運転は冷媒回路91の運転または冷媒回路91と96の同時運転である。
(D)冷房中に湯の生成の指示がある場合の動作
冷媒回路95の運転中に湯の生成指示がある場合の動作:
冷媒回路95の運転は継続される。
冷媒回路94の運転中に湯の生成指示がある場合の動作:
圧縮機31は低速運転から高速運転に移行され、冷媒回路94の運転は、温度検出器59の検出温度が第二温度未満の場合、冷媒回路91と95の同時運転に移行され、温度検出器59の検出温度が第二温度以上の場合、冷媒回路96と95の同時運転に移行される。
(E)暖房の指示がある場合の動作
ポンプ46と46Aと熱交換器44のファンが運転され、室内が暖房される。一方、熱交換器43により冷やされた水は流入口41から流路16Bに流入し、貯水槽11F内に中温水が生成される。なお、暖房で生成された中温水は、湯が生成される時に冷媒回路96が運転され、冷水に変えられるので冬期モードにおいても冷房給湯装置260の湯の生成の熱効率は高い。
(2)中間期モードと(3)冷房モードの動作は冷房給湯装置240の動作と同様である。但し、排水は排水弁73Aの代わりに排水弁73が開けられて行なわれる。
(C) Operation when there is a cooling instruction during hot water generation Operation when a strong cooling operation is instructed:
The hot water generation operation is gradually shifted to the operation of the refrigerant circuit 95.
Operation in the case of instructions for weak cooling operation:
The hot water generation operation is gradually shifted to simultaneous operation of the refrigerant circuits 91 and 95 when the temperature detected by the temperature detector 59 is lower than the second temperature, and the temperature detected by the temperature detector 39A is equal to or higher than the second temperature. The refrigerant circuits 96 and 95 are gradually shifted to simultaneous operation.
The operation for producing hot water in the winter mode is the operation of the refrigerant circuit 91 or the simultaneous operation of the refrigerant circuits 91 and 96.
(D) Operation when there is an instruction to generate hot water during cooling Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 95:
The operation of the refrigerant circuit 95 is continued.
Operation when there is an instruction to generate hot water during operation of the refrigerant circuit 94:
The compressor 31 is shifted from the low speed operation to the high speed operation, and the operation of the refrigerant circuit 94 is shifted to the simultaneous operation of the refrigerant circuits 91 and 95 when the temperature detected by the temperature detector 59 is lower than the second temperature. When the detected temperature 59 is equal to or higher than the second temperature, the refrigerant circuits 96 and 95 are shifted to simultaneous operation.
(E) When there is an instruction for heating, the operation pumps 46 and 46A and the fan of the heat exchanger 44 are operated, and the room is heated. On the other hand, the water cooled by the heat exchanger 43 flows into the flow path 16B from the inlet 41, and medium temperature water is generated in the water storage tank 11F. In addition, since the medium temperature water generated by heating is changed to cold water by operating the refrigerant circuit 96 when hot water is generated, the thermal efficiency of the hot water generation of the cooling hot water supply device 260 is high even in the winter mode.
The operations in the (2) intermediate period mode and (3) cooling mode are the same as the operations of the cooling hot water supply apparatus 240. However, drainage is performed by opening the drain valve 73 instead of the drain valve 73A.

従って、冷房給湯装置260は、湯の生成の指示により生成された湯を貯える容積と冷房の排熱を蓄える容積の割合を季節により変えることにより貯水槽11の容量を有効に活用し、貯水槽11のサイズを最小にできる。更に、冷房給湯装置260は、排水がある場合に中間期モードから冷房モードへ移行し、冷房の排熱量が所定の熱量により少ない場合に冷房モードから中間期モードへ移行するので気温の変動に柔軟に対応できる。更に冷房給湯装置260は、中温水の熱を吸収し、湯を生成するのでその湯の生成と冷房の熱効率は高く、一台の圧縮機を使用し、安価に構築可能であり、暖房により生成された中温水から湯を熱効率良く生成する。
以上、実施形態の例について詳細に説明したが、それらは本発明の技術的範囲を限定するものではない。
Therefore, the cooling water heater 260 effectively uses the capacity of the water storage tank 11 by changing the ratio of the volume for storing hot water generated by the instruction for generating hot water and the volume for storing exhaust heat of the cooling depending on the season. 11 sizes can be minimized. Further, the cooling water heater 260 shifts from the intermediate period mode to the cooling mode when there is drainage, and shifts from the cooling mode to the intermediate period mode when the exhaust heat amount of the cooling is less than a predetermined amount of heat. It can correspond to. Furthermore, since the cooling water heater 260 absorbs the heat of the medium temperature water and generates hot water, the generation of the hot water and the thermal efficiency of the cooling are high. The hot water is efficiently generated from the heated medium temperature water.
As mentioned above, although the example of embodiment was described in detail, they do not limit the technical scope of the present invention.

11 貯水槽、12 給湯口、13 給水口、14 中間口、15 流入口、16 流路、17 仕切り部材、18 流路分岐管、19 流通孔
21 潜熱蓄熱体、22 渦巻き管、23 コイル、24 分散器、25 分散管、25B 連結管、26 分散器接続口、26A 分散孔、27 分散板、28 垂直管、29 接続管
31 圧縮機、32 膨張器、33 34 37 熱交換器、35 バルブ、36 ポンプ、38 水循環路、39 温度検出器
41 流入口、43 44 熱交換器、46 ポンプ、47 熱媒体循環路、48 水循環路
51 圧縮機、52 膨張器、53 54 熱交換器、56 ポンプ、57 熱媒体循環路、58 水循環路、59 温度検出器
63 太陽熱収集器、64 熱交換器、66 ポンプ、67 熱媒体循環路、68 水循環路、69 温度検出器
71 排水口、72 排水管、73 排水弁、75A 気液分離器、75B インジェクション回路、75C 中間連結回路、76A 熱交換器、76B アキュームレータ、77A 気液分離器、77B エジェクタ
83 熱源、84 熱交換器、87 熱媒体循環路、89 温度検出器
91〜96 冷媒回路
110 貯水装置、130〜132 湯生成装置、140 暖房装置、150 冷房装置、160 集熱装置、170 排水装置、180 湯生成装置
210〜260 冷房給湯装置
310〜340 給湯装置
DESCRIPTION OF SYMBOLS 11 Water tank, 12 Hot water inlet, 13 Water inlet, 14 Intermediate inlet, 15 Inlet, 16 Flow path, 17 Partition member, 18 Flow branch pipe, 19 Flow hole 21 Latent heat storage body, 22 Swirl pipe, 23 Coil, 24 Disperser, 25 Dispersion tube, 25B Connecting tube, 26 Disperser connection port, 26A Dispersion hole, 27 Dispersion plate, 28 Vertical tube, 29 Connection tube 31 Compressor, 32 Expander, 33 34 37 Heat exchanger, 35 Valve, 36 pump, 38 water circuit, 39 temperature detector 41 inlet, 43 44 heat exchanger, 46 pump, 47 heat medium circuit, 48 water circuit 51 compressor, 52 expander, 53 54 heat exchanger, 56 pump, 57 Heat medium circuit, 58 Water circuit, 59 Temperature detector 63 Solar collector, 64 Heat exchanger, 66 Pump, 67 Heat medium circuit, 68 Water circuit, 69 Temperature detector 71 Drain port, 7 Drain pipe, 73 drain valve, 75A gas-liquid separator, 75B injection circuit, 75C intermediate connection circuit, 76A heat exchanger, 76B accumulator, 77A gas-liquid separator, 77B ejector 83 heat source, 84 heat exchanger, 87 heat medium circulation Road, 89 Temperature detector 91-96 Refrigerant circuit 110 Water storage device, 130-132 Hot water generation device, 140 Heating device, 150 Cooling device, 160 Heat collection device, 170 Drainage device, 180 Hot water generation device
210-260 Air-conditioning water heater 310-340 Water heater

Claims (1)

水で充填された貯水槽と、
前記貯水槽内の下部の水を取出し前記貯水槽の上部に戻すための湯生成水循環路と、
前記湯生成水循環路の途中に配置され、水流路に流れる水と冷媒流路に流れる冷媒との熱交換を行なう湯生成熱交換器と、
冷媒を圧縮する圧縮機と、前記湯生成熱交換器と、冷媒を膨張する第一膨張器と、冷媒に熱を伝達する熱伝達手段に冷媒を循環させて冷凍サイクルを形成する第一冷媒回路と、
前記圧縮機と、前記湯生成熱交換器と、冷媒を膨張する第二膨張器と、前記貯水槽内の所定の位置の下方の水の熱を冷媒に伝達する吸熱手段に冷媒を循環させて冷凍サイクルを形成する第二冷媒回路と、
前記圧縮機と、冷媒の熱を前記所定の位置の下方の水に伝達する放熱手段と、冷媒を膨張する第三膨張器と、冷媒と建物内の空気との熱交換を行なう建物熱交換手段に冷媒を循環させて冷凍サイクルを形成する第四冷媒回路と、
前記圧縮機と、前記湯生成熱交換器と、冷媒を膨張する第四膨張器または前記第一膨張器または前記第二膨張器または前記第三膨張器と、前記建物熱交換手段に冷媒を循環させて冷凍サイクルを形成する第五冷媒回路を備えることを特徴とする冷房給湯装置。
A water tank filled with water,
A hot water generation water circulation path for taking out water in the lower part of the water tank and returning it to the upper part of the water tank;
A hot water generation heat exchanger that is arranged in the middle of the hot water generation water circulation path and performs heat exchange between water flowing in the water flow path and refrigerant flowing in the refrigerant flow path;
A first refrigerant circuit that forms a refrigeration cycle by circulating a refrigerant to a compressor that compresses the refrigerant, the hot water generating heat exchanger, a first expander that expands the refrigerant, and a heat transfer means that transfers heat to the refrigerant When,
The refrigerant is circulated through the compressor, the hot water generating heat exchanger, a second expander that expands the refrigerant, and heat absorption means that transmits heat of water below a predetermined position in the water storage tank to the refrigerant. A second refrigerant circuit forming a refrigeration cycle;
The compressor, heat radiating means for transferring the heat of the refrigerant to the water below the predetermined position, a third expander for expanding the refrigerant, and a building heat exchanging means for exchanging heat between the refrigerant and the air in the building A fourth refrigerant circuit for circulating a refrigerant to form a refrigeration cycle;
The refrigerant is circulated to the compressor, the hot water generating heat exchanger, the fourth expander or the first expander or the second expander or the third expander for expanding the refrigerant, and the building heat exchange means. A cooling water heater having a fifth refrigerant circuit that forms a refrigeration cycle.
JP2010207698A 2010-09-16 2010-09-16 Air-conditioning water heater Expired - Fee Related JP4779052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207698A JP4779052B1 (en) 2010-09-16 2010-09-16 Air-conditioning water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207698A JP4779052B1 (en) 2010-09-16 2010-09-16 Air-conditioning water heater

Publications (2)

Publication Number Publication Date
JP4779052B1 true JP4779052B1 (en) 2011-09-21
JP2012063082A JP2012063082A (en) 2012-03-29

Family

ID=44798074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207698A Expired - Fee Related JP4779052B1 (en) 2010-09-16 2010-09-16 Air-conditioning water heater

Country Status (1)

Country Link
JP (1) JP4779052B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627626A (en) * 2016-03-25 2016-06-01 罗战东 Dual-energy driven heating and refrigeration hot water machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200706B2 (en) * 2013-06-28 2017-09-20 株式会社長府製作所 Heat supply equipment
JP6171907B2 (en) * 2013-12-10 2017-08-02 三菱電機株式会社 Air conditioning and hot water supply system
CN108286816A (en) * 2017-01-09 2018-07-17 芜湖美的厨卫电器制造有限公司 Electric heater and its control method
JP7097755B2 (en) * 2018-06-15 2022-07-08 三菱電機株式会社 Hot water heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053759A (en) * 1983-09-01 1985-03-27 松下電器産業株式会社 Heat pump hot-water supply air conditioner
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system
JP2005076964A (en) * 2003-08-29 2005-03-24 Hitachi Home & Life Solutions Inc Heat pump hot water supplier
JP2007232225A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Refrigerating cycle device
JP2010032112A (en) * 2008-07-29 2010-02-12 Sanden Corp Hot water supply device
JP2010144968A (en) * 2008-12-17 2010-07-01 Masahiro Mikami Heating device, hot water storage device, water heater, cooling device and composite device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053759A (en) * 1983-09-01 1985-03-27 松下電器産業株式会社 Heat pump hot-water supply air conditioner
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system
JP2005076964A (en) * 2003-08-29 2005-03-24 Hitachi Home & Life Solutions Inc Heat pump hot water supplier
JP2007232225A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Refrigerating cycle device
JP2010032112A (en) * 2008-07-29 2010-02-12 Sanden Corp Hot water supply device
JP2010144968A (en) * 2008-12-17 2010-07-01 Masahiro Mikami Heating device, hot water storage device, water heater, cooling device and composite device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627626A (en) * 2016-03-25 2016-06-01 罗战东 Dual-energy driven heating and refrigeration hot water machine
CN105627626B (en) * 2016-03-25 2017-11-10 广东瑞马热能设备制造有限公司 A kind of heating and refrigeration hot water machine with driven by two energy sources

Also Published As

Publication number Publication date
JP2012063082A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
CN104520653B (en) Air-conditioning equipment including the unit for increasing heating efficiency
CN104837658B (en) Heat pump for vehicle
CN102239372B (en) System for providing steam compression circulation and method for controlling steam compression circulation
CN107356021B (en) Heat pump air conditioning system and electric car
JP4779052B1 (en) Air-conditioning water heater
CN102326040A (en) Heat pump system
JP2006258343A (en) Air conditioning system
JP2013083421A (en) Hot water supply air conditioning system
JP2011512508A (en) Thermal energy storage and cooling system using multiple refrigerants and cooling loops with a common evaporator coil
US20100243202A1 (en) Hot water circulation system associated with heat pump
CN107327997A (en) Air-conditioning system
CN106352572A (en) Air conditioning system
US7707851B2 (en) Air conditioner
JP2020183857A (en) Heat pump system for electric vehicle and control method of the same
CN105509354B (en) Handpiece Water Chilling Units and heat pump unit
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2020004219A1 (en) Apparatus temperature adjusting device
CN101765703A (en) Rankine system with gravity-driven pump
CN107089113A (en) Vehicle air conditioner and the vehicle with it
JP2005214444A (en) Refrigerator
CN204787238U (en) Air can hot water machine
CN101936613B (en) Integrated heat exchange system
CN101004304A (en) Heat pump and compressor discharge pressure controlling apparatus for the same
CN110230882A (en) A kind of Trans-critical cycle CO using phase-changing energy-storing2Air-source system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees