JP3909310B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3909310B2
JP3909310B2 JP2003178860A JP2003178860A JP3909310B2 JP 3909310 B2 JP3909310 B2 JP 3909310B2 JP 2003178860 A JP2003178860 A JP 2003178860A JP 2003178860 A JP2003178860 A JP 2003178860A JP 3909310 B2 JP3909310 B2 JP 3909310B2
Authority
JP
Japan
Prior art keywords
water
hot water
refrigerant
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178860A
Other languages
Japanese (ja)
Other versions
JP2005016756A (en
Inventor
健一 齊藤
功一 福島
豊和 大川
哲信 岡村
仁彦 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2003178860A priority Critical patent/JP3909310B2/en
Publication of JP2005016756A publication Critical patent/JP2005016756A/en
Application granted granted Critical
Publication of JP3909310B2 publication Critical patent/JP3909310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯機に関わり、風呂追焚機能を有するヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯機は電気温水器と同様に大容量の貯湯タンクを設け、夜間の安価な割引電力を使って夜中にヒートポンプ回路で湯を沸き上げて貯湯タンクに貯蔵して置き、上記貯蔵した湯を日中に使う貯湯方式のものが一般的であった。
【0003】
しかし、上記貯湯方式においては、貯湯タンクの湯量が一定で、使用量の多い日は湯量不足となり、使用量の少ない日は、残り湯の湯冷めによるエネルギー損失となっていた。
【0004】
また、風呂使用の場合、浴槽への湯張り後、湯が冷めた場合は追い焚が必要となるが、従来の貯湯方式では貯湯タンクからの一方的な足し湯機能しかないため適切な対応ができなかった。
【0005】
上記の改善策として、追い焚機能を付加したヒートポンプ給湯機として特開2003−56904号公報(特許文献1)に開示されたものがある。
【0006】
特許文献1に記載されたヒートポンプ給湯機は、圧縮機で圧縮され高温高圧となった冷媒(二酸化炭素)が、冷媒-水熱交換器を有するヒートポンプ回路を循環することにより、ヒートポンプ回路内の冷媒から水に熱が移動し水が温められる。温められた水は貯湯タンクを介して循環するか、若しくは浴槽の水が循環する水-水熱交換器を介して循環する。貯湯タンクを加熱された水が循環することで、貯湯タンクの水は沸き上げられる。また、水-水熱交換器を加熱された水が循環することで、浴槽の冷めた湯を追焚きする。
【0007】
即ち、二酸化炭素を冷媒とすることによって、水-冷媒熱交換器において約90℃に水を加熱することができるため、貯湯タンクの水の沸き上げだけでなく、浴槽の水の追い焚もヒートポンプ回路で行うことを開示している。
【0008】
【特許文献1】
特開2003−56904号公報
【0009】
【発明が解決しようとする課題】
特許文献1に開示されたヒートポンプ給湯機は、蛇口を開くと上水道から水が貯湯タンクの下部に供され、この水によって貯湯タンク上部の高温の湯が押し出されてミキシング弁で上水道の冷水と混合されて適温にて給湯する。
【0010】
即ち、特許文献1のヒートポンプ給湯機は、夜間にのみヒートポンプ運転を行って貯湯タンクに高温水を満杯に溜めておき、その後はヒートポンプ運転を行なわず、貯湯タンク1杯の湯でもって風呂の湯張りや洗面所、台所等の給水全てをまかなうものである。
【0011】
そのため、実際の貯湯タンクは300〜450Lもある大きなものが使用される。CO2冷媒を使用すれば90℃もの高温水を貯湯できるが、高温な分だけ自然放熱によるエネルギー損失が大きくなる。
【0012】
このような大容量の貯湯タンクは、設置スペースや設置床面の充分な強度が必要となる。なぜなら、貯湯タンクの容量一杯に湯を溜めた場合、その質量は500kgにも達するため、設置場所の基礎工事を行なって充分な強度を確保しなければならず、アパートやマンションのベランダのような狭い場所や強度の不十分な場所に据付ることが困難となる。さらには、ヒートポンプ式給湯機を顧客の設置場所に運搬する際にもその費用や手間を多く要するものである。
【0013】
また、電気料金の設定を夜間割引設定にして夜中にヒートポンプ運転して、高温の湯にして貯湯タンクに蓄えておき、日中はヒートポンプ運転を原則行わず、貯湯タンクに溜めた湯を使用するという使い方をする。
【0014】
このため時には貯湯タンクの湯を使いきってしまい、直ぐには沸き上げることが出来ずに湯切れを起こすことがあった。また、周囲温度より高い温度の大量の湯を長時間貯蔵しておくため、貯湯タンクの大きな表面から放熱してエネルギーの損失となり、それによって温度が下がる分を夜間に余裕をもって温めておく必要があった。
【0015】
従って、特許文献1のヒートポンプ給湯機は、夜間割引料金によるコストメリットは有するものの、省エネ、地球温暖化の点においては課題が残されていた。
【0016】
そこで、ヒートポンプ給湯機における省エネ、地球温暖化を防ぐ一つの解として、できるだけ温水を貯めておかず、必要なときに必要な量の温水を供給する、言うなれば瞬間給湯方式がある。しかしながら、瞬間給湯方式のヒートポンプ装置を実現するには、加熱されていない上水を極短時間で加熱しなければならず、例えば圧縮機の大容量化、水-冷媒熱交換器の伝熱能力アップ等の課題がある。中でも、上水道の水圧で出湯させようとしたときに、伝熱能力を高めるために水が流れる水伝熱管を細くしたり長くすると、水伝熱管内の圧損が増加し、出湯時に充分な水圧が得られないという課題を見出した。
【0017】
本発明の目的は、上述の課題を解決して省エネに優れたヒートポンプ給湯機を提供することにある。
【0018】
【課題を解決するための手段】
前記目的を達成するために、本発明のヒートポンプ給湯機は、
圧縮機と、その圧縮機により圧縮された冷媒と水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とを、それぞれ冷媒管路で接続されたヒートポンプ冷媒回路と、
給水部から給水した水を前記水−冷媒熱交換器によって加熱して、当該加熱された温水を出湯端末に瞬間給湯する瞬間給湯回路と、
前記瞬間給湯回路の運転開始後、前記瞬間給湯回路からの給湯を過渡的に補助する補助タンクと、
前記瞬間給湯回路から分岐した分岐管に接続された風呂追い焚き用の水−水熱交換器と、
前記分岐管上で、前記瞬間給湯回路と前記水−水熱交換器との間に配設された水開閉弁と、を備え、
前記水開閉弁は、前記瞬間給湯回路を用いて前記出湯端末に瞬間給湯しているときには、閉じている、
構成としたものである。
【0019】
このような構成としたことにより、水-冷媒熱交換器で温められた水が蛇口や浴槽等の出湯端末までの経路上、出湯する湯水から不要なユニットへの熱移動を最小まで減らすことができ、省エネルギーでの運転を可能とする。
【0020】
水-冷媒熱交換器で所望の温度に高められた温水を出湯端末以外に引き回すときは、弁を開けて循環ポンプで出湯配管から支流へ引き込む構成とした。すなわち、浴槽に溜まった水の追い焚のときには、給湯回路から分岐した分岐管に対して弁を開け水-水熱交換器へ加熱された温水を循環ポンプで引き込み、また、補助タンク内の水を沸かすときには、給湯回路から分岐した分岐管に対して弁を開け水-冷媒熱交換器で加熱された温水を循環ポンプで引き込むことにより、ヒートポンプ回路で加熱された水からの伝熱漏洩を管路の構成で極力低くでき、効率よく運転することができる。
【0021】
また、風呂追焚用熱交換器である水−水熱交換器を、円筒管の内側に伝熱管を装着した2重管構造としたことにより、コンパクトな熱交換器とすることができると共に、浴槽循環水の流れる内側管の全外周を加熱循環水で加熱できるので、従来の別々の伝熱管を接触させる方式に較べ、遥かに伝熱効率を向上させることができる。
【0022】
また、ヒートポンプ運転開始直後に給湯回路により湯を出湯するときに、補助タンクに蓄えられた温水を合わせて給湯することによって、運転立上がり時の給水加熱不足を補うことができる。なお、ヒートポンプ運転立上がり時の給水加熱不足は1〜2分程度の短時間であり、補助タンクの大きさは従来貯湯タンクの1/3〜1/5以下の小さなもので充分である。それ故、本発明のヒートポンプ給湯機の初期据付時は、従来よりも早くタンクへの貯水が完了し、その沸き上げも短時間で可能なため、従来の深夜電力利用型よりも早く利用可能な状態で待機できるようになる。
【0023】
【発明の実施の形態】
以下、本発明の実施例を図1から図3を用いて説明する。図1に示されたヒートポンプ給湯機は、ヒートポンプ冷媒回路30、給湯回路40、および運転制御手段50を備えて構成されている。
【0024】
ヒートポンプ冷媒回路30は、二つの冷凍サイクルを備えている。それぞれのサイクルは、圧縮機1a、1b、凝縮器2a、2b、減圧装置3a、3b、蒸発器4a、4bが、それぞれ冷媒配管を介して順次接続されており、それぞれのサイクルの中には冷媒が封入されている。
【0025】
容量制御を可能とする圧縮機1a、1bは、多量の給湯を行なう場合に、大きな容量で運転される。圧縮機1a、1bはPWM制御、電圧制御(例えばPAM制御)及びこれらの組合せ制御により、低速回転(例えば2000回転/分)から高速回転(例えば8000回転/分)まで回転数制御される。
【0026】
水-冷媒熱交換器2は、冷凍サイクルにおいては凝縮器である冷媒側伝熱管2a、2b、及び給水側伝熱管2e、2fを備えている。例えば後述する構成により、冷媒側伝熱管2a、2bと給水側伝熱管2e、2fとの間で熱交換を行なう。
【0027】
蒸発器4a、4bは、空気と冷媒との熱交換を行なう空気-冷媒熱交換器である。
【0028】
除霜用電磁弁5a、5bは、備えられた電磁コイルに通電された間に開く開閉弁である。圧縮機1a、1bから吐出される高温高圧の冷媒ガスを、電磁弁5a、5bは蒸発器4a、4bの入口側にバイパスさせる。冬期に蒸発器4a、4bが着霜したとき、電磁弁5a、5bは開閉弁を開けることにより、圧縮機1a、1bから吐出される高温高圧の冷媒ガスが蒸発器4a、4bに冷媒配管を通って流れ込み霜を溶かす働きをする。
【0029】
給湯回路40は、貯湯、給湯、風呂湯張り、風呂追焚等を行なうために必要な水循環回路を、それぞれ管路を切り換えて実現する構成を備える。
【0030】
ヒートポンプ給湯回路は、本実施形態のヒートポンプ給湯機の主となる給湯回路である。上水道との接続口である給水金具6から取り込まれた上水は減圧弁7で減圧されてバイパス弁8に送られる。バイパス弁8は、水‐冷媒熱交換器2や補助タンク9に配水するだけでなく、出湯する湯水の温度調節のために分岐管2iに配水することが可能な比例弁である。このバイパス弁8から給水逆止弁23を通過した上水は、給水配管2cを経て給水伝熱管2e、2fで温められる。温められた水は、途中で熱交換流量調整弁11を介して給湯配管2dを通じ、その給湯配管2dと接続された出湯金具13からヒートポンプ給湯機の外部へ出湯する。それぞれの構成は水配管を介して順次接続されている。
【0031】
タンク給湯回路は補助タンク9を備え、この補助タンク9は、円筒状で縦長に形成された小容量のタンクで構成されおり、従来の貯湯方式給湯機に備えられた貯湯タンクに比べ1/3〜1/5程度の小さな貯湯タンクである。そして補助タンク9は、ヒートポンプ給湯回路によって供給される湯水の温度が低い場合に、ヒートポンプ給湯回路からの温水に混ぜることができる、ある程度高温の温水を貯留するものである。
【0032】
具体的には、補助タンク9に貯えられていた温水は、タンク流量調整弁12が開くことで分岐管2hを通じて出湯配管2dに流れ出る。このとき温水が補助タンク9から送り出されるのは、給水金具6を通じて供給された上水が、減圧弁7及びバイパス弁8を介して水配管を通じて調整された水圧を伴い補助タンク9に注入されるからである。
【0033】
補助タンク9内の水を温めるときに使用される貯湯回路は、補助タンク9と水‐冷媒熱交換器2との間で構成される。すなわち、出湯配管2dから分岐した分岐管2hと接続するタンク流量調整弁12を開放し、タンク循環ポンプ10は補助タンク9の下部から水を引き出す。その引き出された水は給水配管2cを経て給水伝熱管2e、2fで熱交換される。給湯配管2dを通った温水は、熱交換流量調整弁11とタンク流量調整弁12を通過して補助タンク9へ導かれる。この貯湯回路は、補助タンク9内の湯水を再加熱、言い換えると補助タンク9内の温水を追焚きする場合にも使用される。
【0034】
浴槽へ湯水を供給する風呂湯張り回路は、基本的な構成はヒートポンプ給湯回路と同じで、出湯金具13から湯水を出湯する代わりに出湯配管2dから分岐した分岐管2jに湯水が配水される。その分岐管2jと接続する風呂注湯弁14を開けることで、風呂センサ金具15を通過して風呂出湯金具16と接続する、浴槽18に湯水が注入される。当然ながら浴槽18へ湯張りするときに、水−冷媒熱交換器2からの直接給湯と共に、補助タンク9内の湯量が最小必要量以下にならない範囲において補助タンク9から浴槽18への補助タンク給湯を行なう。
【0035】
浴槽18内の温水を再び温める風呂追焚回路は、浴槽18と水−水熱交換器20との間の水管路である。浴槽18から、入出湯金具17を通じて風呂循環ポンプ19で引き出された水は、風呂伝熱管20bに送られて熱交換により加熱され、風呂センサ金具15を通過の際に湯水の温度が測定され後、入湯金具16を通じて浴槽18に供給される。
【0036】
次に、本実施形態におけるヒートポンプ給湯機の制御に関して説明する。ヒートポンプ給湯機の運転制御手段50は、台所リモコン51及び風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止並びに圧縮機1a、2bの回転数制御を行なうと共に、タンク循環ポンプ10、風呂循環ポンプ19の運転・停止及びバイパス弁8、熱交換流量調整弁11、タンク流量調整弁12、注湯電磁弁14、水開閉弁21を制御することにより、貯湯運転、給湯運転、風呂湯張り運転、追焚運転を行なうものである。
【0037】
運転制御手段50は、ヒートポンプ回路の運転開始直後には、加熱立上げ時間を早めるため、通常の給湯運転速度よりも速い高速回転数で運転するよう制御するのが好ましい。また、出湯端末における給湯使用後は、タンク貯湯運転を行ってから運転停止する毎回貯湯運転機能を有している。
【0038】
次に、本実施例におけるヒートポンプ給湯機に設けられた他の制御関連機器について説明する。風呂センサ金具15により浴槽18への給湯温度を検出するのと同様に水−冷媒熱交換器2で加熱された水や補助タンク9に蓄えられた水及び出湯する温水等の温度状態やその他の各部の温度状態を検出する温度センサ、圧縮機1a、2bの吐出圧力を検知する圧力センサ、浴槽17内の水位を検出する水位センサ等(いずれも図示せず)が設けられ、各検出信号は運転制御手段50に入力される。運転制御手段50はこれらの信号に基づいて各機器を制御する。
【0039】
水開閉弁21は、給湯回路から分岐した分岐管2gとの接続位置であって、水-冷媒熱交換器2と風呂熱交換器20の間の位置に設けられている。風呂追焚時以外は風呂熱交換器20への水回路を閉じて水-冷媒熱交換器2から風呂熱交換器20への熱の漏洩を防ぐ。例えば、この水開閉弁21が設けられてなく、給湯回路の出湯配管2dと水‐水熱交換器である風呂熱交換器20とが管路内の水を通じて連続していると、給湯回路から分岐管2gへ水が流れていなくとも熱的に連続しているため、風呂熱交換器20から熱漏洩が進むことになる。同様に、出湯配管2dから分岐する分岐管2h、2i、2jにおいても、それらの先で接続するタンク流量調節弁12、バイパス弁8および風呂注湯弁14が必要に応じて開閉する管路構成により、給湯時の熱漏洩が非常に少なくなっている。
【0040】
また、風呂逆止弁22、給水逆止弁23は、それぞれ一方向にのみ水を流し、逆流を防止するものである。風呂注湯弁14にも同様の機能が求められる。すなわち、分岐管2jまでは上水や上水を温めた水であるが、風呂注湯弁14の先には浴槽18の水があり、分岐管2jよりも上流側に浴槽18の水が混入することはあってはならないからである。
【0041】
逃し弁24は、補助タンク内の湯圧が所定以上になった場合に作動して圧力に対する装置保護の働きをするものである。
【0042】
水-冷媒熱交換器2の実施例を図2により説明する。水-冷媒熱交換器2には、2本の冷媒伝熱管2a、2bと、2本の給水伝熱管2e、2fとがあり、冷媒伝熱管2a、2bと給水電熱管2e、2fを交互に接触させて円筒状に巻き上げた構造をしている。
【0043】
給水伝熱管2e、2fは、水−冷媒熱交換器2内にあって、給水金具6を通じて取り込んだ水または補助タンク9からの水が通る給水配管2cと、水−冷媒熱交換器2で加熱された水が通る出湯配管2dとの間を並列に2本に分けられた管路である。1本の場合に較べ、給水伝熱管2e、2fの通水面積及び冷媒伝熱管2a、2bとの接触面積が2倍となることにより、個々の長さを1/2にすることができ、通水時の内部抵抗を1/4に低減することことができる。従って、通水時の水-冷媒熱交換器2の内部圧損も1本の場合に比べて1/4になると共に、全体の高さを低くでき、製作、収納が容易になる。
【0044】
特にガスを用いた瞬間給湯の如き瞬間給湯をヒートポンプを用いて行なう場合に、給水源の水道圧によって水循環を行なおうとする。しかし水-冷媒熱交換器2の内部圧損が直接通水時の抵抗となって、出湯圧力にマイナスとなる。例えば、水道圧が、200kPaの場合、従来の水-冷媒熱交換器において100kPaの圧損があると、出湯圧力は100kPaとなり、水圧低下、出湯量不足の恐れがある。しかし、本実施例における水-冷媒熱交換器2の場合は、圧損が1/4の25kPaとなるため、出湯圧力は175kPaとなり、充分な水圧、出湯量を維持することができる。浴槽の水を追い焚きする機能を備えた上水を直接ヒートポンプで加熱して給湯するヒートポンプ給湯機において、本実施例における水-冷媒熱交換器2の構造は水と冷媒の熱交換を行うのに適し、風呂の追焚用熱交換器を水−冷媒熱交換器から分離することで、より水−冷媒熱交換器の熱交換効率が高まる。
【0045】
次に、風呂追焚用熱交換器20の一実施例を図3により説明する。風呂追焚用熱交換器20は2重管構造とし、銅管を用いた温水伝熱管20aの内側に、風呂水伝熱管20bにより仕切られた空間20cを設けられている。この空間20cには、温水伝熱管20aの両端側に接続した温水配管20dにより水-冷媒熱交換器2で加熱された温水が流れる。浴槽内の湯が流れる風呂水伝熱管20bは、温水伝熱管20aの両先端部20fから導出する風呂水配管20eと接続している。温水伝熱管20aは、一般に使用される銅直管で、その両先端部20fを絞って風呂水配管2eの外側に接合し密閉する。風呂水伝熱管20bは、温水との接触面積を大きく取るため、断面円周を凹凸状、星型状、または多葉管等にする。温水配管20dは、温水伝熱管20aの両端側内部に開口して、温水の流れる空間20cと導通する。
【0046】
風呂追焚用熱交換器20は、以上の如き2重管構造とすることにより、被加熱体である浴槽18内の水が流れる風呂水伝熱管20bが、加熱体である温水の流通空間内に設けられている。そのため風呂追焚用熱交換器20は、風呂水伝熱管20bがその全外周で伝熱され、コンパクトで伝熱性の良い水−水熱交換器とすることができた。
【0047】
なお、従来の風呂追焚用熱交換器においては、冷媒伝熱管と風呂水伝熱管で熱交換を行うため、万一内側管が破損した場合、高圧冷媒が水回路に浸入して給湯機の中の飲料水となる上水系統に影響を与える恐れがあり、一方の管が他方の内側を貫くような2重管構造は採用できず、図2に示すように冷媒管と水配管はそれぞれ独立した配管構造としなければならなかった。
【0048】
又、この風呂追焚熱交換器20は次の点にも考慮している。即ち風呂水の循環水には不純物が含まれる可能性がある。この風呂水を空間20C側を流すと管表面の凹凸で不純物がひっかかり詰まりの原因になり兼ねない。従って、本実施例においては、この空間2Cには水冷媒熱交換器2を経た温水を流すようにしたものである。
【0049】
即ち、本発明の実施形態において、風呂追焚用熱交換器20と水-冷媒熱交換器2とを分離し、加熱循環水と風呂循環水との水−水熱交換を行うことにより2重管構造の採用が可能となったということができる。
【0050】
以上述べた構成により、本実施例におけるヒートポンプ給湯機は、給湯使用開始と同時にヒートポンプ運転を開始し、水-冷媒熱交換器2で沸上げた湯を直接出湯端末に供給可能とし、また、浴槽18の湯を2重管構造の風呂用熱交換器20で追焚きし、省エネ、温暖化防止効果を得るものである。
【0051】
次に、本ヒートポンプ給湯機の運転動作について、図1のヒートポンプ回路30及び給湯回路40を参照しながら図4〜図7のフローチャートに基づいて説明する。
【0052】
図4は、据付時の運転動作を示すフローチャートの一実施例である。ヒートポンプ給湯機は、製造場所から運搬されて使用者の希望する設置場所に据付られ(ステップ60)、給水金具6が水道等の給水源に接続され給水源の元栓が開放される(ステップ61)と、給水源から給水が開始され(ステップ62)、水は減圧弁7によって一定圧力に減圧調整された後、貯湯タンク9及び水-冷媒熱交換器2並びに各水配管内に流入し満水状態になるまで給水を続ける(ステップ63)。
【0053】
なお、ヒートポンプ給湯機の据付時の各機器は次のような初期状態に設定されている。バイパス弁8は補助タンク9側が開で出湯金具13側である分岐管2i側が閉状態、熱交換流量調整弁11、タンク流量調整弁12、水開閉弁21はいずれも開状態、風呂注湯弁14は閉状態となっている。
【0054】
次にステップ63で満水が確認された場合に給水完了と判断し、電源スイッチが投入される(ステップ64)。すると運転制御手段50の制御によりヒートポンプ冷媒回路30および給湯回路40の運転が開始され、タンク貯湯運転が行なわれる(ステップ65)。このタンク貯湯運転では、圧縮機1a、1bの運転が開始され、圧縮機1a、1b内のガス状冷媒が圧縮加熱され高温高圧の冷媒となって水-冷媒熱交換器2に送り込まれる。
【0055】
これによって、水-冷媒熱交換器2では、冷媒伝熱管2a、2b内を流れる高温冷媒と給水伝熱管2e、2f内を流れる水とが熱交換し、冷媒は放熱し、水は加熱される。放熱された冷媒は減圧装置3a、3bで減圧され、更に蒸発器4a、4bで膨脹蒸発してガス状となり再び圧縮機1a、1bに戻る。このヒートポンプ運転を続けることにより、水-冷媒熱交換器2内を通過する水が加熱される。
【0056】
タンク貯湯運転においては、ヒートポンプ運転と共に、貯湯回路においてタンク循環ポンプ10の運転が開始され、補助タンク9の下部の通水口から引き出された水は、タンク循環ポンプ10、水-冷媒熱交換器2、熱交換流量調整弁11、そしてタンク流量調整弁12を経て、補助タンク9へ循環する。
【0057】
これにより、水-冷媒熱交換器2で加熱された温水が補助タンク9の上部より貯湯されてゆき、補助タンク9全体が沸き上がった状態に達すると貯湯完了と判定し(ステップ66)、運転を停止する(ステップ67)。
【0058】
なお、タンク満水判定は、例えば水位センサや圧力センサ等で満水状態を検知して判定を行い、貯湯完了判定は、例えばサーミスタで補助タンク9の上中下各部の水温を検知して判定するものである。(図示せず)
図5は、湯水使用時の動作を示すフローチャートの一実施例である。
【0059】
出湯端末で蛇口が開けられ湯が使われる(ステップ70)と、運転制御手段50は、圧縮機1a、1bを起動させヒートポンプ回路30の運転を開始すると共に、給水金具6、減圧弁7、バイパス弁8、給水逆止弁23、水-冷媒熱交換器2、熱交換流量調整弁11、出湯金具13の給湯回路により瞬間給湯運転(ステップ71)を行なう。同時に、給水金具6、減圧弁7、バイパス弁8、貯湯タンク9、タンク流量調整弁12、出湯金具13の給湯回路によりタンク給湯運転を行なう(ステップ77)。
【0060】
ここで、ヒートポンプ冷媒回路30は、圧縮機1a、1bで圧縮された高温冷媒を水-冷媒熱交換器2に送り込み、給水配管2cから流入する水を加熱して給湯配管2dへ流出するが、運転立ち上り時は水-冷媒熱交換器2に送り込まれてくる冷媒が充分に高温高圧となり切らず温度が低く、かつ水-冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が充分でない。時間の経過と共に冷媒は高温高圧となり、それに従って発生する凝縮冷媒熱が増加し、水への加熱能力が増してゆく。
【0061】
しかし、ヒートポンプ運転の加熱能力が高温安定状態に達するまでの時間は通常約5、6分掛かる。そこで運転制御手段50は、運転開始直後の高温安定状態に達するまで、圧縮機の回転数を通常より高速回転にして運転制御し、先に述べた水伝熱管を水−冷媒熱交換器2内で複数路を並列に設けたことの相乗効果により、本実施例では立ち上がり時間を約1〜2分程度にすることができた。また、ヒートポンプ回路が安定するまで必要な湯水を貯湯する補助タンクの充分なる小形化を図れたと共にヒートポンプを用いた瞬間給湯方式を実現可能とするものである。
【0062】
そして、運転開始直後の所定時間(約1〜2分程度)補助タンクから湯を供給するタンク給湯運転を行なった後は、運転制御手段50が動作してタンク給湯運転を停止して、瞬間給湯運転のみに切換えられる(ステップ72、78、79)。このステップ78のタンク給湯判定は、ヒートポンプ回路の運転時間を計測する他に実際に出湯配管2dを流れる湯水の温度に基づいて判定しても良い。
【0063】
このように運転開始時のみ補助タンク9から過渡的に給湯し、その後は水-冷媒熱交換器2で加熱した温水を直接給湯するようにしているので、運転立ち上がり時の加熱遅れを解消できると共に、補助タンク9の容量を従来と比較して格段に小さくできる。なお、水-冷媒熱交換器2での加熱能力を出来るだけ速く安定状態まで上昇させて、補助タンク9の湯を使用する過渡的なタンク給湯運転の時間を短縮することが補助タンク9の容量を一層小さくすることに繋がる。
【0064】
そのためには、ヒートポンプ冷媒回路30の能力、特に圧縮機出力を従来一般に用いられている5kW程度より3倍以上の15kW程度まで大きくすることが望ましいが、新規圧縮機の開発が必要であるばかりでなく、ヒートポンプ冷媒回路30の各部品共新規検討が必要となり、極めて困難である。そこで本発明の一実施例においては、これまでの説明の如く2個の圧縮機を使用した2サイクルヒートポンプ方式とし、従来技術の活用と、実績による信頼性を確保したものである。
【0065】
なお、運転制御手段50は、補助タンク9の残湯量が所定値以下になった時には、タンク給湯運転を停止し、瞬間給湯運転のみにする(ステップ78,79)。
【0066】
次に、湯水使用が終了して出湯端末の蛇口が閉じられる(ステップ80)と、湯水使用直後でタンク給湯運転とヒートポンプ給湯運転が行われている場合は、ヒートポンプ給湯運転及びタンク給湯運転の両方を停止する。タンク給湯運転が停止していてヒートポンプ給湯運転のみであれば瞬間給湯運転を停止する。(ステップ73、79)
更に運転制御手段50は、タンク給湯運転及びヒートポンプ給湯運転を共に停止した後、必ずタンク貯湯運転を開始し(ステップ74)、サーミスタ等によって貯湯完了を検知し貯湯完了を判定した(ステップ75)後に運転を終了する(ステップ76)。
【0067】
但し、サーミスタによるタンク貯湯状態の検知は、常時行われており、極めて短時間使用のためヒートポンプ湯運転停止後でも補助タンクに湯温、湯量共に貯湯完了状態とほぼ同等に残っている場合は貯湯完了と判定されタンク貯湯運転は行われない。
【0068】
以上によれば、運転制御手段50には、あらゆる運転において目的とする運転を終了した後に、必ず貯湯完了するまでタンク貯湯運転を行なう毎回貯湯運転機能を有しているので、貯湯タンクには常に所定温度の湯が満杯になっており、運転立上がり時の湯温低下や使用途中の湯切れの心配が解消できる。
【0069】
図6は、風呂自動運転による湯張り動作の一実施例を示すフローチャートである。風呂自動ボタンを押してONしておき(ステップ85)、セット時間が来ると、風呂給湯運転(ステップ87)と同時にタンク給湯運転(ステップ92)を行う。風呂給湯運転は、図5にて説明したヒートポンプ給湯運転を行い風呂浴槽18に給湯する。
【0070】
即ち、ヒートポンプ運転開始直後の2分前後の間は風呂給湯運転とタンク貯湯運転を同時に行い、風呂給湯温度が安定状態に達すると、タンク給湯運転を停止(ステップ93、94)し、風呂給湯運転のみとなる。また、風呂給湯運転中は、風呂給湯温度と浴槽内湯量を検知し続け、浴槽内に所定温度の湯が所定湯量に達すると風呂給湯運転を停止する。(ステップ89,90,91)
図7は、風呂自動運転による風呂追焚の一実施例を示すフローチャートである。風呂自動ボタンを押してONしておく(ステップ95)と、風呂給湯後は、所定時間(例えば30分)毎に浴槽内の湯温及び湯量を検知(ステップ96)し、湯温または湯量が所定値外になっている場合は、風呂追焚運転(ステップ97)を行って、湯温及び湯量を所定値内にして風呂運転を停止する。(ステップ98〜101)
以上説明したように、本発明の各実施形態によれば、水―冷媒熱交換器と風呂用水-水熱交換器を分けて、水-冷媒熱交換器から出湯端末までの給湯回路を独立させたことにより、熱損失が少ないヒートポンプによる加熱出湯を可能にできた。
【0071】
また、水-冷媒熱交換器と風呂用熱交換器を分離することにより、水-冷媒熱交換器と風呂用熱交換器のそれぞれを最適構造とすることができ、ヒートポンプによる水加熱運転時の立ち上がり特性を向上させ、必要な時のみ運転し必要な温度の湯を必要な量だけ供給する瞬間給湯方式をヒートポンプ回路で実現可能とし、貯湯タンクの大幅な小形化、省エネ等の効果を得ることができた。
【0072】
また、水-冷媒熱交換器から出湯端末までの給湯回路上ではない分岐部分に風呂用熱交換器と接続する水開閉弁を設けることにより、風呂追焚時以外の水-冷媒熱交換器から風呂用熱交換器への熱損失を防止することができる。
【0073】
【発明の効果】
本発明によれば、省エネに優れたヒートポンプ給湯機を提供することができる。
【0074】
【図面の簡単な説明】
【図1】 本発明のヒートポンプ給湯機におけるヒートポンプ冷媒回路、貯給湯回路、及び部品の概略構成の一実施例を示す模式図である。
【図2】 本発明の一実施例を示す水-冷媒熱交換器の構造図である。
【図3】 本発明の一実施例を示す風呂用熱交換器の構造図である。
【図4】 本発明のヒートポンプ給湯機における、据付及び補助タンク沸上げ時の動作の一実施例を示すフローチャートである。
【図5】 本発明のヒートポンプ給湯機における、給湯使用時の動作の一実施例を示すフローチャートである。
【図6】 本発明のヒートポンプ給湯機における、風呂湯張り及び風呂追焚時の動作の一実施例を示すフローチャートである。
【図7】 図7は、風呂自動運転による風呂追焚の一実施例を示すフローチャートである。
【符号の説明】
1a,1b…圧縮機 2…水-冷媒熱交換器 2a,2b…冷媒伝熱管 2c…給水配管 2d…給湯配管 2e,2f…給水伝熱管 3a,3b…減圧装置 4a,4b…蒸発器 5a,5b…除霜用電磁弁 6…給水金具 7…減圧弁 8…バイパス弁 9…補助タンク 10…タンク循環ポンプ 11…熱交換流量調整弁 12…タンク流量調整弁 13…出湯金具 14…風呂注湯弁 15…風呂センサ金具 16…風呂出湯金具 17…入出湯金具 18…浴槽 19…風呂循環ポンプ 20…風呂熱交換器 20a…温水電熱管 20b…風呂水伝熱管21…水開閉弁 22…風呂逆止弁 22…給水逆止弁 24…逃がし弁 30…ヒートポンプ冷媒回路 40…給湯回路 50…運転制御手段 51…台所リモコン 52…風呂リモコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater, and relates to a heat pump water heater having a bath chasing function.
[0002]
[Prior art]
A conventional heat pump water heater has a large-capacity hot water storage tank, just like an electric water heater, and uses cheap discount electricity at night to boil hot water in the heat pump circuit and store it in the hot water storage tank. A hot water storage system that uses hot water during the day was common.
[0003]
However, in the above hot water storage system, the amount of hot water in the hot water storage tank is constant, the amount of hot water is insufficient on days when the amount of use is large, and the amount of energy lost due to cooling of the remaining hot water on days when the amount of use is small.
[0004]
In addition, in the case of bath use, after hot water is filled in the bathtub, if the hot water cools down, it is necessary to retreat, but the conventional hot water storage system has only one-sided hot water function from the hot water storage tank, so it can respond appropriately. could not.
[0005]
As the above improvement measures, there is one disclosed in Japanese Patent Application Laid-Open No. 2003-56904 (Patent Document 1) as a heat pump water heater to which a chasing function is added.
[0006]
In the heat pump water heater described in Patent Document 1, the refrigerant (carbon dioxide) that has been compressed by the compressor and becomes high temperature and high pressure circulates in the heat pump circuit having the refrigerant-water heat exchanger, whereby the refrigerant in the heat pump circuit is obtained. Heat is transferred from water to water, warming the water. The warmed water circulates through a hot water storage tank or circulates through a water-water heat exchanger through which the water in the bathtub circulates. The heated water circulates in the hot water tank, so that the water in the hot water tank is boiled. In addition, the heated water circulates through the water-water heat exchanger, thereby chasing the cold water in the bathtub.
[0007]
That is, by using carbon dioxide as a refrigerant, water can be heated to about 90 ° C. in a water-refrigerant heat exchanger, so that not only boiling water in hot water storage tanks but also replenishing water in bathtubs is a heat pump. It is disclosed to do with a circuit.
[0008]
[Patent Document 1]
JP 2003-56904 A
[0009]
[Problems to be solved by the invention]
In the heat pump water heater disclosed in Patent Document 1, when the faucet is opened, water is supplied from the water supply to the lower part of the hot water storage tank, and hot water in the upper part of the hot water storage tank is pushed out by this water and mixed with the cold water of the water supply by the mixing valve. The hot water is supplied at an appropriate temperature.
[0010]
That is, the heat pump water heater of Patent Document 1 performs heat pump operation only at night to store hot water in a hot water storage tank, and then does not perform heat pump operation, and bath water with a full hot water storage tank. It covers all water supply for upholstery, toilets, kitchens, etc.
[0011]
Therefore, an actual hot water storage tank having a large capacity of 300 to 450 L is used. If CO2 refrigerant is used, hot water as high as 90 ° C. can be stored, but energy loss due to natural heat dissipation increases as the temperature increases.
[0012]
Such a large-capacity hot water storage tank requires sufficient strength of the installation space and the installation floor. Because, when hot water is stored to the full capacity of the hot water storage tank, the mass reaches 500 kg, so the foundation construction at the installation site must be done to ensure sufficient strength, such as the verandas of apartments and apartments. It becomes difficult to install in a narrow place or a place with insufficient strength. Furthermore, when transporting the heat pump type hot water heater to the installation site of the customer, much cost and labor are required.
[0013]
In addition, the electricity rate is set at night discount and the heat pump is operated at night, and hot water is stored in the hot water storage tank. During the day, the heat pump is not operated in principle, and the hot water stored in the hot water storage tank is used. Use it.
[0014]
For this reason, sometimes the hot water in the hot water storage tank was used up, and it was not possible to boil it up immediately, causing hot water to run out. Also, in order to store a large amount of hot water at a temperature higher than the ambient temperature for a long time, heat is dissipated from the large surface of the hot water storage tank, resulting in energy loss. there were.
[0015]
Therefore, although the heat pump water heater of patent document 1 has the cost merit by night discount charge, the subject remained in the point of energy saving and global warming.
[0016]
Therefore, as one solution to prevent energy saving and global warming in the heat pump water heater, there is an instantaneous hot water supply method in which hot water is not stored as much as possible and a necessary amount of hot water is supplied when necessary. However, in order to realize an instantaneous hot water supply type heat pump device, unheated clean water must be heated in a very short time. For example, the capacity of the compressor is increased and the heat transfer capacity of the water-refrigerant heat exchanger is increased. There are issues such as up. In particular, when trying to discharge hot water at the water pressure of the water supply, if the water heat transfer tube through which water flows is made narrower or longer in order to increase heat transfer capacity, the pressure loss in the water heat transfer tube will increase, and sufficient water pressure will be provided at the time of hot water discharge. I found a problem that I could not obtain.
[0017]
  The object of the present invention is to save energy by solving the above-mentioned problems.NeThe object is to provide an excellent heat pump water heater.
[0018]
[Means for Solving the Problems]
  In order to achieve the above object, the heat pump water heater of the present invention comprises:
  A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and water, a decompression device that decompresses the heat-exchanged refrigerant, and heat exchange between the decompressed refrigerant and air An evaporator for performing a heat pump refrigerant circuit respectively connected by a refrigerant line;
  An instantaneous hot water supply circuit that heats water supplied from a water supply unit by the water-refrigerant heat exchanger and instantaneously supplies the heated hot water to a hot water outlet terminal;
  After the start of operation of the instantaneous hot water supply circuit, an auxiliary tank that transiently assists hot water supply from the instantaneous hot water circuit,
  A water-water heat exchanger for reheating a bath connected to a branch pipe branched from the instantaneous hot water supply circuit;
  A water on-off valve disposed between the instantaneous hot water supply circuit and the water-water heat exchanger on the branch pipe;
  The water on-off valve is closed when instantaneous hot water is supplied to the hot water terminal using the instantaneous hot water supply circuit,
It is a configuration.
[0019]
By adopting such a configuration, the water heated by the water-refrigerant heat exchanger can reduce the heat transfer from the hot water discharged to the unnecessary unit to the minimum on the route to the hot water outlet terminal such as a faucet or bathtub. This enables energy-saving operation.
[0020]
When the hot water heated to a desired temperature by the water-refrigerant heat exchanger is routed outside the hot water terminal, the valve is opened and the circulation pump draws the hot water from the hot water piping to the branch. That is, when reserving water accumulated in the bathtub, the valve is opened to the branch pipe branched from the hot water supply circuit, and hot water heated to the water-water heat exchanger is drawn by the circulation pump, and the water in the auxiliary tank is also drawn. When boiling water, the valve is opened on the branch pipe branched from the hot water supply circuit, and hot water heated by the water-refrigerant heat exchanger is drawn in by the circulation pump, so that heat transfer leakage from the water heated by the heat pump circuit is piped. The road configuration can be made as low as possible and can be operated efficiently.
[0021]
In addition, the water-water heat exchanger, which is a heat exchanger for bath remembrance, can be a compact heat exchanger by adopting a double tube structure in which a heat transfer tube is mounted inside a cylindrical tube. Since the entire outer periphery of the inner tube through which the bath circulating water flows can be heated with the heated circulating water, the heat transfer efficiency can be improved far more than in the conventional method in which separate heat transfer tubes are brought into contact with each other.
[0022]
Further, when hot water is discharged from the hot water supply circuit immediately after the start of the heat pump operation, the hot water stored in the auxiliary tank is supplied together to supply hot water, so that the shortage of water supply heating at the start of operation can be compensated. Insufficient feed water heating at the start of heat pump operation is a short time of about 1 to 2 minutes, and the size of the auxiliary tank is as small as 1/3 to 1/5 that of a conventional hot water storage tank. Therefore, at the time of initial installation of the heat pump water heater of the present invention, the water storage in the tank is completed earlier than before, and the boiling can be done in a short time, so that it can be used earlier than the conventional midnight power utilization type. You can wait in the state.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. The heat pump water heater shown in FIG. 1 includes a heat pump refrigerant circuit 30, a hot water supply circuit 40, and operation control means 50.
[0024]
The heat pump refrigerant circuit 30 includes two refrigeration cycles. In each cycle, the compressors 1a and 1b, the condensers 2a and 2b, the decompression devices 3a and 3b, and the evaporators 4a and 4b are sequentially connected via refrigerant pipes. Is enclosed.
[0025]
The compressors 1a and 1b capable of capacity control are operated with a large capacity when a large amount of hot water is supplied. The compressors 1a and 1b are controlled in rotational speed from low speed rotation (for example, 2000 rotations / minute) to high speed rotation (for example, 8000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof.
[0026]
The water-refrigerant heat exchanger 2 includes refrigerant side heat transfer tubes 2a and 2b and feed water side heat transfer tubes 2e and 2f which are condensers in the refrigeration cycle. For example, heat exchange is performed between the refrigerant side heat transfer tubes 2a and 2b and the water supply side heat transfer tubes 2e and 2f by a configuration described later.
[0027]
The evaporators 4a and 4b are air-refrigerant heat exchangers that perform heat exchange between air and the refrigerant.
[0028]
The defrosting electromagnetic valves 5a and 5b are open / close valves that open while the electromagnetic coil provided is energized. The solenoid valves 5a and 5b bypass the high-temperature and high-pressure refrigerant gas discharged from the compressors 1a and 1b to the inlet side of the evaporators 4a and 4b. When the evaporators 4a and 4b are frosted in winter, the solenoid valves 5a and 5b open the on-off valves so that the high-temperature and high-pressure refrigerant gas discharged from the compressors 1a and 1b is connected to the evaporators 4a and 4b with refrigerant piping. It works by flowing through and melting frost.
[0029]
The hot water supply circuit 40 has a configuration that realizes a water circulation circuit necessary for hot water storage, hot water supply, hot water bathing, bath bathing, and the like by switching pipes.
[0030]
The heat pump hot water supply circuit is a main hot water supply circuit of the heat pump water heater of this embodiment. The water taken in from the water supply fitting 6 which is a connection port with the water supply is depressurized by the pressure reducing valve 7 and sent to the bypass valve 8. The bypass valve 8 is a proportional valve that not only distributes water to the water-refrigerant heat exchanger 2 or the auxiliary tank 9 but also distributes water to the branch pipe 2i for temperature adjustment of hot water to be discharged. The clean water that has passed through the water supply check valve 23 from the bypass valve 8 is warmed by the water supply heat transfer pipes 2e and 2f through the water supply pipe 2c. The warmed water is discharged from the heat pump water heater to the outside of the heat pump water heater 13 through the hot water supply pipe 2d via the heat exchange flow rate adjustment valve 11 and from the hot metal fitting 13 connected to the hot water supply pipe 2d. Each configuration is sequentially connected through a water pipe.
[0031]
The tank hot water supply circuit includes an auxiliary tank 9, and this auxiliary tank 9 is formed of a cylindrical and small-sized tank formed in a vertically long shape, and is 1/3 of the hot water storage tank provided in a conventional hot water storage type hot water supply machine. It is a small hot water storage tank of ~ 1/5. And the auxiliary | assistant tank 9 stores the hot water of a certain high temperature which can be mixed with the warm water from a heat pump hot-water supply circuit, when the temperature of the hot water supplied by a heat pump hot-water supply circuit is low.
[0032]
Specifically, the hot water stored in the auxiliary tank 9 flows out to the hot water discharge pipe 2d through the branch pipe 2h when the tank flow rate adjusting valve 12 is opened. At this time, the warm water is sent out from the auxiliary tank 9 because the clean water supplied through the water supply fitting 6 is injected into the auxiliary tank 9 with the water pressure adjusted through the water pipe through the pressure reducing valve 7 and the bypass valve 8. Because.
[0033]
The hot water storage circuit used when warming the water in the auxiliary tank 9 is configured between the auxiliary tank 9 and the water-refrigerant heat exchanger 2. That is, the tank flow rate adjustment valve 12 connected to the branch pipe 2h branched from the hot water supply pipe 2d is opened, and the tank circulation pump 10 draws water from the lower part of the auxiliary tank 9. The drawn water is subjected to heat exchange through the water supply pipe 2c and the water supply heat transfer pipes 2e and 2f. The hot water that has passed through the hot water supply pipe 2 d passes through the heat exchange flow rate adjustment valve 11 and the tank flow rate adjustment valve 12 and is guided to the auxiliary tank 9. This hot water storage circuit is also used when reheating hot water in the auxiliary tank 9, in other words, pursuing hot water in the auxiliary tank 9.
[0034]
The basic structure of the bath hot water supply circuit for supplying hot water to the bathtub is the same as that of the heat pump hot water supply circuit, and hot water is distributed to the branch pipe 2j branched from the hot water supply pipe 2d instead of hot water from the hot metal fitting 13. By opening the bath pouring valve 14 connected to the branch pipe 2j, hot water is injected into the bathtub 18 passing through the bath sensor fitting 15 and connecting to the bath outlet fitting 16. Of course, when the hot water is filled in the bathtub 18, the hot water supply from the auxiliary tank 9 to the bathtub 18 is not limited to the minimum required amount in addition to the direct hot water supply from the water-refrigerant heat exchanger 2. To do.
[0035]
The bath remedy circuit that reheats the hot water in the bathtub 18 is a water conduit between the bathtub 18 and the water-water heat exchanger 20. After the water drawn from the bathtub 18 by the bath circulation pump 19 through the hot metal fitting 17 is sent to the bath heat transfer pipe 20 b and heated by heat exchange, the temperature of the hot water is measured after passing through the bath sensor fitting 15. The hot water is supplied to the bathtub 18 through the hot metal fitting 16.
[0036]
Next, control of the heat pump water heater in this embodiment will be described. The operation control means 50 of the heat pump water heater performs the operation / stop of the heat pump refrigerant circuit 30 and the rotation speed control of the compressors 1a, 2b according to the operation settings of the kitchen remote controller 51 and the bath remote controller 52, and the tank circulation pump 10, bath By controlling the operation / stop of the circulation pump 19 and the bypass valve 8, the heat exchange flow rate adjustment valve 11, the tank flow rate adjustment valve 12, the hot water solenoid valve 14, and the water on / off valve 21, hot water storage operation, hot water supply operation, Driving and memorial operation.
[0037]
The operation control means 50 is preferably controlled to operate at a high rotational speed faster than the normal hot water supply operation speed in order to shorten the heating start-up time immediately after the heat pump circuit starts operation. In addition, after use of hot water supply at the hot water outlet terminal, the hot water storage operation function is provided every time the operation is stopped after the tank hot water storage operation is performed.
[0038]
Next, other control-related equipment provided in the heat pump water heater in the present embodiment will be described. Similar to the detection of the hot water supply temperature to the bathtub 18 by the bath sensor fitting 15, the temperature of the water heated by the water-refrigerant heat exchanger 2, the water stored in the auxiliary tank 9, the hot water to be discharged, and other A temperature sensor that detects the temperature state of each part, a pressure sensor that detects the discharge pressure of the compressors 1a and 2b, a water level sensor that detects the water level in the bathtub 17, and the like (both not shown) are provided. Input to the operation control means 50. The operation control means 50 controls each device based on these signals.
[0039]
The water on-off valve 21 is connected to the branch pipe 2g branched from the hot water supply circuit, and is provided at a position between the water-refrigerant heat exchanger 2 and the bath heat exchanger 20. The water circuit to the bath heat exchanger 20 is closed except during bathing to prevent heat leakage from the water-refrigerant heat exchanger 2 to the bath heat exchanger 20. For example, if this water on-off valve 21 is not provided and the hot water supply piping 2d of the hot water supply circuit and the bath heat exchanger 20 that is a water-water heat exchanger are continuous through the water in the pipe, Even if water does not flow into the branch pipe 2g, it is thermally continuous, so heat leakage proceeds from the bath heat exchanger 20. Similarly, also in the branch pipes 2h, 2i, and 2j branched from the hot water supply pipe 2d, a pipe configuration in which the tank flow rate control valve 12, the bypass valve 8 and the bath pouring valve 14 connected at the ends of the branch pipes are opened and closed as necessary. As a result, heat leakage during hot water supply is extremely reduced.
[0040]
Moreover, the bath check valve 22 and the water supply check valve 23 flow water only in one direction, respectively, to prevent backflow. The bath pouring valve 14 is also required to have the same function. That is, the water up to the branch pipe 2j is water or warm water, but the water in the bathtub 18 is at the tip of the bath pouring valve 14, and the water in the bathtub 18 is mixed upstream of the branch pipe 2j. For there should not be anything to do.
[0041]
The relief valve 24 operates when the hot water pressure in the auxiliary tank exceeds a predetermined level, and functions to protect the device against pressure.
[0042]
An embodiment of the water-refrigerant heat exchanger 2 will be described with reference to FIG. The water-refrigerant heat exchanger 2 has two refrigerant heat transfer tubes 2a and 2b and two water supply heat transfer tubes 2e and 2f. The refrigerant heat transfer tubes 2a and 2b and the feed water electric heat tubes 2e and 2f are alternately arranged. The structure is rolled up in a cylindrical shape by contact.
[0043]
The feed water heat transfer pipes 2e and 2f are located in the water-refrigerant heat exchanger 2 and heated by the water feed pipe 2c through which water taken in through the water feed fitting 6 or water from the auxiliary tank 9 passes and the water-refrigerant heat exchanger 2 are heated. It is a pipe line divided into two in parallel with the outlet pipe 2d through which the water is passed. Compared to the case of one, the water flow area of the feed water heat transfer tubes 2e, 2f and the contact area with the refrigerant heat transfer tubes 2a, 2b are doubled, so that the individual length can be halved, The internal resistance during water flow can be reduced to ¼. Accordingly, the internal pressure loss of the water-refrigerant heat exchanger 2 during water flow is also reduced to ¼ compared to the case of one, and the overall height can be lowered, making manufacture and storage easy.
[0044]
In particular, when instantaneous hot water supply such as instantaneous hot water supply using gas is performed using a heat pump, water circulation is attempted by the water pressure of the water supply source. However, the internal pressure loss of the water-refrigerant heat exchanger 2 becomes a resistance during direct water flow and becomes negative to the tapping pressure. For example, when the water supply pressure is 200 kPa, if there is a pressure loss of 100 kPa in the conventional water-refrigerant heat exchanger, the hot water pressure becomes 100 kPa, and there is a risk that the water pressure will drop and the amount of hot water will be insufficient. However, in the case of the water-refrigerant heat exchanger 2 in the present embodiment, the pressure loss is ¼ 25 kPa, so that the tapping pressure is 175 kPa, and a sufficient water pressure and tapping amount can be maintained. In the heat pump water heater that heats hot water directly with a heat pump and supplies hot water with the function of chasing the water in the bathtub, the structure of the water-refrigerant heat exchanger 2 in this embodiment performs heat exchange between water and the refrigerant. The heat exchange efficiency of the water-refrigerant heat exchanger is further increased by separating the bath heat exchanger from the water-refrigerant heat exchanger.
[0045]
Next, an example of the heat exchanger 20 for bath remedy will be described with reference to FIG. The bath heat exchanger 20 has a double tube structure, and a space 20c partitioned by a bath water heat transfer tube 20b is provided inside a hot water heat transfer tube 20a using a copper tube. Warm water heated by the water-refrigerant heat exchanger 2 flows through the space 20c through hot water pipes 20d connected to both ends of the hot water heat transfer pipe 20a. The bath water heat transfer tube 20b through which hot water in the bathtub flows is connected to a bath water pipe 20e led out from both end portions 20f of the hot water heat transfer tube 20a. The hot water heat transfer pipe 20a is a copper straight pipe that is generally used, and squeezes both ends 20f of the hot water heat transfer pipe 20a so as to be joined and sealed to the outside of the bath water pipe 2e. The bath water heat transfer tube 20b has a concave / convex shape, a star shape, a multi-leaf tube or the like in order to increase the contact area with the hot water. The hot water pipe 20d opens to both ends of the hot water heat transfer pipe 20a and is electrically connected to the space 20c through which the hot water flows.
[0046]
The bath heat exchanger 20 has a double pipe structure as described above, so that the bath water heat transfer pipe 20b through which water in the bathtub 18 that is a heated body flows is in the circulation space of hot water that is a heated body. Is provided. Therefore, the bath water heat exchanger 20 has a bath water heat transfer tube 20b that transfers heat on the entire outer periphery thereof, and can be a compact water / water heat exchanger with good heat transfer.
[0047]
In the conventional heat exchanger for bath remedy, heat is exchanged between the refrigerant heat transfer tube and the bath water heat transfer tube.If the inner tube is damaged, the high pressure refrigerant enters the water circuit and the There is a risk of affecting the drinking water system that is the drinking water inside, and a double pipe structure in which one pipe penetrates the other inside cannot be adopted. As shown in FIG. It had to be an independent piping structure.
[0048]
In addition, the bath memory heat exchanger 20 considers the following points. That is, the circulating water of bath water may contain impurities. If this bath water flows through the space 20C side, impurities are trapped by irregularities on the tube surface, which may cause clogging. Therefore, in this embodiment, the hot water having passed through the water-refrigerant heat exchanger 2 is allowed to flow through the space 2C.
[0049]
That is, in the embodiment of the present invention, the bath recuperation heat exchanger 20 and the water-refrigerant heat exchanger 2 are separated, and the water-water heat exchange between the heated circulating water and the bath circulating water is performed so as to be duplicated. It can be said that the adoption of a pipe structure has become possible.
[0050]
With the configuration described above, the heat pump water heater in the present embodiment starts the heat pump operation simultaneously with the start of use of the hot water supply, and can directly supply the hot water boiled in the water-refrigerant heat exchanger 2 to the hot water outlet terminal. 18 hot water is chased by a heat exchanger 20 for baths having a double-pipe structure to obtain an energy saving and warming prevention effect.
[0051]
Next, the operation of the heat pump water heater will be described based on the flowcharts of FIGS. 4 to 7 with reference to the heat pump circuit 30 and the hot water circuit 40 of FIG.
[0052]
FIG. 4 is an example of a flowchart showing the operation during installation. The heat pump water heater is transported from the manufacturing site and installed at the installation location desired by the user (step 60), the water supply fitting 6 is connected to a water supply source such as water supply, and the main plug of the water supply source is opened (step 61). Then, water supply is started from the water supply source (step 62), and the water is decompressed and adjusted to a constant pressure by the pressure reducing valve 7, and then flows into the hot water storage tank 9, the water-refrigerant heat exchanger 2 and each water pipe and is full. Water supply is continued until it becomes (step 63).
[0053]
In addition, each apparatus at the time of installation of a heat pump water heater is set to the following initial states. The bypass valve 8 is open on the auxiliary tank 9 side and closed on the branch pipe 2i side, which is the hot metal fitting 13 side. The heat exchange flow rate adjustment valve 11, the tank flow rate adjustment valve 12, and the water on-off valve 21 are all open. 14 is in a closed state.
[0054]
Next, when full water is confirmed in step 63, it is determined that the water supply is completed, and the power switch is turned on (step 64). Then, the operation of the heat pump refrigerant circuit 30 and the hot water supply circuit 40 is started under the control of the operation control means 50, and the tank hot water storage operation is performed (step 65). In this tank hot water storage operation, the operation of the compressors 1a and 1b is started, and the gaseous refrigerant in the compressors 1a and 1b is compressed and heated to be a high-temperature and high-pressure refrigerant and sent to the water-refrigerant heat exchanger 2.
[0055]
As a result, in the water-refrigerant heat exchanger 2, the high-temperature refrigerant flowing in the refrigerant heat transfer tubes 2a and 2b and the water flowing in the feed water heat transfer tubes 2e and 2f exchange heat, the refrigerant dissipates heat, and the water is heated. . The radiated refrigerant is decompressed by the decompression devices 3a and 3b, and further expanded and evaporated by the evaporators 4a and 4b to become a gaseous state and return to the compressors 1a and 1b again. By continuing this heat pump operation, water passing through the water-refrigerant heat exchanger 2 is heated.
[0056]
In the tank hot water storage operation, the operation of the tank circulation pump 10 is started in the hot water storage circuit together with the heat pump operation, and the water drawn from the water inlet at the lower part of the auxiliary tank 9 is supplied to the tank circulation pump 10 and the water-refrigerant heat exchanger 2. Then, it circulates to the auxiliary tank 9 through the heat exchange flow rate adjustment valve 11 and the tank flow rate adjustment valve 12.
[0057]
As a result, the hot water heated by the water-refrigerant heat exchanger 2 is stored from the upper part of the auxiliary tank 9, and when the entire auxiliary tank 9 reaches the boiling state, it is determined that the hot water storage is completed (step 66), and the operation is started. Stop (step 67).
[0058]
In addition, the tank full determination is made by detecting a full water state using, for example, a water level sensor or a pressure sensor, and the hot water storage completion determination is made by detecting the water temperature in each of the upper, middle, and lower parts of the auxiliary tank 9 using, for example, a thermistor. It is. (Not shown)
FIG. 5 is an example of a flowchart showing the operation when hot water is used.
[0059]
When the faucet is opened at the tap terminal and hot water is used (step 70), the operation control means 50 activates the compressors 1a and 1b to start the operation of the heat pump circuit 30, and the water supply fitting 6, pressure reducing valve 7, and bypass. An instantaneous hot water supply operation (step 71) is performed by the hot water supply circuit of the valve 8, the water supply check valve 23, the water-refrigerant heat exchanger 2, the heat exchange flow rate adjustment valve 11, and the hot metal fitting 13. At the same time, the tank hot water supply operation is performed by the hot water supply circuit of the water supply fitting 6, the pressure reducing valve 7, the bypass valve 8, the hot water storage tank 9, the tank flow rate adjusting valve 12, and the hot metal fitting 13 (step 77).
[0060]
Here, the heat pump refrigerant circuit 30 sends the high-temperature refrigerant compressed by the compressors 1a and 1b to the water-refrigerant heat exchanger 2, heats the water flowing in from the water supply pipe 2c, and flows out to the hot water supply pipe 2d. At the start of operation, the refrigerant sent to the water-refrigerant heat exchanger 2 is sufficiently hot and high in pressure, and the temperature is low, and the water-refrigerant heat exchanger 2 as a whole is cooled. Is not enough. As the time elapses, the refrigerant becomes high temperature and pressure, and the heat generated by the condensed refrigerant is increased accordingly, and the ability to heat water increases.
[0061]
However, it usually takes about 5 to 6 minutes for the heating capacity of the heat pump operation to reach a high temperature stable state. Therefore, the operation control means 50 controls the operation by setting the rotation speed of the compressor at a higher speed than usual until the high temperature stable state is reached immediately after the start of operation, and the water heat transfer pipe described above is placed in the water-refrigerant heat exchanger 2. In this embodiment, the rise time can be reduced to about 1 to 2 minutes due to the synergistic effect of providing a plurality of paths in parallel. Further, the auxiliary tank for storing hot water required until the heat pump circuit is stabilized can be sufficiently miniaturized, and an instantaneous hot water supply system using a heat pump can be realized.
[0062]
Then, after performing a tank hot water supply operation for supplying hot water from the auxiliary tank for a predetermined time immediately after the start of operation (about 1 to 2 minutes), the operation control means 50 operates to stop the tank hot water supply operation, and instantaneous hot water supply Only operation is switched (steps 72, 78, 79). The determination of the tank hot water supply in step 78 may be made based on the temperature of the hot water actually flowing through the hot water supply pipe 2d in addition to measuring the operation time of the heat pump circuit.
[0063]
In this way, hot water is transiently supplied from the auxiliary tank 9 only at the start of operation, and then hot water heated by the water-refrigerant heat exchanger 2 is directly supplied, so that the heating delay at the start of operation can be eliminated. The capacity of the auxiliary tank 9 can be significantly reduced compared to the conventional case. It is to be noted that the capacity of the auxiliary tank 9 can be shortened by increasing the heating capacity of the water-refrigerant heat exchanger 2 to a stable state as quickly as possible and shortening the time of the transient tank hot water operation using the hot water of the auxiliary tank 9. Will lead to a further reduction in the size.
[0064]
For this purpose, it is desirable to increase the capacity of the heat pump refrigerant circuit 30, particularly the compressor output, to about 15 kW, which is about three times higher than the generally used 5 kW, but it is only necessary to develop a new compressor. However, each part of the heat pump refrigerant circuit 30 needs to be newly studied, which is extremely difficult. Therefore, in one embodiment of the present invention, as described above, a two-cycle heat pump system using two compressors is used, and the reliability of the conventional technology and the results are ensured.
[0065]
The operation control means 50 stops the tank hot water supply operation when the amount of remaining hot water in the auxiliary tank 9 becomes a predetermined value or less, and makes only the instantaneous hot water supply operation (steps 78 and 79).
[0066]
Next, when the hot water supply is finished and the faucet of the hot water supply terminal is closed (step 80), if the tank hot water supply operation and the heat pump hot water supply operation are performed immediately after the hot water is used, both the heat pump hot water supply operation and the tank hot water supply operation are performed. To stop. If the tank hot water supply operation is stopped and only the heat pump hot water supply operation is performed, the instantaneous hot water supply operation is stopped. (Steps 73 and 79)
Further, after stopping both the hot water supply operation of the tank and the hot water supply operation of the heat pump, the operation control means 50 always starts the hot water storage operation of the tank (step 74), detects the completion of the hot water storage using a thermistor and the like and determines the completion of the hot water storage (step 75). The operation is terminated (step 76).
[0067]
However, because the thermistor detects the state of hot water storage in the tank at all times, if the hot water temperature and the amount of water remain in the auxiliary tank almost the same as the hot water storage completion status even after the heat pump hot water operation is stopped, the hot water storage It is determined that the tank is hot and the tank hot water storage operation is not performed.
[0068]
According to the above, the operation control means 50 has a hot water storage operation function every time the hot water storage operation is performed until the hot water storage is completed after the intended operation is completed in every operation. The hot water of a predetermined temperature is full, so that the fear of a drop in hot water at the start of operation and running out of hot water during use can be solved.
[0069]
FIG. 6 is a flowchart showing an embodiment of a hot water filling operation by automatic bath operation. The bath automatic button is pressed and turned on (step 85). When the set time comes, the tank hot water supply operation (step 92) is performed simultaneously with the bath hot water supply operation (step 87). In the bath hot water supply operation, the heat pump hot water supply operation described in FIG.
[0070]
That is, for about 2 minutes immediately after the start of the heat pump operation, the bath hot water operation and the tank hot water storage operation are performed at the same time. It becomes only. Further, during the bath water supply operation, the bath hot water temperature and the amount of hot water in the bathtub are continuously detected, and the bath water supply operation is stopped when hot water at a predetermined temperature reaches the predetermined amount in the bathtub. (Steps 89, 90, 91)
FIG. 7 is a flowchart showing an embodiment of bath remedy by automatic bath operation. When the bath automatic button is pressed and turned on (step 95), the hot water temperature and the hot water amount in the bathtub are detected every predetermined time (for example, 30 minutes) after the hot water supply to the bath (step 96). If the value is out of the value, the bath chasing operation (step 97) is performed, and the bath operation is stopped by setting the hot water temperature and the hot water amount within predetermined values. (Steps 98 to 101)
As described above, according to each embodiment of the present invention, the water-refrigerant heat exchanger and the bath water-water heat exchanger are separated, and the hot water supply circuit from the water-refrigerant heat exchanger to the outlet terminal is made independent. As a result, it was possible to heat and discharge hot water with a heat pump with little heat loss.
[0071]
In addition, by separating the water-refrigerant heat exchanger and the bath heat exchanger, each of the water-refrigerant heat exchanger and the bath heat exchanger can have an optimum structure. Improving the start-up characteristics, enabling the instantaneous hot water supply system that operates only when necessary and supplies only the required amount of hot water with the heat pump circuit, and achieves the effects of drastic downsizing of the hot water storage tank, energy saving, etc. I was able to.
[0072]
Also, by installing a water on / off valve that connects to the heat exchanger for the bath at the branch that is not on the hot water supply circuit from the water-refrigerant heat exchanger to the hot water outlet terminal, Heat loss to the bath heat exchanger can be prevented.
[0073]
【The invention's effect】
  According to the present invention, energy savingNeAn excellent heat pump water heater can be provided.
[0074]
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a schematic configuration of a heat pump refrigerant circuit, a hot water storage circuit, and components in a heat pump water heater of the present invention.
FIG. 2 is a structural diagram of a water-refrigerant heat exchanger showing an embodiment of the present invention.
FIG. 3 is a structural diagram of a heat exchanger for baths showing an embodiment of the present invention.
FIG. 4 is a flowchart showing an embodiment of the operation at the time of installation and boiling of the auxiliary tank in the heat pump water heater of the present invention.
FIG. 5 is a flowchart showing an embodiment of an operation when hot water is used in the heat pump water heater of the present invention.
FIG. 6 is a flowchart showing an embodiment of an operation at the time of bathing and bathing in the heat pump water heater of the present invention.
FIG. 7 is a flowchart showing an embodiment of bath remedy by automatic bath operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a, 1b ... Compressor 2 ... Water-refrigerant heat exchanger 2a, 2b ... Refrigerant heat transfer pipe 2c ... Water supply pipe 2d ... Hot water supply pipe 2e, 2f ... Water supply heat transfer pipe 3a, 3b ... Pressure reducing device 4a, 4b ... Evaporator 5a, 5b ... Solenoid valve for defrosting 6 ... Water supply fitting 7 ... Pressure reducing valve 8 ... Bypass valve 9 ... Auxiliary tank 10 ... Tank circulation pump 11 ... Heat exchange flow rate adjustment valve 12 ... Tank flow rate adjustment valve 13 ... Hot metal fitting 14 ... Bath pouring Valve 15 ... Bath sensor fitting 16 ... Bath bath fitting 17 ... Bath bath fitting 18 ... Bathroom 19 ... Bath circulation pump 20 ... Bath heat exchanger 20a ... Hot water heating pipe 20b ... Bath water heat transfer pipe 21 ... Water open / close valve 22 ... Bath reverse Stop valve 22 ... Water supply check valve 24 ... Relief valve 30 ... Heat pump refrigerant circuit 40 ... Hot water supply circuit 50 ... Operation control means 51 ... Kitchen remote control 52 ... Bath remote control

Claims (6)

圧縮機と、その圧縮機により圧縮された冷媒と水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とを、それぞれ冷媒管路で接続されたヒートポンプ冷媒回路と、
給水部から給水した水を前記水−冷媒熱交換器によって加熱して、当該加熱された温水を出湯端末に瞬間給湯する瞬間給湯回路と、
前記瞬間給湯回路の運転開始後、前記瞬間給湯回路からの給湯を過渡的に補助する補助タンクと、
前記瞬間給湯回路から分岐した分岐管に接続された風呂追い焚き用の水−水熱交換器と、
前記分岐管上で、前記瞬間給湯回路と前記水−水熱交換器との間に配設された水開閉弁と、を備え、
前記開閉弁は、前記瞬間給湯回路を用いて前記出湯端末に瞬間給湯しているときには、閉じているヒートポンプ給湯機。
A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and water, a decompression device that decompresses the heat-exchanged refrigerant, and heat exchange between the decompressed refrigerant and air An evaporator for performing a heat pump refrigerant circuit respectively connected by a refrigerant line;
An instantaneous hot water supply circuit that heats water supplied from a water supply unit by the water- refrigerant heat exchanger and instantaneously supplies the heated hot water to a hot water outlet terminal;
After the start of operation of the instantaneous hot water supply circuit, an auxiliary tank that transiently assists hot water supply from the instantaneous hot water circuit,
A water-water heat exchanger for reheating a bath connected to a branch pipe branched from the instantaneous hot water supply circuit;
A water on-off valve disposed between the instantaneous hot water supply circuit and the water-water heat exchanger on the branch pipe;
The water on- off valve is a heat pump water heater that is closed when the hot water supply circuit is used to instantaneously supply water to the outlet terminal .
前記水−水熱交換器の湯水を前記水−冷媒熱交換器へ送る循環ポンプを備え、
記水−水熱交換器で風呂追い焚きを行う場合には前記開閉弁を開放させて前記循環ポンプを駆動する請求項1記載のヒートポンプ給湯機。
A circulation pump for sending hot water of the water-water heat exchanger to the water-refrigerant heat exchanger;
Before Kisui - heat pump hot water supply apparatus according to claim 1, wherein for driving the circulation pump by opening the water-off valve in the case of performing the reheating bath water heat exchanger.
前記補助タンクの湯水を前記水−冷媒熱交換器へ送る循環ポンプと、
前記瞬間給湯回路から分岐した第2の分岐管上で前記補助タンクとの間に配設されたタンク流量調節弁と、を備え、
前記補助タンク内の水を温めるタンク追い焚きを行う場合には前記タンク流量調節弁を開放させて前記循環ポンプを駆動する請求項1記載のヒートポンプ給湯機。
A circulation pump for sending hot water in the auxiliary tank to the water-refrigerant heat exchanger;
A tank flow rate adjusting valve disposed between the auxiliary tank on the second branch pipe branched from the instantaneous hot water supply circuit ,
2. The heat pump water heater according to claim 1, wherein when the tank is reheated to warm the water in the auxiliary tank, the tank flow rate control valve is opened to drive the circulation pump.
前記瞬間給湯回路内であって前記水−冷媒熱交換器の下流に流量調整弁を設け、この流量調整弁は前記補助タンクからの温水と混合して前記出湯端末から出湯するときに作動する請求項1乃至3の何れか1項に記載のヒートポンプ給湯機。A flow rate adjusting valve is provided in the instantaneous hot water supply circuit and downstream of the water-refrigerant heat exchanger, and the flow rate adjusting valve is operated when the hot water from the auxiliary tank is mixed and discharged from the hot water terminal. Item 4. The heat pump water heater according to any one of Items 1 to 3 . 前記水−水熱交換器は、円筒管の内側に伝熱管を備えた2重管構造とした請求項1記載のヒートポンプ給湯機。  The heat-pump water heater according to claim 1, wherein the water-water heat exchanger has a double pipe structure including a heat transfer pipe inside a cylindrical pipe. 前記ヒートポンプ冷媒回路は2つの冷凍サイクルを備え、前記水−冷媒熱交換器を共用した請求項1記載のヒートポンプ給湯機。  The heat pump water heater according to claim 1, wherein the heat pump refrigerant circuit includes two refrigeration cycles and shares the water-refrigerant heat exchanger.
JP2003178860A 2003-06-24 2003-06-24 Heat pump water heater Expired - Fee Related JP3909310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178860A JP3909310B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178860A JP3909310B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005016756A JP2005016756A (en) 2005-01-20
JP3909310B2 true JP3909310B2 (en) 2007-04-25

Family

ID=34180319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178860A Expired - Fee Related JP3909310B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3909310B2 (en)

Also Published As

Publication number Publication date
JP2005016756A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3742356B2 (en) Heat pump water heater
US9010281B2 (en) Hot water supply system
JP4958460B2 (en) Heat pump water heater
JP3909311B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP3632651B2 (en) Water heater
JP2009270780A (en) Heat pump water heater
JP2006234314A (en) Heat pump water heater
KR20050022288A (en) Heat pump hot water supply device
JP3896378B2 (en) Heat pump water heater
JP2007322084A (en) Heat pump water heater
JP3909312B2 (en) Heat pump water heater
JP3909310B2 (en) Heat pump water heater
JP2010054145A (en) Heat pump water heater
JP3890322B2 (en) Heat pump water heater
JP2005016759A (en) Heat pump type water heater
JP4740284B2 (en) Heat pump water heater
JP4262657B2 (en) Heat pump water heater
JP4045266B2 (en) Heat pump water heater
JP3897038B2 (en) Heat pump water heater
JP2010169317A (en) Heat pump water heater
JP3897039B2 (en) Heat pump water heater
JP3870963B2 (en) Heat pump water heater
JP2002122351A (en) Hot water reserving appratus
JP3858919B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees