JP2007302522A - Method of refining titanium tetrachloride and refiner used for the same - Google Patents

Method of refining titanium tetrachloride and refiner used for the same Download PDF

Info

Publication number
JP2007302522A
JP2007302522A JP2006133411A JP2006133411A JP2007302522A JP 2007302522 A JP2007302522 A JP 2007302522A JP 2006133411 A JP2006133411 A JP 2006133411A JP 2006133411 A JP2006133411 A JP 2006133411A JP 2007302522 A JP2007302522 A JP 2007302522A
Authority
JP
Japan
Prior art keywords
titanium tetrachloride
rectifying column
column
distillation
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133411A
Other languages
Japanese (ja)
Other versions
JP4740033B2 (en
Inventor
Fumito Arai
文人 荒井
Hidekazu Fukazawa
英一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2006133411A priority Critical patent/JP4740033B2/en
Publication of JP2007302522A publication Critical patent/JP2007302522A/en
Application granted granted Critical
Publication of JP4740033B2 publication Critical patent/JP4740033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of refining titanium tetrachloride, which effectively avoids precipitation of high-boiling components in a fractionating column and enables easy maintenance, and a refiner used for the same. <P>SOLUTION: In the method of refining titanium tetrachloride using the fractionating column, crude titanium tetrachloride is distilled by a distillation still, the obtained distillate rich in titanium tetrachloride is fed to and distilled in a simplified fractionating column connected downstream of the distillation still, and the distillate rich in titanium tetrachloride obtained in the simplified fractionating column is fed to and further distilled in a main fractionating column connected downstream of the simplified fractionating column. The titanium tetrachloride refiner is equipped with the distillation still for distilling the crude titanium tetrachloride, the simplified fractionating column connected downstream of the distillation still and the main fractionating column connected downstream of the simplified fractionating column. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塩化炉で生成された粗四塩化チタンの精製方法およびこれに用いる精製装置を効率的に用いる技術に関する。   The present invention relates to a method for purifying crude titanium tetrachloride produced in a chlorination furnace and a technique for efficiently using a purification apparatus used therefor.

四塩化チタン(TiCl)は、様々な分野で多用される金属チタンの原料であるスポンジチタンや酸化チタンの原料として広く用いられている。四塩化チタンは、塩化炉内に形成したチタン鉱石とコークスからなる高温に保持された流動層に塩素ガスを供給して塩素化することにより製造される。 Titanium tetrachloride (TiCl 4 ) is widely used as a raw material for titanium sponge and titanium oxide, which are raw materials for metallic titanium that are frequently used in various fields. Titanium tetrachloride is produced by supplying chlorine gas to a fluidized bed maintained at a high temperature composed of titanium ore and coke formed in a chlorination furnace and chlorinating.

塩化炉で生成した四塩化チタンは高温のため気体状態であるので、四塩化チタンの沸点以下まで冷却されて、液体状態で分離回収される。分離回収された粗四塩化チタンは蒸留工程にて精製されて、純度の高い精製四塩化チタンを得ることができる。   Since titanium tetrachloride produced in the chlorination furnace is in a gaseous state due to high temperature, it is cooled to below the boiling point of titanium tetrachloride and separated and recovered in a liquid state. The separated and recovered crude titanium tetrachloride can be purified in a distillation step to obtain highly purified titanium tetrachloride.

前記の液体状態で分離回収された粗四塩化チタンには、シリコン、ニオブ、アルミニウム、バナジウム等の多数の塩化物が含まれている。このため、粗四塩化チタンは、引き続き蒸留精製されて純度が高められ精製四塩化チタンが製造される。   The crude titanium tetrachloride separated and recovered in the liquid state contains a large number of chlorides such as silicon, niobium, aluminum and vanadium. For this reason, the crude titanium tetrachloride is subsequently purified by distillation to increase the purity, and purified titanium tetrachloride is produced.

粗四塩化チタンの蒸留に用いられる蒸留精製装置は汎用的な精留塔が用いられて来ているが、近年脚光を浴びている高純度四塩化チタンの製造には、従来の設備では要求特性を満足させることが難しい場合があり改善が求められていた。   Distillation and purification equipment used for distillation of crude titanium tetrachloride has been using a general-purpose rectification column. However, in the production of high-purity titanium tetrachloride, which has been in the spotlight in recent years, the required characteristics of conventional equipment In some cases, it was difficult to satisfy the requirements.

また、四塩化チタンの精製効率を高めるにつれて、四塩化チタンから分離除去される高沸点成分等の不純物量も増加する。これらの不純物は精留塔の缶出液として大半が分離除去されるが、一部は精留塔の内部に付着・蓄積され、精留塔内部のガスや蒸留液の流通を妨げる場合や閉塞させる場合があり改善が求められていた。   Further, as the purification efficiency of titanium tetrachloride is increased, the amount of impurities such as high boiling point components separated and removed from titanium tetrachloride also increases. Most of these impurities are separated and removed as effluent from the rectification column, but some of them adhere to and accumulate inside the rectification column, which may prevent or block the flow of gas and distillate inside the rectification column. There was a case where it was necessary to improve.

一方、公知の四塩化チタンの製法においては、性能が同等な精留塔を2本用いてこれらの精留塔に粗四塩化チタンを直列に流し、さらに第1の精留塔から蒸留液を抜きだす位置に基いて第2の精留塔から抜き出す蒸留液の位置を規定することにより純度の高い四塩化チタンが製造されている(例えば、特許文献1参照)。   On the other hand, in the known titanium tetrachloride production method, two rectifying columns having the same performance are used, and crude titanium tetrachloride is caused to flow in series in these rectifying columns. High-purity titanium tetrachloride is produced by defining the position of the distillate extracted from the second rectification column based on the extraction position (see, for example, Patent Document 1).

また、四塩化チタンの蒸留装置内の特定部位に高沸点成分が析出し、前記装置の機能を低下させるという課題については、前記の高沸点成分析出部位に精製四塩化チタンを供給することにより高沸点成分を溶解消滅させる技術も開示されている(例えば、特許文献2参照)。   Moreover, about the subject that a high boiling point component precipitates in the specific site | part in the distillation apparatus of titanium tetrachloride, and reduces the function of the said apparatus, by supplying refined titanium tetrachloride to the said high boiling point component precipitation site | part A technique for dissolving and extinguishing a high-boiling component is also disclosed (for example, see Patent Document 2).

しかしながら、特許文献1においては、性能の近似した2本の精留塔を用いるために精留塔に詰まりが生じた場合には、精留塔を1本で稼動している場合に比べて約2倍の復旧時間が要求されるという問題があった。また、精留塔自身が目詰まりを起こしこれを整備する場合には、前記の精留塔オーバーホールにて対応することになる。このような精留塔のオーバーホールには、比較的長時間を要し、また整備の間は四塩化チタンの精製工程を停止させる必要があった。また、特許文献2においては、一度精製した四塩化チタンを再度蒸留装置に戻して粗四塩化チタンと混合させるため、四塩化チタンの精製効率が悪化するという問題があった。   However, in Patent Document 1, since two rectifying columns having approximate performance are used, when the rectifying column is clogged, the rectifying column is approximately compared with the case where the rectifying column is operated alone. There was a problem that twice the recovery time was required. In addition, when the rectification column itself is clogged and maintained, the rectification column overhaul is handled. Such an overhaul of the rectification tower requires a relatively long time, and the purification process of titanium tetrachloride must be stopped during maintenance. Moreover, in patent document 2, since the titanium tetrachloride refine | purified once was returned to a distillation apparatus again and mixed with crude titanium tetrachloride, there existed a problem that the refinement | purification efficiency of titanium tetrachloride deteriorated.

このように、四塩化チタンの品質および精製効率を維持しながら、蒸留装置の整備が容易で、しかも精留装置を整備する際にも蒸留工程を停止させないような四塩化チタンの蒸留精製方法および設備が求められている。   Thus, while maintaining the quality and purification efficiency of titanium tetrachloride, it is easy to maintain the distillation apparatus, and the distillation purification method of titanium tetrachloride does not stop the distillation process when maintaining the rectification apparatus and Equipment is required.

特開2002−187718号公報JP 2002-187718 A 特開2002−055740号公報JP 2002-055540 A

精留塔を用いた四塩化チタンの精製方法において、前記精留塔内への高沸点成分の析出を効果的に回避でき、しかも整備が容易となるような四塩化チタンの精製方法およびこれに用いる精製装置の提供を目的とする。   In a method for purifying titanium tetrachloride using a rectifying column, a method for purifying titanium tetrachloride that can effectively avoid precipitation of high-boiling components in the rectifying column and can be easily maintained, and The purpose is to provide a purification apparatus to be used.

かかる実情に鑑みて前記課題を解決すべく鋭意検討を重ねてきたところ、精留塔を用いて四塩化チタンを精製する際に、本精留塔の前段に簡易精留塔を配置し、簡易精留塔の前段に蒸留釜を配置することにより、本精留塔の能力を飛躍的に向上させることができることを見出し、本発明を完成するに至った。   In view of this situation, we have intensively studied to solve the above problems, and when purifying titanium tetrachloride using a rectification column, a simple rectification column is placed in front of this rectification column. It has been found that the ability of the rectifying column can be dramatically improved by disposing a distillation kettle in front of the rectifying column, and the present invention has been completed.

すなわち、本願発明に係る四塩化チタンの精製方法は、蒸留釜によって粗四塩化チタンを蒸留し、得られた四塩化チタンに富む留出液を蒸留釜の下流側に接続された簡易精留塔に供給して蒸留し、簡易精留塔で得られた四塩化チタンに富む留出液を簡易精留塔の下流側に接続された本精留塔に供給してさらに蒸留を行うことを特徴としている。   That is, the method for purifying titanium tetrachloride according to the present invention is a simple rectifying column in which crude titanium tetrachloride is distilled by a distillation kettle, and the obtained distillate rich in titanium tetrachloride is connected to the downstream side of the distillation kettle. The distillate rich in titanium tetrachloride obtained by the simple rectification column is supplied to the rectification column connected to the downstream side of the simple rectification column and further distilled. It is said.

上記構成の本発明によれば、不純物である高沸点成分を多く含む缶出液が蒸留釜において大部分トラップされ、さらに次の段階の簡易精留塔でもトラップされるため、本精留塔においては比較的純度の高められた粗四塩化チタンが蒸留されるので、本精留塔の精製能力を向上させることができる。   According to the present invention having the above configuration, the bottoms containing a large amount of high-boiling components as impurities are mostly trapped in the distillation kettle and further trapped in the simple rectification column in the next stage. Since the crude titanium tetrachloride having a relatively high purity is distilled, the purification capacity of the rectifying column can be improved.

本発明の四塩化チタンの精製方法においては、本精留塔に蓄積した高沸点成分に富む缶出液を簡易精留塔に戻し、さらに簡易精留塔底部の高沸点成分に富む還流液を蒸留釜に戻すことを好ましい態様としている。このような態様によれば、本精留塔の精製能力を維持しつつ本精留塔内への高沸点成分の析出・堆積を効果的に回避することができ、かつ、戻された缶出液に含まれる四塩化チタン成分を再度蒸留して回収することができるため、好ましい。   In the titanium tetrachloride purification method of the present invention, the bottoms rich in high-boiling components accumulated in the rectification column are returned to the simple rectification column, and the reflux liquid rich in high-boiling components at the bottom of the simple rectification column Returning to the still is a preferred embodiment. According to such an embodiment, it is possible to effectively avoid precipitation and deposition of high boiling point components in the rectification column while maintaining the purification capacity of the rectification column, and to return the can The titanium tetrachloride component contained in the liquid can be recovered by distillation again, which is preferable.

本発明の四塩化チタンの精製方法においては、本精留塔および簡易精留塔の内部を、直列に連通した理論段数の蒸留室に区画し、本精留塔に比べて簡易精留塔の理論段数が小さくなるように本精留塔および簡易精留塔を構成することを好ましい態様としている。このような態様によれば、簡易精留塔が本精留塔に比べて区画される段数が少なく、すなわち、構造が単純で適度な大きさに構成することができるため、前記した不純物の閉塞があったとしても短時間で整備を完了することができる。その結果、四塩化チタンの精製工程を停止させることなく、簡易精留塔を整備することができるという現実的な効果も奏する。   In the method for purifying titanium tetrachloride according to the present invention, the interior of the rectifying column and the simple rectifying column is partitioned into a distillation chamber having a theoretical plate number communicating in series, and the simplified rectifying column is compared with the rectifying column. A preferred embodiment is to configure the rectifying column and the simple rectifying column so that the number of theoretical plates is small. According to such an embodiment, the simple rectification column has a smaller number of sections compared to the main rectification column, that is, the structure is simple and can be configured to an appropriate size. Even if there is, maintenance can be completed in a short time. As a result, there is also a realistic effect that a simple rectification tower can be prepared without stopping the purification process of titanium tetrachloride.

また、本発明に係る四塩化チタンの精製装置は、上述のとおり、粗四塩化チタンを蒸留する蒸留釜と、上記蒸留釜の下流側に接続された簡易精留塔と、上記簡易精留塔の下流側に接続された本精留塔とを備えたことを特徴としており、さらに、本精留塔および簡易精留塔の内部を、直列に連通した理論段数の蒸留室に区画し、本精留塔に比べて簡易精留塔の理論段数が小さいことを好ましい態様としている。   Further, as described above, the apparatus for purifying titanium tetrachloride according to the present invention includes a distillation kettle for distilling crude titanium tetrachloride, a simple rectifying column connected to the downstream side of the distillation kettle, and the simple rectifying tower. The rectification column is connected to the downstream side of the rectification column, and the interior of the rectification column and the simple rectification column is partitioned into a distillation chamber having a theoretical plate number communicating in series. A preferred embodiment is that the number of theoretical plates of the simple rectification column is smaller than that of the rectification column.

上述した本発明の精製方法および精製装置を用いることにより、粗四塩化チタン中に含まれる高沸点成分等の不純物の本精留塔内における析出・蓄積を効果的に抑制しつつ、純度の高い四塩化チタンを効率良く製造できるという効果を奏するものである。   By using the above-described purification method and purification apparatus of the present invention, it is possible to effectively suppress precipitation and accumulation of impurities such as high-boiling components contained in the crude titanium tetrachloride in the rectification tower, while maintaining high purity. The effect is that titanium tetrachloride can be produced efficiently.

本発明の最良の実施形態について図面を用いて以下に説明する。
図1は本発明の四塩化チタン精製装置およびこれを用いた四塩化チタンの精製方法に係る工程を表している。符合1は、最初に粗四塩化チタンを供給して蒸留を行う蒸留釜である。蒸留釜1には、前段階である製造工程からの粗四塩化チタンが供給されるため、この粗四塩化チタンには反応時の残留物であるコークスや鉱石粉(以降、単に「固形不純物」と称する場合がある)が混入し、高沸点成分や低沸点成分等の不純物が溶解している。そのため、蒸留装置内部には、前記不純物の析出や目詰まりが生じ易い。そのため、蒸留釜1の構造はメンテナンスの容易なものを選択することが好ましい。
The best embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows steps relating to a titanium tetrachloride purification apparatus of the present invention and a titanium tetrachloride purification method using the same. Reference numeral 1 is a distillation kettle in which crude titanium tetrachloride is first supplied for distillation. Since the crude titanium tetrachloride from the previous manufacturing process is supplied to the distillation kettle 1, the crude titanium tetrachloride contains coke and ore powder (hereinafter simply referred to as “solid impurities”) that are residues during the reaction. And impurities such as high-boiling components and low-boiling components are dissolved. Therefore, precipitation and clogging of the impurities are likely to occur inside the distillation apparatus. Therefore, it is preferable to select the structure of the still 1 that is easy to maintain.

蒸留釜1の下流には、蒸留釜1からの留出液を供給する簡易精留塔2が接続されている。蒸留釜1によって大部分の固形不純物が除かれ、純度がある程度高められた粗四塩化チタンは簡易精留塔2においてさらに蒸留される。簡易精留塔2の下流には、本精留塔3が接続されており、簡易精留塔2によって純度が大幅に高められた粗四塩化チタン留出液は本精留塔3においてさらに蒸留され、最終製品である精製四塩化チタンが得られる。   A simple rectification column 2 for supplying a distillate from the distillation kettle 1 is connected downstream of the distillation kettle 1. The crude titanium tetrachloride from which most of the solid impurities have been removed by the distillation kettle 1 and whose purity has been raised to some extent is further distilled in the simple rectification column 2. The rectifying column 3 is connected downstream of the simple rectifying column 2, and the crude titanium tetrachloride distillate whose purity has been greatly increased by the simple rectifying column 2 is further distilled in the rectifying column 3. As a result, the final product, purified titanium tetrachloride, is obtained.

このように簡易精留塔を蒸留釜と本精留塔の間に配置することにより、本精留塔内に持ち込まれる高沸点成分の絶対量を抑制し、また、四塩化チタン中に混在している固形不純物の本精留塔への混入も効果的に回避することができる。その結果、前記高沸点成分の蓄積や固形物の堆積により生起することが多い本精留塔内のガスまたは蒸留液の流路の閉塞を効果的に回避することができる。その結果、本精留塔の整備作業を大幅に回避することができるという効果を奏する。加えて、本発明に係る四塩化チタン製造装置の稼働率の低下も効果的に回避することができる。   By arranging the simple rectification column between the distillation kettle and the rectification column in this way, the absolute amount of high-boiling components brought into the rectification column is suppressed, and it is mixed in the titanium tetrachloride. Incorporation of the solid impurities into the rectification column can be effectively avoided. As a result, it is possible to effectively avoid clogging of the flow path of the gas or the distillate in the rectification column, which often occurs due to the accumulation of the high-boiling components and the accumulation of solid matter. As a result, there is an effect that maintenance work of the rectification tower can be largely avoided. In addition, a reduction in operating rate of the titanium tetrachloride production apparatus according to the present invention can be effectively avoided.

図2は、本発明の他の実施形態の模式図を表す。図1における実施形態との差異は、本精留塔3の缶出液を簡易精留塔2に戻し(符号4:戻り液1)、簡易精留塔2の還流液を蒸留釜1に戻す(符号5:戻り液2)点である。このように、各段階の缶出液を抜き出すことによって、各段階の精留塔内における不純物量を減らすことができるため、不純物の析出による目詰まりの防止および効率の高い蒸留を行うことができる。また、缶出液には目的成分の四塩化チタンも含まれているが、これを前段階に戻して再度蒸留を行うことができるので、四塩化チタン回収率を向上させることができる。   FIG. 2 shows a schematic diagram of another embodiment of the present invention. The difference from the embodiment in FIG. 1 is that the bottoms of the rectification tower 3 are returned to the simple rectification tower 2 (reference numeral 4: return liquid 1), and the reflux liquid of the simple rectification tower 2 is returned to the distillation tank 1. (Reference 5: return liquid 2). In this way, by extracting the bottoms from each stage, the amount of impurities in the rectifying column at each stage can be reduced, so that clogging due to precipitation of impurities and high-efficiency distillation can be performed. . The bottoms also contain titanium tetrachloride, which is the target component. However, since this can be returned to the previous stage and distilled again, the recovery rate of titanium tetrachloride can be improved.

本発明に係る四塩化チタンの精製装置においては、本精留塔および前記簡易精留塔の内部を、直列に連通した理論段数の蒸留室に区画し、本精留塔に比べて簡易精留塔の理論段数が小さいように構成することが好ましい。ここでいう理論段数が小さいとは、言い換えると、本精留塔に比べて装置が小型であり、また区画される段数が少ないなど装置構造が単純であることを意味する。このような装置構成とすることにより、高沸点成分や固形不純物の蓄積により閉塞した簡易精留塔の整備を容易に行うことができるという効果を奏する。   In the titanium tetrachloride purification apparatus according to the present invention, the interior of the rectifying column and the simplified rectifying column is partitioned into a distillation chamber having a theoretical plate number communicating in series. It is preferable to configure the tower so that the number of theoretical plates is small. In this case, the smaller number of theoretical plates means that the apparatus is smaller than the rectifying column and the apparatus structure is simple, such as a smaller number of sections. By adopting such an apparatus configuration, there is an effect that a simple rectification column blocked by accumulation of high-boiling components and solid impurities can be easily maintained.

簡易精留塔は、例えば、図3に示すような泡鐘塔で構成することができる。物理的な段数は、3〜5段程度で本発明の目的を達成することができる。なお、本発明に係る簡易精留塔は泡鐘塔に限定されることなく、単純な棚段で構成してもよい。いずれにしても四塩化チタンに含まれる高沸点成分や固形不純物を分離除去する機能を有し、かつ、整備作業が簡便であるものであれば特に構造に制限はない。   The simple rectification tower can be constituted by, for example, a bubble bell tower as shown in FIG. The number of physical stages is about 3 to 5, and the object of the present invention can be achieved. In addition, the simple rectification column according to the present invention is not limited to the bubble bell tower, and may be configured with a simple shelf. In any case, the structure is not particularly limited as long as it has a function of separating and removing high-boiling components and solid impurities contained in titanium tetrachloride and the maintenance work is simple.

また、簡易精留塔2は、図4に示すように2基を並列に配置しておくこともできる。このような配置とすることで、簡易精留塔2の一方が閉塞した場合には、別の簡易精留塔に切り替えることで、四塩化チタン精留工程全体の操業を停止することなく整備作業を継続することができる。   In addition, as shown in FIG. 4, two simple rectifying columns 2 can be arranged in parallel. With this arrangement, when one of the simple rectification towers 2 is blocked, maintenance work can be performed without stopping the operation of the entire titanium tetrachloride rectification process by switching to another simple rectification tower. Can continue.

簡易精留塔2の下流側に配置された本精留塔3には、前段に配置した簡易精留塔2で高沸点成分が分離除去された四塩化チタンが供給される。よって、前記四塩化チタンには、高沸点成分に比べて低沸点成分が濃縮しており、高沸点成分に加えてこれらの低沸点成分を分離除去できるような理論段数を有する構造としておくことが好ましい。   Titanium tetrachloride from which high-boiling components have been separated and removed by the simple rectification column 2 arranged in the preceding stage is supplied to the rectification column 3 arranged downstream of the simple rectification column 2. Therefore, the titanium tetrachloride has a structure having a low number of low-boiling components compared to the high-boiling components and a structure having a theoretical plate number that can separate and remove these low-boiling components in addition to the high-boiling components. preferable.

前記した低沸点成分には、ヒ素やスズの塩化物であり、これらの塩化物の沸点は四塩化チタンの沸点に近いために、分離性能の高い精留塔を用いることが好ましい。このような意味から、理論段数は、少なくとも10段以上が好ましく、より好ましくは、20段以上が好ましい。しかしながら、理論段数を或る程度増加させても分離性能とは比例して増加しないので、現実の段数は40段程度が実用的な上限であると考えられる。   The low-boiling components described above are arsenic and tin chlorides, and since the boiling points of these chlorides are close to the boiling points of titanium tetrachloride, it is preferable to use a rectifying column with high separation performance. In this sense, the number of theoretical plates is preferably at least 10 or more, and more preferably 20 or more. However, even if the number of theoretical plates is increased to some extent, it does not increase in proportion to the separation performance. Therefore, it is considered that the practical upper limit is about 40 plates.

次いで、前記した蒸留釜、簡易精留塔および本精留塔の運転方法の好ましい態様につき詳細に述べる。   Next, preferred embodiments of the operation methods of the distillation tank, the simple rectification column, and the main rectification column will be described in detail.

1)蒸留釜
蒸留釜には、鉄やアルミニウムの塩化物のような四塩化チタン中に溶解している高沸点成分の分離と塩化炉からキャリーオーバーされた鉱石やコークスの微粉を分離するように運転することが好ましい。よって、四塩化チタンの滞留時間を十分取るように運転することにより、前記の固形物の分離を効率よく行わせることが可能となる。
1) Distilling kettle In the distilling kettle, high-boiling components dissolved in titanium tetrachloride such as iron and aluminum chlorides are separated, and ore and coke fines carried over from the chlorination furnace are separated. It is preferable to drive. Therefore, by operating so that the residence time of titanium tetrachloride is sufficient, it becomes possible to efficiently separate the solid matter.

四塩化チタンに溶解している高沸点成分の蒸気圧は、蒸留釜の温度に比例するので、高沸点成分を分離除去するには、蒸留釜1の運転温度は、低い方が好ましい。一方、四塩化チタンの蒸留能力の点では蒸留釜1の温度は高い方が好ましい。   Since the vapor pressure of the high boiling point component dissolved in the titanium tetrachloride is proportional to the temperature of the distillation kettle, the lower the operating temperature of the distillation kettle 1 is preferable for separating and removing the high boiling point component. On the other hand, it is preferable that the temperature of the still 1 is higher in view of the distillation ability of titanium tetrachloride.

また、蒸留釜1の下流に配置した簡易精留塔2からの缶出液の一部が蒸留釜1に戻されるように構成することが好ましい。蒸留釜1に戻された缶出液中の四塩化チタンは再度蒸発して簡易精留塔2に移送される。このため、蒸留釜1中の高沸点成分の濃度は常に上昇する傾向にあるので定期的に蒸留釜1の底部から所定量の液を抜き出すことが好ましい。   Further, it is preferable that a part of the bottoms from the simple rectification column 2 disposed downstream of the distillation kettle 1 is returned to the distillation kettle 1. The titanium tetrachloride in the bottoms returned to the distillation kettle 1 is evaporated again and transferred to the simple rectification column 2. For this reason, since the concentration of the high-boiling component in the still 1 always tends to increase, it is preferable to periodically extract a predetermined amount of liquid from the bottom of the still 1.

2)簡易精留塔
簡易精留塔2は、本精留塔3の前段に配置され蒸留釜1の後段に配置することが好ましい。このように配置することにより、前記簡易精留塔2は供給する四塩化チタン中の高沸点成分や固形不純物を予め分離除去しておくことができる。
2) Simple rectification tower The simple rectification tower 2 is preferably arranged at the front stage of the main rectification tower 3 and at the rear stage of the distillation still 1. By arrange | positioning in this way, the said simple rectification tower 2 can isolate | separate and remove the high boiling point component and solid impurity in the titanium tetrachloride to supply beforehand.

蒸留釜1から簡易精留塔2に供給される四塩化チタンの流量に対する、簡易精留塔2から蒸留釜1への還流液の戻り流量の比は、0.1〜0.3の範囲に維持することが好ましい。このような比率に維持することにより、簡易精留塔2内の高沸点成分の濃度を適切に維持しつつ、要求される四塩化チタンの生産量を維持することができる。   The ratio of the return flow rate of the reflux liquid from the simple rectification column 2 to the distillation column 1 to the flow rate of titanium tetrachloride supplied from the distillation column 1 to the simple rectification column 2 is in the range of 0.1 to 0.3. It is preferable to maintain. By maintaining such a ratio, the required production amount of titanium tetrachloride can be maintained while appropriately maintaining the concentration of the high boiling point component in the simple rectification column 2.

簡易精留塔2を図3に示すような泡鐘塔で構成する場合に、前記泡鐘塔の頂部から本精留塔3へ排出する四塩化チタンの流量に対する泡鐘塔内の塔底部に戻す流量比(還流比)は、0.1〜0.5の範囲に維持することが好ましい。このような還流比に維持することにより、四塩化チタンの生産量を確保しつつ、四塩化チタン中の高沸点成分の濃度を目的の範囲内に維持することができる。   When the simple rectifying column 2 is constituted by a bubble bell tower as shown in FIG. 3, the bottom of the bubble bell tower in the flow rate of titanium tetrachloride discharged from the top of the bubble bell tower to the rectifying column 3 is provided. The returning flow rate ratio (reflux ratio) is preferably maintained in the range of 0.1 to 0.5. By maintaining such a reflux ratio, it is possible to maintain the concentration of the high boiling point component in the titanium tetrachloride within the target range while securing the production amount of the titanium tetrachloride.

簡易精留塔2の底部に蓄積した高沸点物は、適宜抜き出して蒸留釜1に戻すことが好ましい。このような高沸点物の抜き出しを行うことで、簡易精留塔2内の高沸点物の濃度を低減することができる。その結果、簡易精留塔2内での高沸点物の分離性能を高いレベルに維持することができる。   It is preferable that the high-boiling substances accumulated at the bottom of the simple rectification column 2 are appropriately extracted and returned to the distillation kettle 1. By extracting such high-boiling substances, the concentration of high-boiling substances in the simple rectification column 2 can be reduced. As a result, the high boiling point separation performance in the simple rectification column 2 can be maintained at a high level.

3)本精留塔
本精留塔3には、高沸点成分が大略分離された低沸点成分の多い四塩化チタンが供給される。よって、本精留塔3の底部にある図示しないリボイラーの温度を簡易精留塔2のリボイラーの温度よりも高めることにより、低沸点成分を効率よく塔頂部に濃縮することができる。
3) Main rectification column The main rectification column 3 is supplied with titanium tetrachloride having a large amount of low-boiling components from which high-boiling components are substantially separated. Therefore, by raising the temperature of the reboiler (not shown) at the bottom of the rectifying column 3 higher than the temperature of the reboiler of the simple rectifying column 2, low boiling point components can be efficiently concentrated at the top of the column.

しかしながら、これに応じて四塩化チタンの蒸発量も増加して頭頂部へ蓄積されて四塩化チタン中の低沸点成分の濃度が低下しない場合もある。よって、四塩化チタン中の不純物の濃度と生産量を勘案して前記リボイラの温度を設定することで適切な範囲に設定することが好ましい。本発明においては、130℃〜145℃の範囲に維持することが好ましい。   However, in accordance with this, the amount of evaporation of titanium tetrachloride also increases and accumulates at the top of the head, and the concentration of low boiling point components in titanium tetrachloride may not decrease. Therefore, it is preferable to set the reboiler temperature within an appropriate range in consideration of the impurity concentration and production amount in titanium tetrachloride. In this invention, it is preferable to maintain in the range of 130 to 145 degreeC.

前記したように本精留塔3は、四塩化チタン中の低沸点成分で、しかも四塩化チタンの沸点に近い低沸点成分を分離除去できるよう構成することが好ましい。よって、前記したように理論段数は、少なくとも10段以上が好ましく、20段以上がより好ましいとされる。ただし、過剰に段数を増加させても精留効率の改善度合いは飽和する傾向にあるので、40段程度が現実的な上限とすることが好ましい。   As described above, the rectifying column 3 is preferably configured to separate and remove the low boiling point component in titanium tetrachloride and the low boiling point component close to the boiling point of titanium tetrachloride. Therefore, as described above, the number of theoretical plates is preferably at least 10 or more, and more preferably 20 or more. However, since the degree of improvement in rectification efficiency tends to be saturated even if the number of stages is excessively increased, it is preferable that about 40 stages be a practical upper limit.

次に、本精留塔3の頂部に凝縮した液状の四塩化チタンの一部を、塔頂部から適宜抜き出すことより、四塩化チタン中の低沸点成分を効果的に分離することができる。   Next, a part of the liquid titanium tetrachloride condensed at the top of the rectifying column 3 is appropriately extracted from the top of the tower, whereby the low boiling point components in the titanium tetrachloride can be effectively separated.

本発明おいては、前記したように本精留塔3の缶出液の一部を簡易精留塔2の底部に戻し、さらに、簡易精留塔2の缶出液を蒸留釜1に戻すように操作することが好ましい。このような缶出液の流れを形成することで、リボイラーから蒸発した四塩化チタンガスの流れと缶出液とが、蒸留釜1、簡易精留塔2、および本精留塔3の装置間においても向流接触され、その結果、図1に示した精留工程全体としての精留効率を更に高めることができる。   In the present invention, as described above, a part of the bottoms of the rectifying column 3 is returned to the bottom of the simple rectifying column 2, and the bottoms of the simple rectifying column 2 is returned to the distillation still 1. It is preferable to operate as follows. By forming such a bottoms flow, the flow of the titanium tetrachloride gas evaporated from the reboiler and the bottoms are transferred between the distillation kettle 1, the simple fractionator 2, and the main fractionator 3. As a result, the rectification efficiency of the entire rectification process shown in FIG. 1 can be further increased.

簡易精留塔2で精製された四塩化チタンは、本精留塔3の中間部から塔内へ導入することが好ましい。このような位置から低沸点成分の多い四塩化チタンを導入することにより、本精留塔3の塔頂部に低沸点成分を濃縮することができる。よって、本精留塔3からの製品四塩化チタンの抜き出し位置は、高沸点成分の大半が分離除去されているために、低沸点成分の少ない本精留塔3の底部に近いところから抜き出すことが好ましいが、底部に近づくほど、高沸点成分の濃度が高まる傾向にある。よって、要求される四塩化チタンの品質から総合的に抜きだす位置を決定することが好ましい。したがって、本精留塔3から製品四塩化チタンを抜き出す位置は鉛直方向に複数個所設けて、バルブの切り替えにより製品四塩化チタンの抜き出し位置を適宜変更できるように構成することが好ましい。   The titanium tetrachloride purified by the simple rectifying column 2 is preferably introduced into the column from the middle part of the rectifying column 3. By introducing titanium tetrachloride having a large amount of low-boiling components from such a position, the low-boiling components can be concentrated at the top of the rectifying column 3. Therefore, the extraction position of the product titanium tetrachloride from the rectifying column 3 is to be extracted from a position close to the bottom of the rectifying column 3 with few low-boiling components because most of the high-boiling components are separated and removed. However, it tends to increase the concentration of the high boiling point component as it approaches the bottom. Therefore, it is preferable to determine the overall extraction position from the required quality of titanium tetrachloride. Therefore, it is preferable to provide a plurality of positions where the product titanium tetrachloride is extracted from the rectifying column 3 in the vertical direction so that the position where the product titanium tetrachloride is extracted can be appropriately changed by switching valves.

更に別の好ましい態様としては、前記した簡易精留塔2を蒸留釜1の頂部に直接係合配置することもできる。このような配置とすることで、見かけ上は、蒸留釜と本精留塔のみで構成でき、コンパクトに精留装置を構成することができる。   As yet another preferred embodiment, the simple rectification column 2 described above can be directly engaged with the top of the distillation still 1. With such an arrangement, the rectification apparatus can be configured in a compact manner, which can be configured with only a distillation still and a main rectification column.

なお、本精留塔の前段にも本精留塔に匹敵する性能を有する蒸留塔を配置しない場合には、精製後の四塩化チタンの品質が低下することも懸念されるが、前述したように本精留塔の缶出液を簡易精留塔に戻し、さらに精留塔の缶出液を蒸留釜に戻す操作を加えることにより、精留工程全体がガスと蒸留液の向流接触がなされ、その結果、簡易精留塔を用いているにも拘わらず、本精留塔の前段に本精留塔に匹敵する性能の蒸留塔を配置した精製装置同等の、品質の優れた四塩化チタンが精製されていると考えられる。すなわち、同等の性能の本精留塔同士を直列に接続した場合に生じる不純物による閉塞の問題を解決し、かつ高品質を維持することができる。   If a distillation column having performance comparable to that of the rectifying column is not disposed in the previous stage of the rectifying column, there is a concern that the quality of the purified titanium tetrachloride may be deteriorated. In addition, by adding an operation to return the bottoms of the rectification column to the simple rectification column and to return the bottoms of the rectification column to the distillation kettle, the entire rectification process can be countercurrently contacted with the gas and the distillate. As a result, despite the fact that a simple rectification column is used, a tetrachloride with excellent quality equivalent to a purification device in which a distillation column with a performance comparable to that of this rectification column is arranged in the previous stage of this rectification column. It is thought that titanium is refined. That is, it is possible to solve the problem of clogging due to impurities generated when the rectifying columns having the same performance are connected in series, and to maintain high quality.

以上述べたような方法および装置構成を用いることにより、純度の高い四塩化チタンを効率よく製造することができる。また、本精留塔の前段に簡易精留塔を配置させることで、本精留塔に持ち込まれる四塩化チタン中の高沸点成分を効率よく分離除去できるという効果を奏する。また、前記簡易精留塔は、構造が単純であり、本精留塔よりも小型であるために、整備に要する時間や工数も本精留塔を整備する場合に比較して、格段に削減されるという従来技術にはない効果を奏するものである。   By using the method and apparatus configuration as described above, high-purity titanium tetrachloride can be efficiently produced. In addition, by arranging a simple rectification column in front of the rectification column, there is an effect that the high-boiling components in titanium tetrachloride brought into the rectification column can be efficiently separated and removed. In addition, the simple rectification tower has a simple structure and is smaller than the rectification tower. Therefore, the time and man-hours required for maintenance are significantly reduced compared to the case where the rectification tower is installed. This is an effect not found in the prior art.

[実施例1]
図2に示すような本実施例に用いた装置および運転条件を以下に示す。
1.装置
1)蒸留釜
・容量:20,000kg
2)簡易精留塔
・形式:泡鐘塔
・物理段数:10段
3)本精留塔
・形式:充填塔
・物理段数:40段
2.運転方法
1)蒸留釜
・温度:130℃〜145℃
・蒸発量に対する簡易精留塔からの戻り流量比:0.3
2)簡易精留塔
・温度:130℃〜140℃
・還流比(蒸発量に対する本精留塔からの戻り流量比):0.3
3)本精留塔
・温度:130℃〜145℃
・還流比(簡易精留塔から本精留塔に供給する流量に対する本精留塔内の頂部から
底部に向かって流下させる流量の比):2.0
[Example 1]
The apparatus and operating conditions used in this example as shown in FIG. 2 are shown below.
1. Apparatus 1) Distillation kettle ・ Capacity: 20,000 kg
2) Simple rectification tower ・ Type: bubble bell tower ・ Number of physical stages: 10 stages 3) Main rectification tower ・ Type: packed tower ・ Number of physical stages: 40 stages
2. Operation method 1) Distillation kettle ・ Temperature: 130 ° C to 145 ° C
・ Return flow rate ratio from simple rectification column to evaporation amount: 0.3
2) Simple rectification column ・ Temperature: 130 ° C to 140 ° C
Reflux ratio (return flow ratio from the rectification column to the evaporation amount): 0.3
3) This rectification tower ・ Temperature: 130 ° C to 145 ° C
Reflux ratio (ratio of the flow rate flowing from the top to the bottom of the rectification column to the flow rate supplied from the simple rectification column to the rectification column): 2.0

図1に示した装置を用い、前記条件下で合計6,000t/月の四塩化チタンを蒸留精製した。その結果、表1に示すような純度の高い四塩化チタンを製造することが確認された。   A total of 6,000 t / month of titanium tetrachloride was distilled and purified using the apparatus shown in FIG. As a result, it was confirmed that high-purity titanium tetrachloride as shown in Table 1 was produced.

Figure 2007302522
Figure 2007302522

なお、前記の生産速度で12ヶ月運転したところで簡易精留塔の前後の圧力損失が上昇し上限値に近づいたので、図4に示すような予備の簡易精留塔2に切り替えてそのまま、運転を継続した。一方、圧力損失が上昇した簡易精留塔は、解体整備後、元の位置に戻した。   Since the pressure loss before and after the simple rectifying column increased and approached the upper limit after 12 months of operation at the above production rate, the operation was continued after switching to the preliminary simple rectifying column 2 as shown in FIG. Continued. On the other hand, the simple rectification tower with increased pressure loss was returned to its original position after dismantling.

[比較例1]
実施例1において簡易精留塔2を用いないこと以外の条件は同じとし、四塩化チタンの蒸留精製を行った。その結果、運転開始から84ヶ月目で本精留塔の圧力損失が基準値に近づいたので、四塩化チタンの蒸留運転を停止して、本精留塔3を整備した。
[Comparative Example 1]
The conditions of Example 1 were the same except that the simple rectification column 2 was not used, and titanium tetrachloride was distilled and purified. As a result, since the pressure loss of the rectifying column approached the reference value in the 84th month from the start of operation, the distillation operation of titanium tetrachloride was stopped and the rectifying column 3 was prepared.

なお、実施例1の簡易精留塔の整備に要した工数を1とし場合に、前記比較例1の本精留塔の整備に要した工数は、50倍に達した。ただし、簡易精留塔の整備間隔は、本精留塔に比べて短いため、これを補正しても、前記本精留塔の整備に要した工数は、実施例1に比べて7倍程度もあり、簡易精留塔を本精留塔の前段に配置した顕著な効果が確認された。   In addition, when the man-hour required for the maintenance of the simple rectification tower of Example 1 is 1, the man-hour required for the maintenance of the rectification tower of Comparative Example 1 has reached 50 times. However, since the maintenance interval of the simple rectification tower is shorter than that of the main rectification tower, even if this is corrected, the man-hour required for the maintenance of the main rectification tower is about seven times that of the first embodiment. Therefore, a remarkable effect was confirmed in which a simple rectification column was placed in front of the rectification column.

以上の実施例および比較例により、本精留塔の前段に簡易精留塔を配置させることにより、本精留塔の閉塞時期を延長させることができることが確認された。また、本精留塔の管出液を前段の簡易精留塔へ、また、前記簡易精留塔の管出液を蒸留釜へ戻すことにより、四塩化チタンの精製効果を高めつつ、高い生産量を確保できることも確認された。   From the above Examples and Comparative Examples, it was confirmed that the blockage time of the rectification column can be extended by arranging the simple rectification column in the previous stage of the rectification column. In addition, by returning the effluent from this rectification column to the simple rectification column in the previous stage, and returning the effluent from the simple rectification column to the distillation kettle, the production efficiency of titanium tetrachloride is enhanced while increasing the purification effect. It was also confirmed that the amount could be secured.

前記の簡易精留塔は構造が単純でしかも適度な大きさであるために、本精留塔に比べて整備に要する工数を大幅に削減できるという効果を奏するものである。また、複数の簡易精留塔を並列配置させることで、簡易精留塔の整備中も蒸留工程の運転を継続できるという効果を奏するものである。   Since the simple rectification tower has a simple structure and an appropriate size, the number of steps required for maintenance can be greatly reduced as compared with the rectification tower. In addition, by arranging a plurality of simple rectifying columns in parallel, the operation of the distillation process can be continued even during maintenance of the simple rectifying column.

本発明の四塩化チタンの精製方法および精製装置を採用することにより、高純度チタンを製造するに好適な高純度四塩化チタンを効率良く得ることができる。これにより高純度チタン製造のコストダウンにも寄与する。   By employing the titanium tetrachloride purification method and purification apparatus of the present invention, high-purity titanium tetrachloride suitable for producing high-purity titanium can be efficiently obtained. This contributes to the cost reduction of high purity titanium production.

本発明の四塩化チタンの精製方法および精製装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the purification method and refinement | purification apparatus of titanium tetrachloride of this invention. 本発明の四塩化チタンの精製方法および精製装置の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the purification method and purification apparatus of titanium tetrachloride of this invention. 本発明の簡易精留塔の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the simple rectification column of this invention. 本発明の簡易精留塔の並列接続の例を示す模式図である。It is a schematic diagram which shows the example of the parallel connection of the simple rectification tower of this invention.

符号の説明Explanation of symbols

1 蒸留釜
2 簡易精留塔
3 本精留塔
4 戻り液1
5 戻り液2
1 Distiller 2 Simple rectification column 3 Main rectification column 4 Return liquid 1
5 Return liquid 2

Claims (7)

精留塔を用いる四塩化チタンの精製方法であって、蒸留釜によって粗四塩化チタンを蒸留し、得られた四塩化チタンに富む留出液を上記蒸留釜の下流側に接続された簡易精留塔に供給して蒸留し、上記簡易精留塔で得られた四塩化チタンに富む留出液を上記簡易精留塔の下流側に接続された本精留塔に供給してさらに蒸留を行うことを特徴とする四塩化チタンの精製方法。   A method for purifying titanium tetrachloride using a rectifying column, comprising distilling crude titanium tetrachloride with a distillation kettle, and diluting the resulting titanium tetrachloride-rich distillate to a downstream side of the distillation kettle. The distillate rich in titanium tetrachloride obtained in the simple rectification column is supplied to the rectification column connected to the downstream side of the simple rectification column for further distillation. A method for purifying titanium tetrachloride, comprising: 前記本精留塔に蓄積した高沸点成分に富む缶出液を前記簡易精留塔に戻し、さらに前記簡易精留塔底部の高沸点成分に富む還流液を前記蒸留釜に戻すことを特徴とする請求項1に記載の四塩化チタンの精製方法。   The bottoms rich in high boiling components accumulated in the rectifying column are returned to the simple rectifying column, and the reflux liquid rich in high boiling components at the bottom of the simple rectifying column is returned to the distillation kettle. The method for purifying titanium tetrachloride according to claim 1. 前記本精留塔および前記簡易精留塔の内部を、直列に連通した理論段数の蒸留室に区画し、上記本精留塔に比べて上記簡易精留塔の理論段数が小さくなるように上記本精留塔および上記簡易精留塔を構成することを特徴とする請求項1または2に記載の四塩化チタンの精製方法。   The inside of the rectifying column and the simple rectifying column is partitioned into a distillation chamber having a theoretical plate number communicating in series, and the theoretical rectifying column has a smaller theoretical plate number than the main rectifying column. The method for purifying titanium tetrachloride according to claim 1 or 2, wherein the rectifying column and the simple rectifying column are constituted. 前記簡易精留塔を複数用い、並列に配置することを特徴とする請求項1〜3のいずれかに記載の四塩化チタンの精製方法。   The method for purifying titanium tetrachloride according to any one of claims 1 to 3, wherein a plurality of the simple rectifying columns are used and arranged in parallel. 粗四塩化チタンを蒸留する蒸留釜と、上記蒸留釜の下流側に接続された簡易精留塔と、上記簡易精留塔の下流側に接続された本精留塔とを備えたことを特徴とする四塩化チタンの精製装置。   A distillation kettle for distilling crude titanium tetrachloride, a simple rectifying column connected to the downstream side of the distillation kettle, and a main rectifying column connected to the downstream side of the simple rectifying column Titanium tetrachloride purification equipment. 前記本精留塔および前記簡易精留塔の内部を、直列に連通した理論段数の蒸留室に区画し、上記本精留塔に比べて上記簡易精留塔の理論段数が小さいことを特徴とする請求項5に記載の四塩化チタンの精製装置。   The inside of the rectifying column and the simplified rectifying column is partitioned into a distillation chamber having a theoretical plate number communicating in series, and the theoretical rectifying column has a smaller theoretical plate number than the main rectifying column. The apparatus for purifying titanium tetrachloride according to claim 5. 前記簡易精留塔が、前記蒸留釜の頂部に係合配置されていることを特徴とする請求項5または6に記載の四塩化チタンの精製装置。   The apparatus for purifying titanium tetrachloride according to claim 5 or 6, wherein the simple rectifying column is disposed to be engaged with a top portion of the distillation kettle.
JP2006133411A 2006-05-12 2006-05-12 Titanium tetrachloride purification method and purification apparatus used therefor Active JP4740033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133411A JP4740033B2 (en) 2006-05-12 2006-05-12 Titanium tetrachloride purification method and purification apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133411A JP4740033B2 (en) 2006-05-12 2006-05-12 Titanium tetrachloride purification method and purification apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2007302522A true JP2007302522A (en) 2007-11-22
JP4740033B2 JP4740033B2 (en) 2011-08-03

Family

ID=38836787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133411A Active JP4740033B2 (en) 2006-05-12 2006-05-12 Titanium tetrachloride purification method and purification apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4740033B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030857A (en) * 2008-07-30 2010-02-12 Toho Titanium Co Ltd Distillation refining apparatus for titanium tetrachloride, method of maintenance of the apparatus and method for refining titanium tetrachloride with the apparatus
CN104058451A (en) * 2014-07-07 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Vanadium removing system and method for crude titanium tetrachloride refining
KR101625823B1 (en) 2015-06-25 2016-05-31 오션브릿지 주식회사 Titanium tetrachloride refine apparatus
KR102017682B1 (en) * 2018-02-27 2019-09-03 고등기술연구원연구조합 Purification method for titanium tetrachloride
CN110280038A (en) * 2019-08-08 2019-09-27 中国恩菲工程技术有限公司 Titanium tetrachloride rectifier unit
CN110357150A (en) * 2019-08-08 2019-10-22 中国恩菲工程技术有限公司 Titanium tetrachloride rectificating method
KR102417743B1 (en) * 2021-11-16 2022-07-06 주식회사 제이오 Apparatus for refining the titanium tetrachloride
CN114797139A (en) * 2022-03-09 2022-07-29 洛阳双瑞万基钛业有限公司 Crude titanium tetrachloride electric heating device containing high-concentration solid particles and distillation system
CN114832417A (en) * 2022-04-21 2022-08-02 洛阳双瑞万基钛业有限公司 System for recovering titanium tetrachloride in refined low-boiling-point distillate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321997B1 (en) 2019-12-30 2021-11-08 고등기술연구원연구조합 Manufacturing apparatus of refining titanium tetrachloride and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187718A (en) * 2000-12-20 2002-07-05 Sumitomo Titanium Corp METHOD OF REFINING TiCl4
JP2003212544A (en) * 2002-01-17 2003-07-30 Air Products & Chemicals Inc METHOD FOR REMOVING GROUP IVb AND Vb METAL IMPURITIES FROM GROUP IVb METAL TETRAHALIDE
JP2006055740A (en) * 2004-08-19 2006-03-02 Sumitomo Titanium Corp Deposition prevention method of high boiling substance in distillation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187718A (en) * 2000-12-20 2002-07-05 Sumitomo Titanium Corp METHOD OF REFINING TiCl4
JP2003212544A (en) * 2002-01-17 2003-07-30 Air Products & Chemicals Inc METHOD FOR REMOVING GROUP IVb AND Vb METAL IMPURITIES FROM GROUP IVb METAL TETRAHALIDE
JP2006055740A (en) * 2004-08-19 2006-03-02 Sumitomo Titanium Corp Deposition prevention method of high boiling substance in distillation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030857A (en) * 2008-07-30 2010-02-12 Toho Titanium Co Ltd Distillation refining apparatus for titanium tetrachloride, method of maintenance of the apparatus and method for refining titanium tetrachloride with the apparatus
CN104058451A (en) * 2014-07-07 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Vanadium removing system and method for crude titanium tetrachloride refining
KR101625823B1 (en) 2015-06-25 2016-05-31 오션브릿지 주식회사 Titanium tetrachloride refine apparatus
KR102017682B1 (en) * 2018-02-27 2019-09-03 고등기술연구원연구조합 Purification method for titanium tetrachloride
CN110280038A (en) * 2019-08-08 2019-09-27 中国恩菲工程技术有限公司 Titanium tetrachloride rectifier unit
CN110357150A (en) * 2019-08-08 2019-10-22 中国恩菲工程技术有限公司 Titanium tetrachloride rectificating method
CN110280038B (en) * 2019-08-08 2024-05-17 中国恩菲工程技术有限公司 Titanium tetrachloride rectifying device
KR102417743B1 (en) * 2021-11-16 2022-07-06 주식회사 제이오 Apparatus for refining the titanium tetrachloride
CN114797139A (en) * 2022-03-09 2022-07-29 洛阳双瑞万基钛业有限公司 Crude titanium tetrachloride electric heating device containing high-concentration solid particles and distillation system
CN114797139B (en) * 2022-03-09 2023-05-12 洛阳双瑞万基钛业有限公司 Crude titanium tetrachloride electric heating device and distillation system containing high-concentration solid particles
CN114832417A (en) * 2022-04-21 2022-08-02 洛阳双瑞万基钛业有限公司 System for recovering titanium tetrachloride in refined low-boiling-point distillate
CN114832417B (en) * 2022-04-21 2024-02-02 洛阳双瑞万基钛业有限公司 Titanium tetrachloride recovery system in refined low boiling point distillate

Also Published As

Publication number Publication date
JP4740033B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4740033B2 (en) Titanium tetrachloride purification method and purification apparatus used therefor
JP5476774B2 (en) Method for recovering (meth) acrylonitrile
JP5300182B2 (en) Method for producing m-toluenediamine or m-toluene diisocyanate
KR101546464B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
CN103282336B (en) For the production of high-purity neopentyl glycol next door tower and use its manufacture method
JP4174541B2 (en) Industrial separation of by-product alcohols
JP6876803B2 (en) Toluene diisocyanate purification method
US20200139263A1 (en) Method of continuous recovery of (meth)acrylic acid and apparatus for the method
JPWO2006030724A1 (en) Industrial separation method of by-product alcohols
US20160074770A1 (en) Method and apparatus for the separation by distillation of a three- or multi-component mixture
JP4229395B2 (en) Industrial production method of aromatic carbonate
JP5374783B2 (en) Purification method of hydrochloric acid
US11034642B2 (en) Method and apparatus for continuously recovering (meth)acrylic acid
JP5038251B2 (en) Titanium tetrachloride distillation purification apparatus, maintenance method of the apparatus, and purification method of titanium tetrachloride using the apparatus
US10173956B1 (en) Process for continuously recovering (meth)acrylic acid and apparatus for the process
CN108137475B (en) Process for purifying methyl methacrylate
TWI668207B (en) Method of operating a heavy ends column in an acetic acid production unit, process for the separation of acetic acid from a stream comprising acetic acid and propionic acid, and process for the production of acetic acid in an acetic acid production unit
CN111194300B (en) Dividing wall distillation column and method for purifying vinylidene chloride by using the same
JP7079272B2 (en) (Meta) Acrylic acid ester purification method
EP3406587B1 (en) Recovery method for (meth)acrylic acid
US8436212B2 (en) Purification of impure hexamethylenediamines
KR20100070485A (en) Dividing wall column for n-butanol recovery
JP5094148B2 (en) Method for producing allyl alcohol
KR101628287B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
JP2007326782A (en) Device for industrially separating byproduct alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4740033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250