JP5094148B2 - Method for producing allyl alcohol - Google Patents

Method for producing allyl alcohol Download PDF

Info

Publication number
JP5094148B2
JP5094148B2 JP2007024286A JP2007024286A JP5094148B2 JP 5094148 B2 JP5094148 B2 JP 5094148B2 JP 2007024286 A JP2007024286 A JP 2007024286A JP 2007024286 A JP2007024286 A JP 2007024286A JP 5094148 B2 JP5094148 B2 JP 5094148B2
Authority
JP
Japan
Prior art keywords
distillation
liquid
azeotropic
raw material
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007024286A
Other languages
Japanese (ja)
Other versions
JP2007231011A (en
Inventor
浩 丸田
千博 乙川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007024286A priority Critical patent/JP5094148B2/en
Publication of JP2007231011A publication Critical patent/JP2007231011A/en
Application granted granted Critical
Publication of JP5094148B2 publication Critical patent/JP5094148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、共沸蒸留方法に関する。より詳しくは、反応工程および反応生成物の分離精製を行う蒸留工程を有し、反応原料が蒸留工程で共沸蒸留の助剤となる系において、蒸留工程に反応原料の一部を供給することで共沸蒸留の分離性能を向上させ、分離に必要なエネルギーを削減するための共沸蒸留方法に関する。   The present invention relates to an azeotropic distillation method. More specifically, a part of the reaction raw material is supplied to the distillation step in a system having a distillation step for separating and purifying the reaction step and the reaction product, and the reaction raw material is an auxiliary for azeotropic distillation in the distillation step. The present invention relates to an azeotropic distillation method for improving separation performance of azeotropic distillation and reducing energy required for separation.

極大共沸点または極小共沸点を与えるような2以上の成分の組合せにおいては、共沸現象が生じる。この共沸現象を利用した蒸留たる「共沸蒸留」においては、単蒸留や分留では分離が困難な2つ以上の物質からなる混合物に、これらのいずれか1つ以上と共沸混合物を形成する物質(一般に「助剤」と呼ばれる)が添加されると、蒸留の分離性能が向上する。共沸蒸留が適用される産業分野の例として、酢酸アリルの加水分解反応によるアリルアルコールの製造工程(特許文献1、特許文献2)や2,3−ジクロル−1−プロパノールの精製工程(特許文献3)が挙げられる。   An azeotropic phenomenon occurs in the combination of two or more components that give the maximum azeotropic point or the minimum azeotropic point. In “azeotropic distillation”, which is distillation using this azeotropic phenomenon, an azeotropic mixture is formed with one or more of these substances in a mixture of two or more substances that are difficult to separate by simple distillation or fractional distillation. When a substance to be distilled (generally called “auxiliary”) is added, the separation performance of distillation is improved. Examples of industrial fields to which azeotropic distillation is applied include a process for producing allyl alcohol by hydrolysis of allyl acetate (Patent Document 1, Patent Document 2) and a purification process for 2,3-dichloro-1-propanol (Patent Document). 3).

特許文献1では、加水分解反応の反応原料成分の一つである、酢酸アリルおよび水、並びに反応生成物であるアリルアルコールの共沸混合物から、抽出操作で酢酸アリルを回収する方法が開示されている。しかしながら、当該特許文献では回収された酢酸アリルは全量反応工程に供給されており、助剤として蒸留塔に供給した場合の効果は一切記述されていない。   Patent Document 1 discloses a method for recovering allyl acetate by an extraction operation from an azeotropic mixture of allyl acetate and water, which are one of the reaction raw material components of the hydrolysis reaction, and allyl alcohol which is a reaction product. Yes. However, in the said patent document, all the collect | recovered allyl acetate is supplied to the reaction process, and the effect at the time of supplying to a distillation column as an adjuvant is not described at all.

特許文献2では、加水分解反応の反応原料成分の一つである酢酸アリルを水との分離のための共沸助剤として利用した共沸蒸留方法が開示されている。しかしながら、当該特許文献も特許文献1と同様、酢酸アリルを助剤として蒸留塔に供給した場合の効果は一切記述されていない。   Patent Document 2 discloses an azeotropic distillation method using allyl acetate, which is one of the reaction raw material components of the hydrolysis reaction, as an azeotropic aid for separation from water. However, as in Patent Document 1, this patent document does not describe any effect when allyl acetate is supplied to the distillation column as an auxiliary agent.

一方、特許文献3では、反応に伴う副生成物を濃縮し助剤として使用する共沸蒸留方法が開示されている。しかしながら、助剤は反応原料ではないため、反応工程へのリサイクルは行われていない。   On the other hand, Patent Document 3 discloses an azeotropic distillation method in which a by-product accompanying the reaction is concentrated and used as an auxiliary agent. However, since the auxiliary is not a reaction raw material, it is not recycled to the reaction process.

以降、各特許文献に関して詳細な説明を行う。
図1は特許文献1を説明するためのフロー図である。図1を参照して、このようなプロセスにおいては、酢酸アリル、水を主成分とする反応原料(101)と回収した酢酸アリル(102)を混合した反応原料(103)を加水分解反応器(11)に導入する。加水分解反応器(11)から出た反応液(104)は、第一蒸留塔(12)に導かれて蒸留され、水を含む酢酸等の塔底液(105)が抜き出され、酢酸アリル製造工程に循環供給される。
Hereinafter, detailed description will be given regarding each patent document.
FIG. 1 is a flowchart for explaining Patent Document 1. Referring to FIG. 1, in such a process, reaction raw material (103) obtained by mixing reaction raw material (101) mainly composed of allyl acetate and water and recovered allyl acetate (102) is subjected to a hydrolysis reactor ( 11). The reaction liquid (104) discharged from the hydrolysis reactor (11) is led to the first distillation column (12) and distilled, and a column bottom liquid (105) such as acetic acid containing water is extracted, and allyl acetate is extracted. It is circulated and supplied to the manufacturing process.

また第一蒸留塔(12)の塔頂からは、アリルアルコール、酢酸アリル、水の共沸蒸留混合物(106)が留出され、デカンター(13)に導入される。デカンター(13)において上記混合物(106)は、酢酸アリルの多い油層(110)と、酢酸アリルの少ない水層(109)の二層に分離する。油層(110)は抽出塔(14)に導入される。この抽出塔(14)では水を主成分とする抽剤(112)を用いた抽出操作により酢酸アリルが除去され、ボトム液(111)はアリルアルコールおよび水が主成分であり、後工程の蒸留操作で含水アリルアルコールが精製される。一方、抽出塔(14)の塔頂からは実質的にアリルアルコールを含まない酢酸アリルおよび水を含む液(113)が抜き出され、上記した循環液(102)として反応器(11)に送られる。   An azeotropic distillation mixture (106) of allyl alcohol, allyl acetate, and water is distilled from the top of the first distillation column (12) and introduced into the decanter (13). In the decanter (13), the mixture (106) is separated into two layers, an oil layer (110) rich in allyl acetate and an aqueous layer (109) low in allyl acetate. The oil layer (110) is introduced into the extraction tower (14). In this extraction tower (14), allyl acetate is removed by an extraction operation using an extractant (112) mainly composed of water, and the bottom liquid (111) is composed mainly of allyl alcohol and water. In operation, hydrated allyl alcohol is purified. On the other hand, a liquid (113) containing allyl acetate substantially free of allyl alcohol and water is extracted from the top of the extraction tower (14) and sent to the reactor (11) as the circulating liquid (102). It is done.

図2は特許文献2を説明するためのフロー図である。酢酸アリルおよび水を主成分とする反応原料液(201)と、水、酢酸アリルの反応原料成分を含む回収液(202)を、あわせて加水分解反応器(21)に通すことで酢酸アリルの加水分解反応によりアリルアルコール、酢酸を得る。前記反応器(21)で生成した反応生成液(204)は酢酸アリル、アリルアルコール、水、酢酸よりなり、第一蒸留塔(22)に供給され、該第一蒸留塔(22)の塔頂からは、酢酸アリル、水、アリルアルコールの共沸混合物として未反応の酢酸アリルの一部が回収され、留出液(208)は前記(21)の加水分解反応器に循環される。   FIG. 2 is a flowchart for explaining Patent Document 2. The reaction raw material liquid (201) mainly composed of allyl acetate and water and the recovered liquid (202) containing the reaction raw material components of water and allyl acetate are combined and passed through the hydrolysis reactor (21) to thereby prepare allyl acetate. Allyl alcohol and acetic acid are obtained by hydrolysis reaction. The reaction product liquid (204) generated in the reactor (21) is composed of allyl acetate, allyl alcohol, water and acetic acid, and is supplied to the first distillation column (22). , An unreacted allyl acetate is recovered as an azeotrope of allyl acetate, water and allyl alcohol, and the distillate (208) is circulated to the hydrolysis reactor (21).

他方、該第一蒸留塔(22)の塔底から、生成した酢酸、アリルアルコールおよび未反応の水と、一部の酢酸アリルが抜き出される。第一蒸留塔(22)の塔底から抜き出される液(205)は、第二蒸留塔(23)に供給され、液(205)中の酢酸アリルを共沸助剤として使用し、塔頂からアリルアルコール、水、酢酸アリルの共沸混合液(212)を、塔底から酢酸または酢酸、水を主成分とする液(209)を得る。第二蒸留塔(23)の塔頂留分(212)は、第三の蒸留塔(24)に供給される。   On the other hand, the produced acetic acid, allyl alcohol and unreacted water, and a part of allyl acetate are extracted from the bottom of the first distillation column (22). The liquid (205) withdrawn from the bottom of the first distillation column (22) is supplied to the second distillation column (23), and allyl acetate in the liquid (205) is used as an azeotropic auxiliary agent. To obtain an azeotropic mixture (212) of allyl alcohol, water and allyl acetate, and a liquid (209) containing acetic acid, acetic acid and water as main components from the bottom of the column. The top fraction (212) of the second distillation column (23) is supplied to the third distillation column (24).

第三の蒸留塔(24)の塔頂から、水、酢酸アリル、アリルアルコールが留出される。そして、凝縮後デカンタ(25)で油層と水層の二層に分けられる。油層は酢酸アリルが主成分であり、この有機相の全量又は一部を共沸助剤として塔(24)に還流させることによりアリルアルコールを精製する。水層は少量のアリルアルコールと酢酸アリルを含有しており、前期油層の一部と共に加水分解反応器(21)に戻される。   Water, allyl acetate, and allyl alcohol are distilled from the top of the third distillation column (24). And after condensation, it is divided into two layers of an oil layer and an aqueous layer by a decanter (25). The oil layer is mainly composed of allyl acetate, and allyl alcohol is purified by refluxing the whole or a part of this organic phase to the column (24) as an azeotropic auxiliary. The aqueous layer contains a small amount of allyl alcohol and allyl acetate and is returned to the hydrolysis reactor (21) together with a portion of the oil layer.

図3は特許文献3を説明するためのフロー図である。アリルアルコールを反応原料としたエピクロルヒドリン製造プロセスにおける中間製品2,3−ジクロル−1−プロパノール(以降、DCHと省略する)を主成分とし、副生成物として1,2,3−トリクロルプロパン(以降、TCPと省略する)およびその他低沸分を含む液(301)が、第一蒸留塔(31)に供給され、該第一蒸留塔(31)の塔頂から、助剤としてTCPを主成分とする液(307)が供給される。液(301)中の水は、塔頂から供給されるTCPが助剤として作用することで、DCH−水共沸混合物より低沸点のTCP−水共沸混合物となって塔頂へ留出し、該第一蒸留塔(31)の塔頂留出分(303)となる。従って、水の大部分をTCP−水共沸混合物の形で留出させるため、DCHの塔頂への留出が抑制される。塔底液(302)は後工程の精製設備に供給される。塔頂留出分(303)は凝縮・冷却され、デカンタ(32)にて水層(304)と油層(305)に分離する。水層(304)は別に設けた処理設備へ送られる。油層(305)は第二蒸留塔(33)へ供給され、塔底からTCPを主成分とした液(307)として第一蒸留塔(31)へ供給される。塔頂留出分(306)は別に設けられた処理設備に導入される。   FIG. 3 is a flowchart for explaining Patent Document 3. An intermediate product 2,3-dichloro-1-propanol (hereinafter abbreviated as DCH) in the epichlorohydrin production process using allyl alcohol as a reaction raw material, and 1,2,3-trichloropropane (hereinafter referred to as a by-product) as a by-product. (Hereinafter abbreviated as TCP) and other liquid (301) containing a low boiling point component are supplied to the first distillation column (31), and TCP is used as an auxiliary agent from the top of the first distillation column (31). The liquid (307) to be supplied is supplied. The water in the liquid (301) distills to the top of the tower as a TCP-water azeotrope having a lower boiling point than the DCH-water azeotrope, because the TCP supplied from the top acts as an auxiliary agent. This is the top distillate (303) of the first distillation column (31). Therefore, since most of the water is distilled in the form of a TCP-water azeotrope, distillation of DCH to the top of the column is suppressed. The column bottom liquid (302) is supplied to a purification facility in a subsequent process. The column top distillate (303) is condensed and cooled, and separated into an aqueous layer (304) and an oil layer (305) by a decanter (32). The aqueous layer (304) is sent to a separate processing facility. The oil layer (305) is supplied to the second distillation column (33), and is supplied from the bottom of the column to the first distillation column (31) as a liquid (307) mainly composed of TCP. The column top distillate (306) is introduced into a separate processing facility.

近年、二酸化炭素の排出量削減、燃料の節約の点から、共沸蒸留における分離性能を実質的に低下させることなく、分離に要するエネルギーを削減することが強く要請されている。   In recent years, there has been a strong demand to reduce the energy required for separation without substantially reducing the separation performance in azeotropic distillation from the viewpoint of reducing carbon dioxide emissions and saving fuel.

特開昭62−149637号公報Japanese Patent Laid-Open No. 62-149637 特開平1−85940号公報JP-A-1-85940 特開平7−25796号公報Japanese Unexamined Patent Publication No. 7-25796

本発明の目的は、共沸蒸留における分離性能を実質的に低下させることなく、分離に要するエネルギーを削減することを可能とする共沸蒸留方法を提供することにある。   An object of the present invention is to provide an azeotropic distillation method that makes it possible to reduce the energy required for separation without substantially reducing the separation performance in azeotropic distillation.

本発明者らは鋭意研究の結果、反応工程における反応原料成分の一部を蒸留工程に供給して、積極的に共沸助剤として用いることが、むしろ当該反応工程の反応原料の当該蒸留工程の分離性能を向上させ、且つ、総合的にはエネルギー削減を可能とすることを見出した。   As a result of diligent research, the present inventors have supplied a part of the reaction raw material components in the reaction process to the distillation process, and positively use them as an azeotropic auxiliary, rather, the distillation process of the reaction raw material in the reaction process. It has been found that the separation performance can be improved and energy can be reduced overall.

本発明の共沸蒸留方法は上記知見に基づくものであり、より詳しくは、反応工程、反応生成物の分離精製を行う蒸留工程、および蒸留工程の後工程に反応原料を回収する工程を少なくとも有する共沸蒸留方法であって;前記反応工程における反応原料の少なくとも一種が、前記蒸留工程において共沸蒸留の助剤として作用し;且つ該助剤として作用する反応原料の一部を、蒸留工程へ供給することを特徴とするものである。   The azeotropic distillation method of the present invention is based on the above knowledge. More specifically, the azeotropic distillation method includes at least a reaction step, a distillation step for separating and purifying reaction products, and a step of recovering a reaction raw material in a subsequent step of the distillation step. In the azeotropic distillation method, at least one of the reaction raw materials in the reaction step acts as an azeotropic distillation auxiliary in the distillation step; and a part of the reaction raw material acting as the auxiliary goes to the distillation step It is characterized by supplying.

上記構成を有する本発明の共沸蒸留方法においては、反応原料の一部を共沸助剤として蒸留工程に供給することにより、共沸蒸留の分離性能が向上するというメリットが得られる。この場合、未反応原料の循環量増加に伴うデメリットがある可能性があるが、このようなデメリットは、留出液への高沸点成分の混入の減少、排水負荷の低減等により実質的には問題とはならないことが、本発明者らにより見出されている。   In the azeotropic distillation method of the present invention having the above-described configuration, a merit that separation performance of azeotropic distillation is improved is obtained by supplying a part of the reaction raw material to the distillation step as an azeotropic auxiliary. In this case, there may be a disadvantage associated with an increase in the circulation rate of the unreacted raw material. However, such a disadvantage is substantially due to a decrease in mixing of high-boiling components in the distillate, a reduction in drainage load, etc. It has been found by the inventors that this is not a problem.

本発明は反応原料が共沸助剤としても作用する場合に、反応原料の少なくとも一部を(反応系に供給せずに)共沸助剤として当該蒸留工程へ供給することにより、当該蒸留工程の分離性能を高め、且つ、当該蒸留工程にて必要なエネルギーの削減を可能としている。   In the present invention, when the reaction raw material also acts as an azeotropic auxiliary, by supplying at least a part of the reaction raw material to the distillation step as an azeotropic auxiliary (without supplying it to the reaction system), the distillation step The separation performance is improved and the energy required in the distillation process can be reduced.

本発明は、例えば、以下の[1]〜[5]の態様を含む。   The present invention includes, for example, the following aspects [1] to [5].

[1] 反応工程、反応生成物の分離精製を行う蒸留工程、および蒸留工程の後工程に反応原料を回収する工程を少なくとも有する共沸蒸留方法であって;   [1] An azeotropic distillation method comprising at least a reaction step, a distillation step for separating and purifying reaction products, and a step of recovering a reaction raw material after the distillation step;

前記反応工程における反応原料の少なくとも一種が、前記蒸留工程において共沸蒸留の助剤として作用するものであって;且つ該助剤として作用する反応原料の一部を、蒸留工程へ供給することを特徴とする共沸蒸留方法。   At least one of the reaction raw materials in the reaction step acts as an azeotropic distillation aid in the distillation step; and supplies a part of the reaction raw material acting as the aid to the distillation step. A characteristic azeotropic distillation method.

[2] 蒸留工程の後工程で回収され、未反応の前記助剤として作用する反応原料を80質量%以上含む、液体および/又は気体の一部を、蒸留工程に供給することを特徴とする[1]に記載の共沸蒸留方法。   [2] A part of a liquid and / or gas recovered in a subsequent step of the distillation step and containing 80% by mass or more of a reaction raw material that acts as an unreacted auxiliary agent is supplied to the distillation step. The azeotropic distillation method according to [1].

[3] 蒸留工程が複数の蒸留塔からなり、未反応の前記助剤として作用する反応原料を80質量%以上含む、液体および/又は気体の一部を、最初の蒸留塔へ供給することを特徴とする[2]に記載の共沸蒸留方法。   [3] The distillation step comprises a plurality of distillation columns, and a part of the liquid and / or gas containing 80% by mass or more of the reaction raw material acting as an unreacted auxiliary agent is supplied to the first distillation column. The azeotropic distillation method according to [2], which is characterized.

[4] 前記助剤として作用する反応原料が酢酸アリルであり、前記反応生成物がアリルアルコールおよび酢酸であることを特徴とする[1]〜[3]のいずれかに記載の共沸蒸留方法。   [4] The azeotropic distillation method according to any one of [1] to [3], wherein the reaction raw material acting as an auxiliary is allyl acetate and the reaction product is allyl alcohol and acetic acid. .

[5] [4]に記載された共沸蒸留方法をプロセスの一部として含む、アリルアルコールの製造方法。   [5] A method for producing allyl alcohol, comprising the azeotropic distillation method described in [4] as a part of the process.

上述したように、本発明によれば共沸蒸留の分離性能が向上する結果、当該蒸留工程の消費エネルギーの低減、および当該蒸留工程における塔頂留分中の高沸点成分濃度の削減を達成できる。   As described above, according to the present invention, as a result of improving the separation performance of azeotropic distillation, it is possible to achieve reduction of energy consumption of the distillation step and reduction of high boiling point component concentration in the top fraction in the distillation step. .

以下、本発明についてより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

(共沸蒸留方法)
本発明の共沸蒸留方法は、反応工程、反応生成物の分離精製を行う蒸留工程、および蒸留工程の後工程に反応原料を回収する工程を有する。本発明においては、反応原料の少なくとも一種が蒸留工程で共沸蒸留の助剤となる系において、当該反応原料の一部を蒸留工程へ供給することが特徴である。
(Azeotropic distillation method)
The azeotropic distillation method of the present invention includes a reaction step, a distillation step for separating and purifying reaction products, and a step of recovering reaction raw materials in a subsequent step of the distillation step. The present invention is characterized in that a part of the reaction raw material is supplied to the distillation step in a system in which at least one of the reaction raw materials serves as an azeotropic distillation aid in the distillation step.

(共沸)
極大共沸点または極小共沸点(これらを総称して、「共沸点」という)を与えるような少なくとも2成分の組合せ(共沸混合物)においては、共沸現象が生じ、該共沸点においては、発生する蒸気の組成は、液体の組成に等しくなる。本発明においては、このような共沸現象を利用して、共沸蒸留を行う。
(Azeotropic)
An azeotropic phenomenon occurs in a combination (azeotropic mixture) of at least two components that gives a maximum azeotropic point or a minimum azeotropic point (collectively referred to as “azeotropic point”). The composition of the vapor is equal to the composition of the liquid. In the present invention, azeotropic distillation is carried out utilizing such an azeotropic phenomenon.

(共沸混合物を与える組合せ)
本発明において共沸混合物を与える成分の組合せは、本発明においては、反応原料の少なくとも一種が蒸留工程で共沸蒸留の助剤となる系である限り、特に制限されない。例えば、以下に示す成分の組合せを好適に使用することができる。
(Combination giving an azeotrope)
In the present invention, the combination of components giving an azeotrope is not particularly limited in the present invention as long as at least one of the reaction raw materials is a system that serves as an azeotropic distillation aid in the distillation step. For example, combinations of the components shown below can be preferably used.

(1)水−酢酸アリル−アリルアルコール (1) Water-allyl acetate-allyl alcohol

(助剤)
単蒸留や分留では分離が困難な2つ以上の物質からなる混合物に対して、これら成分のいずれか1つ以上と共沸混合物を形成する物質を添加した際に、蒸留の分離性能が向上するような成分を「助剤」という(共沸剤、エントレーナーと呼ばれる場合もある)。本発明においては、反応原料の少なくとも一種が蒸留工程で共沸蒸留の助剤となる。助剤となるか否かの基準は、共沸する成分の何れかを加えることで、共沸点が最高共沸または最低共沸の組成に近づくか否かで決まる。
(Auxiliary)
When a substance that forms an azeotrope with one or more of these components is added to a mixture of two or more substances that are difficult to separate by simple distillation or fractional distillation, the separation performance of the distillation is improved. Such components are called “auxiliaries” (sometimes called azeotropic agents or entrainers). In the present invention, at least one of the reaction raw materials serves as an azeotropic distillation aid in the distillation step. The criteria for determining whether or not to become an auxiliary agent is determined by whether or not the azeotropic point approaches the highest or lowest azeotropic composition by adding any of the azeotropic components.

(本発明の一態様)
図4は、本発明の一態様を示すフロー図である。図4において、反応原料を含む液(401)は後述する反応原料回収工程(44)より回収された反応原料からなる循環液(402)と合流し、反応原料(403)として反応工程(41)に供給される。反応工程(41)から出た反応生成液(404)は、共沸助剤として作用する反応原料を含む液(420)と合流し、共沸蒸留塔(42)に供給される。
(One embodiment of the present invention)
FIG. 4 is a flowchart illustrating one embodiment of the present invention. In FIG. 4, the liquid (401) containing the reaction raw material is joined with the circulating liquid (402) made of the reaction raw material recovered from the reaction raw material recovery step (44) described later, and the reaction step (41) is obtained as the reaction raw material (403). To be supplied. The reaction product liquid (404) output from the reaction step (41) joins with the liquid (420) containing the reaction raw material that acts as an azeotropic auxiliary agent, and is supplied to the azeotropic distillation tower (42).

共沸蒸留塔(42)に供給された反応生成液(404)は蒸留操作により、塔底から主として高沸分を含む塔底液(405)が抜き出され、塔頂から助剤を含む共沸混合物からなる塔頂留分(406)が抜き出される。塔頂留分(406)の一部は還流(407)として共沸蒸留塔(42)に戻され、残りの液(408)は反応原料回収工程(44)に供給される。反応原料回収工程(44)は、反応原料を回収できるならば蒸留、抽出に限らず任意の分離操作を用いることが可能であるが、原料回収に要する費用や回収率を評価基準にして具体的な分離操作を決定すれば良い。反応原料回収工程(44)から回収された反応原料(410)は(402)として反応工程(41)へ供給される。   The reaction product liquid (404) supplied to the azeotropic distillation tower (42) is subjected to a distillation operation to extract a bottom liquid (405) mainly containing high-boiling components from the tower bottom, and a co-polymer containing an auxiliary agent from the tower top. An overhead fraction (406) comprising a boiling mixture is withdrawn. A part of the column top fraction (406) is returned to the azeotropic distillation column (42) as reflux (407), and the remaining liquid (408) is supplied to the reaction raw material recovery step (44). The reaction raw material recovery step (44) is not limited to distillation and extraction as long as the reaction raw material can be recovered, but any separation operation can be used. What is necessary is just to determine an appropriate separation operation. The reaction raw material (410) recovered from the reaction raw material recovery step (44) is supplied to the reaction step (41) as (402).

なお、反応原料を含む液(420)の添加位置は反応生成液(404)の位置に限定されず、例えば、還流(407)に添加しても良い。また、反応原料を含む液(420)は、回収した反応原料からなる循環液(410)の少なくとも一部、もしくは新たに加える反応原料成分の一部のいずれでもよい。   The addition position of the liquid (420) containing the reaction raw material is not limited to the position of the reaction product liquid (404), and may be added to the reflux (407), for example. The liquid (420) containing the reaction raw material may be at least a part of the circulating liquid (410) made of the recovered reaction raw material or a part of the reaction raw material component to be newly added.

反応原料を含む液(420)は、その中の助剤として作用する反応原料の濃度が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。濃度が80質量%未満であると、好適な共沸組成にするために反応原料(420)の供給量を増す傾向が強まり、結果としてリボイラーの負荷の増大等によりエネルギーコストが増大する傾向が生じる可能性がある。   In the liquid (420) containing the reaction raw material, the concentration of the reaction raw material acting as an auxiliary agent is preferably 80% by mass or more, and more preferably 90% by mass or more. When the concentration is less than 80% by mass, the tendency to increase the supply amount of the reaction raw material (420) in order to obtain a suitable azeotropic composition increases, and as a result, the energy cost tends to increase due to an increase in the load on the reboiler. there is a possibility.

(共沸助剤の添加)
共沸助剤として共沸蒸留塔(42)に供給する液(420)の添加可否および添加量は次の基準(I)〜(II)を基に決定すればよい。
(Addition of azeotropic auxiliary)
Whether or not to add the liquid (420) to be supplied to the azeotropic distillation column (42) as an azeotropic auxiliary and the amount of addition may be determined based on the following criteria (I) to (II).

(I)共沸蒸留塔(42)の効率向上によるメリットが、反応原料回収工程(44)におけるデメリットを上回ること。   (I) The merit by the efficiency improvement of an azeotropic distillation tower (42) exceeds the demerit in a reaction raw material collection | recovery process (44).

上記メリットとは、共沸蒸留塔(42)の分離性能向上によりもたらされる経済的効果である。一般に、蒸留操作においては塔頂留分中の高沸分濃度を下げるために還流操作を行うため、還流として蒸留塔に供給する分だけ共沸蒸留塔(42)のリボイラ(43)で必要なエネルギーが増加する。しかしながら、発明の実施により塔頂留出物(406)の組成が最低沸点を持つ共沸組成に近づくことで、より少ない還流で所定の分離性能を満足できるため、共沸蒸留塔(42)のリボイラ(43)で必要なエネルギーを削減できる。あるいは、高沸分濃度の低下により、塔頂から流出する高沸分の量が減るため、後工程での処理費用の低減につながる。   The merit is an economic effect brought about by an improvement in the separation performance of the azeotropic distillation column (42). In general, in the distillation operation, the reflux operation is performed in order to reduce the high boiling point concentration in the top fraction of the column. Therefore, the reboiler (43) of the azeotropic distillation column (42) is required by the amount supplied to the distillation column as the reflux. Energy increases. However, since the composition of the top distillate (406) approaches the azeotropic composition having the lowest boiling point by the practice of the invention, the predetermined separation performance can be satisfied with less reflux, so that the azeotropic distillation tower (42) The reboiler (43) can reduce the required energy. Alternatively, since the amount of high-boiling components flowing out from the top of the column is reduced due to the decrease in the high-boiling point concentration, the processing cost in the subsequent process is reduced.

一方、上記デメリットとは、発明の実施により未反応の反応原料の循環量が助剤として使用する分だけ増加して、反応原料回収工程(44)での処理量が増加することから、経済的に不利となることを指す。   On the other hand, the above demerit is economical because the amount of unreacted reaction raw material circulated increases by the amount used as an auxiliary agent and the processing amount in the reaction raw material recovery step (44) increases. It is disadvantageous to.

(II)その他、運転条件等の制約に従うこと。製造する目的化合物や設備により運転条件が変わるため、塔頂、塔底の各抜き出し液のいずれか一方、もしくは両方の流量、組成等の目標値の制約等により決定される。   (II) Observe other restrictions such as operating conditions. Since the operating conditions vary depending on the target compound and equipment to be produced, it is determined by restrictions on target values such as the flow rate and composition of either or both of the top and bottom extracted liquids.

例えば、後述する実施例1の具体例では、後工程(特許文献1に記載のものと同一の抽出工程)で使用している抽剤の回収工程で使う加熱蒸気の量が毎時0.2質量部上昇したが、共沸塔・塔頂の酢酸(高沸成分)濃度を大幅に削減することで、排水中の酢酸流量は毎時0.04質量部減った。したがって、この実施例1の場合には、下記の不等式が成立する。   For example, in the specific example of Example 1 described later, the amount of heating steam used in the recovery process of the extractant used in the subsequent process (the same extraction process described in Patent Document 1) is 0.2 mass / hour. However, the flow rate of acetic acid in the wastewater decreased by 0.04 parts by mass per hour by greatly reducing the concentration of acetic acid (high boiling component) at the azeotropic tower / top. Therefore, in the case of the first embodiment, the following inequality is established.

毎時0.04質量部の酢酸(排水処理費用・酢酸ロス)のメリット(年間1000万円程度)>毎時0.2質量部のスチーム増のデメリット(年間200万円程度) Advantages of 0.04 parts by mass of acetic acid (wastewater treatment costs / acetic acid loss) per hour (approximately 10 million yen per year)> Disadvantages of increasing steam by 0.2 parts by mass per hour (approximately 2 million yen per year)

以下実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

(実施例1)
実施例として特許文献1のアリルアルコール製造工程にて本発明を実施した。
CHCOOCHCH=CH + HO → CH=CHCHOH + CHCOOH
Example 1
As an example, the present invention was carried out in the allyl alcohol production process of Patent Document 1.
CH 3 COOCH 2 CH═CH 2 + H 2 O → CH 2 = CHCH 2 OH + CH 3 COOH

以下、本実施例1を説明するためのフロー図である図5を用いて、説明を行う。
図5において、酢酸アリル合成工程を経て生成した酢酸アリルを含む反応原料(501)は後述する抽出塔(55)により回収された反応原料酢酸アリル(502)と混合されて加水分解反応器(51)に供給される。
Hereinafter, description will be made with reference to FIG. 5 which is a flowchart for explaining the first embodiment.
In FIG. 5, the reaction raw material (501) containing allyl acetate produced | generated through the allyl acetate synthetic | combination process is mixed with the reaction raw material allyl acetate (502) collect | recovered by the extraction tower (55) mentioned later, and a hydrolysis reactor (51 ).

加水分解反応(51)では、触媒として強酸性のイオン交換樹脂を使用しており、0.6MPa、78℃の温度条件下、滞留時間:50分にて反応させた。反応生成液(504)と、抽出塔(55)により回収された酢酸アリルの一部(520)が混合した流れ(505)は蒸留塔(52)に供給される。蒸留塔では圧力0.15MPa、塔頂温度90℃前後、塔底温度115℃前後の条件で運転される。塔底から抜き出される液(506)は、酢酸、水を主成分とする液で、酢酸アリル合成工程に戻されて循環利用される。塔頂からの留出分(507)は50℃前後まで冷却されてデカンタ(54)に供給される。デカンタ(54)では酢酸アリル濃度の高い油層と酢酸アリル濃度の低い水層の2層に分離する。油層液の一部は共沸蒸留塔(52)の分離性能向上のため還流(509)として戻され、残りの油層液(510)は抽出塔(55)へと供給される。   In the hydrolysis reaction (51), a strongly acidic ion exchange resin was used as a catalyst, and the reaction was performed under the temperature conditions of 0.6 MPa and 78 ° C. with a residence time of 50 minutes. A stream (505) obtained by mixing the reaction product liquid (504) and a part (520) of allyl acetate recovered by the extraction tower (55) is supplied to the distillation tower (52). The distillation column is operated under conditions of a pressure of 0.15 MPa, a column top temperature of about 90 ° C., and a column bottom temperature of about 115 ° C. The liquid (506) withdrawn from the bottom of the column is a liquid mainly composed of acetic acid and water, and is returned to the allyl acetate synthesis step for recycling. The distillate (507) from the top of the column is cooled to around 50 ° C. and supplied to the decanter (54). In the decanter (54), the oil layer having a high allyl acetate concentration and the water layer having a low allyl acetate concentration are separated into two layers. A part of the oil layer liquid is returned as reflux (509) to improve the separation performance of the azeotropic distillation column (52), and the remaining oil layer liquid (510) is supplied to the extraction column (55).

一方、水層(508)は後述の液(512)と共にアリルアルコール精製工程へ供給される。抽出塔(55)では0.110MPa、40℃の条件下、共沸蒸留塔(52)の塔頂抜き出し液(510)とほぼ水からなる液(511)との向流接触により、(510質量流量):(511質量流量)=1:1.4の比率で供給され、塔頂からアリルアルコールを除去された酢酸アリル(513)が抜き出され、塔底からは酢酸アリルを若干含むアリルアルコール水溶液(512)が抜き出される。なお(508)および(512)は混合されて、次の蒸留塔にて酢酸アリルが除去された後、アリルアルコール水溶液の蒸留操作により塔頂からアリルアルコールと水の共沸組成が得られる。回収された酢酸アリル(513)(濃度97.3%)は加水分解反応器(51)の反応原料(502)および共沸蒸留の助剤(520)としてリサイクルされる。   On the other hand, the aqueous layer (508) is supplied to the allyl alcohol purification step together with the liquid (512) described later. In the extraction column (55), under the conditions of 0.110 MPa and 40 ° C., the countercurrent contact between the liquid (510) extracted from the top of the azeotropic distillation column (52) and the liquid (511) consisting essentially of water (510 mass) (Flow rate) :( 511 mass flow rate) = 1: 1.4 The allyl acetate (513) from which allyl alcohol has been removed is extracted from the top of the column, and allyl alcohol slightly containing allyl acetate is extracted from the bottom of the column. The aqueous solution (512) is withdrawn. (508) and (512) are mixed, and after allyl acetate is removed in the next distillation tower, an azeotropic composition of allyl alcohol and water is obtained from the top of the tower by distillation of the allyl alcohol aqueous solution. The recovered allyl acetate (513) (concentration 97.3%) is recycled as a reaction raw material (502) of the hydrolysis reactor (51) and an azeotropic distillation auxiliary (520).

ここで、(51)、(54)の運転条件は上記の通りで、(52)の塔底抜き出し(506)流量を毎時62.9質量部、デカンタ(54)の油層からの還流(509)流量を毎時52.5質量部で一定とする運転方針の下、8時間のテストを実施した。各流れの流量、組成の平均値を表1に示す。この時、蒸留塔(52)の塔頂温度は92.7℃で、リボイラ(53)での蒸気使用量は毎時38.3質量部であった。また、アリルアルコールの生成量(次工程への移送量:(508)+(512))は毎時12.4質量部であった。   Here, the operating conditions of (51) and (54) are as described above, the bottom extraction of (52) (506) the flow rate is 62.9 parts by mass per hour, and the reflux from the oil layer of the decanter (54) (509) The test was conducted for 8 hours under an operating policy in which the flow rate was constant at 52.5 parts by mass per hour. Table 1 shows the average flow rate and composition of each flow. At this time, the top temperature of the distillation column (52) was 92.7 ° C., and the amount of steam used in the reboiler (53) was 38.3 parts by mass. Moreover, the production amount of allyl alcohol (transfer amount to the next step: (508) + (512)) was 12.4 parts by mass per hour.

このときの実施例1の各流れの流量・組成データを表1に示す。   Table 1 shows the flow rate / composition data of each flow of Example 1 at this time.

Figure 0005094148
Figure 0005094148

(実施例2)
本実施例2を説明するためのフロー(フロー図)を、図6に示す(図6の説明においては、図5と同じ箇所は同一番号を記して、それらの説明を省略する)。
(Example 2)
A flow (flow diagram) for explaining the second embodiment is shown in FIG. 6 (in the description of FIG. 6, the same portions as those in FIG. 5 are denoted by the same reference numerals and the description thereof is omitted).

図6において、流れ(521)のように抽出塔から回収した酢酸アリルを共沸蒸留塔(52)の還流(509)に供給し、(509)と(521)の流量の和を実施例1と同程度の値としたことを除き、(51)、(54)の運転条件および共沸蒸留塔(52)の塔底抜き出し(506)の流量に関しては実施例1と同一条件で実験を実施した。この時、蒸留塔(52)塔頂温度は92.2℃で、リボイラ(53)での蒸気使用量は毎時37.3質量部であった。また、アリルアルコールの生成量(次工程への移送量:(508)+(512))は毎時12.4質量部であった。   In FIG. 6, allyl acetate recovered from the extraction column as in the flow (521) is supplied to the reflux (509) of the azeotropic distillation column (52), and the sum of the flow rates of (509) and (521) is obtained in the first embodiment. The experiment was conducted under the same conditions as in Example 1 with respect to the operating conditions of (51) and (54) and the flow rate of the bottom extraction (506) of the azeotropic distillation column (52), except that the values were the same as those in Example 1. did. At this time, the top temperature of the distillation column (52) was 92.2 ° C., and the amount of steam used in the reboiler (53) was 37.3 parts by mass per hour. Moreover, the production amount of allyl alcohol (transfer amount to the next step: (508) + (512)) was 12.4 parts by mass per hour.

このときの実施例2の各流れの流量・組成データを表2に示す。   Table 2 shows the flow rate / composition data of each flow of Example 2 at this time.

Figure 0005094148
Figure 0005094148

(比較例1)
本比較例1を説明するためのフロー(フロー図)を図7に示す(図7の説明においては、図5と同じ箇所は同一番号を記して、それらの説明を省略する)。
(Comparative Example 1)
A flow (flow diagram) for explaining the first comparative example is shown in FIG. 7 (in the explanation of FIG. 7, the same portions as those in FIG. 5 are denoted by the same reference numerals and the explanation thereof is omitted).

図7において、反応原料を助剤として添加しない条件下で(すなわち、図5における流れ(520)の流量を0(ゼロ)とし)、塔頂留分中の酢酸濃度を抑えるために還流(509)の流量を毎時54.9質量部と増量したことを除き、(51)、(54)の運転条件および(506)流量に関しては実施例1と同一条件で実験を実施した。このとき、蒸留塔(52)塔頂温度は93.2℃で、リボイラ(53)での蒸気使用量は毎時41.2質量部であった。また、アリルアルコールの生成量(次工程への移送量:(508)+(512))は毎時12.4質量部であった。   In FIG. 7, under the condition that the reaction raw material is not added as an auxiliary agent (that is, the flow rate of the stream (520) in FIG. 5 is 0), reflux (509) is performed in order to suppress the acetic acid concentration in the column top fraction. The experiment was carried out under the same conditions as in Example 1 with respect to the operating conditions of (51) and (54) and the flow rate of (506) except that the flow rate was increased to 54.9 parts by mass per hour. At this time, the top temperature of the distillation column (52) was 93.2 ° C., and the amount of steam used in the reboiler (53) was 41.2 parts by mass. Moreover, the production amount of allyl alcohol (transfer amount to the next step: (508) + (512)) was 12.4 parts by mass per hour.

このときの比較例1の各流れの流量・組成データを表3に示す。   Table 3 shows the flow rate / composition data of each flow in Comparative Example 1 at this time.

Figure 0005094148
Figure 0005094148

上述したように、実施例1および2と、比較例1とではアリルアルコール生成量はほぼ等しいが、実施例で1および2はリボイラ(53)での蒸気使用量を低減することが可能となった。   As described above, in Examples 1 and 2 and Comparative Example 1, the amount of allyl alcohol produced is almost the same, but in Examples 1 and 2, it is possible to reduce the amount of steam used in the reboiler (53). It was.

(実施例3)
実施例1と同様にして、流れ(520)のように抽出塔から回収した酢酸アリル(濃度97.3%)を共沸蒸留塔(52)の共沸剤として加水分解反応器(51)の出口(504)に供給する運転を223日間実施した。当該期間中の生産量は、平均して毎時100.0質量部であった。
(Example 3)
In the same manner as in Example 1, allyl acetate (concentration 97.3%) recovered from the extraction column as in the flow (520) was used as an azeotropic agent in the azeotropic distillation column (52) of the hydrolysis reactor (51). The operation of supplying to the outlet (504) was carried out for 223 days. The average production during the period was 100.0 parts by mass per hour.

(52)の塔頂温度は91.4℃、塔底温度は116.9℃、圧力は0.110MPaで、(55)の塔頂圧力0.110MPaであった。(53)における蒸気使用量は平均で毎時316質量部、後工程を含めて使用した蒸気量は平均で毎時356質量部であった。また、(52)に流入した酢酸のうち、(52)塔底からの酢酸の回収率は99.9%であった。   The top temperature of (52) was 91.4 ° C., the bottom temperature was 116.9 ° C., the pressure was 0.110 MPa, and the top pressure of (55) was 0.110 MPa. The average amount of steam used in (53) was 316 parts by mass per hour, and the average amount of steam used including the post-process was 356 parts by mass per hour. Of the acetic acid that flowed into (52), the recovery rate of acetic acid from the bottom of (52) tower was 99.9%.

このときの運転時の各流れの流量・組成データを表4に示す。

Figure 0005094148
Table 4 shows the flow rate / composition data of each flow during the operation.
Figure 0005094148

(比較例2)
比較例1と同様にして、図5における流れ(520)の流量を0とする運転を167日間実施した。当該期間中の生産量は、平均して毎時108.8質量部であった。
(Comparative Example 2)
In the same manner as in Comparative Example 1, the operation for setting the flow rate of the flow (520) in FIG. 5 to 0 was performed for 167 days. The average production during the period was 108.8 parts by mass per hour.

(52)の塔頂温度は92.0℃、塔底温度は117.4℃、圧力は0.112MPa、(55)の塔頂圧力は0.112MPaであった。(53)における蒸気使用量は平均で毎時375質量部、後工程を含めて使用した蒸気量は平均で毎時464質量部であった。また、(52)に流入した酢酸のうち、(52)塔底からの酢酸の回収率は99.6%であった。   The top temperature of (52) was 92.0 ° C., the bottom temperature was 117.4 ° C., the pressure was 0.112 MPa, and the top pressure of (55) was 0.112 MPa. The average amount of steam used in (53) was 375 parts by mass per hour, and the average amount of steam used including the post-process was 464 parts by mass per hour. Of the acetic acid flowing into (52), the recovery rate of acetic acid from (52) the bottom of the column was 99.6%.

このときの運転時の各流れの流量・組成データを表5に示す。

Figure 0005094148
Table 5 shows the flow rate / composition data of each flow during operation.
Figure 0005094148

特許文献1のプロセスフローを説明するためのフロー図(ないしブロック図)である。FIG. 10 is a flowchart (or block diagram) for explaining a process flow of Patent Document 1. 特許文献2のプロセスフローを説明するためのフロー図である。10 is a flowchart for explaining a process flow of Patent Document 2. FIG. 特許文献3のプロセスフローを説明するためのフロー図である。FIG. 10 is a flowchart for explaining a process flow of Patent Document 3. 本発明のプロセスフローを説明するためのフロー図である。It is a flowchart for demonstrating the process flow of this invention. 実施例1および3のプロセスフローを説明するためのフロー図である。FIG. 5 is a flowchart for explaining a process flow of Examples 1 and 3. 実施例2のプロセスフローを説明するためのフロー図である。FIG. 6 is a flowchart for explaining a process flow of the second embodiment. 比較例1および2のプロセスフローを説明するためのフロー図である。It is a flowchart for demonstrating the process flow of the comparative examples 1 and 2. FIG.

符号の説明Explanation of symbols

11 加水分解反応器
12 蒸留塔
13 デカンタ
14 抽出塔
11 Hydrolysis reactor 12 Distillation tower 13 Decanter 14 Extraction tower

21 加水分解反応器
22 第一蒸留塔
23 第二蒸留塔
24 第三蒸留塔
25 デカンタ
21 Hydrolysis reactor 22 First distillation column 23 Second distillation column 24 Third distillation column 25 Decanter

31 第一蒸留塔
32 デカンタ
33 第二蒸留塔
31 First distillation column 32 Decanter 33 Second distillation column

41 反応工程
42 共沸蒸留塔
43 共沸蒸留塔(42)リボイラ
44 反応原料回収工程
41 reaction process 42 azeotropic distillation tower 43 azeotropic distillation tower (42) reboiler 44 reaction raw material recovery process

51 加水分解反応器
52 共沸蒸留塔
53 共沸蒸留塔(52)リボイラ
54 デカンタ
55 抽出塔
51 Hydrolysis reactor 52 Azeotropic distillation tower 53 Azeotropic distillation tower (52) Reboiler 54 Decanter 55 Extraction tower

101 加水分解反応原料液
102 回収された反応原料液
103 加水分解反応器(11)に供給する液
104 加水分解反応器(11)の反応生成液
105 第一蒸留塔(12)塔底抜き出し液
106 第一蒸留塔(12)塔頂蒸気
107 第一蒸留塔(12)還流液
108 デカンタ(13)油層抜き出し液
109 デカンタ(13)水層抜き出し液
110 抽出塔(14)抽出水
111 抽出塔(14)抽出液
112 抽出塔(14)抽残液
101 Hydrolysis reaction raw material liquid 102 Recovered reaction raw material liquid 103 Liquid supplied to hydrolysis reactor (11) 104 Reaction product liquid of hydrolysis reactor (11) 105 First distillation column (12) Column bottom extraction liquid 106 First distillation column (12) Top steam 107 First distillation column (12) Reflux liquid 108 Decanter (13) Oil layer extraction liquid 109 Decanter (13) Aqueous layer extraction liquid 110 Extraction tower (14) Extraction water 111 Extraction tower (14 ) Extraction liquid 112 Extraction tower (14) Extraction residual liquid

201 加水分解反応原料液
202 回収された反応原料液
203 加水分解反応器(21)に供給する液
204 加水分解反応器(21)の反応生成液
205 第一蒸留塔(22)塔底抜き出し液
206 第一蒸留塔(22)塔頂蒸気
207 第一蒸留塔(22)還流液
208 第一蒸留塔(22)留出液
209 第二蒸留塔(23)塔底抜き出し液
210 第二蒸留塔(23)塔頂蒸気
211 第二蒸留塔(23)還流液
212 第二蒸留塔(23)留出液
213 第三蒸留塔(24)塔底抜き出し液
214 第三蒸留塔(24)塔頂蒸気
215 第三蒸留塔(24)還流液
216 デカンタ(25)水層抜き出し液
217 デカンタ(26)油層抜き出し液
201 Hydrolysis reaction raw material liquid 202 Recovered reaction raw material liquid 203 Liquid supplied to hydrolysis reactor (21) 204 Reaction product liquid of hydrolysis reactor (21) 205 First distillation column (22) Column bottom extraction liquid 206 First distillation column (22) Top vapor 207 First distillation column (22) Refluxing liquid 208 First distillation column (22) Distillate 209 Second distillation column (23) Bottom extract liquid 210 Second distillation column (23 ) Column top vapor 211 Second distillation column (23) Reflux liquid 212 Second distillation column (23) Distillate 213 Third distillation column (24) Column bottom extraction liquid 214 Third distillation column (24) Column top vapor 215 Three distillation column (24) reflux liquid 216 decanter (25) water layer extraction liquid 217 decanter (26) oil layer extraction liquid

301 第一蒸留塔(31)フィード液
302 第一蒸留塔(31)塔底抜き出し液
303 第一蒸留塔(31)塔頂蒸気
304 デカンタ(32)水層抜き出し液
305 デカンタ(32)油層抜き出し液
306 第二蒸留塔(33)留出液
307 第二蒸留塔(33)より回収した助剤液
301 First Distillation Tower (31) Feed Liquid 302 First Distillation Tower (31) Bottom Extract Liquid 303 First Distillation Tower (31) Top Steam 304 Decanter (32) Water Layer Extraction Liquid 305 Decanter (32) Oil Layer Extraction Liquid 306 Second distillation column (33) distillate 307 Auxiliary liquid recovered from second distillation column (33)

401 反応原料液
402 回収された未反応原料液
403 反応工程(41)に供給する液
404 反応工程(41)の反応生成液
405 共沸蒸留塔(42)塔底抜き出し液
406 共沸蒸留塔(42)塔頂蒸気
407 共沸蒸留塔(42)還流液
408 共沸蒸留塔(42)留出液
409 反応原料回収工程(44)より未反応原料を回収した後の残液
410 反応原料回収工程(44)より回収した未反応原料液
420 助剤として共沸蒸留塔(42)に供給する反応原料液
401 reaction raw material liquid 402 recovered unreacted raw material liquid 403 liquid supplied to reaction step (41) 404 reaction product liquid in reaction step (41) 405 azeotropic distillation tower (42) bottom extract liquid 406 azeotropic distillation tower ( 42) Top vapor 407 Azeotropic distillation tower (42) Reflux liquid 408 Azeotropic distillation tower (42) Distillate 409 Residual liquid after recovering unreacted raw material from reaction raw material recovery step (44) 410 Reaction raw material recovery step Unreacted raw material liquid recovered from (44) 420 Reactive raw material liquid supplied to azeotropic distillation tower (42) as an auxiliary agent

501 加水分解反応原料液
502 回収された反応原料液
503 加水分解反応器(51)に供給する液
504 加水分解反応器(51)の反応生成液
505 共沸蒸留塔(52)フィード液
506 共沸蒸留塔(52)塔底抜き出し液
507 共沸蒸留塔(52)塔頂蒸気
508 デカンタ(54)水層抜き出し液
509 共沸蒸留塔(52)還流液
510 デカンタ(54)油層抜き出し液
511 抽出塔(55)抽出水
512 抽出塔(55)抽出液
513 抽出塔(55)抽残液
514 高沸廃液から回収した酢酸
515 次工程から回収した酢酸アリル
520 (51)の反応生成液(504)に添加する回収反応原料液
521 共沸蒸留塔(52)の還流液(509)に添加する回収反応原料液
501 Hydrolysis reaction raw material liquid 502 Recovered reaction raw material liquid 503 Liquid supplied to hydrolysis reactor (51) 504 Reaction product liquid of hydrolysis reactor (51) 505 Azeotropic distillation tower (52) Feed liquid 506 Azeotropic Distillation tower (52) Bottom extract liquid 507 Azeotropic distillation tower (52) Top vapor 508 Decanter (54) Water layer extraction liquid 509 Azeotropic distillation tower (52) Reflux liquid 510 Decanter (54) Oil layer extraction liquid 511 Extraction tower (55) Extraction water 512 Extraction tower (55) Extraction liquid 513 Extraction tower (55) Extraction residual liquid 514 Acetic acid recovered from high boiling waste liquid 515 Allyl acetate recovered from the next step 520 (51) reaction product liquid (504) Recovery reaction raw material liquid to be added 521 Recovery reaction raw material liquid to be added to reflux liquid (509) of azeotropic distillation column (52)

Claims (2)

酢酸アリルの加水分解反応工程、酢酸アリルおよびアリルアルコールの分離精製を行う蒸留工程、および蒸留工程の塔頂から留出した液から酢酸アリルを回収する抽出工程を少なくとも有するアリルアルコールの製造方法であって、抽出工程で回収された、共沸助剤としての酢酸アリルを90質量%以上含有する液体および/または気体の一部を蒸留工程へ供給し、共沸蒸留を行うことを特徴とするアリルアルコールの製造方法。 A method for producing allyl alcohol comprising at least an allyl acetate hydrolysis reaction step, a distillation step for separating and purifying allyl acetate and allyl alcohol , and an extraction step for recovering allyl acetate from the liquid distilled from the top of the distillation step. Te, was recovered in the extraction step, a portion of the liquid and / or gas allyl acetate containing not less than 90 mass% as an azeotropic aid supplied to the distillation step, and carrying out azeotropic distillation allyl A method for producing alcohol . 蒸留工程が複数の蒸留塔からなり、前記共沸助剤としての酢酸アリルを90質量%以上含有する液体および/または気体の一部を最初の蒸留塔へ供給することを特徴とする請求項1に記載のアリルアルコールの製造方法。The distillation step comprises a plurality of distillation columns, and a part of the liquid and / or gas containing 90% by mass or more of allyl acetate as the azeotropic aid is supplied to the first distillation column. The manufacturing method of allyl alcohol as described in any one of.
JP2007024286A 2006-02-02 2007-02-02 Method for producing allyl alcohol Active JP5094148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024286A JP5094148B2 (en) 2006-02-02 2007-02-02 Method for producing allyl alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006026051 2006-02-02
JP2006026051 2006-02-02
JP2007024286A JP5094148B2 (en) 2006-02-02 2007-02-02 Method for producing allyl alcohol

Publications (2)

Publication Number Publication Date
JP2007231011A JP2007231011A (en) 2007-09-13
JP5094148B2 true JP5094148B2 (en) 2012-12-12

Family

ID=38551955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024286A Active JP5094148B2 (en) 2006-02-02 2007-02-02 Method for producing allyl alcohol

Country Status (1)

Country Link
JP (1) JP5094148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998944B (en) * 2008-04-09 2014-09-03 陶氏环球技术公司 Multi-stage process and apparatus for recovering dichlorohydrins
KR102142550B1 (en) * 2016-12-16 2020-08-07 주식회사 엘지화학 Method for separating non-reacted monomer from mixture comprising non-reacted monomer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237032A (en) * 1984-05-10 1985-11-25 Showa Denko Kk Purification of allyl alcohol
DE3613975A1 (en) * 1986-04-25 1987-10-29 Bayer Ag SEPARATION OF DIASTEREOMERS
JPH0813769B2 (en) * 1987-09-29 1996-02-14 ダイセル化学工業株式会社 Method for producing allyl alcohol
JP2517796B2 (en) * 1990-12-27 1996-07-24 昭和電工株式会社 Purification method of allyl alcohol
JPH05238972A (en) * 1992-02-28 1993-09-17 Daicel Chem Ind Ltd Production of allyl alcohol
JP3998892B2 (en) * 1999-07-29 2007-10-31 株式会社トクヤマ Method for producing high-purity alkyladamantyl ester

Also Published As

Publication number Publication date
JP2007231011A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
RU2639872C2 (en) Method for purifying propylenoxide
JP5476774B2 (en) Method for recovering (meth) acrylonitrile
CN101312936A (en) System and method for acetic acid dehydration
RU2672591C1 (en) Improvements relating to propylene oxide purification
JP2019514937A (en) Method and apparatus for continuous recovery of (meth) acrylic acid
KR100670881B1 (en) Method for Producing Highly Pure Monoethylene Glycol
JP2003534221A (en) Method for producing concentrated nitric acid and apparatus for performing such a method
JP6592593B2 (en) Method for purifying phenol
JP4160087B2 (en) Method for producing acrylic ester
KR101779678B1 (en) Method for purifying acetonitrile
JP5094148B2 (en) Method for producing allyl alcohol
KR100611284B1 (en) Method for Producing Highly Pure Monoethylene Glycol
US8083903B2 (en) Process for producing allyl alcohol
JP6062527B2 (en) Purification method of aniline from gas phase hydrogenation
JP6602490B2 (en) Method for recovering (meth) acrylic acid
CN109467497B (en) Recovery process and device for polyvinyl alcohol alcoholysis mother liquor
JP3803771B2 (en) Process for producing ethylamines
CN1395552A (en) Method for cleaning off-gas flows
JPH09151158A (en) Purification of acetic acid
KR101842095B1 (en) Process and apparatus for refining acetic acid
CN116615408A (en) Process for recovery of light and heavy boilers from vapor streams
WO2007099804A1 (en) Purification or production method for secondary butanol
JP2006256992A (en) Method for purifying propylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350