JP2007301232A - 圧脈波センサおよびこれを備えた脈波測定装置 - Google Patents

圧脈波センサおよびこれを備えた脈波測定装置 Download PDF

Info

Publication number
JP2007301232A
JP2007301232A JP2006134129A JP2006134129A JP2007301232A JP 2007301232 A JP2007301232 A JP 2007301232A JP 2006134129 A JP2006134129 A JP 2006134129A JP 2006134129 A JP2006134129 A JP 2006134129A JP 2007301232 A JP2007301232 A JP 2007301232A
Authority
JP
Japan
Prior art keywords
pressure
pulse wave
wave sensor
sensitive
sensitive part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006134129A
Other languages
English (en)
Inventor
Masao Hashimoto
正夫 橋本
Kazunobu Itonaga
和延 糸永
Yasushi Shimomoto
康司 下元
Daisuke Katsurayama
大介 葛山
Satoshi Nozoe
悟史 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Omron Healthcare Co Ltd
Original Assignee
Omron Corp
Omron Healthcare Co Ltd
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Healthcare Co Ltd, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2006134129A priority Critical patent/JP2007301232A/ja
Publication of JP2007301232A publication Critical patent/JP2007301232A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】高精度に動脈内圧の圧変動を測定することが可能な圧脈波センサおよびこれを備えた脈波測定装置を提供する。
【解決手段】圧脈波センサは、動脈内圧の圧変動を測定するための感圧部SEを含み、この感圧部SEの動脈の延びる方向に対応する方向における両端部がそれぞれ先細形状とされている。
【選択図】図2

Description

本発明は、動脈内圧の圧変動を測定するための圧脈波センサおよびこれを備えた脈波測定装置に関する。
非観血式で簡便に動脈内圧の圧変動波形を得る圧脈波測定法として、G.L.Pressman, P.M.Newgard, "A Transducer for the Continuous External Measurement of Arterial Blood Pressure", IEEE TRANSACTIONS ON BIO-MEDICAL ELECTRONICS, 1963, pp.74-81(非特許文献1)に記載されるトノメトリ法が知られている。トノメトリ法は、生体の体表面に固形平板を押し当て、この固形平板によって生体の内部に位置する動脈を平坦に押し潰し、動脈の血管壁に生じる張力の影響を除外した圧平衡状態を保つことにより、動脈内の圧変動のみを精度よく安定的に測定する圧脈波測定法である。
近年、このトノメトリ法によって測定した動脈内圧の圧変動から特徴量を算出することにより、生体内の状態を測定する試みがなされている。その試みの一つとして、動脈の硬化度合いを判断する指標であるAI(Augmentation Index)値についての研究が鋭意行なわれている。
図11および図12は、上記トノメトリ法の測定原理を説明するための模式図である。図11および図12に示すように、トノメトリ法を用いて動脈内圧の圧変動を測定する場合には、押圧手段としてのカフ20を用いて腕100(より特定的には掌側に対応する位置の手首)の表面に圧脈波センサ10が押し付けられる。このとき、動脈110は、圧脈波センサ10と橈骨120とに挟まれることによって平坦に押し潰され、この状態において圧脈波センサ10の感圧部(センシングエレメント)SEによって動脈内圧の圧変動が非観血的に測定される。
通常、圧脈波センサ10は、アレイ状に配置された複数の感圧部SEを有しており、この複数の感圧部SEのうち、平坦に押し潰された動脈部分(図中に符号Aで示す領域)の直上に位置することとなる感圧部によって測定された動脈内圧の圧変動のみが選択されて上記AI値の算出に利用される。これは、平坦に押し潰された動脈部分の直上に位置する感圧部においては、押し潰された動脈の血管壁に生じる張力(図中においてベクトルβで示す力)の影響を排除することができ、動脈内圧の圧変動に伴って生じる圧力(図中においてベクトルαで示す力)のみが感圧部によって正確に検出されるようになるためである。
トノメトリ法を用いて動脈内圧の圧変動を測定するための好適な条件としては、上記のように、圧脈波センサによって動脈が平坦に押し潰されるとともに平坦に押し潰された動脈部分の直上に感圧部が配置されることの他に、平坦に押し潰された動脈部分の幅よりも感圧部の幅を小さく構成することが必要である。そのため、圧脈波センサとしては、感圧部を微小に製作することができる圧力センサを利用することが必要になり、一般に歪抵抗素子や静電容量素子をセンシングエレメントとして使用する圧力センサが利用されている。なお、歪抵抗素子をセンシングエレメントとする圧脈波センサが開示された文献として、米国特許第4269193号明細書(特許文献1)や特開昭63−293424号公報(特許文献2)があり、静電容量素子をセンシングエレメントとする圧脈波センサが開示された文献として、特開2006−20823号公報(特許文献3)がある。
米国特許第4269193号明細書 特開昭63−293424号公報 特開2006−20823号公報 G.L.Pressman, P.M.Newgard, "A Transducer for the Continuous External Measurement of Arterial Blood Pressure", IEEE TRANSACTIONS ON BIO-MEDICAL ELECTRONICS, 1963, pp.74-81
上記特許文献1および2に開示の圧脈波センサでは、感圧部の幅を動脈径(通常は、1.2mm〜3.5mm程度)よりも十分に小さく(実際には、0.2mm〜0.5mm程度)し、この微細化された感圧部を動脈の延びる方向と略直交する方向に多数配列することにより、平坦に押しつぶされた動脈部分の直上に少なくともいずれか一つの感圧部が配列されるように構成している。このように構成することにより、動脈内圧の圧変動を正確に測定することが可能になる。
しかしながら、感圧部の幅が0.2mm〜0.5mm程度の圧脈波センサは、感圧部を多数配置しなければならず、必要な感度やS/N(Signal/Noise)比を満たすために、通常、単結晶シリコンチップに異方エッチングにより複数の微細なダイヤフラムを形成した半導体圧力センサを使用している。そのため、製造の面やコストの面で問題があった。
そこで、感圧部の幅を拡大すべく、測定精度との関係を鋭意研究した結果、一般的な手首部分の動脈径を考慮して1.0mm〜2.0mm程度にまで感圧部の幅を拡大できることが確認できている。
ところで、圧脈波センサの感圧部は、製作の容易性の観点から平面視矩形状に形成される。このような圧脈波センサにおいては、手首への圧脈波センサの押圧に際しての感圧部と動脈との位置合わせが非常に重要となる。
図13は、平坦に押し潰された動脈部分の直上に配置された感圧部と動脈との位置関係について説明するための図である。図13(A)に示すように、理想的には、平面視矩形状に形成された感圧部SEの長手方向に延びる軸線SE1と動脈の軸線110A(動脈の延びる方向と平行な方向に延びる動脈の中心線)とが合致するように、圧脈波センサが生体に対して押し付けられる。このように位置合わせがなされると、平坦に押し潰された動脈部分Aの直上からはみ出ることなく感圧部SEが配置されるため、感圧部SEの全域にわたって高精度に動脈内圧の圧変動が測定されることになる。また、感圧部の面積も最大限大きく確保されているため、感圧部にて得られる信号のS/N比も高く維持されることになる。
しかしながら、生体に対する圧脈波センサの位置決めを高精度に行なうことは事実上不可能であり、厳密に見れば殆どの場合、図13(B)に示すように、感圧部SEの軸線SE1と動脈の軸線110Aとはある傾角θをもって配置されることになる。このように、感圧部SEの軸線SE1と動脈の軸線110Aとがずれて配置された場合には、感圧部SEの対角位置にある一対の角部近傍の領域B1,B2が、平坦に押し潰された動脈部分Aの外側にはみ出して配置されることになり、感圧部SEで測定される圧変動に上記領域B1,B2において上述の血管壁に生じる張力を誤差成分として含んだ圧変動成分が含まれることとなってしまう。したがって、位置あわせが正確になされた場合に比べて測定精度が著しく低下してしまう問題が生じる。これを考慮すると、予め感圧部SEの幅を狭小化しておくことにより、感圧部SEの軸線SE1と動脈の軸線110Aとがずれて配置されても感圧部SEが平坦に押し潰された動脈部分Aの外側にはみ出し難くすることは可能であるが、その場合には感圧部にて得られる信号のS/N比が大幅に低下することになり、測定精度の向上を見込むことは困難となってしまう。
したがって、本発明は、上述の問題点を解決すべくなされたものであり、高精度に動脈内圧の圧変動を測定することが可能な圧脈波センサおよびこれを備えた脈波測定装置を提供することを目的とする。
本発明に基づく圧脈波センサは、動脈内圧の圧変動を測定するための感圧部を含み、この感圧部が生体の体表面に押圧されて使用されるものであって、上記感圧部が生体の体表面に押圧された状態において、動脈の延びる方向に対応する方向に配置されることとなる上記感圧部の上記方向における両端部がそれぞれ先細形状となっているものである。そして、より好適には、上記感圧部の形状が平面視8角形に形成されている。
このように構成することにより、動脈に対する感圧部の位置あわせに多少のずれが生じた場合にも、平坦に押し潰された動脈部分の直上から感圧部がはみ出す可能性を大幅に低減することが可能になるため、高精度に動脈内圧の圧変動を測定することができる。また、S/N比が低下しないように感圧部の面積減少に伴う測定精度の低下を最小限に抑えることができる。したがって、高精度に動脈内圧の圧変動を測定することができる圧脈波センサとすることができる。
上記本発明に基づく圧脈波センサにおいては、上記感圧部が生体の体表面に押圧された状態において、動脈の延びる方向と交差する方向に上記感圧部が複数個設けられていることが好ましい。
単一の感圧部を平坦に押し潰された動脈部分の直上に位置決めして配置することは非常に困難であるため、上記のように動脈の延びる方向と交差する方向に微小加工された複数の感圧部が配置された圧脈波センサとすることにより、より高精度の動脈内圧の圧変動測定が可能になる。
上記本発明に基づく圧脈波センサにおいては、上記感圧部が静電容量素子にて構成されているか、あるいは歪抵抗素子にて構成されていることが好ましい。
このように構成することにより、感圧部を微小に製作することができるため、動脈内圧の圧変動測定に好適な寸法の感圧部を高い寸法精度で製作することが可能になる。
本発明に基づく脈波測定装置は、上述のいずれかの圧脈波センサを有するセンサユニットと、生体に対して上記センサユニットを固定する固定手段と、生体に対して上記圧脈波センサを押圧する押圧手段とを備えるものである。
このように構成することにより、高精度に動脈内圧の圧変動を測定することが可能な脈波測定装置とすることができる。
本発明によれば、高精度に動脈内圧の圧変動を測定することが可能な圧脈波センサおよびこれを備えた脈波測定装置とすることができる。
以下においては、本発明の実施の形態について、図1ないし図10を参照して詳細に説明する。
図1は、本発明の実施の形態における圧脈波センサの構成を示す平面図である。図1に示すように、本実施の形態における圧脈波センサ10は、平面視略矩形状の外形を有しており、その主面に感圧部SEがアレイ状に配置されている。本実施の形態における圧脈波センサ10においては、感圧部SEが2行×5列にわたってアレイ状に配置されており、合計10個の感圧部SEを有している。
個々の感圧部SEは、その長手方向(図中に示すX方向)における両端部がそれぞれ先細形状に形成されており、平面視8角形の形状を有している。換言すれば、個々の感圧部SEは、矩形形状の四隅に位置する角部にテーパを設けた形状であり、上記長手方向における両端部に向かうに連れてその幅が先細となるように形成されている。なお、感圧部SEの長手方向に延びる軸線SE1とテーパ部分とがなす角θ0は、概ね0°<θ0≦45°程度とされ、より好適には0°<θ0≦30°とされる。
図2は、図1に示す圧脈波センサの感圧部を生体に押し当てた場合の、平坦に押し潰された動脈部分の直上に配置された感圧部と動脈との位置関係について説明するための図である。ここで、図2(A)は、圧脈波センサの感圧部と動脈との位置あわせが理想的に行なわれた場合を示す図であり、図2(B)は、圧脈波センサの感圧部と動脈とが上記理想の状態に比べて位置ずれを生じているものの、その位置ずれが測定誤差を生じさせない程度の範囲である場合を示す図である。
図2(A)に示すように、位置あわせが理想的に行なわれた場合には、平面視8角形状に形成された感圧部SEの長手方向に延びる軸線SE1と動脈の軸線110Aとが合致するように、圧脈波センサが生体に対して押し付けられる。このように位置合わせがなされると、平坦に押し潰された動脈部分Aの直上からはみ出ることなく感圧部SEが配置されるため、感圧部SEの全域にわたって高精度に動脈内圧の圧変動が測定されることになる。また、感圧部SEの面積も最大限大きく確保されているため、感圧部SEにて得られる信号のS/N比も高く維持されることになる。
一方、図2(B)に示すように、感圧部SEの軸線SE1と動脈の軸線110Aとの間に位置ずれが生じ、これら軸線SE1と軸線110Aとがある傾角θ1(θ1≦θ0)をもって配置された場合にも、本実施の形態における圧脈波センサ10においては感圧部SEの四隅にテーパ部分が形成されているため、平坦に押し潰された動脈部分Aの直上からはみ出ることなく感圧部SEが配置されることになる。また、感圧部SEの面積も最大限大きく確保されているため、感圧部SEにて得られる信号のS/N比も高く維持されることになる。
したがって、感圧部SEの軸線SE1と動脈の軸線110Aとの間に位置ずれが生じた場合にも、図13(B)において示したはみ出し領域B1,B2が存在しないことになるため、血管壁に生じる張力を誤差成分として含んだ圧変動成分が含まれないことになり、非常に高精度に動脈内圧の圧変動を測定することが可能になる。
なお、上記角取り部分の大きさを決定するに際しては、位置ずれが許容できる最大の角度をθ0、感圧部SEの幅をa、感圧部SEの長手方向の長さをb、平坦に押し潰された動脈部分の幅をAとすれば、角取り部分の軸線SE1と直交する方向の長さL(図2(A)参照)が、L=cos-1((a×cosθ0+b×sinθ0−A)/2)よって求められることになる。
図3は、上述の如くの感圧部を静電容量素子にて製作する場合の圧脈波センサの分解図であり、図4は、組付け後における圧脈波センサの感圧面側の平面図である。以下においては、図2に示す如くの感圧部を静電容量素子にて製作した場合の一実施例について、これらの図を参照して説明する。
図3および図4に示すように、静電容量式圧脈波センサ10Aは、所定の形状の下部電極ライン12がフォトリソグラフィ技術により形成された基板11と、上部電極15と、これら基板11および上部電極15の間に配置されるスペーサ部材16とを備える。
下部電極ライン12は、下部電極部13と配線パターン部14とを有している。下部電極部13は、その長手方向における両端部がそれぞれ先細形状に形成されており、平面視8角形の形状を有している。配線パターン部14は、下部電極部13の長手方向と直交する方向において隣り合う下部電極部13同士を接続する。基板11は、ポリイミド基板やガラス−エポキシ基板等の絶縁性の基板からなり、下部電極部13および配線パターン部14は、たとえば銅やアルミニウム等の導電性の材料からなる。一方、上部電極15は、互いに並行するように延びる矩形状の複数の帯状電極からなり、たとえば銅箔等からなる。また、スペーサ部材16はシリコンラバー等からなり、基板11の主面に設けられた下部電極部13と上部電極15とを所定の距離(たとえば100μm程度)をもって離間配置させる。
このような構成にて形成された静電容量式圧脈波センサ10Aにおいては、互いに所定の距離をもって向き合うように配置された下部電極部13と上部電極15との対向領域において感圧部SEが構成されることになる。そして、この感圧部SEが生体に対して押圧された状態において、動脈内圧の圧変動に伴って生じる力を上部電極15が受けてこれら下部電極部13と上部電極15との間の距離が変動することにより、感圧部SEにおける静電容量の変化が生じ、これをモニタすることによって動脈内圧の圧変動が測定されることになる。
図5は、上記構成の静電容量式圧脈波センサを利用して複数の感圧部から選択的に一つの感圧部の測定結果を得るための回路構成を示す図である。図5に示すように、複数の感圧部感圧部SEから選択的に一つの感圧部の測定結果を得るためには、下部電極ライン12または上部電極15の一方にマルチプレクサ30を介して電源31を接続し、他方に同じくマルチプレクサ30を介して検出器32を接続する。このように構成すれば、マルチプレクサ30によって特定の下部電極ライン12および上部電極15を選択することにより、アレイ状に配置された感圧部SEのうちの一つの感圧部の静電容量を検出器32を介して得ることが可能になる。たとえば、図5において、上から2行目の下部電極ライン12と左から3列目の上部電極15とを選択した場合には、符号SE−Aで示す一つの感圧部の静電容量が出力される。
図6は、上述の如くの感圧部を歪抵抗素子にて製作する場合の圧脈波センサの斜視図である。また、図7は、歪抵抗素子上に設けられる回路パターンの一例を示す図である。以下においては、図2に示す如くの感圧部を歪抵抗素子にて製作した場合の一実施例について、これらの図を参照して説明する。
図6に示すように、歪抵抗式圧脈波センサ10Bは、単結晶シリコン基板17に異方性エッチングを施すことによって複数の凹部18を形成し、これにより複数のダイヤフラム19を単結晶シリコン基板17中に行列状に設けることによって形成される。ここで、ダイヤフラム19の形状は、その長手方向における両端部がそれぞれ先細形状に形成されており、平面視8角形の形状に形成される。
図7に示すように、ダイヤフラム19の長手方向における両端部近傍には、抵抗R1,R3がそれぞれ形成され、ダイヤフラム19の幅方向における両端部近傍には、抵抗R2,R4がそれぞれ形成される。この抵抗R1〜R4の形成には、たとえば薄膜形成技術が利用される。そして、これら抵抗R1〜R4を回路構成要素とする既知のホイートストーンブリッジ回路が単結晶シリコン基板17上に設けられる。このような歪抵抗式圧脈波センサ10Bは、半導体製造技術を用いて非常に微細にかつ高精度に微小加工を行なうことが可能である。
このような構成にて形成された歪抵抗式圧脈波センサ10Bにおいては、ダイヤフラム19によって感圧部SEが構成されることになる。そして、この感圧部SEが生体に対して押圧された状態において、動脈内圧の圧変動に伴って生じる力をダイヤフラム19が受けて歪み、これによって生じる抵抗値の変化を検出することにより、動脈内圧の圧変動が測定されることになる。
上記においては、感圧部の形状がいずれも平面視8角形状に形成された圧脈波センサを例示して説明を行なったが、感圧部の形状はこのような形状に限定されるものではない。図8は、感圧部を平面視8角形以外の形状で構成する場合の具体的な例を示す図である。
図8(A)および図8(B)に示す感圧部SE1,SE2は、いずれも平面視6角形状としたものであり、このうち図8(A)に示す感圧部SE1は、長手方向における両端部に対辺を有している構成であり、図8(B)に示す感圧部SE2は、幅方向における両端部に対辺を有している構成である。また、図8(C)に示す感圧部SE3は、平面視十字形状としたものである。また、図8(D)ないし図8(F)に示す感圧部SE4〜SE6は、角部の形状を湾曲形状としたものであり、このうち図8(D)に示す感圧部SE4は、長手方向および幅方向におけるそれぞれの両端部に対辺を有している構成であり、図8(E)に示す感圧部SE5は、トラック状としたものであり、図8(F)に示す感圧部SE6は、楕円状としたものである。このように、矩形形状の四隅に位置する角部に角取り部分を設けた形状であればどのような形状であっても、従来に比して高精度に動脈内圧の圧変動を測定することが可能になる。
次に、上述の圧脈波センサを実際に脈波測定装置に組付ける場合の一構成例について説明する。図9は、圧脈波センサを手首に押圧した測定状態における脈波測定装置の外観図であり、図10は、図9に示す測定状態における手首および脈波測定装置の模式断面図である。
図9に示すように、本実施の形態における脈波測定装置50は、被験者の手首を被測定部位として圧脈波を測定するものである。脈波測定装置50は、被験者の一方の腕100の手首および前腕を載置するための載置部54を含む載置台52と、この載置台52に載置された腕100の手首部分を固定する固定手段としての締付けベルト40と、この締付けベルト40に取付けられ、上述圧脈波センサを内部に具備するセンサユニットSUとを主に備える。
図9に示すように、載置台52に手首が固定された状態においては、動脈110が腕100の延在方向と平行な方向に配置されることになる。この状態において、図10に示すように、センサユニットSUのケーシング22内に内蔵された押圧手段としてのカフ20を膨張させることにより、圧脈波センサ10を下降させ、手首の表面に向かって圧脈波センサ10のセンサ面を押し当てる。
押圧時においては、動脈110が橈骨120と圧脈波センサ10のセンサ面とによって上下方向から挟み込まれた状態となり、動脈110がほぼ平坦に押し潰される。そして、平坦に押し潰された動脈部分の直上に少なくとも1つの感圧部SEが位置することになる。
このような構成の脈波測定装置とすることにより、測定が容易に行なえるとともに高精度に動脈内圧の圧変動を測定することが可能な脈波測定装置とすることができる。
なお、上述の実施の形態における圧脈波センサにおいては、アレイ状に配置される感圧部を2行×5列とした場合を例示したが、行や列の数は特には限定されるものではない。また、感圧部が必ずしもアレイ状に配置されている必要もなく、その数は少なくとも1つ以上あればよい。さらには、感圧部が千鳥状に配置されていてもよい。
このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
本発明の実施の形態における圧脈波センサの構成を示す平面図である。 図1に示す圧脈波センサの感圧部を生体に押し当てた場合の、平坦に押し潰された動脈部分の直上に配置された感圧部と動脈との位置関係について説明するための図である。 本発明の実施の形態における静電容量式圧脈波センサの分解図である。 本発明の実施の形態における静電容量式圧脈波センサの平面図である。 静電容量式圧脈波センサを利用して複数の感圧部から選択的に一つの感圧部の測定結果を得るための回路構成を示す図である。 本発明の実施の形態における歪抵抗式圧脈波センサの分解図である。 図6に示す歪抵抗素子上に設けられる回路パターンの一例を示す図である。 感圧部を平面視8角形以外の形状で構成する場合の具体的な例を示す図である。 本発明の実施の形態における脈波測定装置の外観図である。 図9に示す測定状態における手首および脈波測定装置の模式断面図である。 トノメトリ法の測定原理を説明するための手首の上面図である。 トノメトリ法の測定原理を説明するための手首の断面図である。 従来例における、平坦に押し潰された動脈部分の直上に配置された感圧部と動脈との位置関係について説明するための図である。
符号の説明
10 圧脈波センサ、10A 静電容量式圧脈波センサ、10B 歪抵抗式圧脈波センサ、11 基板、12 下部電極ライン、13 下部電極部、14 配線パターン部、15 上部電極、16 スペーサ部材、17 単結晶シリコン基板、18 凹部、19 ダイヤフラム、20 カフ、22 ケーシング、30 マルチプレクサ、31 電源、32 検出器、40 ベルト、50 脈波測定装置、52 載置台、54 載置部、100 腕、110 動脈、110A (動脈の)軸線、120 橈骨、R1〜R4 抵抗、SE,SE1〜3 感圧部、SE1 (感圧部の長手方向に延びる)軸線、SU センサユニット。

Claims (6)

  1. 動脈内圧の圧変動を測定するための感圧部を含み、当該感圧部が生体の体表面に押圧されて使用される圧脈波センサであって、
    前記感圧部が生体の体表面に押圧された状態において、動脈の延びる方向に対応する方向に配置されることとなる前記感圧部の当該方向における両端部が、それぞれ先細形状となっている、圧脈波センサ。
  2. 前記感圧部の形状が、平面視8角形である、請求項1に記載の圧脈波センサ。
  3. 前記感圧部が生体の体表面に押圧された状態において、動脈の延びる方向と交差する方向に前記感圧部が複数個設けられている、請求項1または2に記載の圧脈波センサ。
  4. 前記感圧部が、静電容量素子にて構成されている、請求項1から3のいずれかに記載の圧脈波センサ。
  5. 前記感圧部が、歪抵抗素子にて構成されている、請求項1から3のいずれかに記載の圧脈波センサ。
  6. 請求項1から5のいずれかに記載の圧脈波センサを有するセンサユニットと、
    生体に対して前記センサユニットを固定する固定手段と、
    生体に対して前記圧脈波センサを押圧する押圧手段とを備える、脈波測定装置。
JP2006134129A 2006-05-12 2006-05-12 圧脈波センサおよびこれを備えた脈波測定装置 Withdrawn JP2007301232A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134129A JP2007301232A (ja) 2006-05-12 2006-05-12 圧脈波センサおよびこれを備えた脈波測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134129A JP2007301232A (ja) 2006-05-12 2006-05-12 圧脈波センサおよびこれを備えた脈波測定装置

Publications (1)

Publication Number Publication Date
JP2007301232A true JP2007301232A (ja) 2007-11-22

Family

ID=38835685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134129A Withdrawn JP2007301232A (ja) 2006-05-12 2006-05-12 圧脈波センサおよびこれを備えた脈波測定装置

Country Status (1)

Country Link
JP (1) JP2007301232A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072645A (ja) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd 脈波測定器及び脈波測定装置
JP2019051009A (ja) * 2017-09-14 2019-04-04 オムロンヘルスケア株式会社 脈波測定用電極ユニットおよび脈波測定装置
JP2020048944A (ja) * 2018-09-27 2020-04-02 セイコーインスツル株式会社 脈波センサ
US11344207B2 (en) 2015-08-24 2022-05-31 Omron Healthcare Co., Ltd. Pressure pulse wave sensor and biological information measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072645A (ja) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd 脈波測定器及び脈波測定装置
US11344207B2 (en) 2015-08-24 2022-05-31 Omron Healthcare Co., Ltd. Pressure pulse wave sensor and biological information measurement device
JP2019051009A (ja) * 2017-09-14 2019-04-04 オムロンヘルスケア株式会社 脈波測定用電極ユニットおよび脈波測定装置
US11457828B2 (en) 2017-09-14 2022-10-04 Omron Corporation Pulse wave measurement electrode unit and pulse wave measurement device
JP2020048944A (ja) * 2018-09-27 2020-04-02 セイコーインスツル株式会社 脈波センサ
JP7178229B2 (ja) 2018-09-27 2022-11-25 セイコーインスツル株式会社 脈波センサ

Similar Documents

Publication Publication Date Title
US7069791B2 (en) Array-type capacitive pressure pulse wave sensor, and pulse wave measuring apparatus having the same
KR100908124B1 (ko) 혈압측정용 압력 센서 및 그 제조방법
US8646335B2 (en) Contact stress sensor
US7533571B2 (en) Apparatus for making high-sensitivity measurements of various parameters, and sensors particularly useful in such apparatus
KR101366809B1 (ko) 혈압측정장치 및 혈압측정방법
US9550211B2 (en) Temperature compensation in a CMUT device
Koch et al. Skin attachable flexible sensor array for respiratory monitoring
JP2007010338A (ja) 面圧分布センサ
US8748997B2 (en) Contact-force sensor package and method of fabricating the same
JP2017153498A (ja) 感圧センサと感圧カテーテル
JP2007301232A (ja) 圧脈波センサおよびこれを備えた脈波測定装置
JPH04500411A (ja) 複数の圧力検出素子を備えた単一ダイアフラム式圧力トランスデューサ
JP6240581B2 (ja) 脈波センサユニット
KR101345381B1 (ko) 혈압측정장치
JPH0755598A (ja) 触覚センサおよび触覚イメージャー
JP5815356B2 (ja) 面圧センサ
KR20190070573A (ko) 능동형 피부 접촉 센서
JP6773007B2 (ja) 静電容量式圧力センサ
JP6798135B2 (ja) 脈波検出装置及び生体情報測定装置
KR101597653B1 (ko) 다중 범위 압력센서
JP2003194851A (ja) コンタクトプローブ構造体およびその製造方法
JP4898124B2 (ja) アレイ型接触圧センサ
JP2001153735A (ja) ロードセル
TWI759186B (zh) 脈診裝置
TWI836899B (zh) 生理訊號量測設備

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804