JP2007299436A - 記憶装置の記録方法 - Google Patents

記憶装置の記録方法 Download PDF

Info

Publication number
JP2007299436A
JP2007299436A JP2006123839A JP2006123839A JP2007299436A JP 2007299436 A JP2007299436 A JP 2007299436A JP 2006123839 A JP2006123839 A JP 2006123839A JP 2006123839 A JP2006123839 A JP 2006123839A JP 2007299436 A JP2007299436 A JP 2007299436A
Authority
JP
Japan
Prior art keywords
memory cells
variable resistance
storage device
word
resistance state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123839A
Other languages
English (en)
Inventor
Tsunenori Shiimoto
恒則 椎本
Nobumichi Okazaki
信道 岡崎
Katsuhisa Araya
勝久 荒谷
Tomohito Tsushima
朋人 対馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006123839A priority Critical patent/JP2007299436A/ja
Publication of JP2007299436A publication Critical patent/JP2007299436A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0076Write operation performed depending on read result

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

【課題】消費電力の増大を抑制することや、動作マージンを充分に確保することを可能にする、記憶装置の記録方法を提供する。
【解決手段】可変抵抗素子から成るメモリセルC1〜C12を複数有する記憶装置に対して、情報(ワード10等)を記録する際に、高抵抗状態に記録されるメモリセルの個数が、低抵抗状態に記録されるメモリセルの個数よりも多くなるように、符号化して記録を行う。
【選択図】図2

Description

本発明は、可変抵抗素子によりメモリセルを構成した記憶装置に対して、記録を行う方法に係わる。
従来の記憶装置、特にフラッシュメモリを用いた記憶装置は、記憶データを保持するための電力が不要であることから、近年、盛んに用いられるようになっている。
特に、携帯電話装置を含む、携帯用の端末装置には、メモリとしてフラッシュメモリが多く用いられている。
このようなフラッシュメモリを用いた記憶装置においては、データの書き込み動作の速度が遅いという問題がある(例えば、非特許文献1参照。)。
日経エレクトロニクス,2002.11.18号,p.130
ところで、本出願人は、先に、上述したフラッシュメモリよりも優れた特性を持ちうる、不揮発性の可変抵抗素子を提案している。
この可変抵抗素子の膜構成は、例えば、図3の断面図に示すように、2つの電極101,102の間に導体膜103と絶縁体膜104を持つ膜構成になっている。導体膜103から絶縁体膜104に向かって電流Iが流れるように電圧をかけると、可変抵抗素子105が低抵抗に変化してデータが書き込まれ、絶縁体膜104から導体膜103に向かって電流が流れるように電圧をかけると、可変抵抗素子105が高抵抗に変化してデータが消去される。
この構成の可変抵抗素子105は、フラッシュメモリ等と比較して、単純な構造でメモリセルを構成することができるため、素子のサイズ依存性がなく、大きい信号を得ることができるため、スケーリングに強いという特長を有する。
また、抵抗変化によるデータ書き込み速度を例えば5ナノ秒程度と速くすることができ、また低電圧(例えば1V程度)かつ低電流(例えば20μA程度)で動作させることができるという利点を有する。
ところで、この可変抵抗素子105では、データを書き込むと低抵抗状態になるため、比較的大きい書き込み電流が流れる。
また、データの読み出し時には、高抵抗の消去状態よりも、低抵抗の書き込み状態の方が、より大きい読み出し電流が流れる。
このように、可変抵抗素子105を流れる書き込み電流や読み出し電流が大きくなることにより、可変抵抗素子から成るメモリセルを多数備えたメモリ(記憶装置)において、メモリ全体の消費電力の増大を招く。
また、電流が大きくなると、配線の電位降下によって、動作マージンが減少する、という問題を生じる。
上述の問題は、図3に示した可変抵抗素子105に限らず、他の構成の可変抵抗素子でも、高抵抗状態の抵抗値と低抵抗状態の抵抗値との差が大きい構成の可変抵抗素子では、同様に生じるものである。
上述した問題の解決のために、本発明においては、消費電力の増大を抑制することや、動作マージンを充分に確保することを可能にする、記憶装置の記録方法を提供するものである。
本発明の記憶装置の記録方法は、抵抗値が高抵抗状態と低抵抗状態との間を可逆的に変化する可変抵抗素子を備え、この可変抵抗素子から成るメモリセルを複数有する記憶装置に対して、情報を記録する際に、高抵抗状態に記録されるメモリセルの個数が、低抵抗状態に記録されるメモリセルの個数よりも多くなるように、符号化して記録を行うものである。
上述の本発明によれば、高抵抗状態に記録されるメモリセルの個数が、低抵抗状態に記録されるメモリセルの個数よりも多くなるように、符号化して記録を行うことにより、記録時や読み出し時に大きい電流が流れる、低抵抗状態のメモリセルが必ず半分以下となる。
これにより、符号化を全く行わない場合と比較して、情報が記録されるメモリセルを流れる電流について、その合計の最大値を大幅に低減することができ、その平均値も低減することができる。
また、大きい電流が流れるメモリセルが少なくなるため、選択トランジスタ等による電位降下が少なくなる。
上述の本発明によれば、情報が記録されるメモリセルを流れる電流の合計の最大値や平均値を低減することができることにより、メモリ全体の消費電力も低減することができる。
また、選択トランジスタ等による電位降下が少なくなるため、動作マージンの減少を抑制して、動作マージンを充分に確保することができる。
従って、本発明により、動作マージンが広く、安定して動作するメモリを実現することができる。
本発明に係る可変抵抗素子の一形態の概略断面図を、図1に示す。
この可変抵抗素子5は、2つの電極1,2の間に導体膜3と絶縁体膜4を持つ膜構成になっている。即ち、図3に示した可変抵抗素子105と同様の膜構成である。
導体膜3の材料としては、例えば、Cu,Ag,Znから選ばれる1つ以上の金属元素を含有する金属膜、合金膜(例えばCuTe合金膜)、金属化合物膜等が挙げられる。
また、絶縁体膜4の材料としては、例えば、アモルファスGdや、SiO等の絶縁体が挙げられる。
このような材料を用いた場合、導体膜3に含まれるCu,Ag,Znが、イオン化して陰極側に引き寄せられる性質を有する。なお、同様にイオン化しやすい性質を有する、Cu,Ag,Zn以外の金属元素を用いてもよい。
従って、電極1,2間に、絶縁体膜4側の電極2が低電位になるように電圧を加えると、金属元素のイオンが電極2に引き寄せられて、絶縁体膜4内に入っていく。そして、イオンが電極2まで到達すると、上下の電極1,2間が導通して抵抗値が下がることになる。このようにして、可変抵抗素子5へのデータ(情報)の書き込みが行われる。
一方、電極1,2間に、導体膜3側の電極1が低電位になるように電圧を加えると、金属元素がイオン化して電極1に引き寄せられて、絶縁体膜4から抜けていくため、上下の電極1,2間の絶縁性が増して、抵抗値が上がることになる。このようにして、可変抵抗素子5に対してデータ(情報)の消去が行われる。
上述した変化を繰り返すことにより、可変抵抗素子5の抵抗値を、高抵抗状態と低抵抗状態との間で可逆的に変化させることができる。
実際には、絶縁体膜4中の金属元素のイオンの量によって、絶縁体膜4の抵抗値が変化しているので、絶縁体膜4を情報が記憶・保持される記憶層とみなすことができる。
可変抵抗素子5の具体的な膜構成としては、例えば、導体膜3としてCuTe膜を膜厚20nmで形成し、その上に絶縁体膜4としてアモルファスGd膜を膜厚5nmで形成する。
この可変抵抗素子5を用いてメモリセルを構成し、メモリセルを多数設けることにより、メモリ(記憶装置)を構成することができる。
ところで、一般に、DRAMやフラッシュメモリでは、エラーを検出又は訂正するためにECC(Error Correction Coding ;誤り訂正符号化)を適用する場合があるが、ハミング符号、拡大ハミング符号、BCH(Bose-Chaudhuri-Hocquenghem)符号等の情報ビットに検査ビットを付加する手法であり、符号のDCレベルは制御していない。
これに対して、本発明では、符号のDCレベルを積極的に制御する。
即ち、高抵抗状態に記録されるメモリセルの個数が、低抵抗状態に記録されるメモリセルの個数より多くなるように符号化して、記録する。
次に、本発明の一実施の形態として、図1に示した構成の可変抵抗素子5を用いてメモリセルを構成したメモリにおいて、情報を記録する方法を説明する。
本実施の形態では、可変抵抗素子5が低抵抗状態であるとき、‘1’のデータが記録されていると設定し、また、可変抵抗素子5が高抵抗状態であるとき、‘0’のデータが記録されていると設定する。
このように設定すると、‘1’のデータの記録が前述した「データの書き込み」となり、‘0’のデータの記録が前述した「データの消去」となる。
また、本実施の形態では、特に、高抵抗状態(‘0’)に記録されるメモリセルの個数が、低抵抗状態(‘1’)に記録されるメモリセルの個数よりも多くなるように符号化して、情報の記録を行う。
仮に、多数例えば1ワード以上のメモリセルが、全て低抵抗状態(‘1’)であるとすると、それぞれのメモリセルで書き込み時や読み込み時に大きい電流が流れることから、トータルの消費電力も多くなってしまう。
これに対して、本実施の形態では、高抵抗状態(‘0’)に記録されるメモリセルの個数が、低抵抗状態(‘1’)に記録されるメモリセルの個数よりも多くなるように、符号化するので、低抵抗状態(‘1’)に記録されるメモリセルが半分以下となり、トータルの電流量の最大値を低減することができる。
符号化して記録した情報を読み出す際には、読み出した符号系列を元の情報系列に変換(復号化)する。そして、変換して得た情報を出力する。
なお、‘0’の個数が‘1’の個数よりも多くなるような符号化であれば、どのような符号化規則でもよく、具体的な符号化規則は限定しない。
ここで、符号化規則の形態として、8−9変換ブロック符号化と、8−10変換ブロック符号化とを説明する。
9ビット符号と10ビット符号において、‘1’の個数が0個〜4個までの符号語の個数を、それぞれ表1及び表2に示す。
Figure 2007299436
Figure 2007299436
9ビット符号では、‘1’の個数が0個〜4個までの符号語個数の合計がちょうど256個になるので、8ビットの情報語256個(2=256)に1対1で割り当てられる。
ちなみに、このように‘1’の個数が0個〜4個までの9ビットの符号語の最大値は、2進法表示で111100000、即ち480である。
表1から、(0×1+1×9+2×36+3×84+4×126)/256=3.3である。即ち、ランダムな情報入力を仮定すると、1符号語当たりの平均の‘1’の個数は3.3個になり、‘1’の個数の最大値は4個になる。
これに対して、ランダムな8ビットの情報語の1情報語当たりの平均の‘1’の個数は4個であり、‘1’の個数の最大値は8個である。
従って、このような8−9変換ブロック符号化を行って、情報を記録することにより、符号化を行わない場合と比較して、平均書き込み電流は3.3/4に減少し、最大書き込み電流は4/8に減少する。
10ビット符号では、‘1’の個数が0個〜3個までの符号語176個と‘1’の数が4個の符号語210個の内80個を足して、8ビットの情報語256個(2=256)に1対1で割り当てられる。
表2から、‘1’の数が4個の符号語210個の内80個を使用すれば、(0×1+1×10+2×45+3×120+4×80)/256=3.0である。即ち、ランダムな情報語入力を仮定すると、1符号語当たりの平均の‘1’の個数は3.0個になり、‘1’の個数の最大値は4個になる。
これに対して、ランダムな8ビットの情報語の1情報語当たりの平均の‘1’の個数は4個であり、‘1’の個数の最大値は8個である。
従って、このような8−10変換ブロック符号化を行って、情報を記録することにより、符号化を行わない場合と比較して、平均書き込み電流は3/4に減少し、最大書き込み電流は4/8に減少する。
さらに、8−9変換ブロック符号化を行う場合の詳細を説明する。
まず、符号化規則の一形態として、0〜255の値の8ビットの情報語を、‘1’の個数が4個以下の9ビットの情報語(0〜480の値)に、0から順番に昇順で割り当てて(0→0,1→1,・・・,255→480)、符号化を行う場合を説明する。
この符号化の対応を一部抜粋して、符号が繰り上がる所を表示した対照表を、表3及び表4に示す。
表にない数字は、それより小さくて最も近い表にある数字と、値の差が同じである。例えば、情報の数値が46〜52の場合は、全て値の差が+2である。
Figure 2007299436
Figure 2007299436
このように符号化を行うことにより、‘1’の個数を最大4個に減らして、上述のように最大書き込み電流を減らすことができる。
この他の符号化方法も、もちろん可能である。
例えば、8ビットの情報語のうち、2進法表示したときの‘1’が4個以下のものはそのまま同じ値で先頭に‘0’をつけ、‘1’が5個以上のものは、先頭が‘1’でかつ‘1’が4個以下の符号(100000000〜11110000)に、小さい数から割り当てる符号化方法が考えられる。
また例えば、元の情報の数値に対して、ランダムに符号を割り当てる符号化方法も考えられる。
次に、図1に示した可変抵抗素子5を用いてメモリセルを構成し、各メモリセルをマトリクス状に配置して配線を接続した、メモリにおいて、具体的に符号化した信号を記録する態様を説明する。
図2A及び図2Bに示すように、メモリセルがマトリクス状に配置されたメモリから、一本のワード線WLと、12本のビット線BL1〜BL12とを有する部分を抽出して、説明する。
各図において、ワード線WLとビット線BL(BL1〜BL12)との交点に、それぞれのメモリセルC1〜C12が配置されている。各メモリセルC1〜C12は、模式的に点○で表現されている。
図2Aは、比較対照として、符号化を行わず、8ビット語をそのまま1ワードとした場合を示している。
同一のワード線WL上の、連続する8個のメモリセルC1〜C8を、図中破線で示すように1ワード10として使用する。C9以降のメモリセルは、次のワードのために使用する。
図2Bは、8−9変換ブロック符号化を行って、符号化して得た9ビット符号を1ワードとした場合を示している。
同一のワード線WL上の、連続する9個のメモリセルC1〜C9を、図中破線で示すように1ワード10として使用する。C10以降のメモリセルは、次のワードのために使用する。
図2Bと図2Aとを比較してわかるように、8−9変換ブロック符号化を行うことにより、1ワード10当たりに使用するビット線及びメモリセルが1つ増えることになる。
従って、同じビット線の本数で比較すると、8−9変換ブロック符号化を行うことにより、記録できるワード数が8/9に減ることになる。
このように、必要なビット線及びメモリセルが1本増えて、同じ本数のビット線に記録できるワード数が減るが、これによるメモリの面積増大又は容量の減少はさほど大きくはなく、それよりも最大電流を半減して消費電力を抑制することができる利点の方が大きい。
また、8−10変換ブロック符号化を行った場合には、1ワード当たりに使用するビット線及びメモリセルが2本増えて、同じ本数のビット線に記録できるワード数が8/10に減ることになる。
この場合は、メモリの面積増大又は容量の減少が、8−9変換ブロック符号化を行った場合よりも大きくなるが、それでも、最大電流を半減して消費電力を抑制することができる利点の方が大きい。
なお、図2では、同一のワード線WL上のメモリセルを使用して1ワード10を記録する態様を説明したが、2本以上のワード線にわたって、1ワードを記録するようにしてもよい。その場合も、符号化を行って得た1ワードの符号を、9個のメモリセルに記録することには変わりはない。また、図2のように連続するメモリセルではなく、同一ワード線WL上の隣接しないメモリセルの組み合わせに1ワードを記録するようにしてもよい。その場合も、符号化を行って得た1ワードの符号を、9個のメモリセルに記録することには変わりはない。
上述の本実施の形態によれば、‘1’の個数が4個以下となるように、8−9変換ブロック符号化又は8−10変換ブロック符号化を行って、1ワードの情報語を記録するので、符号化された各ワードは、‘1’の個数が4個以下で、‘0’の個数が5個以上又は6個以上となる。即ち、高抵抗状態の‘0’の個数が、低抵抗状態の‘1’の個数よりも多くなる。
これにより、記録時や読み出し時に大きい電流が流れる、低抵抗状態のメモリセルが必ず半分以下となる。そのため、符号化を行わない場合と比較して、各ワードを記録するメモリセルの電流の合計の最大値を、大幅に低減することができ、また、各ワードを記録するメモリセルの電流の平均値も、低減することができる。
従って、本実施の形態によれば、メモリ全体の消費電力も低減することができる。
さらに、本実施の形態によれば、大きい電流が流れる低抵抗状態のメモリセルが、常に半分以下と少なくなるため、選択トランジスタ等による電位降下が少なくなる。
これにより、動作マージンの減少を抑制して、動作マージンを充分に確保することができる。
従って、動作マージンが広く、安定して動作するメモリを実現することができる。
上述の実施の形態では、可変抵抗素子5が低抵抗状態であるとき、‘1’のデータが記録されていると設定し、また、可変抵抗素子5が高抵抗状態であるとき、‘0’のデータが記録されていると設定したが、これらを逆に設定しても構わない。
逆に設定した場合には、高抵抗状態である‘1’のメモリセルの個数が、低抵抗状態である‘0’のメモリセルの個数よりも多くなるように符号化すればよい。
上述の実施の形態では、8ビットの情報語から9ビット又は10ビットに変換する符号化を行ったが、本発明においては、変換前のビット数よりも変換後のビット数が1又は若干増えるように変換する符号化であれば、変換前及び変換後の各ビット数は特に限定されない。例えば、32ビットの情報語から33ビット又は34ビットの符号に変換することも可能である。
また、可変抵抗素子は、図1に示した可変抵抗素子5の構成に限定されるものではなく、その他の構成も可能である。
例えば、(1)図1とは積層順序を逆にして、絶縁体膜の上に導体膜を積層した構成、(2)導体膜が電極を兼ねる構成、(3)導体膜を設ける代わりに、導体膜に用いられる金属元素を絶縁体膜に含有させた構成、等が考えられる。
また、イオン化しやすい金属元素と絶縁体膜とを有する可変抵抗素子以外にも、様々な構成の可変抵抗素子がある。
その他の構成の可変抵抗素子であっても、抵抗値が高抵抗状態と低抵抗状態との間を可逆的に変化する可変抵抗素子であれば、同様に本発明を適用することが可能である。
例えば、いわゆるRRAM、相変化型の可変抵抗素子、巨大磁気抵抗効果素子(GMR素子)やトンネル磁気抵抗効果素子(TMR素子)等が挙げられる。
なお、本発明において、符号化を行うための構成は、特に限定されない。
公知の構成と同様もしくは公知の構成を応用した構成が可能であり、例えば、符号化回路やデータ変換のソフトウェアを使用することが考えられる。
また、符号化を実行する手段、例えば符号化回路やCPU(中央処理装置)等は、記憶装置に内蔵又は記憶装置と一体化して接続されていても構わないし、記憶装置の外部にあって有線又は無線で記憶装置にデータを送ることができるように構成されていても構わない。
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
本発明に係る可変抵抗素子の一形態の膜構成を示す断面図である。 同一ワード線のメモリセルに1ワードを記録する場合の態様を、符号化を行わない場合と行う場合とを比較して説明する図である。 A 符号化を行わない場合である。 B 8−9変換ブロック符号化を行う場合である。 不揮発性の可変抵抗素子の膜構成を示す断面図である。
符号の説明
1,2 電極、3 導体膜、4 絶縁体膜、5 可変抵抗素子、10 1ワード、WL ワード線、BL1〜BL12 ビット線、C1〜C12 メモリセル

Claims (4)

  1. 抵抗値が高抵抗状態と低抵抗状態との間を可逆的に変化する可変抵抗素子を備え、前記可変抵抗素子から成るメモリセルを複数有する記憶装置に対して、情報を記録する方法であって、
    前記高抵抗状態に記録されるメモリセルの個数が、前記低抵抗状態に記録されるメモリセルの個数よりも多くなるように、符号化して記録を行う
    ことを特徴とする記憶装置の記録方法。
  2. 前記可変抵抗素子が、2つの電極の間に、異なる極性の電圧を印加することにより、抵抗値が前記高抵抗状態と前記低抵抗状態との間を可逆的に変化する構成であることを特徴とする請求項1に記載の記憶装置の記録方法。
  3. 前記可変抵抗素子が、前記2つの電極の間に、絶縁体から成る記憶層を有し、前記記憶層に接する層内に、或いは、前記記憶層内に、イオン化が容易な金属元素が含有されている構成であることを特徴とする請求項2に記載の記憶装置の記録方法。
  4. 前記金属元素が、Cu,Ag,Znから選ばれる1つ以上の元素であることを特徴とする、請求項3に記載の記憶装置の記録方法。
JP2006123839A 2006-04-27 2006-04-27 記憶装置の記録方法 Pending JP2007299436A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123839A JP2007299436A (ja) 2006-04-27 2006-04-27 記憶装置の記録方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123839A JP2007299436A (ja) 2006-04-27 2006-04-27 記憶装置の記録方法

Publications (1)

Publication Number Publication Date
JP2007299436A true JP2007299436A (ja) 2007-11-15

Family

ID=38768810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123839A Pending JP2007299436A (ja) 2006-04-27 2006-04-27 記憶装置の記録方法

Country Status (1)

Country Link
JP (1) JP2007299436A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207518B2 (en) 2008-04-01 2012-06-26 Kabushiki Kaisha Toshiba Information recording and reproducing device
US8269205B2 (en) 2008-04-01 2012-09-18 Kabushiki Kaisha Toshiba Information recording and reproducing device
JP2013214350A (ja) * 2013-05-29 2013-10-17 Toshiba Corp メモリアクセス装置
US9105358B2 (en) 2008-12-11 2015-08-11 Kabushiki Kaisha Toshiba Memory system having an encoding processing circuit for redundant encoding process
WO2017138235A1 (ja) * 2016-02-08 2017-08-17 ソニー株式会社 メモリコントローラ、不揮発性メモリおよびメモリコントローラの制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207518B2 (en) 2008-04-01 2012-06-26 Kabushiki Kaisha Toshiba Information recording and reproducing device
US8269205B2 (en) 2008-04-01 2012-09-18 Kabushiki Kaisha Toshiba Information recording and reproducing device
US9105358B2 (en) 2008-12-11 2015-08-11 Kabushiki Kaisha Toshiba Memory system having an encoding processing circuit for redundant encoding process
US9547551B2 (en) 2008-12-11 2017-01-17 Kabushiki Kaisha Toshiba Memory system having an encoding processing circuit for redundant encoding process
JP2013214350A (ja) * 2013-05-29 2013-10-17 Toshiba Corp メモリアクセス装置
WO2017138235A1 (ja) * 2016-02-08 2017-08-17 ソニー株式会社 メモリコントローラ、不揮発性メモリおよびメモリコントローラの制御方法
JPWO2017138235A1 (ja) * 2016-02-08 2018-11-29 ソニー株式会社 メモリコントローラ、不揮発性メモリおよびメモリコントローラの制御方法
US10664343B2 (en) 2016-02-08 2020-05-26 Sony Corporation Memory controller, non-volatile memory, and method of controlling memory controller

Similar Documents

Publication Publication Date Title
TWI261838B (en) Storage device
US7036068B2 (en) Error correction coding and decoding in a solid-state storage device
JP5723967B2 (ja) ソリッド・ステート・ストレージ・デバイスのsレベル・ストレージに入力データを記録するための方法、エンコーダ装置、およびソリッド・ステート・ストレージ・デバイス
JP5467270B2 (ja) データ入出力制御装置および半導体記憶装置システム
Niu et al. Low power memristor-based ReRAM design with error correcting code
US7944729B2 (en) Simultaneously writing multiple addressable blocks of user data to a resistive sense memory cell array
JP5569936B2 (ja) 制御装置およびデータ記憶装置
JP4464462B2 (ja) 不揮発性記憶装置および不揮発性データ記録メディア
US20120072801A1 (en) Data processing apparatus, control device and data storage device
JP4475098B2 (ja) 記憶素子及びその駆動方法
JP2013069411A (ja) クロスポイント型抵抗変化不揮発性記憶装置及びその書き込み方法
US20090080249A1 (en) Non-volatile memory cell endurance using data encoding
TW201113881A (en) Folding data stored in binary format into multi-state format within non-volatile memory devices
JP2013524609A5 (ja)
JP6510758B2 (ja) リファレンスセルを含む不揮発性メモリ装置及びそれのデータ管理方法
TW201007739A (en) Multiple-bit per Cell (MBC) non-volatile memory apparatus and system having polarity control and method of programming same
JP2014211937A (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
JP2007299436A (ja) 記憶装置の記録方法
JP6482959B2 (ja) 半導体記憶装置
JP4816088B2 (ja) 記憶装置の初期化方法
TW201517038A (zh) 電阻式記憶體裝置、其操作方法以及具有該裝置的系統
JP2007058940A (ja) 記憶装置、ファイル記憶装置、およびコンピュータシステム
JP2006032867A (ja) 記憶素子及びその駆動方法
JP4742824B2 (ja) 記憶装置の初期化方法
KR102565005B1 (ko) 저항 변화 메모리의 수명 연장 방법 및 그 방법을 이용하는 데이터 저장 시스템