JP2007289054A - 微生物検知システムおよび分析チップ - Google Patents

微生物検知システムおよび分析チップ Download PDF

Info

Publication number
JP2007289054A
JP2007289054A JP2006120032A JP2006120032A JP2007289054A JP 2007289054 A JP2007289054 A JP 2007289054A JP 2006120032 A JP2006120032 A JP 2006120032A JP 2006120032 A JP2006120032 A JP 2006120032A JP 2007289054 A JP2007289054 A JP 2007289054A
Authority
JP
Japan
Prior art keywords
gene
chip
reagent
storage tank
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006120032A
Other languages
English (en)
Inventor
Mitsuhiro Matsuzawa
光宏 松澤
Hisao Inami
久雄 稲波
Yasuhiko Sasaki
康彦 佐々木
Masahiro Kurihara
昌宏 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006120032A priority Critical patent/JP2007289054A/ja
Priority to US11/627,402 priority patent/US20070249039A1/en
Publication of JP2007289054A publication Critical patent/JP2007289054A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance

Abstract

【課題】捕集から遺伝子分析に至るまでの操作を短時間で、かつ精度よく微生物の検知を可能とする。
【解決手段】分析チップの中で遺伝子の抽出から検出までの処理が行われる微生物検知システムにおいて、分析チップ300は、試料溜め315と、遺伝子結合担体が充填された遺伝子抽出エリア320と、吸収剤が充填された廃液槽330と、洗浄液を保管する洗浄液保管槽340と、遺伝子溶離液を保管する溶離液保管槽370と、遺伝子増幅試薬を保管する遺伝子増幅試薬保管槽380と、遺伝子の増幅・検出を行う反応槽395と、がそれぞれ流路で形成され、少なくとも試料溜め315及び試薬保管槽380いずれかに流路幅が縮小して拡大する堰部を備える。
【選択図】図7

Description

本発明は、大気中に浮遊する微生物を捕集し、微生物中の遺伝子を抽出して微生物の遺伝子検査を行う微生物検知システムおよび分析チップに関する。
取り扱いが容易で安価、かつ試料から遺伝子の抽出・分析までが一括して自動化可能とするため、遺伝子を含む試料が供給される注入口と、注入口に供給された試料に導入される溶解液を保管する溶解液保管部と、試料と溶解液とを混合した液が導入され、遺伝子と結合する遺伝子結合担体を備える遺伝子抽出部と、遺伝子抽出部に導入される洗浄液を保管する洗浄液保管部と、遺伝子抽出部に導入される溶離液を保管する溶離液保管部と、溶離液により溶離された遺伝子が導入される反応部と、を備えた遺伝子処理チップを用いることが、特許文献1に記載されている。
特開2005−65607号公報
上記従来技術に記載の分析装置に用いられる遺伝子処理チップは、遺伝子処理に必要な試薬が予めチップ内に保管されている形態であるものの、試薬を所定の場所へ留めておくことが考慮されていないため、遺伝子処理チップの持ち運び時や、分析装置へのセット時などに、試薬が誤流出してしまう恐れがある。そのため、遺伝子処理チップの取り扱いが煩わしく、また、誤流出により流体制御などの遺伝子処理操作が不安定となり、検査精度が低下する恐れがあった。
本発明の目的は、上記従来技術の課題を解決し、捕集から遺伝子分析に至るまでの操作を短時間で、かつ精度よく微生物の検知を可能なものとすることにある。
上記課題を解決するため、本発明は、捕集機に設置され捕集材に微生物を捕集した後、前記捕集機から取り出し分析装置にセットされる捕集チップと、前記捕集チップで処理された液の一部を分析チップへ移され、前記分析装置の送液手段により前記分析チップの中で遺伝子の抽出から検出までの処理が行われる微生物検知システムにおいて、前記分析チップは、試料溜めと、遺伝子結合担体が充填された遺伝子抽出エリアと、吸収剤が充填された廃液槽と、洗浄液を保管する洗浄液保管槽と、遺伝子溶離液を保管する溶離液保管槽と、遺伝子増幅試薬を保管する遺伝子増幅試薬保管槽と、遺伝子の増幅・検出を行う反応槽と、がそれぞれ流路で形成され、少なくとも前記試料溜め及び前記試薬保管槽いずれかに流路幅が縮小して拡大する堰部を備えたものである。
本発明によれば、遺伝子の抽出から検出までの処理が行われる分析チップにおいて、少なくとも試料溜め及び試薬保管槽いずれかに堰部を設けたので、試薬の誤流出がなく、精度よく、安定した微生物の検知が可能となる。
本発明の実施例を以下に説明する。
芽胞を形成した細菌を大気中から捕集し、芽胞を処理した後に細菌から遺伝子を抽出し、ポリメラーゼ連鎖反応により遺伝子を増幅させることで、対象の細菌が存在するか否かを検出する例を説明する。ここで芽胞を形成する細菌とは、バチルス属菌,クロストリディウム属菌等の細菌である。
(細菌検知の流れ)
細菌検知は大きく分けて、細菌の捕集工程,細菌芽胞に発芽促進剤を添加して細菌芽胞を発芽させる工程と、発芽した細菌から遺伝子を抽出する工程,遺伝子を増幅・検出する工程とからなる。遺伝子の抽出は、一般的に知られる固相抽出法により行う。固相抽出法とは、まず固体表面に遺伝子を特異的に結合させ、次に他物質と区別して遺伝子のみを水溶液に溶離させることで抽出する方法である。図1を参照して、細菌の検知方法を説明する。
ステップ1・・・衝突法による細菌の捕集
衝突法は、ノズルの上から空気を吸引してノズル下方に高速で噴出させ、ノズルの下に設けた衝突板に細菌を捕集する方法である。空気中の細菌はその粒径の2乗に比例した慣性力を得て、衝突板に付着する。フィルタ法のように目詰まりを起こさず、細菌が濃縮されて集まるという利点がある。
ステップ2・・・芽胞の発芽
細菌芽胞に発芽促進剤を加え、一定時間を経過すると細菌芽胞が発芽を開始する。発芽する段階で、細菌は自ら芽胞を壊すので、発芽により細菌の細胞壁がむき出しの状態になる。
ステップ3・・・細胞膜の溶解
試料にカオトロピックイオン(分子の直径が大きい−1価の陰イオン)を含む溶液を混合し、細菌の細胞膜をカオトロピックイオンの働きにより破壊する。またカオトロピックイオンは、同時に試料中に含まれる多くの蛋白質を変性し、ヌクレアーゼ(核酸を分解する酵素)の働きを阻害する。
ステップ4・・・遺伝子の捕獲
溶解後の混合物にシリカが加わると、カオトロピックイオンの働きにより、遺伝子とシリカが特異的に結合する。一般的には混合物をガラスフィルタに通す方法が用いられる。
ステップ5・・・遺伝子の洗浄
試料に含まれる蛋白質や、カオトロピックイオンが抽出物に混入すると、遺伝子増幅による遺伝子の検出を阻害するので、遺伝子−シリカを洗浄する操作が必要となる。通常では高濃度のエタノールにより洗浄する。遺伝子はこれらの溶液に溶解しにくい性質を持っているため、シリカに吸着している遺伝子はこの過程で溶離しない。
ステップ6・・・遺伝子の溶離
洗浄後、水もしくは低塩濃度の溶液を遺伝子−シリカに加え、遺伝子をシリカから溶離する。
ステップ7・・・遺伝子の検出
溶離した遺伝子にプライマー(目的とするDNA領域の両末端の20塩基ほどと同じ塩基配列をもつ一本鎖DNA),DNA合成酵素(ポリメラーゼ)と四種類の基質(dNTP)等を加え、温度サイクル「熱変性−アニーリング−相補鎖の合成」をかけることで遺伝子は増幅する(ポリメラーゼ連鎖反応)。ここで上記試薬に加え、蛍光色素を予め注入しておき、励起光を照射しながら温度サイクルをかけることで、遺伝子の増幅をリアルタイムに検出することができる。
(分析システムの構成)
図2を参照して分析システムの構成を説明する。分析システムは捕集機100,捕集チップ200,分析装置400,分析チップ300の4つから構成される。大気中に浮遊する細菌を捕集機100により吸引し、捕集機100に設置された捕集チップ200の捕集材201(図5および図6参照)に細菌を捕集する。捕集チップ200を捕集機100から取り出し、捕集チップ200の捕集材収納部203(図5および図6参照)の開口をシール材で閉塞し、あるいはこの捕集チップ200の開口をシール材で閉塞してから捕集機100から取り出し、分析装置400にセットする。すなわち、捕集材に微生物が付着した状態で前記開口部をシール材で封止してなる捕集チップ200を分析装置400にセットする。捕集チップ200の開口をシール材で閉塞して取り扱うことにより、捕集チップ200を安全に取り扱うことができる。分析装置400には送液手段が備えられており、捕集チップ200を分析装置400にセットした状態で、捕集チップ200内の試薬を送液し、捕集チップ200の中で細菌芽胞の発芽および細胞膜の溶解の処理を行う。
複数の試薬が予め内蔵された捕集チップ200を用いて細菌を捕集し、細菌を捕集した捕集チップ200をそのまま用いて次の複数の微生物検知処理に移行できるので、使い勝手良く捕集から微生物検知処理まで移行できる。
次いで、捕集チップ200を分析装置400から取り出し、捕集チップ200で処理された液(既に細菌は溶解して破壊されているため、触れても汚染されることはない)の一部を分析チップ300に移す。
分析チップ300を分析装置400にセットする。分析チップ300は捕集チップ200がセットされた部位と同じ場所にセットされるようになっている。ここで、分析チップ
300には図1のステップ4(遺伝子の捕獲)からステップ7(遺伝子の検出)までの試薬が予め内蔵されている。分析チップ300を分析装置400にセットした状態で、分析装置400の送液手段により分析チップ300内の試薬を送液し、分析チップ300の中で遺伝子の抽出から検出までを行う。そして分析終了後、分析チップ300を分析装置
400から取り出し、分析チップ300を廃棄する。
2種類の微生物検知チップ(捕集チップ200,分析チップ300)の中に、細菌の前処理から検出に至るまでの工程に必要な試薬が全て内蔵されており、煩雑な試薬操作を省略することができる。2種類のチップ200,300間での試料の受け渡しの工程以外は、試料がチップから出ることはなく、閉じられた系において分析がおこなわれるため、非常に安全である。また廃棄物はチップ200,300のみとすることができ、このチップ200,300を焼却可能な素材にしておくことで、二次汚染の危険性を低減することができる。
さらに、2種類のチップ200,300に内蔵される試薬は、一検査分のみであり、チップ200,300は使い切りとすることができることから、屋外で簡便に遺伝子レベルの高精度な細菌検査を行うことができる。
試薬を内蔵した2種類のチップ200,300を細菌の捕集から溶解までを処理するチップ200とそれ以降の分析処理をするチップ300とに分けているので、捕集から溶解までの処理が同一である試料を用いて複数回の分析が容易となり、安全性を確保しつつ、分析精度の向上を容易に図ることができる。
(捕集機の構成)
図3は捕集機100の透視斜視図、図4(a)は捕集機100の蓋部110およびチップ支持部130を開いた状態を示す図、図4(b)は捕集チップ200を装着して支持部130を閉じた状態を示す図である。
捕集機100は、蓋部110,ノズル部120,一次フィルタ121,チップ支持部
130,二次フィルタ140,支持板150,ファンモータ160,排出口170,制御部180,表示部181,バッテリ185およびケーシング190を有する。蓋部110はノズル部120を有する正方形または短形の部材からなり、両側面に固定手段を有する。
ノズル部120の内径は捕集効率に大きく関係する。ノズルの内径を10[mm]より小さくするほど、細菌を濃縮して捕集することができるが、ノズル部120を通過する空気流速が増大するため、圧力損失が増加する。圧力損失は、空気流速の2乗に比例して増加する。それにより、ファンモータ160の負荷が増加し、バッテリ185の電圧が低下する。例えば、ノズル部120の内径を3[mm]以下とすると、可搬型の細菌捕集機100に搭載可能なバッテリ185(リチウム−水素)で駆動可能な仕事量を超える。従って、ノズル部120の内径Wは4〜15[mm]が適当である。より好ましくは、ノズル部120の内径Wを8〜12[mm]にすると良い。これにより、高い捕集効率を得ながら、ノズル部120の直下に細菌を濃縮して捕集することができる。
ノズル部120には一次フィルタ121が装着されている。一次フィルタ121は、大気中の粗大粒子をトラップするために設ける。したがって、その目開きは100〜200μmが望ましい。花粉の飛散量が増加する時期には、目開きが10〜100μmであることが望ましい。それにより、粒子径10μm以上の花粉と粒子径10μm未満の細菌とを簡便に分級することができる。一次フィルタ121は、蓋部110から着脱可能で、洗浄と高温滅菌が容易なステンレス製または4フッ化エチレンを重合して作った合成樹脂製が好ましい。
チップ支持部130は二次フィルタ140の上(前方)に設置される。チップ支持部
130は開閉式になっており(図4)、捕集チップ200を挟んで蓋を閉めることで捕集チップ200を容易に捕集機100にセットすることができる。チップ支持部130は捕集チップ200のいわば外周に相当するため、細菌が付着しやすい。よって、チップ支持部130は二次フィルタ140から着脱可能で、洗浄と高温滅菌が容易なステンレス製またはフッ素樹脂製が好ましい。
二次フィルタ140は支持板150に設置され、捕集チップ200で捕集できなかった細菌等の微粒子が排出口170から大気中に放出されることを防止するために設ける。二次フィルタ140には、0.3μm以上の微粒子を99.97%以上捕集可能なHEPA
(High Efficiency Particulate Air)フィルタを使用することが好ましい。
0.1〜0.2μmの微粒子を99.999%以上捕集可能なULPA(Ultra Low
Penetration Air )フィルタを使用することが更に好ましい。ULPAを用いることにより、排出口170から大気に放出する空気の清浄度を更に上げることができる。ケーシング190内には、制御部180,表示部181、およびバッテリ185が設けられている。ケーシング190の上面には掴み部191が設けられている。
次に、捕集機100の動作を説明する。ファンモータ160を駆動すると、大気はノズル部120に吸引される。吸引された大気はノズルによって加速され、一次フィルタ121を通過する。このとき、一次フィルタ121によって空気中の粗大粒子が除去される。蓋部110内に導入された空気中の微粒子は、捕集チップ200の中央に設けた捕集材に慣性衝突して付着する。蓋部110内に導入された空気は二次フィルタ140を通過し、ファンモータ160の下部の排出口170より外部へ排出される。二次フィルタ140によって、捕集チップ200に捕集されなかった微粒子が除去される。
(捕集チップの構成,動作)
図5,図6を参照して捕集チップ200の例を説明する。図5は捕集チップ200の正面図、図6は捕集チップ200の縦断面図である。
捕集チップ200は、図1におけるステップ1(細菌の捕集)からステップ3(細胞膜の溶解)までを担う。すなわち、まず捕集チップ200を捕集機100にセットして細菌を捕集したのち(ステップ1)、捕集チップ200を捕集機100から取り外し、捕集チップ200を後述の分析装置400にセットして、ステップ2(芽胞の発芽)からステップ3(細胞膜の溶解)までの工程を行う。
捕集チップ200は、チップの構成要素をかたどるパターンをフォトリソグラフィー技術により作製し、このパターンを樹脂に転写成形して成型したものである。パターンの大部分は、微細流路である。すなわち、2枚の樹脂を張り合わせることで、樹脂に刻まれたパターンが流路となる。チップの材料として、加工費用が高くまた割れやすいガラスよりも、廃棄処理性に優れる樹脂のほうが好ましい。樹脂の種類は特に限定されるものではないが、以下の優れた特性を有するポリジメチルシロキサンを使用した。本チップには以下の特性を備えることが好ましい。
生体適合性良好(通常のシリコンゴムは生理的に不活性)
サブミクロンの精度で型の転写が可能(硬化前は低粘度で流動性に富むため、複雑な形状の細部まで良好に浸透)
低コスト(8円/1グラム。従来の汎用マイクロデバイス材料であるパイレックス(登録商標)ガラスは1k円/1グラムであり1/100以下)
焼却により容易に廃棄可能
捕集チップ200は、大気中から微生物(芽胞を形成した細菌)を付着して捕集する捕集材201と、捕集材201を装着した薄い板状の基板202とを備えて構成されている。捕集チップ200は、捕集材201を収納する捕集材収納部203と、複数の試薬保管槽(210,220,230,240)、チップ背面に開口されたチップポート211,221,231,241と、チップ正面に開口された空気穴250とを有している。
複数の試薬保管槽は、発芽促進剤を保管する発芽促進剤保管槽210と、2種類の細胞壁溶解液を保管する酵素A保管槽220と、酵素B保管槽230と、カオトロピックイオンを保管するカオトロピック保管槽240とを有している。複数の試薬保管槽210〜
240は、捕集材収納部203の周囲を取り囲むように配置されている。これにより、基板202をコンパクトなものとすることができる。
試薬保管槽210〜240は細長い流路によって構成されている。いずれの試薬保管槽も、流路形状が好ましい。試薬保管槽内210〜240の試薬を送液するために、試薬保管槽210〜240の背後から気体を試薬保管槽210〜240に送る。このとき、試薬保管槽210〜240が細長い流路形状でなかった場合、気体の通り抜けやすい部位のみ試薬が押し出され、その他の部位の試薬が試薬保管槽に残るためである。消費する試薬の量を減らすために、試薬保管槽210〜240を流路形状にするのは効果的である。流路の断面形状は特に限定されないが、横/縦10以下が好ましい。横/縦が10以上となると、流路天井部の樹脂がたわんで流路の矩形構造が崩れる恐れがある。試薬保管槽210〜240の細長い流路は、蛇行状に形成されている。これにより、基板203における流路の占有面積を小さなものとしつつ、流路における試薬の保管容量を確保することができる。
試薬保管槽210〜240の一端は捕集材収納部203に接続され、試薬保管槽210〜240の他端にはチップポート(211〜241)が連通して接続されている。試薬保管槽210〜240の一端側および他端側にそれぞれ堰204が設けられている。これにより、各試薬保管槽210〜240の保管される試薬の流出をより確実に防止することができる。チップポート211〜241は、外部の流路との接点を構成する。発芽促進剤保管槽210と、酵素A保管槽220と、酵素B保管槽230と、カオトロピック保管槽
240はいずれも、捕集材収納部203と連通している。従って、捕集材収納部203は、発芽促進剤保管槽210と、酵素A保管槽220と、酵素B保管槽230と、カオトロピック保管槽240、およびチップポート211〜241を介して外部の流路に接続されている。なお、試薬保管槽210〜240の流路幅を50〜100μmまで狭めることで、捕集材収納部203の側からの空気の流入を防ぐことができる。
発芽促進剤保管槽210の体積は20〜100μL、酵素A保管槽220の体積は20〜100μL、酵素B保管槽230の体積は5〜20μL、カオトロピック保管槽240の体積は400〜800μLが好ましい。カオトロピックイオンの体積が、発芽促進剤と2種類の細胞壁溶解液の体積の和の2倍以上とすることで、細胞膜の破壊が促進される。より好ましくは4倍以上、最適なのは、8倍以上である。
捕集材201として寒天が好適である。寒天の特徴は、ゲル表面の自由水(ゲル網目間の水)由来の「付着性」を有することである。寒天濃度は2〜5%にするのが好適であり、寒天濃度3〜4%が最適である。寒天濃度が2%未満では水分が多いため、高速の空気が当たり続ける捕集材201として強度不足である。一方、寒天濃度が6%より大きいと、寒天表面の水分(自由水)が少なくなり、付着性が著しく低下する。
寒天の強度を上げ、かつ水分の蒸発を防止するため、アルコール類を添加すると良い、このアルコール類は凍結防止,乾燥防止,ゲル強化剤として作用する。具体的には、エチルアルコール,イソプロピルアルコール、1,3−ブタンジオール,エチレングリコール,プロピレングリコール,グリセリンなどが挙げられる。アルコール類の添加量は、寒天の40〜80%、好ましくは50〜70%が好ましい。アルコール類が40%未満では、水分の蒸発防止が十分でない。また、80%を超えると寒天表面の水分(自由水)が少なくなり、付着性が低下する。
捕集チップ200の使用方法の一例を説明する。捕集チップ200を捕集機100のチップ支持台に取り付けて、一定時間大気を吸引する。大気の吸引量は、例えば約1000Lである。大気中の細菌は捕集チップ200の捕集材201表面に付着する。次に、捕集チップ200をチップ支持台から外し、捕集チップ200の捕集材収納部203の開口面をシールで封止した後に捕集チップ200を分析装置400にセットする。捕集材収納部203の封止は、手動でも良いが、捕集機にシール機構がついていることがより好ましい。捕集材収納部203の封止により、細菌が捕集チップ200の外部に露出することがなくなり、より安全となる。
捕集チップ200の試薬保管槽210〜240はチップポート(211〜241)を介して分析装置400の流路と接続されているので、分析装置400の流路側から所定の制御動作で気体をチップポート211〜241を介して供給することにより、試薬保管槽
210〜240に予め封入された発芽促進剤,細胞壁溶解液,細胞膜溶解液、およびカオトロピックイオンが所定時間ごとに捕集材収納部203内(捕集材201上)に送液される。捕集材収納部203の上正面は封止されているが、空気穴250が捕集材収納部203の一部に連通しており、空気穴250は大気開放となっているので、試薬の送液の際に捕集材201の上に存在する空気は空気穴250より放出される。
試薬保管槽210〜240から捕集材201へ試薬を送液することについての詳細を説明する。
捕集材201に発芽促進剤を100μL送液する。ここで発芽促進剤としては、アラニン,アデノシン,グルコースを含むブイヨンが好ましい。特にL−アラニンを1mM〜
10mM含有するブイヨンが最適である。そして10分以上を経過すると細菌芽胞が発芽を開始し、30分間経過すると、全体の50%以上が発芽する。よって、芽胞の発芽処理は30分以上が好ましい。細菌芽胞を発芽させるのにより好ましいのは35〜40℃であり、最も好ましいのは35〜37℃である。細菌芽胞が発芽する段階で細菌は自ら芽胞を壊すので、発芽により細菌の細胞壁がむき出しの状態になる。
次に、細菌の細胞壁を壊す2種類の蛋白質変性酵素を順次捕集材201に送液し、至適温度に一定時間保持する。酵素処理の時間はそれぞれ10分以上が望ましく、30分が好適である。ここで蛋白質変性酵素としては、リゾチーム(至適温度:37℃)100μLとプロテアーゼK(至適温度:55〜60℃)20μLが好適である。これらの酵素処理により、捕集チップ200内の細菌は細胞膜がむき出しの状態になる。なお、発芽促進剤とリゾチームは同じタイミングで注入して処理することも可能であるが、リゾチームとプロテアーゼKを同時に添加することは酵素活性が低下するため好ましくない。
最後に、カオトロピックイオン800μLを捕集材201に送液すると、細菌の細胞膜が破壊され、細菌の遺伝子が細胞外部に放出される。ここでカオトロピックイオンとしては、グアニジンチオシアン酸塩,グアニジン塩酸,ヨウ化ナトリウム,臭化カリウムが挙げられる。チップの使用方法として、チップの冷蔵あるいは冷凍により試薬の活性を長期間維持する方法が考えられる。よって、チップに封入し、冷蔵あるいは冷凍をした際に組成の変化が極めて少ないグアニジン塩酸が好適である。
またカオトロピック塩に界面活性剤や緩衝剤を含有させることが好ましい。緩衝剤としては、トリス−塩酸塩,リン酸2水素カリウム―4ホウ酸ナトリウム等が良い。
以上の工程により、捕集チップ200に捕集した細菌の芽胞および細胞壁を処理することができる。すなわち、図1におけるステップ2〜3までをチップ上で自動化することができるため、試薬の分注操作を省略することができる。捕集チップ200は細菌の捕集から前処理までの工程を担い、分析チップ300は細菌遺伝子の分析工程を担う。分析の精度を上げるために、同一の試料に対して複数回の分析、或いはターゲットの細菌を複数設定するためには、1枚の捕集チップ200で処理したサンプルを複数の分析チップ300に分配したほうが好適であり、2種類のチップ200,300を供している。
なお、この捕集チップ200を凍結した状態でユーザーに提供し、ユーザーが0℃で捕集チップ200を凍結保存することで、試薬の活性は1ヶ月保たれる。また、−20℃で凍結保存しておけば、半年以上試薬の活性を保つことが可能である。
(分析チップの構成,動作)
図7から図9を参照して分析チップ300を具体的に説明する。
分析チップ300は、図1におけるステップ4(遺伝子の捕獲)からステップ7(遺伝子の検出)までを担う。捕集チップで処理された液の一部を移した状態の分析チップ分析装置400にセットする。分析チップ300には、図1のステップ4(遺伝子の捕獲)からステップ7(遺伝子の検出)までの処理に用いられる試薬が予め内蔵されている。分析チップ300を分析装置400にセットした状態で、分析装置400には送液手段を動作させて分析チップ300内の試薬を送液し、分析チップ300の中で遺伝子の抽出から検出までの処理を行う。分析チップ300の素材は捕集チップ200と同様の樹脂である。
分析チップ300にはチップ正面に開口された試料注入口310と、試料溜め315と、遺伝子結合担体を流路に充填した遺伝子抽出エリア320と、廃液槽330と、洗浄液Iを保管する洗浄液I保管槽340と、洗浄液IIを保管する洗浄液II保管槽350と、洗浄液IIIを保管する洗浄液III保管槽360と、遺伝子溶離液を保管する溶離液保管槽370と、遺伝子増幅試薬Iを保管する遺伝子増幅試薬I保管槽380と、遺伝子増幅試薬IIを保管する遺伝子増幅試薬II保管槽390と、遺伝子の増幅・検出を行う反応槽395と、チップ背面に開口されたチップポート311,331,341,351,361,371,381,391とを有している。反応槽395とチップポート399の間には、液溜め398が設けられている。液溜め398を設けることで、誤って反応槽395からチップポート399を通り抜け分析装置400内部へ試薬が侵入することを防止できる。
試薬保管槽340〜390の断面形状は、捕集チップと同様に横/縦10以下が好ましい。横/縦が10以上となると、流路天井部の樹脂がたわんで流路の矩形構造が崩れる恐れがある。図のものでは横2mm,縦3mmで形成している。
試薬保管槽340〜380以外の流路の断面は、試薬保管槽340〜390よりも小さいことが好ましく断面積として1/4以下が好ましい。分析チップ300は、光造形法によって作成した樹脂の型から転写して作成する。光造形法によって作成する樹脂は滑らかな曲線で構成するのが困難であるため、矩形構造を基本としている。よって、矩形構造の樹脂型から転写される分析チップの流路断面も必然と矩形構造となる。矩形構造の流路に試薬を流すと、流路の四隅に試薬が付着しやすく、残存する。流路に残存した試薬が次に流れてきた試薬と混じっていくため、分析精度を悪化させていく。そこで、流路の断面を小さくすることで、流路壁面への試薬の付着を抑制し、試薬のキャリーオーバーを防止している。具体的には、横0.5mm,縦0.5mmで形成した。
試料溜め315および試薬保管槽340〜390の両端の少なくとも一方は、図9(a)に示すように流路幅が縮小し、再び急拡大する部分として堰部が設けてある。図9(b)に堰部における試薬と堰に働く表面張力の関係を示す。試薬と流路との接触角をα,堰の縮小の角度をθ1,堰の拡大の角度をθ2,試薬の表面張力をT,表面張力の鉛直成分をF,流路の周囲長をLとし、F′=F×Lとする。このとき、F,α,θ1,θ2,Tの関係は
F=Tsin(α−θ2
となる。したがって、F>0つまりα−θ2>0 のとき、F′は試薬の流出を防止する抑止力として働き、α−θ2 が90°に近いほどF′は大きくなる。α−θ2 が90°のとき試薬を防止する抑止力は最大となる。例えば、遺伝子溶離液を水とし、θ2 =45°の場合を考える。水とPDMSとの接触角α=85°であるので、θ2 が小さいほどF′は大きくなる。しかし一方、θ2が小さいと残液が生じやすくなる。ここでは、θ2=45°の場合を考えると、α−θ2=40°となる。水の表面張力T=7.26×10-4[N/cm](20℃) であるので、表面張力の鉛直成分F=7.26×10-4×sin40°=4.67×10-4[N/cm]となる。ここで、例えば溶離液保管槽のくびれ部の周囲長をL=2×(0.5+3) =7[mm]とすると、抑止力F′=4.67×10-4×7×10-1=3.26×10-4[N]となる。遺伝子溶離液の体積を約20[μL]とすると、遺伝子溶離液に働く重力は約2.00×10-4[N] である。したがって、この場合、重力による溶離液の流出を防止する十分な力が働いていると考えられる。試薬の表面張力,試薬とPDMSとの接触角、また、残液を考慮しながら堰部の形状の最適化が図られる。この堰を設けることで、表面張力を利用して試薬の誤流出を防止することが可能となる。
分析チップ300を縦置きにして使用する場合、図9(a)に示すように、各試薬保管槽に連通する流路を、各試薬保管槽に保管される想定最大液量の液面t1,t2よりも、一度上方に配置することにより、誤ってその先の流路へ試薬が流出することを防ぐことができる。
流路の急拡大部と、試薬保管槽に連通する流路を液面より上方に配置する流路構造を組み合わせることで、複雑な機構を必要とせずに試薬の誤流出を高確率で防ぐことが可能となる。試薬の誤流出を防止することにより、チップの取り扱いに特別な配慮が必要なくなり、チップの扱いやすさが向上する。また、試薬の流動制御も安定して実行することが可能となり、遺伝子検出精度を向上させることができる。
また、縮小の角度θ1 は小さいと液が残りやすくなるため、10°以上80°以下が好適である。また、拡大の角度θ2 は大きいと、試薬の表面張力による抑止力が小さくなり(α−θ2>0の場合)、もしくは表面張力による推進力が大きくなる(α−θ2<0の場合)ため、80°以下が好適である。また、拡大の角度θ2 は大きいと試薬の表面張力による推進力も大きくなるため、45°以下が好適である。また、拡大の角度θ2 は小さすぎると液が残りやすくなるため、5°以上が好適である。本例では、直線的に流路幅が縮小し、直線的に流路幅が拡大しているものを示しているが、曲線的に流路幅が縮小し、拡大しても良い。さらに、光造型による型を転写して本チップを作製する場合は、縦/横が10以下であることが好ましい。縦/横が10以上になると、型からチップをはがすことが困難となる。また、縦/横が10以下であっても、型からチップをはずすことが困難な場合は、型に若干のテーパー(例えば5°のテーパー)をつけるとはずしやすくなり好適である。
試料溜め315,廃液槽330、および試薬保管槽340〜390の一端にはチップポートが形成されている。チップポートは、外部である分析装置400の流路との接点を構成する。試薬保管槽340〜390内の試薬を送液するために、チップポートを介してチップの外部である分析装置400から気体を試薬保管槽340〜390に送る。このときの気体としては、酸素は試薬を酸化させ、また二酸化炭素は試薬のpHを変化させる恐れがあることから、不活性な窒素,ヘリウム,アルゴン等が望ましい。
試料溜め315と、洗浄液I保管槽340と、洗浄液II保管槽350と、洗浄液III 保管槽360と、溶離液保管槽370はいずれも遺伝子抽出エリア320に連通している。溶離液に試料や洗浄液I,洗浄液IIが混入すると遺伝子の検出に阻害をおこすため、溶離液保管槽370は試料溜め315と洗浄液I保管槽340,洗浄液II保管槽350から離れた位置に配置することが好ましい。
遺伝子増幅試薬I保管槽380と、遺伝子増幅試薬II保管槽390は反応槽395に連通している。遺伝子増幅試薬I保管槽380から反応槽395に送られた遺伝子増幅試薬I、および遺伝子増幅試薬II保管槽から反応槽395に送られた遺伝子増幅試薬IIが一度反応槽395に入ったのち、反応槽395から逆流しないように、遺伝子増幅試薬I保管槽380および遺伝子増幅試薬II保管槽390は反応槽395の上方から連通しているのが好ましい。
試料溜め315の体積は100〜200μL、遺伝子抽出エリア320の体積は100〜200μL、洗浄液I保管槽340の体積は200〜300μL、洗浄液II保管槽350の体積は50〜150μL、洗浄液III 保管槽360の体積は30〜100μL、溶離液保管槽370の体積は10〜30μL、遺伝子増幅試薬I保管槽380の体積は20〜
40μL、遺伝子増幅試薬II保管槽390の体積は10〜20μLが好ましい。
遺伝子抽出エリア320に充填する遺伝子結合担体として、石英ウール,ガラスウール,ガラスファイバー,ガラスビーズが適用可能である。ガラスビーズ適用の際は、接触面積を大きくするためにビーズサイズを50μm以下とするのが好ましく、流路への堰き止めを考慮すると20〜30μmが最適である。
(分析装置の構成,動作)
図10から図13を参照して本発明による分析装置400の構成,動作を具体的に説明する。図10は分析装置400の主要な構成を、図11は分析装置400の断面構成、図12は分析装置400の基板410を示す図である。
分析装置400は大きくわけて、チップ設置部,流体系,温調系、そして光学検出系の4つから構成される。まず捕集チップ200および分析チップ300がセットされるのは、前蓋401の内側に設けられた基板410である。本実施例では両チップを縦置きにセットするので、基板410の下部には、チップを止めるチップストッパ411が備えられる。チップを基板410にセットして前蓋401を閉めると、チップは基板410とチップホールダ420の間に固定される。基板410とチップホールダ420には、チップの温度を最適化するための温度制御機構415が内蔵されている。温度制御機構415としては、様々な発熱体が適用可能であるが、例えば、好ましいのはペルチェである。ペルチェを使用した場合、印加電流の向きを変えるだけでチップの昇温・冷却操作を簡便に行うことができる。
チップをセットする基板410には、基板流路412が設置されており、基板流路412の一端はチップのポートに連通し、基板流路412の他端は装置内流路402に連通している。基板410に予め複数の基板流路412が設置されることで、捕集チップ200および分析チップ300のいずれのチップポートにも対応することでき、分析装置400は捕集チップ200と分析チップ300のプラットフォームとなり得る。
装置内流路402は、それぞれバルブ430を介してポンプ440に接続される。チップ内のある試薬槽の試薬を送液するには、バルブ430を切り替えてその試薬槽に連通する流路のみに送風を行う。すなわち、ポンプ440によって送られた気体は選択された装置内流路402および基板410流路を経てチップ内に到達し、試薬槽の試薬を送液する。試薬槽に予め所定量の試薬のみ内蔵されているので、試薬槽内の試薬をすべて時間管理で排出するのみでよく、ポンプ440の送液精度は求められない。よって、ポンプ440は、送風のみで吸引を行わない、簡素で小型なものを使用することができる。流体を制御するバルブ430をチップの内部ではなく、分析装置400側に設けることが好ましい。これにより、チップ101には機械部品がなくなり、小型化・ディスポーザブル化を実現することができる。
光検出系は、チップ反応槽395内の遺伝子に励起光を照射する光源450と、励起光の特定の波長のみを透過する励起フィルタ455と、チップ反応槽395から生じた蛍光の光路を変更するミラー460と、蛍光の特定の波長のみを透過する検出フィルタ475と蛍光を測定する光検出器470から構成される。光源450は様々な波長領域のものが使用可能であるが、波長領域の広いキセノンランプを用いることが良い。波長が限定される場合には、LEDを使うことが望ましい。光検出器470としてはCCDカメラ,光電子倍増管,フォトダイオード等が良いが、装置を小型化するにはフォトダイオードが好ましい。光検出器470によって検出された遺伝子の光信号は光信号変換機480によってデジタル化され、データ表示画面490に信号強度が表示される。
分析装置400には各制御を行う制御機構を備える。分析装置400に、バルブ430を制御するバルブ制御機構431,ポンプ440を制御するポンプ制御機構441,光源450を制御する光源制御機構451,光検出器470を制御する光検出器制御機構471が搭載される。以上より、機械部品を内蔵しない小型の分析チップを基板上に置いて簡便な光検出器を組み合わせるだけの、小型で可搬の分析装置とすることが出来る。
(分析の手順)
分析チップ300と分析装置400を用いた分析の手順を図7,図11,図13を参照しながら説明する。図13は実施例1の流体ハンドリングのプロファイルを示す図である。
捕集チップ200で細胞壁が溶解された細菌試料を分析チップ300に注入し、分析チップ300内においてこの細菌試料を遺伝子保持担体が充填された流路に送液する。そして、試料に含まれる蛋白質等を洗浄する洗浄液を前記遺伝子保持担体が充填された流路に送液する。
次に、遺伝子保持担体に吸着された遺伝子を溶離する溶離液を前記遺伝子保持担体が充填された流路に送液し、さらに遺伝子を検出する反応槽へと送液する。その後、分析対象の遺伝子の有無を検出する。以下に一例を具体的に説明する。
6種類の試薬、すなわち洗浄液I,洗浄液II,洗浄液III ,遺伝子溶離液,遺伝子増幅試薬I,遺伝子増幅試薬IIがそれぞれ洗浄液I保管槽340,洗浄液II保管槽350,洗浄液III 保管槽360,溶離液保管槽370,遺伝子増幅試薬I保管槽380,遺伝子増幅試薬II保管槽390に内蔵され、冷蔵あるいは冷凍保存しておいた分析を室温で解凍する。分析チップ300に予め1検査分のみの試薬を内蔵してユーザーに提供することで、分析チップ300を1検査の使い切りとしても試薬の無駄がなく、経済性が向上する。
ユーザーは試薬を各試薬保管槽に分注する手間を省くことができ、時間が短縮されるだけでなく、汚染を防ぐことも出来る。さらに、この分析チップ300を凍結した状態でユーザーに提供し、ユーザーが0℃で分析チップ300を凍結保存することで、試薬の活性は1ヶ月保たれる。また、−20℃で凍結保存しておけば、半年以上試薬の活性を保つことが可能である。使い捨て可能な分析チップ300に予め1検査分のみの試薬を内蔵し、分析チップ300を冷蔵あるいは冷凍した状態でユーザーに提供することで、簡便な分析環境を作ることができる(ステップ101)。
分析チップ300の解凍後、捕集チップ200の処理液を分析チップ300の試料注入口310に約100μL移す(ステップ102)。
試料注入口310にカバーをして穴を塞ぐ。カバーは、分析チップ300と同素材の薄い樹脂シートが好ましい。樹脂同士の密着性が良く、また安価であるため使い捨てに好適である。試料注入口310をカバーする工程は、手動でもよいが、分析装置400側に試料注入口310を覆う機構が備わっているとより好ましい(ステップ103)。
分析装置400の前蓋401を開いて、前蓋401に設けられたチップガイドに沿って分析チップ300を分析装置400にセットした後、分析装置400の前蓋401を閉める。これにより、分析チップ300が基板410に固定され、チップポートと装置内流路402が連通する。なお分析チップ300は横置き,縦置きいずれでも可能であるが、ここでは縦置きの場合について述べる(ステップ104)。
分析装置400内のバルブ430を切り替えてチップポート311にのみポンプ440から流体を流す(ポート311,331:開、他のポート:閉)。ここで使用する流体は空気や窒素など試薬と接した時に試薬の活性が損なわれない気体であればよい。試料溜め
315内の試料は遺伝子抽出エリア320に移動する。試料中のカオトロピックイオンの働きにより、試料中の細菌遺伝子は、遺伝子抽出エリア320に充填された遺伝子結合担体に結合する。細菌遺伝子と遺伝子結合担体との結合を促進するために、試料が遺伝子抽出エリア320を通過する時間は10分以上が好ましい。そして遺伝子抽出エリア320を通過した試料は廃液槽330に貯まる。送液用の気体は、チップポート331に抜ける。なお、チップを縦置きにすることで、試料がチップポート331から漏れるのを防ぐことができる(ステップ105)。
遺伝子検査を安定して高精度で行うためには、遺伝子と遺伝子結合担体が確実に結合する必要がある。遺伝子と遺伝子結合担体を確実に結合させるには遺伝子と遺伝子結合担体が確実に一定時間以上接触する必要がある。そこで、遺伝子と遺伝子結合担体を確実に一定時間以上接触させる方法として、試料を間欠的に送液する方法が好適である。つまり、チップポート311の開閉を繰り返しながら試料を送液することが良い。例えば、29秒間試料ポートを閉じ、1秒間試料ポートを空ける、この動作を例えば20〜40回繰り返すことにより試料溶液は10〜20分間かけて確実に遺伝子結合担体部を通過し、遺伝子と遺伝子結合担体を確実に結合させることが可能となる。チップポート311の開閉を制御するだけであるので、複雑な流体制御機構が必要なく、簡易な装置で実行することが可能となる。
分析装置400内のバルブ430を切り替えてチップポート311を閉じ、チップポート341を開く。そしてチップポート341にのみポンプ440から流体を流す(ポート331,341:開、他のポート:閉)。洗浄液I保管槽340内の洗浄液I200μLは、流体によって遺伝子抽出エリア320に送液される。ここで洗浄液Iとしては、グアニジンチオシアン酸塩,グアニジン塩化水素,ヨウ化ナトリウム,臭化カリウム等のカオトロピックイオンが好ましい。この洗浄液Iにより、遺伝子抽出エリア320に残留する蛋白質が除去される。そして遺伝子抽出エリア320を通過した洗浄液Iは廃液槽330に貯まる(ステップ106)。
分析装置400内のバルブ430を切り替えてポート341を閉じ、洗浄液IIポート
351を開く。そして洗浄液IIポート351にのみポンプ440から流体を流す(ポート331,351:開、他のポート:閉)。洗浄液II保管槽350内の洗浄液II150μLは、流体によって遺伝子抽出エリア320に送液される。洗浄液IIとしては、50%以上の高濃度エタノールや酢酸カリウム溶液が好ましい。洗浄液IIにより、遺伝子抽出エリア320に残留するカオトロピックイオンが除去される。そして遺伝子抽出エリア320を通過した洗浄液IIは廃液槽330に貯まる(ステップ107)。
分析装置400内のバルブ430を切り替えてポート351を閉じ、洗浄液III ポート361を開く。そして洗浄液III ポート361にのみポンプ440から流体を流す(ポート331,361:開、他のポート:閉)。洗浄液III保管槽360内の洗浄液III80
μLは、流体によって遺伝子抽出エリア320に送液される。ここで洗浄液III としては、洗浄液IIより低濃度のエタノールや洗浄液IIより低濃度の酢酸カリウム溶液、または純水が好ましい。この洗浄液III により、遺伝子抽出エリア320に残留するカオトロピックイオンおよび洗浄液II(高濃度エタノール,酢酸カリウムなど)などの遺伝子増幅を阻害する物質を高確率で除去することが可能となり、安定して、精度のよい遺伝子検出が可能となる。そして、遺伝子抽出エリア320を通過した洗浄液III は廃液槽330に溜まる(ステップ108)。
分析装置400内のバルブ430を切り替えてポート331,ポート361を閉じ、チップポート371およびチップポート399を開く。そしてチップポート371にのみポンプ440から流体を流す(ポート371,399:開、他のポート:閉)。溶離液保管槽370内の溶離液10μLは、流体によって遺伝子抽出エリア320に送液される。ここで溶離液としては、滅菌蒸留水,TRIS−EDTAやTRIS−アセテート等のバッファ溶液が使用可能である。この溶離液により、遺伝子抽出エリア320の遺伝子結合担体に捕獲されていた遺伝子が溶離する。溶離した遺伝子は反応槽395に送液される(ステップ109)。
遺伝子検査を安定して高精度で行うためには、遺伝子結合担体に結合した遺伝子が確実に溶離し、反応槽395に送液される必要がある。遺伝子結合担体に結合した遺伝子を確実に溶離させるには遺伝子結合担体に結合した遺伝子と溶離液が確実に一定時間以上接触する必要がある。そこで、遺伝子結合担体に結合した遺伝子と溶離液を確実に一定時間以上接触させる方法として、溶離液を間欠的に送液する方法が好適である。チップポート
371の開閉を繰り返しながら試料を送液する方法である。例えば、29秒間チップポート371を閉じ、1秒間チップポート371を空ける、この動作を例えば20〜40回繰り返すことにより溶離液は10〜20分間かけて確実に遺伝子結合担体部を通過し、遺伝子結合担体に結合した遺伝子と溶離液を確実に結合させることが可能となる。また、チップポート371の開閉を制御するだけであるので、複雑な流体制御機構が必要なく、簡易な装置で実行することが可能となる。
分析装置400内のバルブ430を切り替えて、ポート371を閉じ、チップポート
381を開く。そしてチップポート381にのみポンプ440から流体を流す(ポート
381,399:開、他のポート:閉)。遺伝子増幅試薬I保管槽380内の遺伝子増幅試薬I10μLは、流体によって反応槽395に送液される。ここで遺伝子増幅試薬Iとしては、4種類のdNTP(dATP,dCTP,dGTP,dTTP),バッファ
(TRIS塩酸,KCl,MgCl2 など),プライマなどから構成される。送液用の気体は、チップポート399に抜ける(ステップ110)。
分析装置400内のバルブ430を切り替えてポート381を閉じ、チップポート391を開く。そしてチップポート391にのみポンプ440から流体を流す(ポート391,399:開、他のポート:閉)。遺伝子増幅試薬II保管槽390内の遺伝子増幅試薬II
30μLは、流体によって反応槽395に送液される。ここで遺伝子増幅試薬IIとしては、DNA合成酵素(TaqDNAポリメラーゼ,TthDNAポリメラーゼ,VentDNA ポリメラーゼ,サーモシーケナーゼなど),蛍光色素などから構成される(ステップ111)。
以上の手順により、分析チップ300の反応槽395に細菌遺伝子と2種類の遺伝子増幅試薬が導入された。反応槽395内の細菌遺伝子を増幅・検出するために、温度制御機構415を駆動し、反応槽395の温度が下記の2種類の設定値を往復するように温度サイクルをかける(ステップ112)。
温度サイクル例としては、下記を実施する。
「90〜95℃ 10〜30秒⇔65〜70℃ 10〜30秒」×30〜45回
好ましい一例として、以下の温度サイクルを実施する。
「94℃ 30秒⇔68℃ 30秒」×45回
温度サイクルをかけながら、光源450からの励起光を反応槽395に照射する。遺伝子は、2本鎖の内部にインターカレートした蛍光色素を有する、吸収した光源450の光エネルギーを蛍光色素に渡す(エネルギー転移)。その結果、蛍光色素は励起されて蛍光を発する。すなわち、試料中に目的遺伝子が存在した場合、遺伝子が増幅するに従って発する蛍光量が増加する。よって、温度サイクルの間、光検出器181により反応槽395内の蛍光量をモニタすることで、図7に示されるように、目的遺伝子の有無をリアルタイムに検出可能となる。なお、分析チップ300を分析装置400に縦置きにセットすることにより、温度サイクル中の反応物質の一部が蒸発し、蒸気が反応槽395上部に滞留しても、蛍光を検出する反応槽395の側面は蒸気によって曇らない、よって検出感度が低下しない、という長所を有する(ステップ113)。
分析が完了した時、分析チップ300を分析装置400から取り出し、廃棄する。試料や試薬の後処理が必要ない上に、反応検出部の洗浄操作が必要ないため、簡便・迅速な分析を提供することができる(ステップ114)。
捕集チップおよび分析チップと、捕集機および分析装置を組み合わせて使用することで、細菌の捕集から細菌の検出までの工程が2種類の小型のチップ内で自動化される。細菌芽胞の処理や遺伝子抽出工程に人手を一切介さないため、誰でも安全に分析が可能である。さらに、細チップ内にバルブ等の機械部品が含まれないので、使い捨て用途に好適なチップが提供できる。また、反応槽や流路を微細加工により作製し容積を微小化した結果、試薬量が削減され低コストとなるだけでなく、温度制御が迅速,混合が迅速,反応が均一といった長所が得られる。さらにディスポーザブルなチップに予め1検査分のみの試薬を内蔵し、チップを冷蔵・冷凍した状態でユーザーに提供することで、極めて簡便・迅速な遺伝子の検出が可能、かつ分析後に試薬と共に処分しうる分析チップを提供することができる。
本発明の一実施形態による細菌の検知方法の手順を示すフローチャート図。 一実施形態による細菌検知システムの構成を示す図。 一実施形態による捕集機を示す透視斜視図。 図3の捕集機に捕集チップを装着する方法を示す斜視図。 一実施形態による捕集チップを示す正面図。 図5の捕集チップの縦断面図。 一実施形態による分析チップの正面図。 図7のA−A′断面図。 (a)図7のエリアBの拡大図。(b)堰部における接触角,表面張力の関係を示す図。 一実施形態による分析装置の主要部の構成を示す図。 図10の分析装置の断面構成を示す図。 図10において基板の構成を示す図。 一実施形態によるハンドリングのプロファイルを示す図。
符号の説明
100…捕集機、110…蓋部、120…ノズル部、121…一次フィルタ、130…チップ支持部、140…二次フィルタ、150…支持板、160…ファンモータ、170…排出口、180…制御部、181…表示部、185…バッテリ、190…ケーシング、191…掴み部、200…捕集チップ、201…捕集材、210…発芽促進剤保管槽、
220…酵素A保管槽、230…酵素B保管槽、240…カオトロピック保管槽、250…空気穴、300…分析チップ、310…試料注入口、311,321,331,341,351,361,371,381,391,399…チップポート、315…試料溜め、320…遺伝子抽出エリア、330…廃液槽、340…洗浄液I保管槽、350…洗浄液II保管槽、360…洗浄液III 保管槽、370…溶離液保管槽、380…遺伝子増幅試薬I保管槽、390…遺伝子増幅試薬II保管槽、395…反応槽、398…液溜め、400…分析装置、401…前蓋、402…装置内流路、412…基板流路。

Claims (8)

  1. 捕集機に設置され捕集材に微生物を捕集した後、前記捕集機から取り出し分析装置にセットされる捕集チップと、前記捕集チップで処理された液の一部を分析チップへ移され、前記分析装置の送液手段により前記分析チップの中で遺伝子の抽出から検出までの処理が行われる微生物検知システムにおいて、
    前記分析チップは、
    試料溜めと、遺伝子結合担体が充填された遺伝子抽出エリアと、吸収剤が充填された廃液槽と、洗浄液を保管する洗浄液保管槽と、遺伝子溶離液を保管する溶離液保管槽と、遺伝子増幅試薬を保管する遺伝子増幅試薬保管槽と、遺伝子の増幅・検出を行う反応槽と、がそれぞれ流路で形成され、少なくとも前記試料溜め及び前記試薬保管槽いずれかに流路幅が縮小して拡大する堰部を備えたことを特徴とする微生物検知システム。
  2. 請求項1に記載のものにおいて、前記拡大する角度をθ2 として、前記試料または前記試薬と前記分析チップとの接触角αとの関係が、α−θ2 >0とされたことを特徴とする微生物検知システム。
  3. 請求項1に記載のものにおいて、前記堰部の流路幅の縮小は、流路幅に対して1/4以下1/10以上とされたことを特徴とする微生物検知システム。
  4. 請求項1のものにおいて、前記遺伝子増幅試薬保管槽に連通する流路は、前記遺伝子増幅試薬保管槽よりも上方に配置されたことを特徴とする微生物検知システム。
  5. 請求項1に記載のものにおいて、前記縮小する角度θ1 は、10°以上80°以下とされたことを特徴とする微生物検知システム。
  6. 請求項1に記載のものにおいて、前記拡大する角度θ2 は、5°以上80°以下とされたことを特徴とする微生物検知システム。
  7. 請求項1に記載のものにおいて、前記試料は、前記遺伝子抽出エリアへ間欠的に送液されることを特徴とする微生物検知システム。
  8. 捕集機に設置され捕集材に微生物を捕集した捕集チップで処理された液の一部を移され、分析装置の送液手段に遺伝子の抽出から検出までの処理が行われる分析チップにおいて、
    試料溜めと、遺伝子結合担体が充填された遺伝子抽出エリアと、吸収剤が充填された廃液槽と、洗浄液を保管する洗浄液保管槽と、遺伝子溶離液を保管する溶離液保管槽と、遺伝子増幅試薬を保管する遺伝子増幅試薬保管槽と、遺伝子の増幅・検出を行う反応槽と、がそれぞれ流路で形成され、正面に開口された試料注入口と、背面に開口されたチップポートと、少なくとも前記試料溜め及び前記試薬保管槽いずれかに設けられた流路幅が縮小して拡大する堰部と、を備えたことを特徴とする分析チップ。
JP2006120032A 2006-04-25 2006-04-25 微生物検知システムおよび分析チップ Withdrawn JP2007289054A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006120032A JP2007289054A (ja) 2006-04-25 2006-04-25 微生物検知システムおよび分析チップ
US11/627,402 US20070249039A1 (en) 2006-04-25 2007-01-26 Minute creature detection system and analytic chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120032A JP2007289054A (ja) 2006-04-25 2006-04-25 微生物検知システムおよび分析チップ

Publications (1)

Publication Number Publication Date
JP2007289054A true JP2007289054A (ja) 2007-11-08

Family

ID=38619937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120032A Withdrawn JP2007289054A (ja) 2006-04-25 2006-04-25 微生物検知システムおよび分析チップ

Country Status (2)

Country Link
US (1) US20070249039A1 (ja)
JP (1) JP2007289054A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139115A (ja) * 2007-12-04 2009-06-25 Hitachi Plant Technologies Ltd 捕集デバイス、及びそれを用いる分析システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213123A1 (ja) * 2016-06-07 2017-12-14 国立大学法人東京大学 流体デバイス
CN109536374A (zh) * 2018-11-27 2019-03-29 南京先进激光技术研究院 一种具有避免气泡产生结构的试剂反应管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065607A (ja) * 2003-08-26 2005-03-17 Hitachi Ltd 遺伝子処理チップおよび遺伝子処理装置
KR100540143B1 (ko) * 2003-12-22 2006-01-10 한국전자통신연구원 미소 유체 제어소자 및 미소 유체의 제어 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139115A (ja) * 2007-12-04 2009-06-25 Hitachi Plant Technologies Ltd 捕集デバイス、及びそれを用いる分析システム

Also Published As

Publication number Publication date
US20070249039A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4690787B2 (ja) 微生物検知チップ及び微生物検知システム並びに微生物検知方法
JP2005065607A (ja) 遺伝子処理チップおよび遺伝子処理装置
JP6755533B2 (ja) アッセイ
JP6704882B2 (ja) 結合要素を用いたアッセイのための装置及び方法
CA2778329C (en) Device and apparatus for assaying nucleic acids
EP2041305B1 (en) Disposable device for analyzing a liquid sample containing a nucleic acid with a nucleic acid amplification apparatus
KR101851117B1 (ko) 샘플-투-앤서 마이크로유체 카트리지
JP2007209223A (ja) 微生物検知システム
CN1950520B (zh) 用干试剂分离dna的方法和装置
US8753868B2 (en) Method and system for selective isolation of target biological molecules in a general purpose system
RU2380418C1 (ru) Сменный микрофлюидный модуль для автоматизированного выделения и очистки нуклеиновых кислот из биологических образцов и способ выделения и очистки нуклеиновых кислот с его использованием
US20090227006A1 (en) Apparatus for Performing Nucleic Acid Analysis
US20080145857A1 (en) Microorganism detection system
JP5011012B2 (ja) 核酸抽出装置
JP2007535323A (ja) サンプル調製コントロールのための方法およびデバイス
TW201211539A (en) LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
JP2006345704A (ja) 細菌捕集装置
JP2007289054A (ja) 微生物検知システムおよび分析チップ
CN1170460A (zh) 用于生物多聚体的储存、提纯或反应以及处理的装置和方法
US20060182657A1 (en) Devices and methods for handling and processing punches
US20090291505A1 (en) Analytical Device for Thermally Treating a Fluid and/or Monitoring a Property Thereof
JP2005253365A (ja) 細菌芽胞処理チップ及び細菌芽胞処理装置
EP1878495A1 (en) Analytical device for thermally treating a fluid and/or monitoring a property thereof
CN116891800A (zh) 检测核酸的芯片装置和仪器以及其应用
JP2005192555A (ja) 酵素反応用反応器及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090701