JP2007278590A - セラミックファイバーブロック - Google Patents

セラミックファイバーブロック Download PDF

Info

Publication number
JP2007278590A
JP2007278590A JP2006105384A JP2006105384A JP2007278590A JP 2007278590 A JP2007278590 A JP 2007278590A JP 2006105384 A JP2006105384 A JP 2006105384A JP 2006105384 A JP2006105384 A JP 2006105384A JP 2007278590 A JP2007278590 A JP 2007278590A
Authority
JP
Japan
Prior art keywords
block
ceramic fiber
layer body
fiber
crystalline alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105384A
Other languages
English (en)
Inventor
Masakuni Taguchi
昌邦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2006105384A priority Critical patent/JP2007278590A/ja
Publication of JP2007278590A publication Critical patent/JP2007278590A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

【課題】炉壁への取付け時に破損しない、一辺の長さが60cm以下の短尺で、軽量、かつ耐熱性の良好なセラミックファイバーブロックを提供すること。
【解決手段】セラミックファイバーを葛折り状に折りたたんでなる一辺の長さが60cm以下の直方体のブロック体9と、このブロック体に装着された取付金具8とを有するセラミックスファイバーブロックであって、ブロック体9が、結晶アルミナファイバーブランケットである外層体1と、アルミナ繊維が三次元ランダムに配向し、かつ相互に絡み合う状態にある結晶アルミナファイバーマットである内層体2との二層構造になっており、外層体1が内層体2の折り目部7に挟み込まれた状態で内層体2の外表面を覆い、さらに外層体1の外側に、セラミックスファイバーブロックを取付金具を介して炉壁にボルト・ナットで締結する際の締結力によって破損しない強度を有するクロス13を張り付けたものである。
【選択図】図1

Description

本発明は、主として工業炉用の内部ライニング材である高温用セラミックファイバーブロックに関するものである。
セラミックファイバーブロックは、軽量性、低蓄熱性、断熱性に優れているため、炉の耐火断熱用内張材として、従来の耐火レンガ、耐火断熱レンガ、耐火キャスタブルに代わり、数多く用いられるようになっている。一方、このセラミックファイバーブロックの内張り工法としてモジュール工法が知られている。この工法は、セラミックファイバーブランケットを幾重にも折りたたみ一体化してセラミックファイバーブロックを構成し、これを取付金具を介して多数、炉壁に取り付けていくものである。
図3は、従来のセラミックファイバーブロックの説明図である。具体的には、この図3に示すように、セラミックファイバーブランケット21を葛折り状に折りたたみ、これとチャンネル22、ビーム23などで1つのセラミックファイバーブロック20を構成する。セラミックファイバーブランケット21は、折り目24の複数箇所に差し込んだビーム23によって支持され、このビーム23は高温に強い金属または合金あるいは他の適当な板材料を折り曲げ、棒状に形成される。また、ビーム23は、図4に示すように、ビーム23の中央部分27において、ビーム23と同様の材質の板からなるタブ26の下端接合部に形成された輪28内に装着され、タブ26の直角方向に固定される。
さらに、ビーム23はタブ26の尖ったタブ上端29をセラミックファイバーブランケット21の折り目24とチャンネル22の開口部25を貫通し、チャンネル22の上面に突き抜けたタブ上端29の部分を下方に折り曲げることによりチャンネル22に支持される。チャンネル22は葛折りしたセラミックファイバーブランケット21の折り目24のある側の外側に葛折り方向にブランケットの中央部に設けられる。
そして、図5に示すように、カードボード30でセラミックファイバーブロック20の反発方向二面を補強し、セラミックファイバーブランケット21からなるブロック体を圧縮し、PPバンド31を巻きつけて固定する。
このセラミックファイバーブロック20を炉壁に取り付ける際には、図6に示すように、ボルト32・ナット33を使用する。ボルト32は炉壁40に固定されており、このボルト32にチャンネル22の中央の開口部25とセラミックファイバーブランケット21の折り目24とを貫通し、その下方からボックスレンチ34にてナット33をボルト32の先端に締結する。これによって、セラミックファイバーブランケット21の折り目24部分がボルト32・ナット33によって挟持され、セラミックファイバーブロック20が炉壁40に取り付けられる。
ところで、連続式熱処理炉などにおいては、炉内容積が大きくなると共に炉長も長くなり、鋼材を予熱・加熱・均熱・冷却と段階的に熱処理するために、熱風の炉内滞留時間を長く取って熱効率を高めるためなど、さまざまな目的で仕切り壁を設置することがある。この仕切り壁に前記セラミックファイバーブロックを適用する場合、ブロック高さが仕切り壁高さとなり、底辺に対して高さが高い長直方体形状のブロックとなり、引張強度が不足する。この対策として、特許文献1には、図7に示すように、連続して折りたたんで積層したセラミックファイバーブランケット51積層物と、その層間に挟み込まれたセラミックファイバークロス等の耐熱性クロス52とを、アルミナファイバー製紐状体53で縫い合わせて一体化し耐熱ブロック50を成形する技術が開示されている。特許文献1には、従来の短尺物であれば、耐熱ブロック50の強度上の問題は生じないこと、および、仕切り壁のような長尺物では、耐熱性クロス50を挟み込まないと、工業炉に設置したときに耐熱ブロック50の自重を支えきれず、破損することが記載されている。
また、セラミックファイバーは使用温度によって数種のものが使いわけられている。耐熱温度が1300℃以下の場合は、低温用の非結晶質セラミックファイバーでも問題ないが、高い炉内温度にも対応するためには1300℃以上の耐熱温度を有するアルミナ繊維を多く含有した高温用の結晶質セラミックファイバーを使用する必要がある。しかしながら、当然耐熱温度が高いもの程、価格も高価になるという問題がある。そこで、特許文献2には、この高温用のセラミックファイバーの使用量を減らすために、図8に示すように、外層体とする結晶アルミナファイバーブランケット1と内層体とする結晶アルミナファイバーマット2をそれぞれ連続的なアコーディオン(葛折り)状に折り曲げるセラミックファイバーブロック10が記載されている。
このセラミックファイバーブロック10では、最終的な成形時には、内層体の結晶アルミナファイバーマット2と外層体の結晶アルミナファイバーブランケット1は圧縮成形される。ここで、内層体に結晶アルミナファイバーマット2を使用することにより、小さい嵩密度でありながら、全体としては大きな復元力を有する。また、内外層共に、結晶質アルミナファイバーを使用しているため、耐熱性も高い。
特開平9−145260 特開2004−190864
従来、特許文献1にも記載されているように、1辺が30〜60cm程度の短尺耐熱ブロックでは、自重を支える引張り強度はあるため、強度上の問題はないと考えられていた。
しかし、上述の特許文献2のように、外層体にのみ、嵩密度が高く強度の高い結晶アルミナファイバーブランケットを用いると、その強度不足から別の問題が発生する。すなわち、図6で説明したように、炉壁にボルト・ナットで締結する際に、外層体の結晶アルミナファイバーブランケットの折り目部がビームで押し潰されて破損してしまうのである。なお、特許文献2では、図8に示すように外層体の結晶アルミナファイバーブランケットの外側にガーゼ3を張り付けているが、これは葛折り状に折りたたむ作業中の繊維飛散や折り山部の腰折れを防ぐためのもので、外層体の強度向上に寄与するものではない。
特許文献1は、高温の工業炉内で長期間の使用に耐える、長辺の長さが60cmを超える長尺の仕切り壁用セラミックファイバーブロックを提供するものであるが、本発明は、特許文献2の技術を応用して、炉壁への取付け時に破損しない、一辺の長さが60cm以下の短尺で、軽量、かつ耐熱性の良好なセラミックファイバーブロックを提供するものである。
本発明に係るセラミックファイバーブロックは、セラミックファイバーを葛折り状に折りたたんでなる一辺の長さが60cm以下の直方体のブロック体と、このブロック体に装着された取付金具とを有するセラミックファイバーブロックであって、前記ブロック体が、結晶アルミナファイバーブランケットである外層体と、アルミナ繊維が三次元ランダムに配向し、かつ相互に絡み合う状態にある結晶アルミナファイバーマットである内層体との二層構造になっており、前記外層体が内層体の折り目部に挟み込まれた状態で内層体の外表面を覆い、さらに前記外層体の外側に、セラミックスファイバーブロックを取付金具を介して炉壁にボルト・ナットで締結する際の締結力によって破損しない強度を有するクロスを張り付けたものである。
本発明において、結晶アルミナファイバーブランケットは、葛折り状に折りたたむ前の状態において、嵩密度が100〜130kg/mで、厚さが6〜12.5mmであり、結晶アルミナファイバーマットは、葛折り状に折りたたむ前の状態において、嵩密度が50〜80kg/mで、厚さが30〜50mmであることが好ましい。
本発明のセラミックファイバーブロックは、上記特許文献2のものと同様に、そのブロック体を、結晶アルミナファイバーブランケットからなる外層体と、結晶アルミナファイバーマットからなる内層体との二層構造としているので、軽量であり、取付けも容易で、高価な結晶アルミナファイバーブランケットの使用量が少ないため、安価でもある。また、ブロック体全体の嵩密度を小さくしても、結晶アルミナファイバーマットの復元力が大きいため、ブロック体全体の復元力を大きくでき、操業中の脱落を防ぐことができる。さらに、内外層ともに結晶アルミナファイバーを使用しているため、耐熱性も優れる。
そして、本発明では、ブロック体を構成する外層体の外側にクロスを張り付け、このクロスを、セラミックスファイバーブロックを取付金具を介して炉壁にボルト・ナットで締結する際の締結力によって破損しない強度のものとすることで、上述の効果は維持しつつ、セラミックファイバーブロックの炉壁への取付け時の強度不足を解消することができ、炉壁への取付け時に外層体が破損することを防止できる。
以下、本発明の構成について図面に従って説明する。
図1は、本発明のセラミックファイバーブロックの製作説明図、図2は、セラミックファイバーブロックの斜視説明図である。図1に示すように、本発明のセラミックファイバーブロックのブロック体9は、結晶アルミナファイバーブランケット1と結晶アルミナファイバーマット2を重ねた状態で葛折り状(アコーディオン状)に連続的に折りたたんで製作される。
この結晶アルミナファイバーマット2のアルミナ繊維は、三次元ランダムに配向し、かつ相互に絡み合う状態になっている。この結晶アルミナファイバーマット2の製作にあたっては、特開2002−105823号公報に記載されているように、一定の温度および湿度に制御した雰囲気中で、粘度を調整した紡糸液を繊維化し、前駆体繊維にし、これを焼成して繊維に含まれる有機物、水分などを分解し、結晶質繊維を得る。アルミナ繊維は、アルミナの含有量が70質量%以上であり残部がシリカである、主にムライト結晶またはコランダム結晶からなる。
繊維化方法は、メルトブロー法やスピニング法がある。メルトブロー法は、紡糸液を小穴から押し出し、高圧エアーを吹き付けて繊維化する。一方、スピニング法は、小穴を有するカップを回転させ、その遠心力で紡糸液を押し出し、これに高圧エアーを吹き付け繊維化する。スピニング法は環状の繊維を製作する場合に好ましい。環状とは、輪が完全に閉じているものや半円弧状のようなカール状のものも含む。繊維が環状やカール状になることでバネのような働きをし、圧縮された時の反発力を大きくすることができる。このような環状やカール状の繊維は、小さな嵩密度で大きな復元力を得ることができる。
アルミナ繊維が三次元ランダムに配向する状態とは、アルミナ繊維が特定の方向のみに配向するのではなく、三次元のあらゆる方向にランダムに、即ち秩序ない状態で配向する状態をいう。例えば、繊維化直後の前駆体繊維を集綿する際に、金網を通して吸引すると、繊維は繊維単位で落下し、金網と平行に二次元に配向するが、吸引力を調整して堆積させることで前駆体は三次元ランダムに配向する。また、アルミナ繊維が相互に絡み合う状態とは、繊維同士が交点で接着することなく互いに絡んでいる状態である。このような状態のアルミナ繊維を積層し、これを焼成したものを結晶アルミナファイバーマット2として使用している。
一方、結晶アルミナファイバーブランケット1は、繊維化した前駆体繊維を集綿する時にアルミナ繊維の方向をほぼ揃えた状態で積層し、これにニードリングしたものや糸で縫製したものである。
本発明のセラミックファイバーブロックのブロック体9は、上記のような結晶アルミナファイバーブランケット1からなる外層体と、低密度の結晶アルミナファイバーマット2からなる内層体の二層構造となっており、外層体である結晶アルミナファイバーブランケット1が、内層体である結晶アルミナファイバーマット2の折り目部7に挟み込まれた状態で内層体の外表面を覆って葛折り状に折りたたまれている。このように、結晶アルミナファイバーマット2からなる内層体を、結晶アルミナファイバーブランケット1からなる外層体で覆った二層構造にするのは、結晶アルミナファイバーマット2のみで葛折り状に連続的に折りたたもうとすると、繊維の剥離や飛散、腰折れが生じるためブロック化が難しいからである。
結晶アルミナファイバーマット2は、葛折り状に折りたたむ前の状態において厚さ30〜50mm程度にすることが好ましい。結晶アルミナファイバーマット2の厚さを大きくしてブロック体9全体における結晶アルミナファイバーマット2の使用量を多くした方がブロック体9の重量を軽くすることができるが、葛折状のブロックに製作することを考慮すると50mm以下であることが好ましい。また、結晶アルミナファイバーブランケット1は、葛折り状に折りたたむ前の状態において厚さ6〜12.5mm程度の厚さを有することで、葛折り・圧縮加工に対し、十分必要な引張り強度を保持することができる。
また、外層体である結晶セラミックファイバーブランケット1は、葛折り状に折りたたむ前の状態において嵩密度が100〜130kg/mのものを使用することが好ましい。嵩密度が100kg/mよりも小さいと、ブランケット自体の引張り強度が弱くなり、葛折りし圧縮する際に山状になったブランケットが切れてしまう。また、嵩密度が130kg/mよりも大きいと、ブランケットが硬く葛折りができない。さらに重量が大きくなり軽量化のメリットがない。一方。内層体である結晶アルミナファイバーマット2は、葛折り状に折りたたむ前の状態において嵩密度が50〜80kg/mのものを使用することが好ましい。嵩密度が50kg/mよりも小さいと、復元力が弱くなり高温下で隣接するセラミックファイバーブロック10間に隙間ができ、その隙間より熱風が取付金具(チャンネル6)の強度を弱め、ブロックの落下の原因となる。また、80kg/mよりも大きいと復元力が強すぎてブロック体の形成ができない。なお、圧縮成形後のセラミックファイバーブロック10全体では80〜120kg/m程度の嵩密度となり、引張強度は100〜300kgfである。
さらに、本発明では、図1に示すように、結晶アルミナファイバーブランケット1からなる外層体の外側に、クロス13を張り付けている。このクロス13としては、先に図6で説明したように、セラミックファイバーブロックを炉壁にボルト・ナットで締結する際の締結力によって破損しない強度のものを用いる。このように、結晶アルミナファイバーブランケット1からなる外層体の外側にクロス13を張り付けることで、セラミックファイバーブロックの炉壁への取付け時の強度不足を解消することができる。なお、クロス13は、セラミックファイバーブロック取付け時に強度があれば良いので、必ずしも耐熱性のクロスでなくても良く、一度取付けが完了すれば、クロス13は焼失しても、構わない。
以上の構成において、折り目部7の適当箇所(図1では二箇所)にビーム4を挟み、ビーム4に取り付けたタブ5を、結晶アルミナファイバーブランケット1および結晶アルミナファイバーマット2を貫通させ、さらに炉壁への取付金具であるチャンネル6の開口8に固定することで、ブロック体9を取付金具に支持固定する。
次に、図2に示すように、カードボード11でブロック体9の反発方向二面を補強し、結晶アルミナファイバーブランケット1および結晶アルミナファイバーマット2からなるブロック体9を圧縮し、PPバンド12を巻きつけて固定する。
本発明で使用する結晶アルミナファイバーマット2のアルミナ繊維は前述したように環状やカール状の短繊維を三次元ランダムに配向し、かつ相互に絡み合う状態にしたものであり、内部にエアーを多く含んだ状態であるため、小さい嵩密度でありながら大きな復元力を有する。よって、従来のように結晶アルミナファイバーブランケットのみでセラミックファイバーブロックを製作した場合、必要な復元力を得るために圧縮成形後の嵩密度を130〜160kg/mにする必要があるのに対し、本発明のようにこの結晶アルミナファイバーマット2を使うことにより、マット分の嵩密度を50〜80kg/mに小さくし、圧縮成形後のセラミックファイバーブロック10全体の嵩密度を80〜120kg/m程度にしても、結晶アルミナファイバーブランケットのみで製作したセラミックファイバーブロックと比べて、充分高い復元力を保持することが可能となるのである。
本発明では、このように耐熱性および耐久性に優れ、かつ安価で軽量であるという二層構造のセラミックファイバーブロックの特徴を活かしつつ、炉壁への取付け時に外層体が破損する可能性があったという従来の問題を解消するため、上述のとおり、結晶アルミナファイバーブランケット1からなる外層体の外側にクロス13を張り付けている。このクロス13はクロスであるため、セラミックファイバーブロック10の厚さおよび重量が極端に増加することはない。また、取付け完了後は、炉内で焼失しても構わない。クロスには、安価な材料も使用可能である。
本実施例では、高純度のアルミナとシリカ原料を電気溶融し、スピニング法にて繊維化された、繊維が長くショット含有率の少ないセラミックファイバー(アルミナ46%、シリカ54%)に、インコネル601で強度を上げたセラミックファイバー紡績品のクロス(厚さ2mm、平織り)を使用した。実施例の内層体の結晶アルミナファイバーマット2は、葛折り状に折りたたむ前の状態において厚さが37.5mmで嵩密度が50kg/m 、そして、外層体の結晶アルミナファイバーブランケット1は、葛折り状に折りたたむ前の状態において厚さが12.5mmで嵩密度が100kg/m のものにて炉壁への取付け性確認を実施した。一方、比較例として、クロスを用いず、結晶アルミナファイバーブランケットの外側にガーゼを張り付けたものを準備した。ガーゼで覆うことで、葛折り状に折りたたむ作業中の繊維飛散や山部の腰折れは防ぐことができる。しかし、外層体の結晶セラミックファイバーブランケットの切断までの強度は、比較例では、本発明のセラミックファイバーブロックの約半分でしかなかった。また、実炉での適用時に、本発明に係るセラミックファイバーブロックでは、炉壁への取付け時に破損することはなくなった。
なお、結晶アルミナファイバーブランケットの厚みや嵩密度により、炉壁への取付け時の強度は変化するので、事前テストを実施し、結晶アルミナファイバーブランケットの外側を覆うクロスの仕様(厚み、補強線仕様)を調整することはいうまでもない。
本発明のセラミックファイバーブロックの製作説明図である。 本発明のセラミックファイバーブロックの説明図である。 従来のセラミックファイバーブロックの説明図である。 チャンネル、ビームおよびタブの斜視図である。 従来のセラミックファイバーブロックの最終形態の斜視図である。 セラミックファイバーブロックの炉壁への取付け要領を示す説明図である。 仕切り壁に使用される耐熱ブロックの一例を示す斜視図である。 従来のセラミックファイバーブロックの説明図である。
符号の説明
1 結晶アルミナファイバーブランケット(外層体)
2 結晶アルミナファイアーマット(内層体)
3 ガーゼ
4 ビーム
5 タブ
6 チャンネル
7 折り目部
8 開口部
9 ブロック体
10 セラミックファイバーブロック
11 カードボード
12 PPバンド
13 クロス
20 セラミックファイバーブロック
21 セラミックファイバーブランケット
22 チャンネル
23 ビーム
24 折り目部
25 開口部
26 タブ
27 中央部分
28 輪
29 タブ上端
30 カードボード
31 PPバンド
32 ボルト
33 ナット
34 ボックスレンチ
40 鉄皮
50 耐熱ブロック
51 セラミックファイバーブランケット
52 耐熱性クロス
53 アルミナファイバー製紐状体

Claims (2)

  1. セラミックファイバーを葛折り状に折りたたんでなる一辺の長さが60cm以下の直方体のブロック体と、このブロック体に装着された取付金具とを有するセラミックファイバーブロックであって、前記ブロック体が、結晶アルミナファイバーブランケットである外層体と、アルミナ繊維が三次元ランダムに配向し、かつ相互に絡み合う状態にある結晶アルミナファイバーマットである内層体との二層構造になっており、前記外層体が内層体の折り目部に挟み込まれた状態で内層体の外表面を覆い、さらに前記外層体の外側に、セラミックスファイバーブロックを取付金具を介して炉壁にボルト・ナットで締結する際の締結力によって破損しない強度を有するクロスを張り付けたセラミックファイバーブロック。
  2. 前記結晶アルミナファイバーブランケットは、葛折り状に折りたたむ前の状態において、嵩密度が100〜130kg/mで、厚さが6〜12.5mmであり、前記結晶アルミナファイバーマットは、葛折り状に折りたたむ前の状態において、嵩密度が50〜80kg/mで、厚さが30〜50mmである請求項1に記載のセラミックファイバーブロック。
JP2006105384A 2006-04-06 2006-04-06 セラミックファイバーブロック Pending JP2007278590A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105384A JP2007278590A (ja) 2006-04-06 2006-04-06 セラミックファイバーブロック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105384A JP2007278590A (ja) 2006-04-06 2006-04-06 セラミックファイバーブロック

Publications (1)

Publication Number Publication Date
JP2007278590A true JP2007278590A (ja) 2007-10-25

Family

ID=38680204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105384A Pending JP2007278590A (ja) 2006-04-06 2006-04-06 セラミックファイバーブロック

Country Status (1)

Country Link
JP (1) JP2007278590A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057577A (ja) * 2013-08-12 2015-03-26 三菱樹脂株式会社 ラジアントチューブ根元支持受け部分用ライニング

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252894U (ja) * 1985-09-24 1987-04-02
JP2004190864A (ja) * 2002-10-17 2004-07-08 Nippon Steel Corp セラミックファイバーブロック

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252894U (ja) * 1985-09-24 1987-04-02
JP2004190864A (ja) * 2002-10-17 2004-07-08 Nippon Steel Corp セラミックファイバーブロック

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057577A (ja) * 2013-08-12 2015-03-26 三菱樹脂株式会社 ラジアントチューブ根元支持受け部分用ライニング

Similar Documents

Publication Publication Date Title
US8524161B2 (en) Multiple layer substrate support and exhaust gas treatment device
US8017085B2 (en) Substrate mounting system
US9174169B2 (en) Mounting mat for exhaust gas treatment device
EP2385870B1 (en) High strength biosoluble inorganic fiber insulation mat
US7033412B2 (en) Exhaust gas treatment device and method for making the same
US8734726B2 (en) Multilayer mounting mat for pollution control devices
CN104129114B (zh) 多层垫和废气处理装置
JP2009249780A (ja) 耐熱性断熱材
EP2513442B1 (en) An exhaust gas treatment device
JP2013514496A5 (ja)
JP5451993B2 (ja) 無機繊維ペーパー及びこれを用いたハニカム構造体並びにフィルタ−
KR101719007B1 (ko) 장착 매트 및 이를 갖는 오염 제어 장치
JP2009115414A (ja) 耐火断熱ライニング材用セラミックファイバーモジュールおよび加熱炉の耐火断熱ライニング施工方法
JP2007278590A (ja) セラミックファイバーブロック
JP5173579B2 (ja) アルミナ繊維の製造方法、繊維化装置、ブランケット及びブロック
JP3806395B2 (ja) セラミックファイバーブロック
JP5863724B2 (ja) 耐熱ブロックおよび炉の内張材
JP3432996B2 (ja) 無機繊維ブロックの製造方法と断熱構造体
JP4472846B2 (ja) アルミナ繊維ブロック
AU684236B2 (en) Composite articles
JP2001089253A (ja) 無機繊維ブロック
TW202242313A (zh) 燃燒器用耐火物、燃燒器用耐火物之製造方法、蓄熱式燃燒器、及工業爐
EP2194177B1 (en) Non-woven fire barrier mat
JPH0873255A (ja) 複合繊維ブランケット及びその製造法
JP2000328412A (ja) 吸音断熱材及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Effective date: 20100722

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A02 Decision of refusal

Effective date: 20101126

Free format text: JAPANESE INTERMEDIATE CODE: A02