JP2007277676A - Electroplating method - Google Patents

Electroplating method Download PDF

Info

Publication number
JP2007277676A
JP2007277676A JP2006108376A JP2006108376A JP2007277676A JP 2007277676 A JP2007277676 A JP 2007277676A JP 2006108376 A JP2006108376 A JP 2006108376A JP 2006108376 A JP2006108376 A JP 2006108376A JP 2007277676 A JP2007277676 A JP 2007277676A
Authority
JP
Japan
Prior art keywords
plated
plating
air
jet
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006108376A
Other languages
Japanese (ja)
Other versions
JP4826756B2 (en
Inventor
Toshihisa Isono
敏久 礒野
Shinji Tachibana
真司 立花
Toshihiro Kawase
智弘 川瀬
Naoyuki Omura
直之 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Uyemura and Co Ltd
Original Assignee
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Uyemura and Co Ltd filed Critical C Uyemura and Co Ltd
Priority to JP2006108376A priority Critical patent/JP4826756B2/en
Publication of JP2007277676A publication Critical patent/JP2007277676A/en
Application granted granted Critical
Publication of JP4826756B2 publication Critical patent/JP4826756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deposition and holding of bubbles dispersed in a plating solution on a material to be plated by air stirring to reduce occurrence of plating defects such as a void in electroplating on the material to be plated having a via hole or a through-hole. <P>SOLUTION: The material to be plated which has a recessed part or a through-hole is electroplated while carrying out jet stirring and/or mechanical stirring of the plating solution around the material to be plated without entraining air bubbles by setting the arrangement of an anode and the material to be plated so that the air bubbles produced by continuously air-stirring the plating solution around the anode is not shifted to the surroundings of the material to be plated and not caught in the surrounding plating solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ビアホールやスルーホールなどを有するプリント配線基板、ウェーハ等に対する電気めっきに関するものであり、特に、ビアホールやスルーホール周りのめっき不良の発生を可及的に低減できる電気めっき方法に関する。   The present invention relates to electroplating on printed wiring boards, wafers, and the like having via holes and through holes, and more particularly to an electroplating method that can reduce the occurrence of plating defects around via holes and through holes as much as possible.

ビアホールやスルーホールなどを有する基板に対して例えば銅めっきを施す場合、ビアホールやスルーホールの形状に合わせてめっき特性を調整するために、めっき液には種々の添加剤が添加される。これらの添加剤、特にブライトナーやレベラーの中には、めっき中に還元されるものが多く、また、2価の銅イオンも一部は1価の銅イオンに還元される。生成した添加物の還元体や1価の銅イオンは、めっき皮膜の特性に悪影響を及ぼすため、還元反応を抑制すると共に、生成してしまった還元体や1価の銅イオンをカソード攪拌のために導入されるエアによって酸化する手法が常用されている。   When, for example, copper plating is performed on a substrate having a via hole or a through hole, various additives are added to the plating solution in order to adjust the plating characteristics in accordance with the shape of the via hole or the through hole. Many of these additives, particularly brighteners and levelers, are reduced during plating, and divalent copper ions are partially reduced to monovalent copper ions. The resulting reduced form of the additive and monovalent copper ions adversely affect the properties of the plating film, so that the reduction reaction is suppressed and the produced reduced form and monovalent copper ions are used for stirring the cathode. A method of oxidizing by air introduced into the air is commonly used.

この手法において、還元反応の抑制にはめっき液中に酸素を溶存させておくことが効果的であると共に、溶存酸素は酸化反応の酸化剤として利用できることから、めっき皮膜を安定的に成膜するためには、めっき液中の酸素濃度を継続的にある程度の濃度に維持しておくことが必要である。   In this method, it is effective to dissolve oxygen in the plating solution to suppress the reduction reaction, and since dissolved oxygen can be used as an oxidizing agent for the oxidation reaction, a plating film can be stably formed. For this purpose, it is necessary to maintain the oxygen concentration in the plating solution at a certain level continuously.

上述した酸化反応に消費される酸素を供給し、酸素濃度を継続的に維持する方法として一般的には、エア攪拌が採用され、このエア攪拌によりめっき液を攪拌しつつ、めっき液中の酸素濃度が一定レベルに維持される。   In general, air agitation is employed as a method of supplying oxygen consumed in the oxidation reaction described above and maintaining the oxygen concentration continuously. While stirring the plating solution by this air agitation, oxygen in the plating solution is used. Concentration is maintained at a constant level.

このエア攪拌によって、めっき液中には多数の気泡が分散することになるが、微小な気泡は基板上に付着しやすく、特に、微小なビアホールやスルーホールの内部に入り込んでしまうと、内部に保持されて容易に排出されず、このままめっきが進行すると、ボイド(無めっき)等の欠陥を引き起こしてしまう。   A large number of bubbles are dispersed in the plating solution by this air agitation, but minute bubbles easily adhere to the substrate, and in particular, if they enter the inside of minute via holes or through holes, If it is held and not easily discharged and the plating proceeds as it is, defects such as voids (no plating) are caused.

更に、めっき液自体の攪拌効率を向上させるため、エア攪拌と共に、噴流攪拌や機械攪拌(例えば、パドル、スキージなど)を併用することも常用されるが、噴流やパドルやスキージなどの攪拌翼が気泡に衝突すると、気泡を破砕してビアホールやスルーホール内部により侵入しやすい微小な気泡を生成することになり、めっき不良を増大させてしまうという問題があった。   Furthermore, in order to improve the stirring efficiency of the plating solution itself, it is also commonly used in combination with air stirring and jet stirring or mechanical stirring (for example, paddles, squeegees, etc.). When the air bubbles collide with the air bubbles, the air bubbles are crushed to generate fine air bubbles that are more easily penetrated into the via hole or the through hole, thereby increasing the plating defect.

なお、この発明に関する先行技術文献情報としては以下のものがある。   The prior art document information relating to the present invention includes the following.

特開2004−143478号公報JP 2004-143478 A 特開2004−332094号公報JP 2004-320994 A

本発明は、上記事情に鑑みなされたものであり、ビアホールやスルーホールなどを有する被めっき物に対して電気銅めっき等の電気めっきを行う場合、エア攪拌によってめっき液中に分散される気泡に起因するめっき不良、特にビアホールやスルーホール周りのめっき不良を可及的に低減して電気めっきする方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when performing electroplating such as electrolytic copper plating on an object to be plated having a via hole or a through hole, the bubbles dispersed in the plating solution by air agitation are used. It is an object of the present invention to provide a method of electroplating by reducing as much as possible plating defects caused, particularly plating defects around via holes and through holes.

本発明者は、上記問題を解決するため鋭意検討した結果、ビアホールやスルーホールなどを有するプリント配線基板等の被めっき物に対して電気銅めっき等の電気めっきを施す際に、めっき液の攪拌にエア攪拌と噴流攪拌及び/又は機械攪拌とを併用し、カソードである被めっき物周囲のめっき液は噴流攪拌及び/又は機械攪拌により、アノード周囲のめっき液はエア攪拌により各々攪拌し、この際、被めっき物周囲のめっき液が、アノード周囲に分散しているエア気泡を巻き込まないように上記アノードと被めっき物との配置を設定して該被めっき物周囲のめっき液を噴流攪拌及び/又は機械攪拌することにより、被めっき物の表面や、ビアホール、スルーホール等の被めっき物の狭小部分の内部に気泡が付着、保持されることを防止して、ボイド等のめっき不良の発生を抑えることができることを見出し、本発明をなすに至った。   As a result of diligent investigations to solve the above problems, the present inventor stirred the plating solution when performing electroplating such as electrolytic copper plating on an object to be plated such as a printed wiring board having via holes or through holes. In addition, air agitation and jet agitation and / or mechanical agitation are used together. The plating solution around the object to be plated is agitated by jet agitation and / or mechanical agitation, and the plating solution around the anode is agitated by air agitation. At this time, the arrangement of the anode and the object to be plated is set so that the plating liquid around the object to be plated does not entrain air bubbles dispersed around the anode, and the plating solution around the object to be plated is jetted and stirred. / Or mechanical agitation to prevent bubbles from adhering to and holding the surface of the object to be plated and the narrow parts of the object to be plated such as via holes and through holes. Found that it is possible to suppress the defective plating of voids such, the present invention has been accomplished.

即ち、本発明は、
[1] 電気めっき液中に凹陥部又は貫通孔を有する被めっき物を浸漬して上記被めっき物を電気めっきする方法であって、アノード周囲のめっき液を連続的にエア攪拌すると共に、このエア攪拌により生じたエア気泡が被めっき物周囲に移行して該周囲のめっき液に巻き込まれないように上記アノードと被めっき物との配置を設定して、被めっき物周囲のめっき液を、エア気泡を随伴させることなく噴流攪拌及び/又は機械攪拌しながら電気めっきすることを特徴とする電気めっき方法、
[2] エア攪拌によるエア気泡を巻き込まないように被めっき物周囲のめっき液の噴流方向を設定すると共に、被めっき物に対してこのめっき液の噴流が衝突するように噴流攪拌を行う[1]記載の電気めっき方法、
[3] 機械攪拌がパドル又はスキージによる攪拌である[1]記載の電気めっき方法、
[4] エア攪拌用のエアノズルをアノードの配置位置の直下又はこれと近接する位置に配置すると共に、噴流攪拌用噴流ノズル及び/又は機械攪拌用攪拌具を被めっき物に近接して配置した[1]乃至[3]のいずれかに記載の電気めっき方法、
[5] 電気めっき液が電気銅めっき液である[1]乃至[4]のいずれかに記載の電気めっき方法、及び
[6] 被めっき物がプリント配線基板又はウェーハである[1]乃至[5]のいずれかに記載の電気めっき方法
を提供する。
That is, the present invention
[1] A method of electroplating an object to be plated by immersing an object to be plated having a recessed portion or a through-hole in an electroplating solution, wherein the plating solution around the anode is continuously agitated with air. The arrangement of the anode and the object to be plated is set so that air bubbles generated by air agitation move around the object to be plated and are not caught in the surrounding plating solution. An electroplating method characterized by electroplating with jet stirring and / or mechanical stirring without accompanying air bubbles;
[2] The direction of the jet of the plating solution around the object to be plated is set so as not to entrain air bubbles by air agitation, and the jet is stirred so that the jet of the plating solution collides with the object to be plated. ] The electroplating method according to
[3] The electroplating method according to [1], wherein the mechanical stirring is stirring with a paddle or a squeegee.
[4] An air nozzle for air agitation is arranged immediately below or close to the position where the anode is arranged, and a jet nozzle for jet agitation and / or a mechanical agitation tool are arranged close to the object to be plated. 1] to the electroplating method according to any one of [3],
[5] The electroplating method according to any one of [1] to [4], wherein the electroplating solution is an electrolytic copper plating solution, and [6] [1] to [1], wherein the object to be plated is a printed wiring board or wafer. 5] The electroplating method according to any one of the above.

本発明によれば、ビアホールやスルーホールなどを有する被めっき物に対する電気めっきにおいて、エア攪拌によってめっき液中に分散される気泡が被めっき物に付着、保持されることを防止でき、その結果、ボイド等のめっき不良の発生を低減することができる。   According to the present invention, in the electroplating to the object to be plated having via holes or through holes, it is possible to prevent the bubbles dispersed in the plating solution by air agitation from being attached to and retained on the object to be plated. Occurrence of plating defects such as voids can be reduced.

以下、本発明につき、更に詳しく説明する。
本発明の電気めっき方法は、電気めっき液内にビアホール等の凹陥部、又はスルーホールなどの貫通孔を有する被めっき物を浸漬して被めっき物を電気めっきする方法であり、アノード周囲のめっき液を連続的にエア攪拌すると共に、このエア攪拌により生じたエア気泡が被めっき物周囲に移行して該周囲のめっき液に巻き込まれないように上記アノードと被めっき物との配置を設定して、被めっき物周囲のめっき液を、エア気泡を随伴させることなく噴流攪拌及び/又は機械攪拌しながら電気めっきするものである。
Hereinafter, the present invention will be described in more detail.
The electroplating method of the present invention is a method for electroplating an object to be plated by immersing an object to be plated having a recessed portion such as a via hole or a through hole such as a through hole in an electroplating solution. The liquid is continuously stirred by air, and the arrangement of the anode and the plating object is set so that air bubbles generated by this air stirring move around the plating object and are not caught in the surrounding plating solution. Then, the plating solution around the object to be plated is subjected to electroplating while jet stirring and / or mechanical stirring without accompanying air bubbles.

ここで、電気めっきとしては、銅めっき、ニッケルめっき、金めっき等が挙げられるが、本発明の電気めっき方法は、銅めっき、特に硫酸銅めっきに有効に適用することができる。なお、これらのめっきに用いるめっき液は、公知のめっき液組成のものを用いることができ、市販品を用いることもできる。   Here, examples of the electroplating include copper plating, nickel plating, and gold plating. The electroplating method of the present invention can be effectively applied to copper plating, particularly copper sulfate plating. In addition, the plating solution used for these plating can use the thing of a well-known plating solution composition, and can also use a commercial item.

本発明において、ビアホール等の凹陥部、又はスルーホール等の貫通孔を有する基板を浸漬して電気硫酸銅めっきする場合、例えばビアフィルめっきを行う場合、硫酸銅(CuSO4)を銅源とし、これに硫酸を加え、更に必要によりブライトナーやレベラー等の添加剤としてめっき時に還元されやすい添加剤を用いる場合に有効である。 In the present invention, when electrolytic copper sulfate plating is performed by immersing a substrate having a recessed portion such as a via hole or a through hole such as a through hole, for example, when performing via fill plating, copper sulfate (CuSO 4 ) is used as a copper source. This is effective when sulfuric acid is added to the material and, if necessary, an additive that is easily reduced during plating as an additive such as brightener or leveler.

本発明においては、アノード周囲のめっき液をエア攪拌によって連続的に攪拌する。アノード周囲のめっき液をエア攪拌することには、以下の利点がある。   In the present invention, the plating solution around the anode is continuously stirred by air stirring. Air stirring of the plating solution around the anode has the following advantages.

(a)アノードスライムが発生すると重力によりスライムがアノード下端部に蓄積してこの部分での通電を妨げるため、この下端部に近接する被めっき物の部分のめっき膜厚が薄くなって、めっき膜厚分布が悪くなる。アノードスライムの生成を防止することにより、膜厚分布の悪化を抑えることができると共に、アノードのメンテナンス周期を延長することができ、生産性が向上する。 (A) When the anode slime is generated, the slime accumulates at the lower end portion of the anode due to gravity and prevents energization in this portion, so that the plating film thickness of the portion of the object to be plated close to the lower end portion becomes thin, and the plating film The thickness distribution becomes worse. By preventing the generation of the anode slime, the deterioration of the film thickness distribution can be suppressed, and the anode maintenance cycle can be extended, thereby improving the productivity.

(b)めっきに悪影響を与えないように添加剤の還元体の酸化を促進して効率よく分解し、また、例えば硫酸銅めっきの場合であれば、1価の銅イオンを酸化することができる。更に、めっき液全体に還元体を低減しためっき液を行き渡らせることができ、めっき液の老化の影響を少なくすることができる。 (B) The oxidation of the reduced form of the additive is promoted and decomposed efficiently so as not to adversely affect the plating. For example, in the case of copper sulfate plating, monovalent copper ions can be oxidized. . Furthermore, the plating solution with reduced reductant can be distributed throughout the plating solution, and the influence of aging of the plating solution can be reduced.

また、本発明においては、被めっき物周囲のめっき液を噴流攪拌及び/又は機械攪拌(即ち、噴流攪拌若しくは機械攪拌又はこれらの両方法)により連続的に攪拌する。この際、アノード周囲に分散しているエア気泡を巻き込まないようにアノードと被めっき物とを配置し、エア攪拌と噴流攪拌及び/又は機械攪拌とによるめっき液の流れ方向を設定する。なお、特に硫酸銅めっきの場合、噴流攪拌が有効であるが、このように噴流を被めっき物に衝突させて被めっき物周囲のめっき液を噴流攪拌することには、以下の利点がある。   In the present invention, the plating solution around the object to be plated is continuously stirred by jet stirring and / or mechanical stirring (that is, jet stirring or mechanical stirring or both methods). At this time, the anode and the object to be plated are arranged so as not to entrain air bubbles dispersed around the anode, and the flow direction of the plating solution is set by air stirring, jet stirring and / or mechanical stirring. In particular, in the case of copper sulfate plating, jet stirring is effective. However, the jet stirring of the plating solution around the object to be plated by causing the jet to collide with the object to be plated has the following advantages.

(c)凹陥部又は貫通孔を有する被めっき物において、ビアホール等の凹陥部やスルーホール等の貫通孔などの狭小部分に、銅イオン等の金属イオンが豊富なめっき液を噴流にのせて積極的に供給することができる。この場合、狭小部分においても、金属イオン濃度の低下がおきにくいので、金属イオン不足による膜厚不足、スローイングパワー(つき回り)の低下、ボイドの発生などを抑制できる。また、膜成長の速度は物質移動により律速されるため、物質移動が速いこの場合にあっては、電流密度を上げてもヤケの発生が起こりにくい。その結果、生産性を向上させることができる。 (C) In an object to be plated having a recessed portion or a through hole, a plating solution rich in metal ions such as copper ions is applied to a narrow portion such as a recessed portion such as a via hole or a through hole such as a through hole. Can be supplied automatically. In this case, since the metal ion concentration is hardly lowered even in a narrow portion, it is possible to suppress the film thickness shortage due to the metal ion shortage, the reduction of throwing power (around), the generation of voids, and the like. Further, since the film growth rate is limited by the mass transfer, in this case where the mass transfer is fast, the occurrence of burns hardly occurs even if the current density is increased. As a result, productivity can be improved.

(d)被めっき物浸漬時に気泡が付着してしまったような場合であっても、噴流の衝突力によって引き剥がすことができる。 (D) Even in the case where bubbles are attached during immersion of the object to be plated, it can be peeled off by the collision force of the jet.

また、噴流を用いる際には被めっき物を揺動させれば、被めっき物表面のめっき液の流れを常に一定方向とならないようにすることができるが、ウェーハのような一般に揺動させない被めっき物の場合には、被めっき物の揺動によりめっき液の流れを変化させる代わりに、スキージ、パドル等の機械攪拌によって被めっき物表面のめっき液の流れを変化させることができる。また、噴流攪拌と機械攪拌とを併用することで、被めっき物表面のめっき液の流れが更に活発になり、特に、プリント配線基板においては、ビアホール、スルーホール内部のめっき液の交換が更に活発に行われる。   In addition, when using the jet flow, if the object to be plated is swung, the flow of the plating solution on the surface of the object to be plated can be prevented from being always in a certain direction. In the case of a plated object, instead of changing the flow of the plating solution by swinging the object to be plated, the flow of the plating solution on the surface of the object to be plated can be changed by mechanical stirring such as a squeegee or paddle. Moreover, by using both jet stirring and mechanical stirring, the flow of the plating solution on the surface of the object to be plated becomes more active, especially in the printed wiring board, the replacement of the plating solution inside via holes and through holes is more active. To be done.

本発明によれば、上述したような利点を有するエア攪拌と噴流攪拌及び又は機械攪拌とを併用することにより、これらの攪拌各々の利点を最大限利用でき、更に、ビアホール等の凹陥部、又はスルーホールなどの貫通孔を有する被めっき物に対する電気めっきにおけるエア攪拌及び噴流攪拌の弱点を回避して、膜厚不良やボイド等のめっき不良を発生させずに、生産性よく電気めっきすることが可能となる。   According to the present invention, by using air agitation and jet agitation and / or mechanical agitation having the advantages as described above, the advantages of each of these agitations can be utilized to the maximum, and further, a recessed portion such as a via hole, or By avoiding the weak points of air stirring and jet stirring in electroplating to the plating object having through-holes such as through-holes, it is possible to electroplate with good productivity without causing poor film thickness and bad plating such as voids. It becomes possible.

噴流攪拌又は機械攪拌がないと、被めっき物近傍のめっき液の動きがないので、スルーホールやビアホールへのつきまわりが悪くなり、高い陰極電流密度でめっきするとコゲが発生するなど銅イオンの供給量が不足した場合の現象が発生する。エア攪拌に比べ、噴流攪拌及び機械攪拌はより強い攪拌効果が得られる点で好ましい。   If there is no jet stirring or mechanical stirring, there is no movement of the plating solution in the vicinity of the object to be plated. The phenomenon occurs when the amount is insufficient. Compared to air agitation, jet agitation and mechanical agitation are preferred in that a stronger agitation effect can be obtained.

なお、本発明において、エア攪拌、噴流攪拌、機械攪拌の条件としては、めっき液の種類、被めっき物の種類等に応じた公知の条件を採用し得る。また、本発明においては、上記の攪拌態様に加えて、必要に応じて被めっき物を揺動することもできる。   In the present invention, as conditions for air agitation, jet agitation, and mechanical agitation, known conditions corresponding to the type of the plating solution, the type of the object to be plated, and the like can be adopted. Moreover, in this invention, in addition to said stirring aspect, a to-be-plated object can also be rock | fluctuated as needed.

次に、図面を参照して、本発明の方法をより具体的に説明する。
図1は、本発明の電気めっき方法に好適なめっき槽の一例を示す平面図、図2は図1のX−X線に沿った断面図、図3は図1のY−Y線に沿った断面図で、この例はエア攪拌と噴流攪拌を併用し、被めっき物としてプリント配線基板を用いてその両面にめっきを行う場合の例を示す。なお、図中、被めっき物(カソード)とアノードとの間に電流を流すための電源及び導線は図示を省略している。
Next, the method of the present invention will be described more specifically with reference to the drawings.
1 is a plan view showing an example of a plating tank suitable for the electroplating method of the present invention, FIG. 2 is a cross-sectional view taken along line XX in FIG. 1, and FIG. 3 is taken along line YY in FIG. This example shows an example in which air agitation and jet agitation are used in combination, and a printed wiring board is used as an object to be plated, and plating is performed on both surfaces thereof. In the figure, a power supply and a conducting wire for supplying a current between an object to be plated (cathode) and an anode are not shown.

図1〜3中、被めっき物(カソード)11は、めっき槽1内のめっき液2中央部に浸漬されており、この被めっき物11の表面及び裏面に対向して各々噴流ノズル12,12が被めっき物11に近接して設けられている。この噴流ノズル12の被めっき物11に対向する側には、噴流口13(この例においては16個(なお、噴流口の個数は限定されない))が設けられており、ポンプ等の適宜な手段(図示せず)によって噴射ノズル12にめっき液2が送られ、噴流口13からめっき液2が被めっき物11に向けて、被めっき物11にほぼ垂直に噴出して、噴流が図中矢印で示されるように被めっき物11に衝突するようになっている。そして、被めっき物11に衝突した噴流は被めっき物11の表面及び裏面に沿って流れて被めっき物11周囲のめっき液2を攪拌して、被めっき物11外周縁部から外方領域へと流れるようになっている。   1 to 3, the object to be plated (cathode) 11 is immersed in the central part of the plating solution 2 in the plating tank 1, and the jet nozzles 12 and 12 face the front and back surfaces of the object 11 to be plated, respectively. Is provided close to the object 11 to be plated. A jet port 13 (16 in this example (the number of jet ports is not limited)) is provided on the side of the jet nozzle 12 facing the object 11 to be plated, and appropriate means such as a pump. (Not shown), the plating solution 2 is sent to the injection nozzle 12, the plating solution 2 is ejected from the jet port 13 toward the object 11 to be plated, and substantially perpendicularly to the object 11, and the jet is indicated by an arrow in the figure. It collides with the to-be-plated object 11 as shown by these. And the jet which collided with the to-be-plated object 11 flows along the surface and the back surface of the to-be-plated object 11, agitates the plating solution 2 around the to-be-plated object 11, and goes to the outside area | region from the to-be-plated object 11 outer periphery part. It has come to flow.

また、21,21はアノード板であり、アノード板21,21は被めっき物11に対向してめっき槽1の内壁近傍に配設されている。そして、これらアノード21,21の下端の近傍に沿って位置し、上記噴流ノズル12と十分の離間間隔をとってエアノズル22,22が設けられている。このエアノズル22には、空気口23(この例においては各々のエアノズルに6個ずつ(なお、空気口の個数は限定されない))が設けられており、エアノズル22にはポンプ等の適宜な手段(図示せず)によって空気が送られ、空気口23からエア気泡が上方に向かって吹き出し、この空気のバブリングによってアノード周囲のめっき液をエア攪拌するようになっている。   Further, 21 and 21 are anode plates, and the anode plates 21 and 21 are disposed in the vicinity of the inner wall of the plating tank 1 so as to face the object 11 to be plated. Air nozzles 22 and 22 are provided along the vicinity of the lower ends of the anodes 21 and 21 and spaced apart from the jet nozzle 12 by a sufficient distance. The air nozzles 22 are provided with air ports 23 (in this example, six air nozzles are provided for each air nozzle (the number of air ports is not limited)). The air bubbles are blown upward from the air port 23, and the plating solution around the anode is agitated by air bubbling.

なお、噴流ノズル12から噴出させるめっき液は、エア攪拌による気泡が混入しないように、別途めっき槽1に連設させたオーバーフロー槽に貯液されためっき液、上記エアノズル22配置位置から離れためっき槽1底部のめっき液などを取り込むようになっている。   The plating solution ejected from the jet nozzle 12 is a plating solution stored in an overflow tank separately provided in the plating tank 1 so that bubbles due to air agitation are not mixed. The plating solution at the bottom of the tank 1 is taken in.

本発明のめっき方法では、アノード周囲に分散しているエア気泡を巻き込まないように、アノードと被めっき物とが配置され、エア及び噴流の流れ方向が設定される。つまり、上述した例の場合、被めっき物11の近傍領域、噴流ノズル12の近傍領域及び被めっき物11と噴流ノズル12との間の領域並びにこれらの上下方領域を避けて、エアノズル22がめっき槽1の内周壁に近接して設けられ、被めっき物11にはエア気泡を含まないめっき液の噴流が直接当たり、被めっき物11に衝突しためっき液2は被めっき物11外周縁部から外方に向けてめっき槽1の内周壁領域に流れていくので、被めっき物11に衝突する噴流がエアノズル22から吹き出したエア気泡に直接当たって噴流が空気の気泡を破砕したり、このエア気泡を取り込んだりして、エアノズル22から吹き出したエア気泡を被めっき物11に接触させることがない。   In the plating method of the present invention, the anode and the object to be plated are arranged so as not to entrain air bubbles dispersed around the anode, and the flow directions of the air and the jet are set. That is, in the case of the above-described example, the air nozzle 22 is plated while avoiding the vicinity area of the object 11 to be plated, the vicinity area of the jet nozzle 12, the area between the object 11 and the jet nozzle 12, and the upper and lower areas thereof. The plating solution 2 which is provided in the vicinity of the inner peripheral wall of the tank 1 and directly hits the object 11 to be plated and does not contain air bubbles, and the plating solution 2 which has collided with the object 11 is separated from the outer peripheral edge of the object 11 to be plated. Since it flows to the inner peripheral wall region of the plating tank 1 toward the outside, the jet impinging on the object to be plated 11 directly hits the air bubbles blown out from the air nozzle 22, and the jet breaks the air bubbles. The air bubbles taken out from the air nozzle 22 by taking in the bubbles are not brought into contact with the workpiece 11.

従って、本発明のめっき方法によれば、被めっき物表面や、ビアホール、スルーホールなどの被めっき物上に形成された狭小部分の内部に気泡が付着、保持されることを防止して、ボイド等のめっき不良の発生を抑えることができる。   Therefore, according to the plating method of the present invention, it is possible to prevent air bubbles from adhering to and holding in the narrow portion formed on the surface of the object to be plated and via holes, through holes, etc. The occurrence of plating defects such as the above can be suppressed.

なお、上記例においては、被めっき物の表裏両面の各々に対して略垂直方向に噴流ノズルから噴流を衝突させる場合を示したが、これに限定されるものではなく、被めっき物面に対し任意の角度で衝突させることができ、この場合、例えば、被めっき物浸漬時の気泡の付着などの心配がない場合などは、被めっき物の表裏両面に対して低角度方向から噴流を衝突させてもよく、この場合、噴流は主に被めっき物の表裏両面に沿った流れを形成し、これによってエア攪拌による気泡を巻き込むことなく被めっき物周囲のめっき液を攪拌することが可能である。特に、エア攪拌による気泡は、めっき液中上方(反重力方向)に移動することから、この気泡と噴流とが直接衝突することをなるべく避けるために、噴流を被めっき物の表裏両面に対して上方(反重力方向)に向けて低角度方向から衝突させることが効果的である。   In the above example, the case where the jet flow is collided from the jet nozzle in the substantially vertical direction with respect to both the front and back surfaces of the object to be plated is not limited to this. In this case, for example, when there is no concern about bubbles adhering when the workpiece is immersed, the jet is made to collide with the front and back surfaces of the workpiece from the low angle direction. In this case, the jet mainly forms a flow along both the front and back surfaces of the object to be plated, and thereby it is possible to agitate the plating solution around the object to be plated without entraining air bubbles by air agitation. . In particular, air bubbles caused by air agitation move upward (in the antigravity direction) in the plating solution. Therefore, in order to avoid direct collision between the air bubbles and the jet as much as possible, the jet is applied to both the front and back surfaces of the object to be plated. It is effective to make the collision from the low angle direction upward (antigravity direction).

また、噴流ノズルの噴流口とエアノズルの空気口とが比較的近接している場合、噴流と空気との直接的な接触を避けるため、噴流及びエアの流れを乱してこれらを接触させない程度に遮蔽板を設けることも可能である。なお、エアノズルは、上記した例に制限されるものではなく、例えばめっき槽内壁に沿ってリング状に配設してもよい。   In addition, when the jet port of the jet nozzle and the air port of the air nozzle are relatively close to each other, in order to avoid direct contact between the jet and the air, the jet flow and the air flow are disturbed so that they do not come into contact with each other. It is also possible to provide a shielding plate. In addition, an air nozzle is not restrict | limited to an above-described example, For example, you may arrange | position in a ring shape along a plating tank inner wall.

アノードと被めっき物との間隔が狭い場合、その間に設置しているエア攪拌と噴流攪拌及び/又は機械攪拌との位置関係も密接することとなり、エア攪拌による気泡が噴流攪拌及び/又は機械攪拌に巻き込まれ、粉砕されることで微細な気泡を発生させ、この微細な気泡が基板のビアホールやスルーホールに付着し、ボイドを発生させてしまうおそれがある。従って、アノードと被めっき物との間隔が狭い場合には、エア出口と噴流攪拌及び/又は機械攪拌との間に遮蔽板を設け、気泡の巻き込みを防ぐことが好ましい。   When the distance between the anode and the object to be plated is narrow, the positional relationship between air agitation and jet agitation and / or mechanical agitation installed between them is close, and bubbles caused by air agitation are jet agitation and / or mechanical agitation. The fine bubbles are generated by being entangled and pulverized, and the fine bubbles may adhere to the via hole or the through hole of the substrate to generate a void. Therefore, when the interval between the anode and the object to be plated is narrow, it is preferable to provide a shielding plate between the air outlet and the jet stirring and / or mechanical stirring to prevent entrainment of bubbles.

更に、本発明は、ウェーハなどの被めっき物に対する片面めっきにも使用し得る。この場合、例えば、図4,5に示す態様とすることができる。ここで、図4はめっき槽の縦断面図、図5は横断面図で、図中1はめっき槽、2はめっき液、21はめっき槽の一側壁近傍に配設されたアノード板、11はアノード21と対向してめっき槽1の他側壁近傍に配置された被めっき物、22はエアノズル、31はパドル、スキージ等の機械攪拌具を示す。この場合、必要により被めっき物11と機械攪拌具31との間にあるめっき液に噴流を与えるため、これら被めっき物11と機械攪拌具31と間の下方のめっき槽1底壁近傍に噴流ノズル12を設置するようにしてもよい。   Furthermore, the present invention can also be used for single-side plating on an object to be plated such as a wafer. In this case, for example, the embodiment shown in FIGS. 4 is a longitudinal sectional view of the plating tank, FIG. 5 is a transverse sectional view, in which 1 is a plating tank, 2 is a plating solution, 21 is an anode plate disposed near one side wall of the plating tank, 11 Represents an object to be plated disposed near the other side wall of the plating tank 1 so as to face the anode 21, 22 represents an air nozzle, 31 represents a mechanical stirrer such as a paddle or squeegee. In this case, if necessary, a jet is applied to the plating solution between the object to be plated 11 and the mechanical stirrer 31, so that the jet flows near the bottom wall of the plating tank 1 below the object to be plated 11 and the mechanical stirrer 31. The nozzle 12 may be installed.

なお、プリント基板用めっき槽の場合、エアの強さ、液深、噴流、機械式攪拌の強さは適宜選定され、特に限定されるものではないが、例えば、アノードからエア出口の距離:エア出口から噴流突出口の距離=1:2以上であり、アノードからカソードの距離は液深の1/2以上であることが好ましい。また、ウェーハ用めっき槽の場合、特に、ウェーハを垂直に向けて(ウェーハの厚さ方向を水平として)めっきする場合、アノードからエア出口の距離:エア出口からスキージの距離=n:1(但し、nは(カソードからアノードの距離)/(液深)である)とすることが好ましい。   In the case of a plating tank for printed circuit boards, the strength of air, liquid depth, jet flow, and strength of mechanical stirring are appropriately selected and are not particularly limited. For example, the distance from the anode to the air outlet: air The distance from the outlet to the jet protrusion port is preferably 1: 2 or more, and the distance from the anode to the cathode is preferably ½ or more of the liquid depth. Also, in the case of a plating tank for wafers, particularly when plating with the wafer oriented vertically (with the wafer thickness direction horizontal): distance from anode to air outlet: distance from air outlet to squeegee = n: 1 (however, , N is preferably (distance from cathode to anode) / (depth of liquid).

一方、噴流の角度は、機械攪拌がない場合は、カソード(被めっき物)の被めっき面に垂直とし、カソードを噴流と垂直方向に揺動させることが好適である。また、機械攪拌する場合は、機械攪拌の動きと垂直方向、かつカソード(被めっき物)の被めっき面に垂直となるように噴流の角度を設定することが好ましい。揺動は可能な限り行うことが好ましいが、揺動により機械攪拌の精度を落としてしまう場合は行わない。   On the other hand, when there is no mechanical stirring, it is preferable that the angle of the jet is perpendicular to the surface of the cathode (to-be-plated object) and the cathode is swung in the direction perpendicular to the jet. In the case of mechanical stirring, it is preferable to set the angle of the jet so that it is perpendicular to the movement of mechanical stirring and perpendicular to the surface of the cathode (to-be-plated). The rocking is preferably performed as much as possible, but is not performed when the accuracy of mechanical stirring is lowered due to the rocking.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
下記の硫酸銅めっき液を用い、図1〜3に示されるように被めっき物(プリント配線基板)及びアノードを配置し、図1〜3に示されるように噴流ノズル及びエアノズルを配置して噴流攪拌及びエア攪拌によりめっき液を攪拌しながら径150μm、深さ95μmのビアホールを有する基板を電気めっきした。なお、めっき条件は下記のとおりである。めっき評価は、建浴直後と、ダミー板でのダミーめっきを10時間実施した後の2点を実施した。
[Example 1]
Using the following copper sulfate plating solution, the object to be plated (printed wiring board) and the anode are arranged as shown in FIGS. 1 to 3, and the jet nozzle and the air nozzle are arranged as shown in FIGS. A substrate having a via hole having a diameter of 150 μm and a depth of 95 μm was electroplated while stirring the plating solution by stirring and air stirring. The plating conditions are as follows. The plating evaluation was performed at two points immediately after the bathing and after dummy plating with a dummy plate for 10 hours.

硫酸銅めっき液
硫酸銅(CuSO4・5H2O) 80g/L
硫酸 200g/L
添加剤 スルカップETN(上村工業(株)製)
なお、添加剤濃度はCVSで分析し、添加剤を補給しながらETN−1−A液=1ml/L、ETN−1−B液=10ml/Lに調整しながらめっきした。
Copper sulfate plating solution Copper sulfate (CuSO 4 .5H 2 O) 80 g / L
Sulfuric acid 200g / L
Additive Sulcup ETN (manufactured by Uemura Kogyo Co., Ltd.)
The additive concentration was analyzed by CVS, and plating was performed while adjusting the ETN-1-A solution = 1 ml / L and ETN-1-B solution = 10 ml / L while replenishing the additive.

めっき条件
陰極電流密度(ASD):3.0A/cm2
めっき温度:25℃
めっき時間:38分
Plating conditions Cathodic current density (ASD): 3.0 A / cm 2
Plating temperature: 25 ° C
Plating time: 38 minutes

通常のデスミア処理から化学銅めっきまでを施したビアホールのある基板について、上記電気めっきを実施し、めっきされたビアホールについて、スローイングパワー(TP)を評価した。TP評価方法は以下のとおりである。結果を表1に示す。   The electroplating was performed on a substrate having via holes subjected to normal desmear treatment to chemical copper plating, and throwing power (TP) was evaluated for the plated via holes. The TP evaluation method is as follows. The results are shown in Table 1.

TP評価
図6に示されるようにビアホール及びその周囲の断面を切出し、断面観察によりa,b及びcで示される部分の各々のめっき皮膜の膜厚を測定し、その結果から下記式により算出した。
TP(%)=(c×2)/(a+b)×100
なお、図6中、41はビアホール、42はめっき皮膜、43は表面積層銅箔、44は樹脂層、45は内部銅箔である。
TP evaluation As shown in FIG. 6, the via hole and the surrounding cross section were cut out, the thickness of each plating film of the portion indicated by a, b and c was measured by cross section observation, and calculated from the result by the following formula. .
TP (%) = (c × 2) / (a + b) × 100
In FIG. 6, 41 is a via hole, 42 is a plating film, 43 is a surface laminated copper foil, 44 is a resin layer, and 45 is an internal copper foil.

次に、上記ビアホールを有する基板をSUS板に変えて、以下の条件でSUS板上に銅めっき皮膜を成膜し、めっき皮膜の物性を以下の方法で評価した。結果を表1に示す。   Next, the board | substrate which has the said via hole was changed into the SUS board, the copper plating film was formed into a film on the SUS board on the following conditions, and the physical property of the plating film was evaluated with the following method. The results are shown in Table 1.

めっき条件
陰極電流密度(ASD):3.0A/cm2
めっき温度:25℃
めっき時間:75分
Plating conditions Cathodic current density (ASD): 3.0 A / cm 2
Plating temperature: 25 ° C
Plating time: 75 minutes

皮膜物性評価
SUS板を研磨材(スコッチブライト:3M社製)で軽く研磨した後、酸洗浄処理して電気銅めっきを行い、膜厚50±5μmのめっき皮膜を成膜した。めっき後、めっき皮膜をSUS板より剥がし、120℃で2時間熱処理した。皮膜を図7に示されるサイズのダンベル形状の試験片に打ち抜き、蛍光X線膜厚計で膜厚を測定し、オートグラフによりチャック間距離40mm、引っ張り速度4mm/minとして、皮膜が破断するまでの伸び率と抗張力を以下の式により算出して評価した。
T[kgf/mm2]=F[kgf/mm2]/(10[mm]×d[mm])
T:抗張力 F:最大引張応力 d:試験片中央部の膜厚
E[%]=△L[mm]/20[mm]×100
E:伸び率 △L:皮膜が破断するまでに伸びた長さ
Evaluation of Physical Properties of Film After a SUS plate was lightly polished with an abrasive (Scotch Bright: manufactured by 3M Company), it was subjected to acid cleaning treatment and electrolytic copper plating to form a plating film with a thickness of 50 ± 5 μm. After plating, the plating film was peeled off from the SUS plate and heat treated at 120 ° C. for 2 hours. The film is punched into a dumbbell-shaped test piece of the size shown in FIG. 7, the film thickness is measured with a fluorescent X-ray film thickness meter, the distance between chucks is 40 mm, the pulling speed is 4 mm / min by autograph, and the film is broken. The elongation rate and tensile strength of each were calculated and evaluated by the following equations.
T [kgf / mm 2 ] = F [kgf / mm 2 ] / (10 [mm] × d [mm])
T: Tensile strength F: Maximum tensile stress d: Film thickness at the center of the test piece E [%] = ΔL [mm] / 20 [mm] × 100
E: Elongation rate ΔL: Length stretched until the film broke

[比較例1]
実施例1と同様の位置に基板及びアノードを配置し、噴流ノズルを配置しないで噴流攪拌を実施せずに、エアノズルは基板の直下に配置してエア攪拌のみ実施した。この場合、エア攪拌による気泡が基板に常時接触する状態で電気めっきされる。めっきを実施例1と同様の方法で評価した結果を表1に示す。
[Comparative Example 1]
The substrate and the anode were disposed at the same positions as in Example 1, and the air nozzle was disposed immediately below the substrate without performing the jet stirring without the jet nozzle, and only the air stirring was performed. In this case, the electroplating is performed in a state in which bubbles caused by air agitation are always in contact with the substrate. Table 1 shows the results of evaluating the plating in the same manner as in Example 1.

[比較例2]
実施例1と同様の位置に基板及びアノードを配置し、実施例1と同様の位置に噴流ノズルを配置して噴流攪拌を実施し、エアノズルは基板の直下に配置してエア攪拌を実施した。この場合、エア攪拌による気泡が基板に常時接触する状態で電気めっきされる。めっきを実施例1と同様の方法で評価した結果を表1に示す。
[Comparative Example 2]
The substrate and the anode were disposed at the same position as in Example 1, the jet nozzle was disposed at the same position as in Example 1, and the jet stirring was performed. The air nozzle was disposed immediately below the substrate to perform the air stirring. In this case, the electroplating is performed in a state in which bubbles caused by air agitation are always in contact with the substrate. Table 1 shows the results of evaluating the plating in the same manner as in Example 1.

[比較例3]
実施例1と同様の位置に基板及びアノードを配置し、エアノズルを配置しないでエア攪拌を実施せずに、実施例1と同様の位置に噴流ノズルを配置して噴流攪拌のみを実施した。めっきを実施例1と同様の方法で評価した結果を表1に示す。
[Comparative Example 3]
The substrate and the anode were disposed at the same position as in Example 1, and the air nozzle was not disposed without disposing the air nozzle, and the jet nozzle was disposed at the same position as in Example 1 and only the jet stirring was performed. Table 1 shows the results of evaluating the plating in the same manner as in Example 1.

Figure 2007277676
Figure 2007277676

本発明の電気めっき方法に好適なめっき槽の一例を示す平面図である。It is a top view which shows an example of the plating tank suitable for the electroplating method of this invention. 図1のX−X線に沿った断面図である。It is sectional drawing along the XX line of FIG. 図1のY−Y線に沿った断面図である。It is sectional drawing along the YY line of FIG. 本発明の電気めっき方法に好適なめっき槽の他の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the plating tank suitable for the electroplating method of this invention. 図4のめっき槽の横断面図である。It is a cross-sectional view of the plating tank of FIG. ビアホールのスローイングパワー(TP)を評価における皮膜の膜厚測定箇所を示すビアホールの断面図である。It is sectional drawing of a via hole which shows the film thickness measurement location of the film | membrane in evaluation of throwing power (TP) of a via hole. 皮膜物性を測定した試験片の形状及びサイズを示す図である。It is a figure which shows the shape and size of the test piece which measured the film physical property.

符号の説明Explanation of symbols

1 めっき槽
2 めっき液
11 被めっき物
12 噴流ノズル
13 噴流口
21 アノード
22 エアノズル
23 空気口
31 機械攪拌具
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Plating solution 11 To-be-plated object 12 Jet nozzle 13 Jet port 21 Anode 22 Air nozzle 23 Air port 31 Mechanical stirring tool

Claims (6)

電気めっき液中に凹陥部又は貫通孔を有する被めっき物を浸漬して上記被めっき物を電気めっきする方法であって、アノード周囲のめっき液を連続的にエア攪拌すると共に、このエア攪拌により生じたエア気泡が被めっき物周囲に移行して該周囲のめっき液に巻き込まれないように上記アノードと被めっき物との配置を設定して、被めっき物周囲のめっき液を、エア気泡を随伴させることなく噴流攪拌及び/又は機械攪拌しながら電気めっきすることを特徴とする電気めっき方法。   A method of electroplating an object to be plated by immersing an object to be plated having a recessed portion or a through-hole in an electroplating solution, wherein the plating solution around the anode is continuously agitated with air, The arrangement of the anode and the object to be plated is set so that the generated air bubbles move around the object to be plated and are not caught in the surrounding plating solution. An electroplating method, wherein electroplating is performed with jet stirring and / or mechanical stirring without being accompanied. エア攪拌によるエア気泡を巻き込まないように被めっき物周囲のめっき液の噴流方向を設定すると共に、被めっき物に対してこのめっき液の噴流が衝突するように噴流攪拌を行う請求項1記載の電気めっき方法。   The jet flow agitation is performed such that the jet direction of the plating solution around the object to be plated is set so as not to entrain air bubbles by air agitation and the jet of the plating solution collides with the object to be plated. Electroplating method. 機械攪拌がパドル又はスキージによる攪拌である請求項1記載の電気めっき方法。   The electroplating method according to claim 1, wherein the mechanical stirring is stirring with a paddle or a squeegee. エア攪拌用のエアノズルをアノードの配置位置の直下又はこれと近接する位置に配置すると共に、噴流攪拌用噴流ノズル及び/又は機械攪拌用攪拌具を被めっき物に近接して配置した請求項1乃至3のいずれか1項記載の電気めっき方法。   The air nozzle for air agitation is disposed at a position immediately below or close to the position where the anode is disposed, and the jet nozzle for jet agitation and / or the stirring tool for mechanical agitation are disposed close to the object to be plated. 4. The electroplating method according to any one of 3 above. 電気めっき液が電気銅めっき液である請求項1乃至4のいずれか1項記載の電気めっき方法。   The electroplating method according to any one of claims 1 to 4, wherein the electroplating solution is an electrolytic copper plating solution. 被めっき物がプリント配線基板又はウェーハである請求項1乃至5のいずれか1項記載の電気めっき方法。
6. The electroplating method according to claim 1, wherein the object to be plated is a printed wiring board or a wafer.
JP2006108376A 2006-04-11 2006-04-11 Electroplating method Active JP4826756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108376A JP4826756B2 (en) 2006-04-11 2006-04-11 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108376A JP4826756B2 (en) 2006-04-11 2006-04-11 Electroplating method

Publications (2)

Publication Number Publication Date
JP2007277676A true JP2007277676A (en) 2007-10-25
JP4826756B2 JP4826756B2 (en) 2011-11-30

Family

ID=38679413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108376A Active JP4826756B2 (en) 2006-04-11 2006-04-11 Electroplating method

Country Status (1)

Country Link
JP (1) JP4826756B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155725A (en) * 2007-12-04 2009-07-16 Ebara Corp Plating apparatus and plating method
JP2009228077A (en) * 2008-03-24 2009-10-08 Eastern Co Ltd Tool for electroplating
JP2009264439A (en) * 2008-04-23 2009-11-12 Daido Metal Co Ltd Half-split bearing
JP2013168679A (en) * 2013-05-27 2013-08-29 Ebara Corp Conductive material structure formation method
CN106757254A (en) * 2015-11-20 2017-05-31 比亚迪股份有限公司 Anodic oxidation device
CN113355721A (en) * 2021-06-29 2021-09-07 上海天承化学有限公司 Electroplating jet system
JP7381296B2 (en) 2019-11-05 2023-11-15 Koa株式会社 Rotary plating equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331432B (en) * 2019-07-04 2021-06-22 中山市超旺金属表面处理有限公司 Electroplating equipment for manufacturing PCB with scale removal by uniform shaking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251296A (en) * 1984-05-28 1985-12-11 Asahi Chem Ind Co Ltd Method for plating fine pattern
JPH049500A (en) * 1990-04-27 1992-01-14 Toshiba Corp Electroplating device
JP2004332094A (en) * 2003-03-11 2004-11-25 Almex Inc Method and apparatus for via-filling plating substrate having blind viahole
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251296A (en) * 1984-05-28 1985-12-11 Asahi Chem Ind Co Ltd Method for plating fine pattern
JPH049500A (en) * 1990-04-27 1992-01-14 Toshiba Corp Electroplating device
JP2004332094A (en) * 2003-03-11 2004-11-25 Almex Inc Method and apparatus for via-filling plating substrate having blind viahole
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155725A (en) * 2007-12-04 2009-07-16 Ebara Corp Plating apparatus and plating method
JP2009228077A (en) * 2008-03-24 2009-10-08 Eastern Co Ltd Tool for electroplating
JP2009264439A (en) * 2008-04-23 2009-11-12 Daido Metal Co Ltd Half-split bearing
JP2013168679A (en) * 2013-05-27 2013-08-29 Ebara Corp Conductive material structure formation method
CN106757254A (en) * 2015-11-20 2017-05-31 比亚迪股份有限公司 Anodic oxidation device
CN106757254B (en) * 2015-11-20 2019-07-26 比亚迪股份有限公司 Anodic oxidation device
JP7381296B2 (en) 2019-11-05 2023-11-15 Koa株式会社 Rotary plating equipment
CN113355721A (en) * 2021-06-29 2021-09-07 上海天承化学有限公司 Electroplating jet system
CN113355721B (en) * 2021-06-29 2022-06-17 上海天承化学有限公司 Electroplating jet system

Also Published As

Publication number Publication date
JP4826756B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4826756B2 (en) Electroplating method
JP5650899B2 (en) Electroplating equipment
JP5293276B2 (en) Continuous electrolytic copper plating method
JP5417112B2 (en) Method for electrolytic deposition of metal layers
US8329006B2 (en) Electroplating cell with hydrodynamics facilitating more uniform deposition across a workpiece during plating
TW200923139A (en) Electrolytic copper plating process
JP5437665B2 (en) High-speed continuous plating equipment
JP2006519931A (en) Method of electroplating processed products having high aspect ratio holes
JP6653799B2 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
JP2002226993A (en) Copper plating method and apparatus for printed circuit board
JP2004143478A (en) Acid copper plating method, and acid copper plating device
JP4991472B2 (en) Electroplating method
JP2006041172A (en) Method and device for plating printed wiring board having through hole
JP4235710B2 (en) Via filling plating method and apparatus for substrate having blind via hole
US9175413B2 (en) Copper electroplating solution and method of copper electroplating
EP2607523B1 (en) Method of copper electroplating
KR102263628B1 (en) Desolving tank
KR102558375B1 (en) Plating apparatus including paddle having protrudent peak edge
JPS62202099A (en) Plating device for printed circuit board
JP2013079450A (en) Electroless plating device, and method for feeding oxygen to electroless plating liquid
Ganesan et al. Innovative advances in copper electroplating for IC Substrate manufacturing
JP3376820B2 (en) Electroless gold plating method and electroless gold plating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250