JP2007169700A - Copper electroplating method using insoluble anode - Google Patents
Copper electroplating method using insoluble anode Download PDFInfo
- Publication number
- JP2007169700A JP2007169700A JP2005367643A JP2005367643A JP2007169700A JP 2007169700 A JP2007169700 A JP 2007169700A JP 2005367643 A JP2005367643 A JP 2005367643A JP 2005367643 A JP2005367643 A JP 2005367643A JP 2007169700 A JP2007169700 A JP 2007169700A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- amount
- electrolytic copper
- dissolved oxygen
- plating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は、不溶性陽極を用いる電解銅めっき方法に関する。 The present invention relates to an electrolytic copper plating method using an insoluble anode.
近年、電子機器の高性能化、小型化などに対応するために、プリント配線板の高密度化、薄型化が強く求められている。この様な要求に応えるプリント配線板の製造方法の一つとして、1層毎に導体パターンを形成し、逐次積層を行うビルドアップ工法が採用されている。斯かる方法によって形成される多層プリント配線板(ビルドアップ配線板)では、隣接する層間の電気的接続を確保するために、通常、直径100μm、深さ100μm程度の非貫通孔(マイクロブラインドビアホール:以下ビアと称する場合がある)を開け、その内壁面に銅めっきを行うのが一般的である。この場合、ビア内部の空間には、銅めっきを行った後、絶縁樹脂を充填しているが、ビアの直径が小さい場合には、完全にビア内に樹脂を充填することは困難であり、ビア内部に気泡が残る等の問題が生じ易い。このため、ビア内壁面のみに銅めっきを行い、残りの空間を絶縁樹脂にて充填する方法では、直径の小さいビアには対応できず、ビルドアップ配線板の小型化の妨げとなっている。 In recent years, there has been a strong demand for higher density and thinner printed wiring boards in order to cope with higher performance and smaller size of electronic devices. As one method of manufacturing a printed wiring board that meets such demands, a build-up method is employed in which a conductor pattern is formed for each layer and sequential lamination is performed. In a multilayer printed wiring board (build-up wiring board) formed by such a method, in order to ensure electrical connection between adjacent layers, a non-through hole (micro blind via hole: about 100 μm in diameter and about 100 μm deep) is usually used. In general, a via may be referred to below, and the inner wall surface is plated with copper. In this case, the space inside the via is filled with insulating resin after copper plating, but if the diameter of the via is small, it is difficult to completely fill the resin in the via, Problems such as bubbles remaining inside vias are likely to occur. For this reason, the method in which only the inner wall surface of the via is plated with copper and the remaining space is filled with an insulating resin cannot cope with a via having a small diameter, which hinders the miniaturization of the build-up wiring board.
このような問題に対応するために、ビア内壁面のみに導電性を持たせるのではなく、ビア内部全体を導電体で充填する、ビアフィリングと呼ばれる方法が開発され、ビルドアップ配線板の小型化に大きく貢献している。 In order to deal with such problems, a method called via filling, in which the inside of the via is not made conductive but the entire inside of the via is filled with a conductor, has been developed to reduce the size of the build-up wiring board. Has contributed greatly.
ビアフィリングの方法としては、ビア内部を導電性ペーストにより充填する方法があるが、この方法では、導電率の低さや、ペーストの粘性により直径の小さなビアには対応できないという問題がある。そこで、直径の小さなビアの充填には、導電性が高い金属銅を用いる方法が採用されるようになっている。金属銅による充填方法としては、無電解銅めっきによる方法と、電解銅めっきによる方法があるが、無電解銅めっきによる方法は、析出速度が遅く、ビアを完全に充填するには非常に長時間を要するという問題がある。 As a method of via filling, there is a method of filling the inside of the via with a conductive paste. However, this method has a problem that it cannot cope with a via having a small diameter due to low conductivity and paste viscosity. Therefore, a method using metallic copper having high conductivity has been adopted for filling a via having a small diameter. There are two methods of filling with metallic copper: electroless copper plating and electrolytic copper plating, but the electroless copper plating method has a slow deposition rate and requires a very long time to completely fill the via. There is a problem that requires.
これに対して、電解銅めっき法は、析出速度が速く、比較的短時間で充填を行うことが可能な方法であり、ビアの充填に適した方法といえる(例えば、下記特許文献1、2等参照)。
On the other hand, the electrolytic copper plating method has a high deposition rate and can be filled in a relatively short time, and can be said to be a method suitable for filling vias (for example,
電解銅めっきによるビアフィリングめっきとしては、陽極として可溶性の銅を用いる方法と、不溶性陽極を用いる方法がある。これらの内で、可溶性陽極を用いる場合には、電解により陽極の形状が変化するために、素材(被めっき物)表面の膜厚差が大きくなり易いという欠点がある。これに対して、不溶性陽極を用いる方法は、常に一定の陽極表面形状が保たれるため、素材(被めっき物)の膜厚差を小さくできるという利点がある。 As the via filling plating by electrolytic copper plating, there are a method using soluble copper as an anode and a method using an insoluble anode. Among these, when a soluble anode is used, since the shape of the anode is changed by electrolysis, there is a drawback that the film thickness difference on the surface of the material (substrate) tends to increase. On the other hand, the method using an insoluble anode has an advantage that a difference in film thickness of a material (to-be-plated object) can be reduced because a constant anode surface shape is always maintained.
また、電解銅めっきにおけるめっき液の攪拌方法としては、ビア中への空気の巻き込み(エアートラップ)を生じることなく、ビア内部への銅イオンの供給量を増大させるために、通常、機械撹拌法が採用されており、特に、好ましい方法として、素材(被めっき物)に対して垂直方向にめっき液を流動させる噴流攪拌が採用されている。この方法では、銅めっき浴の建浴直後には、電解銅めっきによるビア内部の充填性が良好であるが、電解銅めっきを継続して行うと徐々に充填性が低下し、長期間安定して電解銅めっきによってビア内部を埋め込むことができない。
本発明は、上記した従来技術の現状鑑みてなされたものであり、その主な目的は、不溶性陽極を用いる電解銅めっき方法において、被めっき物中の非貫通孔、例えば、ビルドアップ配線板用の基板材料のブラインドビアホール内部を長期間安定して充填できる方法を提供することである。 The present invention has been made in view of the above-described conventional state of the art, and the main object thereof is a non-through hole in an object to be plated, such as a build-up wiring board, in an electrolytic copper plating method using an insoluble anode. It is an object of the present invention to provide a method capable of stably filling the inside of a blind via hole of a substrate material for a long period of time.
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、めっき液中の溶存酸素量が、電解銅めっきによる非貫通孔の充填性に大きく影響を及ぼすという従来全く知られていない現象を見出した。そして、めっき液中の溶存酸素量を一定濃度以下に制御することによって、電解銅めっきを長時間継続する場合であっても非貫通孔の充填性を良好に維持できることを見出し、特に、溶存酸素量を一定濃度以下に維持する方法として、空気や不活性ガスによる撹拌を行う場合には、非常に簡単な方法によって電解銅めっき液中の溶存酸素量を一定濃度以下に維持することでき、被めっき物中の非貫通孔内部を長期間安定して充填することが可能となることを見出し、ここに本発明を完成するに至った。 The present inventor has intensively studied to achieve the above-described object. As a result, it has been found that a dissolved oxygen amount in the plating solution has a great influence on the filling ability of non-through holes by electrolytic copper plating. And by controlling the amount of dissolved oxygen in the plating solution below a certain concentration, it has been found that even when electrolytic copper plating is continued for a long time, the filling property of the non-through holes can be maintained well. When stirring with air or inert gas as a method of maintaining the amount below a certain concentration, the dissolved oxygen amount in the electrolytic copper plating solution can be maintained below a certain concentration by a very simple method. It has been found that the inside of the non-through hole in the plated product can be stably filled for a long period of time, and the present invention has been completed here.
即ち、本発明は、下記の電解銅めっき方法及びめっき装置を提供するものである。
1. 不溶性陽極を用いる電解銅めっき方法において、電解銅めっき液中の溶存酸素量を30mg/L以下に維持することを特徴とする電解銅めっき方法。
2. 不溶性陽極を用い、機械的撹拌下に通電する電解銅めっき方法において、電解銅めっき液中の溶存酸素量を30mg/L以下に維持することを特徴とする電解銅めっき方法。
3. 機械的撹拌が、噴流撹拌方式による撹拌である上記項2に記載の方法。
4. 空気撹拌又は不活性ガスによる撹拌によって、電解銅めっき液中の溶存酸素量を30mg/L以下に維持する上記項1〜3のいずれかに記載の方法。
5. 被めっき物が非貫通孔を有する物品である上記項1〜4のいずれかに記載の方法。
6. 非貫通孔を有するビルドアップ配線板であって、上記項1〜4のいずれかに記載の方法により製造されたビルドアップ配線板。
7. 電解めっき槽、不溶性陽極、機械的撹拌手段、及び空気又は不活性ガスによる撹拌手段を備えた、上記項4の電解銅めっき方法を実施するための電解銅めっき装置。
That is, the present invention provides the following electrolytic copper plating method and plating apparatus.
1. In the electrolytic copper plating method using an insoluble anode, the amount of dissolved oxygen in the electrolytic copper plating solution is maintained at 30 mg / L or less.
2. In the electrolytic copper plating method in which an insoluble anode is used and energized under mechanical stirring, the amount of dissolved oxygen in the electrolytic copper plating solution is maintained at 30 mg / L or less.
3. Item 3. The method according to Item 2, wherein the mechanical stirring is stirring by a jet stirring method.
4). Item 4. The method according to any one of
5. Item 5. The method according to any one of
6). A build-up wiring board having a non-through hole, which is manufactured by the method according to any one of
7). An electrolytic copper plating apparatus for carrying out the electrolytic copper plating method according to item 4, comprising an electrolytic plating tank, an insoluble anode, mechanical stirring means, and stirring means using air or an inert gas.
本発明は、不溶性陽極を用いる電解銅めっき方法に関するものである。不溶性陽極を用いて電解銅めっきを行う場合には、陽極において水の電気分解反応が行われて、酸素が発生する。 The present invention relates to an electrolytic copper plating method using an insoluble anode. When electrolytic copper plating is performed using an insoluble anode, water undergoes an electrolysis reaction at the anode to generate oxygen.
本発明者の研究によれば、被めっき物に非貫通孔が存在する場合に、電解銅めっき液中の溶存酸素量が、電解銅めっきによる非貫通孔の埋め込み性に大きく影響を及ぼすという、従来全く知られていない現象が明らかとなった。 According to the inventor's study, when there are non-through holes in the object to be plated, the amount of dissolved oxygen in the electrolytic copper plating solution greatly affects the embeddability of the non-through holes by electrolytic copper plating. A phenomenon that has never been known has been revealed.
この理由については明確ではないが、不活性陽極において発生した酸素は、非常に活性であり、この様な活性な酸素の影響によって添加剤の作用が阻害されることが原因と推測される。そして、活性な酸素の影響を示す指標として、めっき液中の溶存酸素量が有効と考えられる。 Although the reason for this is not clear, it is assumed that oxygen generated at the inert anode is very active, and the action of the additive is inhibited by the influence of such active oxygen. And, as an index indicating the influence of active oxygen, the amount of dissolved oxygen in the plating solution is considered effective.
本発明の電解銅めっき方法は、この様な活性な酸素の影響を防ぐために、電解銅めっき液中の溶存酸素量を30mg/L以下に維持して電解銅めっきを行う方法である。この様な方法によれば、被めっき物中の非貫通孔内部を長期間安定して充填することが可能となる。 The electrolytic copper plating method of the present invention is a method of performing electrolytic copper plating while maintaining the amount of dissolved oxygen in the electrolytic copper plating solution at 30 mg / L or less in order to prevent the influence of such active oxygen. According to such a method, the inside of the non-through hole in the object to be plated can be stably filled for a long time.
銅めっき液中の溶存酸素量の増加を抑制する手段については、特に限定はなく、例えば、陽極を隔膜で分離して、めっき槽中への酸素の流入を抑制する方法も可能であるが、溶存酸素量の増加を完全に抑制することは困難である。本発明では、特に、空気又は不活性ガス(窒素、アルゴンなど)によってめっき液を撹拌する方法によれば、非常に簡単な手段によって、めっき液中の溶存酸素量を低下又は溶存酸素量の上昇を抑制することができる。 There is no particular limitation on the means for suppressing the increase in the amount of dissolved oxygen in the copper plating solution, for example, a method of separating the anode with a diaphragm and suppressing the inflow of oxygen into the plating tank is possible. It is difficult to completely suppress the increase in the amount of dissolved oxygen. In the present invention, in particular, according to the method of stirring the plating solution with air or inert gas (nitrogen, argon, etc.), the amount of dissolved oxygen in the plating solution is reduced or the amount of dissolved oxygen is increased by a very simple means. Can be suppressed.
これは、不溶性陽極を用いて連続して電解を行うと、陽極から発生する酸素によってめっき液中の酸素分圧が上昇し、溶存酸素量は酸素分圧に比例することから、溶存酸素量が増加するが、空気又は不活性ガスによる撹拌を行うと、空気又は不活性ガスの存在によってめっき液中の酸素分圧が低下し、めっき液中の溶存酸素量が低下することによるものと考えられる。例えば、空気は、主に約80%の窒素と約20%の酸素から構成されているため、窒素の存在によって、めっき液中の酸素分圧が低下することになる。 This is because, when electrolysis is performed continuously using an insoluble anode, the oxygen partial pressure in the plating solution increases due to oxygen generated from the anode, and the amount of dissolved oxygen is proportional to the oxygen partial pressure. Although it increases, if stirring with air or inert gas is performed, the oxygen partial pressure in the plating solution decreases due to the presence of air or inert gas, and the amount of dissolved oxygen in the plating solution decreases. . For example, since air is mainly composed of about 80% nitrogen and about 20% oxygen, the presence of nitrogen reduces the oxygen partial pressure in the plating solution.
本発明では、被めっき物は、非貫通孔を有する物品であり、本発明のめっき方法によれば、この様な被めっき物の非貫通孔を、電解銅めっきによって長期間安定して埋め込むことができる。この様な被めっき物として代表的な物品は、ビルドアップ配線板用に用いられるブラインドビアホールを有する基板材料、ダマシンプロセスに用いられるサブミクロンの溝(トレンチ)が形成されたシリコンウエハー等である。特に、ビルドアップ配線板用のブラインドビアホールを有する基板材料を被めっき物とする場合には、本発明のめっき方法によって、めっき金属によるブラインドビアホールの埋め込み、即ち、ビアフィリングを安定して行うことが可能となる。 In the present invention, the object to be plated is an article having non-through holes, and according to the plating method of the present invention, such non-through holes of the object to be plated are stably embedded for a long time by electrolytic copper plating. Can do. Typical articles as such objects to be plated are substrate materials having blind via holes used for build-up wiring boards, silicon wafers with submicron grooves (trench) used for damascene processes, and the like. In particular, when a substrate material having a blind via hole for a build-up wiring board is used as an object to be plated, it is possible to stably embed a blind via hole with a plated metal, that is, to perform via filling, by the plating method of the present invention. It becomes possible.
本発明のめっき方法では、不溶性陽極については、特に限定はなく、公知の不溶性陽極を用いることができる。この様な不溶性陽極としては、酸化イリジウム被覆チタン、白金被覆チタン、二酸化鉛被覆チタン、鉛合金、フェライト、ステンレススチールなどを例示できる。 In the plating method of the present invention, the insoluble anode is not particularly limited, and a known insoluble anode can be used. Examples of such insoluble anodes include iridium oxide-coated titanium, platinum-coated titanium, lead dioxide-coated titanium, lead alloys, ferrite, and stainless steel.
本発明めっき方法の対象となるめっき液は、電解銅めっき液である。具体的な組成については、特に限定はなく、例えば、硫酸銅めっき液、ピロリン酸銅めっき液、シアン化銅めっき液等を挙げることができる。特に、硫酸銅めっき液を対象とする場合に良好な効果を得ることができる。以下、硫酸銅めっき液の組成の具体例を示す。
*硫酸銅めっき液
硫酸銅5水塩 50〜250g/L(好ましくは150〜220g/L)
硫酸 30〜300g/L(好ましくは40〜150g/L)
塩素イオン 5〜100mg/L(好ましくは30〜80mg/L)
上記した組成の硫酸銅めっき液には、通常、ビアフィリングめっき用の添加剤が添加される。この様な添加剤としては、塩素イオンとの相互作用により陰極界面に単分子膜を形成して銅の析出を幅広く抑制するポリマー、電析作用を促進するブライトナー、凸部の電析反応を抑制するレベラーなどがあり、目的に応じて、公知の添加剤成分を適宜選択して用いることができる。
The plating solution to be subjected to the plating method of the present invention is an electrolytic copper plating solution. A specific composition is not particularly limited, and examples thereof include a copper sulfate plating solution, a copper pyrophosphate plating solution, and a copper cyanide plating solution. In particular, good effects can be obtained when a copper sulfate plating solution is targeted. Hereinafter, specific examples of the composition of the copper sulfate plating solution are shown.
* Copper sulfate plating solution Copper sulfate pentahydrate 50-250 g / L (preferably 150-220 g / L)
Sulfuric acid 30-300 g / L (preferably 40-150 g / L)
Chlorine ion 5-100 mg / L (preferably 30-80 mg / L)
An additive for via filling plating is usually added to the copper sulfate plating solution having the above composition. Such additives include polymers that suppress the precipitation of copper widely by forming a monomolecular film at the cathode interface through interaction with chloride ions, brighteners that promote electrodeposition, and electrodeposition reactions on convex parts. There are levelers to be suppressed, and known additive components can be appropriately selected and used according to the purpose.
本発明のめっき方法では、電解銅めっきを行う際に、電解銅めっき液中の溶存酸素量を30mg/L程度以下に維持することが必要であり、20mg/L程度以下に維持することが好ましい。溶存酸素量を所定量以下に維持するための具体的な手段としては、上述した様に、隔膜によって不溶性陽極を分離して、めっき液中の溶存酸素量の増加を抑制する方法、空気又は不活性ガスによる撹拌などの手段を採用できる。特に、溶存酸素量の低減には、不活性ガスによる撹拌が効果的であるが、空気撹拌は、低コストで容易に実施可能であることから、溶存酸素量を低濃度に維持する方法として非常に有効な手段である。 In the plating method of the present invention, when performing electrolytic copper plating, it is necessary to maintain the amount of dissolved oxygen in the electrolytic copper plating solution at about 30 mg / L or less, and preferably about 20 mg / L or less. . Specific means for maintaining the amount of dissolved oxygen below a predetermined amount include, as described above, a method of separating the insoluble anode with a diaphragm to suppress an increase in the amount of dissolved oxygen in the plating solution, air or Means such as stirring with an active gas can be employed. In particular, stirring with an inert gas is effective in reducing the amount of dissolved oxygen, but air stirring can be easily performed at low cost, so it is an extremely useful method for maintaining the amount of dissolved oxygen at a low concentration. It is an effective means.
空気撹拌を行う場合には、具体的な撹拌条件については、めっき液の組成、めっき装置の構造などに応じて適宜決めればよいが、溶存酸素量の抑制には、空気撹拌量は多いほど効果的であり、気泡は小さいほど有効である。通常は、めっき槽の底部に設置した空気導入配管(空気撹拌パイプ)に空気を供給してめっき液を撹拌すればよい。この場合、めっき槽内を均一に撹拌できるように、空気の吹き出し穴をほぼ等間隔で設けることが好ましい。空気の供給量は、特に限定的ではなく、めっき液の組成、めっき条件などによって適宜決めればよいが、通常、めっき液1Lに対して、0.05L/分程度以上とすることが好ましく、0.3L/分以上とすることがより好ましい。 In the case of performing air agitation, specific agitation conditions may be appropriately determined according to the composition of the plating solution, the structure of the plating apparatus, etc., but the greater the amount of air agitation, the more effective the suppression of the dissolved oxygen amount. The smaller the bubbles, the more effective. Usually, the plating solution may be stirred by supplying air to an air introduction pipe (air stirring pipe) installed at the bottom of the plating tank. In this case, it is preferable to provide air blowing holes at substantially equal intervals so that the inside of the plating tank can be uniformly stirred. The supply amount of air is not particularly limited, and may be appropriately determined depending on the composition of the plating solution, the plating conditions, etc., but is usually preferably about 0.05 L / min or more with respect to 1 L of the plating solution. More preferably 3 L / min or more.
その他のめっき方法、めっき条件などについては特に限定はなく、被めっき物の種類、めっき液の組成等に応じて適宜決めればよい。 Other plating methods and plating conditions are not particularly limited, and may be appropriately determined according to the type of the object to be plated, the composition of the plating solution, and the like.
被めっき物が、ビルドアップ配線板用のブラインドビアホールを有する基板材料である場合には、めっき液の撹拌方法として、機械撹拌と空気撹拌を併用することが好ましい。空気撹拌のみを行う場合には、めっき液中の溶存酸素量を低下させることは可能であるが、ビア内部へ空気が巻き込まれ易く、これによって、銅めっきによるビアホールの埋め込み性が劣るものとなり易い。このため、機械撹拌によって、ビアホール内部に十分のめっき液を供給し、同時に空気撹拌によって、溶存酸素量を30mg/L以下、特に、20mg/L以下に維持しながら電解銅めっきを行う方法が好ましい。機械撹拌の方法としては、ビアホールの内部まで十分にめっき液が供給されるように、撹拌されためっき液が、被めっき物の表面に対してできるだけ垂直方向から吹き付けられる方法が好ましい。特に、機械撹拌の方法としては、めっき液を循環させる噴流撹拌法によって、被めっき物のビアホール面に対してほぼ垂直方向からめっき液を吹き付ける方法が好ましい。 When the object to be plated is a substrate material having blind via holes for build-up wiring boards, it is preferable to use both mechanical stirring and air stirring as the plating solution stirring method. When only air agitation is performed, it is possible to reduce the amount of dissolved oxygen in the plating solution, but it is easy for air to be trapped inside the via, which tends to deteriorate the via hole embedding by copper plating. . For this reason, a method of performing electrolytic copper plating while supplying a sufficient plating solution to the inside of the via hole by mechanical stirring and simultaneously maintaining the dissolved oxygen amount at 30 mg / L or less, particularly 20 mg / L or less by air stirring is preferable. . As a mechanical stirring method, a method in which the stirred plating solution is sprayed from the vertical direction as much as possible on the surface of the object to be plated is preferable so that the plating solution is sufficiently supplied to the inside of the via hole. In particular, the mechanical stirring method is preferably a method in which the plating solution is sprayed from a direction substantially perpendicular to the via hole surface of the object to be plated by a jet stirring method in which the plating solution is circulated.
電解銅めっきのその他のめっき条件については、特に限定はなく、例えば、硫酸銅めっき液を用いる場合には、液温10〜40℃程度、陰極電流密度0.1〜10.0A/dm2の範囲内でめっき条件を適宜決めればよい。 Other plating conditions for electrolytic copper plating are not particularly limited. For example, when a copper sulfate plating solution is used, the temperature of the solution is about 10 to 40 ° C., and the cathode current density is 0.1 to 10.0 A / dm 2. What is necessary is just to determine plating conditions suitably.
本発明のめっき方法は、溶存酸素量を30mg/L以下に維持するための手段に応じて、必要な機構を有するめっき装置を用いて実施することができる。例えば、不溶性陽極を隔膜によって分離することによって、溶存酸素量を30mg/L以下に維持する場合には、例えば、隔膜として、耐酸性のイオン非透過性膜(中性膜)等を用いて、不溶性陽極を被めっき物(陰極)から分離した構造としためっき槽を用いることができる。 The plating method of this invention can be implemented using the plating apparatus which has a required mechanism according to the means for maintaining the amount of dissolved oxygen at 30 mg / L or less. For example, when the amount of dissolved oxygen is maintained at 30 mg / L or less by separating the insoluble anode with a diaphragm, for example, an acid-resistant ion-impermeable membrane (neutral membrane) or the like is used as the diaphragm. A plating tank having a structure in which an insoluble anode is separated from an object to be plated (cathode) can be used.
また、噴流撹拌と空気撹拌を併用する場合には、例えば、図1に模式的に示すめっき装置1を用いて、本発明方法を実施することができる。図1の装置では、めっき槽2の両端に不溶性陽極3a、3bが設置され、不溶性陽極3a、3b間には、被めっき物4の設置部が設けられている。更に、設置される被めっき物4の両側に位置するように、噴流撹拌装置5a、5bが設置される。該噴流撹拌装置5a、5bは、めっき槽2内のめっき液を循環させて、被めっき物4に噴射することができる構造であり、めっき液の噴出孔6は、被めっき物4の表面にめっき液を噴射することができるように配置されている。該めっき槽2には、更に、空気撹拌のための空気撹拌パイプ7a、7bが設置され、めっき槽外の空気供給ポンプ8から供給された空気によってめっき液を撹拌できる構造となっており、これによって電解銅めっき液中の溶存酸素量を低下させることができる。
Moreover, when using jet stirring and air stirring together, this invention method can be implemented using the
図2は、本発明方法を実施するためのめっき装置のその他の例の概略図である。図2の装置では、不溶性陽極3a、3b、被めっき物4の設置部、噴流撹拌装置5a、5b等の設置方法は、図1の装置と同様であり、更に、金属銅を補給するための銅塩溶解槽9が設置されている。めっき槽2と銅塩溶解槽9の間には、めっき液の循環のための経路10が設置されており、めっきの進行によって減少した金属銅は、銅塩溶解槽において銅塩を溶解することによって補給される。更に、銅塩溶解槽9には、空気撹拌のための空気導入配管が設置されており、槽外に設置した空気供給ポンプ8から供給された空気によって、銅塩溶解槽9中においてめっき液を撹拌できる構造となっており、これによって電解銅めっき液中の溶存酸素量を低下させることが可能である。めっき槽2と銅塩溶解槽9との間のめっき液の循環量は、めっき条件などに応じて、適正な金属銅濃度と溶存酸素量が維持されるように適宜決めればよいが、通常、めっき槽2の総液量に対して1時間当たり3〜5回程度の循環量とすればよい。
FIG. 2 is a schematic view of another example of a plating apparatus for carrying out the method of the present invention. In the apparatus of FIG. 2, the installation method of the
図1及び図2に示すめっき装置において、隔膜を用いて、不溶性陽極をその他の部分から分離してもよく、これによって、溶存酸素量を更に減少させることができる。 In the plating apparatus shown in FIG. 1 and FIG. 2, the insoluble anode may be separated from other parts by using a diaphragm, whereby the amount of dissolved oxygen can be further reduced.
更に、図2に示すめっき装置において、銅塩溶解槽9の他に、空気導入配管をめっき槽2にも設置してよい。これによって、効率よく溶存酸素量の上昇を抑制することができる。 Furthermore, in the plating apparatus shown in FIG. 2, in addition to the copper salt dissolution tank 9, an air introduction pipe may be installed in the plating tank 2. Thereby, an increase in the dissolved oxygen amount can be suppressed efficiently.
本発明の電解銅めっき方法によれば、非貫通孔を有する物品、例えば、ビルドアップ配線板用のブラインドビアホールを有する基板材料を被めっき物とする場合に、長期間安定して銅めっきによって非貫通孔を埋め込むことができる。従って、本発明のめっき方法を採用することによって、例えば、ビアフィリングによるビルドアップ配線板の製造を長期間安定して行うことが可能となる。 According to the electrolytic copper plating method of the present invention, when an article having a non-through hole, for example, a substrate material having a blind via hole for a build-up wiring board is used as an object to be plated, it can be stably removed for a long time by copper plating. The through hole can be embedded. Therefore, by adopting the plating method of the present invention, for example, it is possible to stably manufacture a build-up wiring board by via filling for a long period of time.
以下、試験例及び実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to test examples and examples.
試験例1(電解における溶存酸素量変化)
下記組成の電解銅めっき液について、陽極として酸化イリジウム被覆チタン材、陰極として銅板を用いて、連続して電解を行い、東亜ディーケーケー(株)製のポータブル溶存酸素計(DO−24P)を用いて溶存酸素量の変化を測定した。結果を下記表1に示す。
*電解銅めっき液組成
硫酸銅:200g/L
硫酸:50g/L
塩素イオン:50mg/L
添加剤:ルチナFA(商標名)、奥野製薬工業株式会社製
*めっき条件
陰極電流密度:1.5A/dm2
液温度:23℃
撹拌:スターラー
Test Example 1 (Change in dissolved oxygen amount in electrolysis)
About the electrolytic copper plating solution of the following composition, it electrolyzes continuously using an iridium oxide covering titanium material as an anode and a copper plate as a cathode, and uses a portable dissolved oxygen meter (DO-24P) manufactured by Toa DK Corporation. The change in the amount of dissolved oxygen was measured. The results are shown in Table 1 below.
* Electrolytic copper plating solution composition Copper sulfate: 200 g / L
Sulfuric acid: 50 g / L
Chlorine ion: 50mg / L
Additive: Lucina FA (trade name), manufactured by Okuno Pharmaceutical Co., Ltd. * Plating conditions Cathodic current density: 1.5 A / dm 2
Liquid temperature: 23 ° C
Stirring: Stirrer
以上の結果より、電解銅めっきを連続して行うと、めっき液中の溶存酸素量が増加することが判る。 From the above results, it can be seen that the amount of dissolved oxygen in the plating solution increases when electrolytic copper plating is continuously performed.
試験例2(溶存酸素量とめっき後のビア部の凹みの深さの関係)
以下の方法で、めっき液中の溶存酸素量とめっき後のビア部の凹みの深さとの関係について測定した。
Test example 2 (Relationship between the amount of dissolved oxygen and the depth of the dent in the via portion after plating)
The relationship between the amount of dissolved oxygen in the plating solution and the depth of the recess in the via portion after plating was measured by the following method.
実験方法としては、試験例1と同様の条件で連続して電解銅めっきの電解を行い、東亜ディーケーケー(株)製のポータブル溶存酸素計(DO−24P)を用いて溶存酸素量を測定し、溶存酸素量が一定量に達したところで電解を停止し、直径100μm、深さ60μmの多数のビアを有するビルドアップ基板を被めっき物として、下記条件で電解銅めっきを行い、ビアの最大凹みの深さを測定した。結果を下記表2に示す。
*めっき条件
陰極電流密度:1.5A/dm2
めっき時間:75分(めっき厚約25μm)
液温度:23℃
陽極:酸化イリジウム被覆チタン
撹拌:スターラー
As an experimental method, electrolysis of electrolytic copper plating was continuously performed under the same conditions as in Test Example 1, and the amount of dissolved oxygen was measured using a portable dissolved oxygen meter (DO-24P) manufactured by Toa DKK Co., Ltd. When the amount of dissolved oxygen reaches a certain level, the electrolysis is stopped, and a build-up substrate having a large number of vias with a diameter of 100 μm and a depth of 60 μm is used as an object to be plated. The depth was measured. The results are shown in Table 2 below.
* Plating conditions Cathodic current density: 1.5 A / dm 2
Plating time: 75 minutes (plating thickness approx. 25 μm)
Liquid temperature: 23 ° C
Anode: Titanium coated with iridium oxide Stirrer: Stirrer
以上の結果から明らかなように、めっき液中の溶存酸素量が増加すると、ビア部の凹み量が多くなり、ビアの埋め込み性が低下する傾向が認められる。 As is clear from the above results, when the amount of dissolved oxygen in the plating solution is increased, the amount of recesses in the via portion is increased, and there is a tendency for via embedding to be reduced.
試験例3(撹拌方法による溶存酸素量の変化の確認試験)
試験例1と同様の条件で連続して電解銅めっきの電解を行い、めっき液中の溶存酸素量がほぼ飽和状態に達した後、電解を停止した。
Test Example 3 (Confirmation test of change in dissolved oxygen amount by stirring method)
Electrolytic copper plating was continuously electrolyzed under the same conditions as in Test Example 1, and after the amount of dissolved oxygen in the plating solution reached a substantially saturated state, the electrolysis was stopped.
この電解銅めっき液に、空気、窒素又は酸素を0.3L/分・Lの流量で吹き込んで、溶存酸素量を経時的に測定した。結果を下記表3に示す。 Air, nitrogen or oxygen was blown into this electrolytic copper plating solution at a flow rate of 0.3 L / min · L, and the amount of dissolved oxygen was measured over time. The results are shown in Table 3 below.
以上の結果から明らかなように、空気又は窒素を吹き込むことによって、めっき液中の溶存酸素量を大きく低減できることが判る。 As is apparent from the above results, it can be seen that the amount of dissolved oxygen in the plating solution can be greatly reduced by blowing air or nitrogen.
試験例4(空気撹拌量と溶存酸素量との関係)
試験例1と同様の条件で連続して電解銅めっきの電解を行い、めっき液中の溶存酸素量がほぼ飽和状態に達した後、電解を停止した。
Test Example 4 (Relationship between air agitation amount and dissolved oxygen amount)
Electrolytic copper plating was continuously electrolyzed under the same conditions as in Test Example 1, and after the amount of dissolved oxygen in the plating solution reached a substantially saturated state, the electrolysis was stopped.
この電解銅めっき液に、0.05L/分・L〜1L/分・Lの範囲の流量で空気を吹き込み、溶存酸素量を経時的に測定した。結果を下記表4に示す。 Air was blown into this electrolytic copper plating solution at a flow rate in the range of 0.05 L / min · L to 1 L / min · L, and the amount of dissolved oxygen was measured over time. The results are shown in Table 4 below.
以上の結果から、空気流量が0.05L/分・L以上の場合に、溶存酸素量を低減することが可能であり、空気流量が多くなると短時間で溶存酸素量を低減できることが判る。 From the above results, it can be seen that the dissolved oxygen amount can be reduced when the air flow rate is 0.05 L / min · L or more, and the dissolved oxygen amount can be reduced in a short time when the air flow rate increases.
実施例1
図1に示された構造のめっき装置(容量400L)を用い、直径100μm、深さ60μmの多数のビアを有する基板を被めっき物として、噴流撹拌のみを行った場合と、噴流撹拌と空気撹拌を併用した場合について、下記条件で電解銅めっきを行って溶存酸素量とビア部の凹み量を測定した。結果を下記表5に示す。
*電解銅めっき液組成:
硫酸銅(5水塩)200g/L
硫酸50g/L
塩素イオン50mg/L
添加剤:ルチナFA(奥野製薬工業(株)製)
*めっき条件:
電流密度:1.5A/dm2
めっき時間:75分
液温:23℃
陽極:酸化イリジウム
隔膜:耐酸中性膜
Example 1
Using the plating apparatus having the structure shown in FIG. 1 (capacity 400 L) and using a substrate having a large number of vias with a diameter of 100 μm and a depth of 60 μm as an object to be plated, only jet stirring and jet stirring and air stirring are performed. In the case of using together, electrolytic copper plating was performed under the following conditions to measure the amount of dissolved oxygen and the amount of dent in the via portion. The results are shown in Table 5 below.
* Electrolytic copper plating solution composition:
Copper sulfate (pentahydrate) 200g / L
Sulfuric acid 50g / L
Chlorine ion 50mg / L
Additive: Lucina FA (Okuno Pharmaceutical Co., Ltd.)
* Plating conditions:
Current density: 1.5A / dm 2
Plating time: 75 minutes Liquid temperature: 23 ° C
Anode: Iridium oxide diaphragm: Acid-resistant neutral film
以上の結果から明らかなように、噴流撹拌のみを行った場合には、電解開始から約8時間後において埋め込み性の低下が認められた。これに対して、噴流撹拌と空気撹拌を併用した場合には、電解開始から72時間経過後にも埋め込み性の低下は認められなかった。 As is clear from the above results, when only jet stirring was performed, a decrease in embedding property was observed about 8 hours after the start of electrolysis. On the other hand, when jet stirring and air stirring were used together, no decrease in embedding property was observed even after 72 hours from the start of electrolysis.
1:めっき装置、 2:めっき槽、
3a,3b:不溶性陽極、 4:被めっき物、
5a、5b:噴流撹拌装置、 6:めっき液の噴出孔、
7a、7b:空気撹拌パイプ、 8:空気供給ポンプ、
9:銅塩溶解槽、 10:めっき液循環経路
1: plating apparatus, 2: plating tank,
3a, 3b: insoluble anode, 4: object to be plated,
5a, 5b: jet agitator, 6: spray hole for plating solution,
7a, 7b: air stirring pipe, 8: air supply pump,
9: Copper salt dissolution tank, 10: Plating solution circulation path
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005367643A JP2007169700A (en) | 2005-12-21 | 2005-12-21 | Copper electroplating method using insoluble anode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005367643A JP2007169700A (en) | 2005-12-21 | 2005-12-21 | Copper electroplating method using insoluble anode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007169700A true JP2007169700A (en) | 2007-07-05 |
Family
ID=38296642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005367643A Pending JP2007169700A (en) | 2005-12-21 | 2005-12-21 | Copper electroplating method using insoluble anode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007169700A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277676A (en) * | 2006-04-11 | 2007-10-25 | C Uyemura & Co Ltd | Electroplating method |
JP2010202962A (en) * | 2009-03-06 | 2010-09-16 | Sumitomo Electric Ind Ltd | High-speed continuous plating apparatus |
CN102242380A (en) * | 2010-05-13 | 2011-11-16 | 天津市大港镀锌厂 | Method for reinforcing uniformity of zinc plating passivation layer |
JP2013168679A (en) * | 2013-05-27 | 2013-08-29 | Ebara Corp | Conductive material structure formation method |
CN105316737A (en) * | 2015-11-23 | 2016-02-10 | 深圳崇达多层线路板有限公司 | High density interconnector (HDI) board blind hole electroplating device |
JP2016074975A (en) * | 2014-10-06 | 2016-05-12 | 株式会社荏原製作所 | Plating method |
US9359688B1 (en) | 2012-12-05 | 2016-06-07 | Novellus Systems, Inc. | Apparatuses and methods for controlling PH in electroplating baths |
CN106757254A (en) * | 2015-11-20 | 2017-05-31 | 比亚迪股份有限公司 | Anodic oxidation device |
US9732434B2 (en) | 2014-04-18 | 2017-08-15 | Lam Research Corporation | Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes |
US9816193B2 (en) | 2011-01-07 | 2017-11-14 | Novellus Systems, Inc. | Configuration and method of operation of an electrodeposition system for improved process stability and performance |
US9816196B2 (en) | 2012-04-27 | 2017-11-14 | Novellus Systems, Inc. | Method and apparatus for electroplating semiconductor wafer when controlling cations in electrolyte |
CN107513741A (en) * | 2017-09-07 | 2017-12-26 | 延康汽车零部件如皋有限公司 | A kind of electro-plating method for improving machining long workpieces copper coating uniformity |
US10190232B2 (en) | 2013-08-06 | 2019-01-29 | Lam Research Corporation | Apparatuses and methods for maintaining pH in nickel electroplating baths |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01297884A (en) * | 1988-05-25 | 1989-11-30 | Permelec Electrode Ltd | Copper plating of printed board |
JPH0273689A (en) * | 1988-09-09 | 1990-03-13 | Permelec Electrode Ltd | Copper plating method for printed board |
JPH11220257A (en) * | 1998-01-30 | 1999-08-10 | Elna Co Ltd | Manufacturing device of printed wiring board |
WO2001068952A1 (en) * | 2000-03-17 | 2001-09-20 | Ebara Corporation | Method and apparatus for electroplating |
JP2001267726A (en) * | 2000-03-22 | 2001-09-28 | Toyota Autom Loom Works Ltd | Electrolytic plating method and device for wiring board |
JP2002161391A (en) * | 2000-11-21 | 2002-06-04 | Toppan Printing Co Ltd | Electroplating method and method for manufacturing wiring board therewith |
JP2002173793A (en) * | 2000-12-01 | 2002-06-21 | Marunaka Kogyo Kk | Plating liquid spouting nozzle device for plating equipment |
JP2002226993A (en) * | 2001-02-01 | 2002-08-14 | Asuka Engineering:Kk | Copper plating method and apparatus for printed circuit board |
JP2003133698A (en) * | 2001-10-29 | 2003-05-09 | Ngk Spark Plug Co Ltd | Method for manufacturing board |
JP2003183879A (en) * | 2001-12-18 | 2003-07-03 | Learonal Japan Inc | Electrolytic plating method |
-
2005
- 2005-12-21 JP JP2005367643A patent/JP2007169700A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01297884A (en) * | 1988-05-25 | 1989-11-30 | Permelec Electrode Ltd | Copper plating of printed board |
JPH0273689A (en) * | 1988-09-09 | 1990-03-13 | Permelec Electrode Ltd | Copper plating method for printed board |
JPH11220257A (en) * | 1998-01-30 | 1999-08-10 | Elna Co Ltd | Manufacturing device of printed wiring board |
WO2001068952A1 (en) * | 2000-03-17 | 2001-09-20 | Ebara Corporation | Method and apparatus for electroplating |
JP2001267726A (en) * | 2000-03-22 | 2001-09-28 | Toyota Autom Loom Works Ltd | Electrolytic plating method and device for wiring board |
JP2002161391A (en) * | 2000-11-21 | 2002-06-04 | Toppan Printing Co Ltd | Electroplating method and method for manufacturing wiring board therewith |
JP2002173793A (en) * | 2000-12-01 | 2002-06-21 | Marunaka Kogyo Kk | Plating liquid spouting nozzle device for plating equipment |
JP2002226993A (en) * | 2001-02-01 | 2002-08-14 | Asuka Engineering:Kk | Copper plating method and apparatus for printed circuit board |
JP2003133698A (en) * | 2001-10-29 | 2003-05-09 | Ngk Spark Plug Co Ltd | Method for manufacturing board |
JP2003183879A (en) * | 2001-12-18 | 2003-07-03 | Learonal Japan Inc | Electrolytic plating method |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277676A (en) * | 2006-04-11 | 2007-10-25 | C Uyemura & Co Ltd | Electroplating method |
JP2010202962A (en) * | 2009-03-06 | 2010-09-16 | Sumitomo Electric Ind Ltd | High-speed continuous plating apparatus |
CN102242380A (en) * | 2010-05-13 | 2011-11-16 | 天津市大港镀锌厂 | Method for reinforcing uniformity of zinc plating passivation layer |
US9816193B2 (en) | 2011-01-07 | 2017-11-14 | Novellus Systems, Inc. | Configuration and method of operation of an electrodeposition system for improved process stability and performance |
US10745817B2 (en) | 2011-01-07 | 2020-08-18 | Novellus Systems, Inc. | Configuration and method of operation of an electrodeposition system for improved process stability and performance |
US9816196B2 (en) | 2012-04-27 | 2017-11-14 | Novellus Systems, Inc. | Method and apparatus for electroplating semiconductor wafer when controlling cations in electrolyte |
US9359688B1 (en) | 2012-12-05 | 2016-06-07 | Novellus Systems, Inc. | Apparatuses and methods for controlling PH in electroplating baths |
JP2013168679A (en) * | 2013-05-27 | 2013-08-29 | Ebara Corp | Conductive material structure formation method |
US10190232B2 (en) | 2013-08-06 | 2019-01-29 | Lam Research Corporation | Apparatuses and methods for maintaining pH in nickel electroplating baths |
US9732434B2 (en) | 2014-04-18 | 2017-08-15 | Lam Research Corporation | Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes |
US10954604B2 (en) | 2014-04-18 | 2021-03-23 | Lam Research Corporation | Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes |
JP2016074975A (en) * | 2014-10-06 | 2016-05-12 | 株式会社荏原製作所 | Plating method |
US10294581B2 (en) | 2014-10-06 | 2019-05-21 | Ebara Corporation | Plating method |
CN106757254A (en) * | 2015-11-20 | 2017-05-31 | 比亚迪股份有限公司 | Anodic oxidation device |
CN106757254B (en) * | 2015-11-20 | 2019-07-26 | 比亚迪股份有限公司 | Anodic oxidation device |
CN105316737A (en) * | 2015-11-23 | 2016-02-10 | 深圳崇达多层线路板有限公司 | High density interconnector (HDI) board blind hole electroplating device |
CN107513741A (en) * | 2017-09-07 | 2017-12-26 | 延康汽车零部件如皋有限公司 | A kind of electro-plating method for improving machining long workpieces copper coating uniformity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007169700A (en) | Copper electroplating method using insoluble anode | |
JP5293276B2 (en) | Continuous electrolytic copper plating method | |
KR100877923B1 (en) | Electrolytic copper plating method | |
JP5110269B2 (en) | Electro copper plating method | |
JP6111241B2 (en) | Aqueous acid bath for electrolytic deposition of copper, use of the bath, use of ruthenium ions in the bath, and method for electrolytic deposition of copper on a workpiece using the bath | |
JP2005320631A (en) | Improved plating method | |
JP2003113490A (en) | Plating bath and method for depositing metal layer on substrate | |
CN106435664A (en) | Electro-coppering solution of soluble anode for hole filling | |
JP2006316328A (en) | Method for manufacturing two-layer flexible copper-clad laminate | |
JP4163728B2 (en) | Electroplating method | |
TW201816199A (en) | Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid | |
TWI683931B (en) | Anode for electrolytic copper plating and electrolytic copper plating device using the same | |
TWI412631B (en) | Copper plating solution for embedding ULSI (Ultra Large-Scale Integration) micro copper wiring | |
JP2009299128A (en) | Electroplating apparatus | |
EP2576867A1 (en) | Method for etching of copper and copper alloys | |
JP3903120B2 (en) | Copper sulfate plating method | |
JP2009242860A (en) | Pretreating agent for acidic copper and plating method using the same | |
JP2009167506A (en) | Acid copper electroplating solution and method for producing fine wiring circuit using the same | |
JP5502967B2 (en) | Acid electrolytic copper plating solution | |
JP2009132982A (en) | Method of manufacturing copper wiring | |
JP2009249653A (en) | Electroplating method | |
EP3037572B1 (en) | Electrolytic copper plating solution | |
KR102028357B1 (en) | Copper electroplating solution and method of copper electroplating | |
TWI515332B (en) | Copper electroplating solution and method of copper electroplating | |
JP2008056968A (en) | Method of manufacturing copper wiring and electrolyte for copper plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080402 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080402 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080423 |
|
A521 | Written amendment |
Effective date: 20080402 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A521 | Written amendment |
Effective date: 20080423 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080909 |
|
RD03 | Notification of appointment of power of attorney |
Effective date: 20080909 Free format text: JAPANESE INTERMEDIATE CODE: A7423 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110809 |