JPH01297884A - Copper plating of printed board - Google Patents

Copper plating of printed board

Info

Publication number
JPH01297884A
JPH01297884A JP12807888A JP12807888A JPH01297884A JP H01297884 A JPH01297884 A JP H01297884A JP 12807888 A JP12807888 A JP 12807888A JP 12807888 A JP12807888 A JP 12807888A JP H01297884 A JPH01297884 A JP H01297884A
Authority
JP
Japan
Prior art keywords
anode
plating
copper
cathode
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12807888A
Other languages
Japanese (ja)
Other versions
JP2510422B2 (en
Inventor
Kazuhiro Hirao
和宏 平尾
Kenichi Ueno
賢一 上野
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP63128078A priority Critical patent/JP2510422B2/en
Publication of JPH01297884A publication Critical patent/JPH01297884A/en
Application granted granted Critical
Publication of JP2510422B2 publication Critical patent/JP2510422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To apply high quality plating to a surface of a plating object and a through hole by separating an anode consisting of insoluble metal electrode from a cathode consisting of a plating object for a printed board by a barrier and by making electrolytic solution of copper ion and additive-containing solution. CONSTITUTION:When applying copper plating to a printed substrate by using an insoluble electrode, an anode consisting of an insoluble metal electrode is covered with a bag-like barrier whose upper section is open to separate the anode from a cathode consisting of a plating object for a printed board. Copper ion and additive-containing solution is used as electrolytic solution to apply plating to a surface of the plating object and a through hole. Electrolytic plating is applied while pressurizing an anode room side. High quality copper plating of the printed board is applied by making an ion exchanging film of the barrier to separate the anode from the cathode and by making an electrode which is made by coating titanium base with platinum group metallic oxide, of the cathode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、不溶性電極を使用してプリント基板へ銅メッ
キを行うための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for copper plating printed circuit boards using insoluble electrodes.

(従来技術とその問題点) 両面に銅箔層を形成したプリント基板の表面及び裏面の
回路部分を接続するには、必要な部分に貫通孔つまりス
ルーホールを形成し、該スルーホールの内面に銅メッキ
を施して前記両回路部分を接続するようにしている。該
スルーホールメッキを行う場合には、前記プリント基板
に前記スルーホールを形成した後、パラジウム含有浴を
使用して活性化を行い、次いで無電解銅メッキをプリン
ト基板全体に行いメッキ薄層を付着させた後、更に電解
銅メッキを行うようにする。無電解銅メッキのみで全体
のメッキを行わず電解銅メッキを併用する理由は、第1
に無電解メッキは析出速度が遅く無電解メッキのみでは
長時間を要すること第2に無電解銅メッキ液が高価だか
らである。
(Prior art and its problems) In order to connect the circuit parts on the front and back sides of a printed circuit board with copper foil layers formed on both sides, through holes, or through holes, are formed in the necessary parts, and the inner surface of the through holes is The two circuit parts are connected by copper plating. When performing through-hole plating, after forming the through-holes on the printed circuit board, activation is performed using a palladium-containing bath, and then electroless copper plating is performed on the entire printed circuit board to attach a thin plating layer. After this, electrolytic copper plating is further performed. The reason why electroless copper plating is used in conjunction with electrolytic copper plating without plating the entire body is as follows:
This is because electroless plating has a slow deposition rate and requires a long time with electroless plating alone.Secondly, electroless copper plating solution is expensive.

該電解銅メッキは、エツチングを均一に行うこと及び直
径0.3mm以下のスルーホール内に均一にメッキする
必要があるため極めて厳しい管理が、つまり直径0 、
3mm以下のスルーホール内に均一に銅が入り込むよう
つきまわりが良好であること、銅メッキが適度の硬さを
有すること、ひび割れ等が生じないこと、光沢がありヤ
ケ等が起こらないこと等が要求される。これらの多種の
要求を満足させるために通常は多種類の添加剤をメッキ
液中に含有させるようにしている。
The electrolytic copper plating requires extremely strict control because it is necessary to uniformly perform etching and uniformly plate the inside of a through hole with a diameter of 0.3 mm or less.
The copper plating must have a good throwing power so that the copper can be uniformly inserted into the through hole of 3 mm or less, the copper plating must have appropriate hardness, no cracks will occur, and it will be shiny and will not cause fading. required. In order to satisfy these various demands, a wide variety of additives are usually included in the plating solution.

該添加剤としては、1.3−ジオキソラン重合体又はポ
リプロピレングリコール、ポリプロピレングリコ−ル等
のポリエーテル類及び有機硫黄化合物、有機窒素化合物
等が使用されているが、いずれも陽分極によって酸化分
解され易いという問題点を有し、該添加剤の分解は陽極
の平衡電位が高いほど生じ易い。従って従来の銅メッキ
方法では陽極として銅又は銅合金の溶性陽極を使用して
平衡電位を下げ前記添加剤の分解を防止するようにして
いる。即ち銅や銅合金を使用した場合の陽極(Cu−+
Cu”+2 e)の平衡電位は0.345V(vsNH
2)と極めて低いのに対し、不溶性金属電極を使用した
場合の陽極反応は通常の酸素発生反応(20H−+2 
e=’AOz+HzO)となりその平衡電位が1.24
VvsNH2(pH=o)となり、IV近く高くなって
しまう。
As the additive, 1,3-dioxolane polymer, polypropylene glycol, polyethers such as polypropylene glycol, organic sulfur compounds, organic nitrogen compounds, etc. are used, but all of them are oxidatively decomposed by anodic polarization. The higher the equilibrium potential of the anode, the more easily the additive decomposes. Therefore, in conventional copper plating methods, a soluble anode of copper or a copper alloy is used as an anode to lower the equilibrium potential and prevent the additive from decomposing. In other words, when copper or copper alloy is used, the anode (Cu-+
The equilibrium potential of Cu”+2 e) is 0.345V (vsNH
2), which is extremely low, whereas the anodic reaction when using an insoluble metal electrode is a normal oxygen evolution reaction (20H-+2
e='AOz+HzO), and the equilibrium potential is 1.24
V vs NH2 (pH=o), which becomes high near IV.

しかしながら陽極が純銅の溶性電極の場合はこのような
低い電位においても前記添加剤の分解が生じるため、常
に該添加剤を補給して該添加剤量をほぼ一定に維持する
必要があるとともに、溶性電極の常としてメッキ量と該
溶性電極の溶出量のアンバランスを回避し電解浴中の銅
イオン濃度の変化を最小限に抑制し更に溶解した溶性陽
極を交換する等の電解液や電極の保守管理が必要となる
という問題点がある。
However, when the anode is a soluble electrode made of pure copper, the additive decomposes even at such a low potential, so it is necessary to constantly replenish the additive to maintain the amount of the additive almost constant. Maintenance of the electrolyte and electrodes, such as avoiding imbalance between the amount of plating and the amount of elution of the soluble electrode, minimizing changes in the copper ion concentration in the electrolytic bath, and replacing the dissolved soluble anode, as usual for electrodes. The problem is that it requires management.

通常の硫酸銅浴による銅メッキでは、前記問題点を解消
するために含リン銅を袋状体に収容して電解を行うメッ
キ法が採用されている。該メッキ法では、溶性陽極であ
る銅の表面にリン酸塩の被膜が形成され該被膜が前記添
加剤の前記銅陽極への接触度を減少させて前記添加剤分
解を抑制するとともに銅の過剰溶出を抑えると考えられ
ている。
In order to solve the above problems in copper plating using a normal copper sulfate bath, a plating method is adopted in which phosphorous-containing copper is contained in a bag-like body and electrolyzed. In this plating method, a phosphate film is formed on the surface of copper, which is a soluble anode. It is thought to suppress elution.

しかし該方法では前記含リン銅が高価であること及びス
ラッジが生成する等の問題点を有するとともに、前記添
加剤分解防止及び銅の過剰溶出防止も完全ではないため
保守作業の軽減化に直接は繋がらないという大きな問題
点を有している。
However, this method has problems such as the phosphorous-containing copper being expensive and the formation of sludge, and it is not completely effective in preventing additive decomposition and excessive elution of copper, so it is not directly effective in reducing maintenance work. The big problem is that it doesn't connect.

上記各方法の問題点を克服するためにピロリン酸銅浴を
使用する方法が提案されている。この方法では添加剤分
解が比較的少なく又陽極として純銅を使用した場合でも
比較的安定した電解を行うことができる等の利点を有し
ているが、ピロリン酸の価格が極めて高価であり、経済
的ではないという問題点がある。
In order to overcome the problems of each of the above methods, a method using a copper pyrophosphate bath has been proposed. This method has the advantage of relatively little decomposition of additives and the ability to perform relatively stable electrolysis even when pure copper is used as the anode, but the cost of pyrophosphoric acid is extremely high and it is not economical. The problem is that it is not the target.

そのため最近では、電解液の銅イオンを別個の銅溶解槽
を使用して補給し、該電解液を不溶性陽極を設置した銅
メッキ槽に供給する方法が提案されている。該方法によ
ると前記した溶性陽極を使用する場合の問題点は解消さ
れるが依然として前記添加剤の分解の問題が残り、これ
を解消するために前記添加剤を耐酸化性の化合物に換え
ることが試みられているが、前記スルーホールメッキの
ような特殊な条件下で安定な添加剤は未だ見出されてい
ないのが現状であり、工業的に使用されるには至ってい
ない。
Therefore, recently, a method has been proposed in which copper ions in an electrolytic solution are replenished using a separate copper dissolving tank, and the electrolytic solution is supplied to a copper plating tank in which an insoluble anode is installed. According to this method, the problems described above when using a soluble anode are solved, but the problem of decomposition of the additive still remains, and in order to solve this problem, it is necessary to replace the additive with an oxidation-resistant compound. Although attempts have been made, no additive has yet been found that is stable under special conditions such as through-hole plating, and has not yet been used industrially.

(発明の目的) 本発明は、前記した従来技術の問題点つまり添加剤の分
解や高価な試薬の使用等を解決し、スルーホールメッキ
された品質の高い被メッキ材を得ることのできるメッキ
方法を提供することを目的とする。
(Object of the Invention) The present invention solves the problems of the prior art described above, such as the decomposition of additives and the use of expensive reagents, and provides a plating method that can obtain high-quality through-hole plated materials. The purpose is to provide

(問題点を解決するための手段) 本発明は、不溶性金属電極から成る陽極とプリント基板
被メッキ材から成る陰極を、隔膜により分離し、銅イオ
ン及び添加剤含有液を電解液として電解し、前記被メッ
キ材の表面及びスルーホールのメッキを行うことを特徴
とする銅メッキ方法である。
(Means for Solving the Problems) The present invention separates an anode made of an insoluble metal electrode and a cathode made of a material to be plated on a printed circuit board by a diaphragm, and electrolyzes the solution using a solution containing copper ions and additives as an electrolyte. This copper plating method is characterized in that the surface of the material to be plated and the through holes are plated.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる銅メッキ方法では、不溶性金属電極から
成る陽極を隔膜により被メッキ材から成る陰極から分離
することにより、添加剤を含有する電解液の大部分が前
記陽極に接触することを防止し、これにより前記添加剤
の分解を防止し、該添加剤の補給なしに継続して被メッ
キ材であるプリント基板のスルーホールに銅メッキを施
すようにしている。
In the copper plating method according to the present invention, the anode made of an insoluble metal electrode is separated from the cathode made of the material to be plated by a diaphragm, thereby preventing most of the electrolyte containing additives from coming into contact with the anode. This prevents the additive from decomposing and allows copper plating to be continuously applied to the through-holes of the printed circuit board, which is the material to be plated, without replenishing the additive.

本発明方法では、陽極としては例えば白金族金属酸化物
をチタン基材に被覆して成る不溶性陽極所謂DSE電極
を使用する。該DSE電極は、溶性陽極と比較すると陽
極電位(酸素発生電位)が約10100O高いが、白金
族金属を基材に被覆した電極や鉛電極と比較すると陽極
電位が500〜800mV低いため添加剤分解を有効に
防止することができる。しかし該白金族金属被覆電極や
鉛電極を本発明方法で使用しても差し支えない。該不溶
性陽極の形状は、多孔状、板状、棒状、上部が開口する
ボックス状等任意とすることができる。該陽極を電解槽
内に設置するには、通常の食塩電解槽のように底部から
給電棒を立設し該給電棒に連結するようにしても、電解
槽の上縁間にビームを架設し、該ビームに前記陽極に連
結した例えば逆J字型の給電体の上端を吊下げるように
してもよい。
In the method of the present invention, an insoluble anode consisting of a titanium base coated with a platinum group metal oxide, for example, a so-called DSE electrode, is used as the anode. The DSE electrode has an anode potential (oxygen evolution potential) about 10,100 O higher than that of a soluble anode, but the anode potential is 500 to 800 mV lower than that of an electrode coated with a platinum group metal or a lead electrode, so the additive decomposes. can be effectively prevented. However, the platinum group metal coated electrodes and lead electrodes may be used in the method of the present invention. The shape of the insoluble anode can be arbitrary, such as a porous shape, a plate shape, a rod shape, or a box shape with an open top. In order to install the anode in the electrolytic cell, it is necessary to install a beam between the upper edges of the electrolytic cell, even if a power supply rod is erected from the bottom and connected to the power supply rod as in a normal salt electrolytic cell. The upper end of, for example, an inverted J-shaped power supply body connected to the anode may be suspended from the beam.

又陰極は、メッキすべきプリント基板用被メッキ材とし
、該被メッキ材は例えば合成樹脂上に銅箔を薄く被覆し
かつ所定位置に多数の貫通孔つまりスルーホールを穿設
した複合板である。該被メッキ材は、本発明方法により
電気メッキする前に該電気メッキを円滑に行うためにそ
の表面に化学メッキにより薄い銅メッキ層を形成してお
くことが望ましい。該被メッキ材は通常30c+n X
 30cm程度の板であるが、本発明方法では一度の操
業で多数の被メッキ材を処理できるよう多数の被メッキ
材を上下及び左右方向に並べ合わせて1枚の大きな平板
状とし所定の治具で電解槽内に設置することが好ましい
The cathode is a plated material for a printed circuit board to be plated, and the plated material is, for example, a composite board in which a synthetic resin is thinly coated with copper foil and a large number of through holes are bored at predetermined positions. . Before the material to be plated is electroplated by the method of the present invention, it is desirable to form a thin copper plating layer on the surface of the material by chemical plating in order to perform the electroplating smoothly. The material to be plated is usually 30c+n
Although the plate is approximately 30 cm long, in the method of the present invention, in order to process a large number of plated materials in one operation, a large number of plated materials are arranged vertically and horizontally to form one large flat plate, and a predetermined jig is used. It is preferable to install it in an electrolytic cell.

使用する隔膜は、添加剤の通過をほぼ完全に抑止するも
のでなければならない。該添加剤は液中でイオンではな
くコロイド状態で存在することが多く、該添加剤の粒径
は互いに凝集しあるいは周囲に水分子を伴って数μ〜数
十μとなっていると考えられるので、前記隔膜の目開き
は10μ以下とすることが望ましい。
The diaphragm used should almost completely prevent the passage of additives. The additives often exist in a colloidal state rather than ions in the liquid, and the particle size of the additives is thought to be from several microns to several tens of microns when they aggregate with each other or are surrounded by water molecules. Therefore, it is desirable that the opening of the diaphragm be 10 μm or less.

本発明方法では、被メッキ材表面に十分銅イオンを送り
込みかつ陰極室内で発生するガスを除去するため空気を
送って液撹拌を行うため液の流通が極めて良好になる。
In the method of the present invention, the liquid is stirred by sending air to sufficiently feed copper ions to the surface of the material to be plated and to remove gas generated in the cathode chamber, so that the liquid can flow very well.

前記隔膜は該流通メッキ液の陽極への接触を防止するだ
めのもので、陽極室と陰極室を区画し前記メッキ液の浸
透を防止できれば電解槽にどのように設置してもよいが
、袋状として前記陽極に近接させ該陽極を包み込む形状
でかつ発生ガスの放出のため上部が開口していることが
好ましく、この他に複数の陽極室及び陰極室を平面状の
隔膜が区画して所謂フィルタプレス型の電解槽を構成す
るようにしてもよい。
The diaphragm is intended to prevent the circulating plating solution from coming into contact with the anode, and can be installed in any way in the electrolytic cell as long as it can separate the anode chamber and the cathode chamber and prevent the plating solution from penetrating. It is preferable that the shape is close to the anode and wraps around the anode, and that the upper part is open for releasing the generated gas.In addition, a plurality of anode chambers and cathode chambers are partitioned by a planar diaphragm, so-called. A filter press type electrolytic cell may be configured.

又該隔膜の材質は特に限定されないが、液の不透過性及
び抵抗損の観点からイオン交換膜が最適である。
The material of the diaphragm is not particularly limited, but an ion exchange membrane is most suitable from the viewpoint of liquid impermeability and resistance loss.

本発明方法に使用する電解槽は、新規なものを製造して
もよいが、従来の溶性陽極用として使用されてきた電解
槽を転換して使用することが好ましく、該転槁は前記溶
性陽極を不溶性陽極と交換し該陽極及び陰極を隔膜で区
画し、かつ銅イオンを外部から供給するラインを設置す
るという比較的簡単な作業で行うことができる。
The electrolytic cell used in the method of the present invention may be a new one, but it is preferable to use a converted electrolytic cell that has been used for the conventional soluble anode. This can be accomplished by a relatively simple operation of replacing the anode with an insoluble anode, separating the anode and cathode with a diaphragm, and installing a line to supply copper ions from the outside.

使用する電解液は、陰極液は銅イオンを含みかつ前述の
添加剤例えば1,3−ジオキソラン重合体又はポリプロ
ピレングリコール、ポリプロピレンプロパノール等のポ
リエーテル類及び有機硫黄化合物、窒素化合物(フェナ
ジン染料等)を含有する電解液とし、陽極液は任意の導
電性物質を含む電解液とする。
The electrolyte used includes a catholyte containing copper ions and the aforementioned additives such as 1,3-dioxolane polymer or polyethers such as polypropylene glycol and polypropylene propanol, organic sulfur compounds, and nitrogen compounds (phenazine dye, etc.). The anolyte is an electrolytic solution containing an arbitrary conductive substance.

電流濃度、印加電圧、電流密度、液温等の電解条件自体
は従来の溶性陽極を使用する銅メッキ方法と同様で良く
、例えば電流濃度は0.5〜10.0A/l、印加電圧
は2.5〜3.5■、陽極電流密度は1〜10A/d1
、陰極電流密度は1〜6 A /dm”、液温は15〜
35℃程度とする。
Electrolytic conditions such as current concentration, applied voltage, current density, and liquid temperature may be the same as those for conventional copper plating methods using soluble anodes; for example, the current concentration is 0.5 to 10.0 A/l, and the applied voltage is 2. .5~3.5■, anode current density is 1~10A/d1
, cathode current density is 1~6 A/dm'', liquid temperature is 15~
The temperature should be around 35℃.

銅イオンの供給は電解液に適宜の銅化合物、例えば炭酸
銅を溶解して電解槽の陰極室に加え、該電解液を循環さ
せて、被メッキ材にメッキされて減少した分の銅を該電
解液に再溶解して陰極室内の銅イオン濃度がほぼ一定に
維持されるようにすることが好ましい。
Copper ions are supplied by dissolving an appropriate copper compound, such as copper carbonate, in an electrolytic solution and adding it to the cathode chamber of the electrolytic cell, and circulating the electrolytic solution to remove the amount of copper that has been reduced by plating the material to be plated. Preferably, the copper ion concentration in the cathode chamber is maintained approximately constant by redissolving it in the electrolyte.

なお電解に際しては、陽極室側を僅かに加圧すると、前
記隔膜を通しての陰極液の液拡散による前記添加剤の陽
極室への浸透が減少し、該添加剤の分解をより有効に防
止することができる。該加圧は、例えば陽極室側に廃ガ
ス放散用のバルブを設け、該バルブにより廃ガス放散量
を調節することにより行うことができる。
In addition, during electrolysis, if the anode chamber side is slightly pressurized, the penetration of the additive into the anode chamber due to the diffusion of the catholyte through the diaphragm is reduced, and decomposition of the additive can be more effectively prevented. I can do it. The pressurization can be performed, for example, by providing a valve for dissipating waste gas on the anode chamber side and adjusting the amount of dissipated gas using the valve.

本発明方法によると、表面及びスルーホール内にほぼ均
一厚の銅メッキ層が形成された複合板が製造され、該複
合板は洗浄等の処理の後、プリント基板製造のための後
続の工程に送られる。
According to the method of the present invention, a composite board is manufactured in which a copper plating layer of approximately uniform thickness is formed on the surface and in the through holes, and after processing such as cleaning, the composite board is subjected to subsequent steps for manufacturing printed circuit boards. Sent.

(実施例) 以下本発明方法の実施例を記載するが、該実施例は本発
明を限定するものではない。
(Example) Examples of the method of the present invention will be described below, but the examples do not limit the present invention.

尖旌拠上二↓ 市販のCuSO4,5Hz070g/ A 、 HzS
Oa 10容量%、CI−50p p mから成る硫酸
銅型メッキ浴に添加剤として荏原ニーシライト株式会社
製商品名キュブライトTHを5 ml/βとなるように
加え連続ハルセル試験を行った。
Tip 2↓ Commercially available CuSO4,5Hz070g/A, HzS
A continuous Hull cell test was carried out by adding Cubrite TH (trade name, manufactured by Ebara Nishilight Co., Ltd.) as an additive to a copper sulfate type plating bath consisting of 10% by volume of Oa and 50 ppm of CI-5 at a concentration of 5 ml/β.

該試験は、ハルセル容量267n+] 、電流値2人(
平均陰極電流密度4 A/dm2) 、温度25℃とし
、空気による液撹拌を行いながら、電解時間を10分/
回とし陰極を交換しながら12回繰り返して行った。陰
極として純銅板を使用し、隔膜としては陽イオン交換膜
商品名ナフィオン#117(デュポン社製、実施例1及
び3)及び中性隔膜商品名ユミクロンY9025 (湯
浅電池株式会社製、実施例2及び4)を使用し、該隔膜
により、白金メッキチタン電極(実施例1及び2)及び
主成分が酸化イリジウムである複合酸化物をコーティン
グしたチタン電極(以下酸化イリジウム電極という、実
施例3及び4)である陽極の周囲を覆った。比較例とし
て同一電極を隔膜で覆わなかったもの、及び含リン銅溶
性陽極を使用して同一陰極板の銅メッキを行った。試験
中、メッキ浴中の添加剤の追加は一切行わず、メッキ量
に相当する炭酸銅溶液を加えることにより銅イオンの補
給を行った。
The test was conducted using a Hull cell capacity of 267n+] and a current value of 2 people (
The average cathode current density was 4 A/dm2), the temperature was 25°C, and the electrolysis time was 10 min/dm while stirring the liquid with air.
The test was repeated 12 times while changing the cathode. A pure copper plate was used as a cathode, and as a diaphragm, a cation exchange membrane (trade name: Nafion #117 (manufactured by DuPont, Examples 1 and 3) and a neutral diaphragm (trade name: Yumicron Y9025, manufactured by Yuasa Battery Co., Ltd., Examples 2 and 3) were used. 4), and using the diaphragm, platinum-plated titanium electrodes (Examples 1 and 2) and titanium electrodes coated with a composite oxide whose main component is iridium oxide (hereinafter referred to as iridium oxide electrodes, Examples 3 and 4). It covered the area around the anode. As a comparative example, the same electrode was not covered with a diaphragm, and the same cathode plate was plated with copper using a phosphorus-containing copper-soluble anode. During the test, no additives were added to the plating bath, and copper ions were replenished by adding a copper carbonate solution equivalent to the amount of plating.

結果を第1表に示す。The results are shown in Table 1.

第1表から分かるように、単に陽極を不溶性陽極とした
のみでは2回目以降に曇りが生じてしまい、これは添加
剤の分解が生じていることを示している。一方陽極とし
て不溶性陽極を使用し該陽極を隔膜で覆った場合には、
いずれも含リン銅溶性陽極を使用した場合と同等又はそ
れに近い特性を示した。又該含リン銅溶性陽極に見られ
る後半の銅濃度過剰によるメッキ表面のざらつきは本実
施例では全く見られなかった。
As can be seen from Table 1, simply using an insoluble anode as an anode results in clouding after the second use, which indicates that the additive has decomposed. On the other hand, when an insoluble anode is used as the anode and the anode is covered with a diaphragm,
In both cases, the properties were equivalent to or close to those obtained when a phosphorus-containing copper-soluble anode was used. Furthermore, the roughness of the plating surface due to the excessive copper concentration in the latter half, which is observed in the phosphorus-containing copper-soluble anode, was not observed at all in this example.

なお、使用した両年溶性陽極のうち、白金メッキチタン
電極よりも酸化イリジウム電極の方が添加剤の分解は少
なかった。これは酸素過電圧が白金メッキチタン電極よ
り酸化イリジウム電極の方が300〜400mV低いこ
とによると推測される。
Of the two-year soluble anodes used, the iridium oxide electrode caused less additive decomposition than the platinum-plated titanium electrode. This is presumably because the oxygen overvoltage of the iridium oxide electrode is 300 to 400 mV lower than that of the platinum-plated titanium electrode.

実施例5〜8 陽極として酸化イリジウムを使用した以外は実施例1〜
4と同様にして前記陽極を隔膜で覆いながら銅メッキを
行い、繰り返しを20回に増加し、前記隔膜の周りの状
態の比較を行った。実施例5及び6では隔膜を袋状とし
陽極側にガス抜きパイプを取り付は該パイプを調節して
メッキ浴中に0.5〜1cm水柱程度の正圧が前記袋状
隔膜に掛かるようにした。実施例7及び8は実施例1〜
4と同様に隔膜の上面を開いて圧力差が生じないように
した。その結果を第2表に示す。
Examples 5-8 Examples 1-8 except that iridium oxide was used as the anode.
Copper plating was performed while covering the anode with a diaphragm in the same manner as in 4, the repetition was increased to 20 times, and the conditions around the diaphragm were compared. In Examples 5 and 6, the diaphragm was shaped like a bag, and a gas vent pipe was attached to the anode side, and the pipe was adjusted so that a positive pressure of about 0.5 to 1 cm of water column was applied to the bag-shaped diaphragm in the plating bath. did. Examples 7 and 8 are Examples 1-
Similarly to 4, the upper surface of the diaphragm was opened to prevent pressure difference from occurring. The results are shown in Table 2.

第2表から、隔膜を袋状とし陽極側に若干の圧力を掛け
ることで添加剤の分解がより抑制されることが分かった
From Table 2, it was found that the decomposition of the additive was further suppressed by using a bag-shaped diaphragm and applying a slight pressure to the anode side.

実施M度 実施例1〜8を基にして、工業的規模にスケールアンプ
した銅メッキを行った。
Based on Examples 1 to 8, copper plating was carried out on an industrial scale.

電解槽の構成は次の通りとした。The configuration of the electrolytic cell was as follows.

■ 陰極:銅箔を張った積層板(ガラスエポキシ基板)
にスルーホール穴明けを行い、この基板(長さ330m
m x高さ250+nm x厚さ1.6mm)12枚を
上下方向を向く逆U字形の棒状専用治具(カソードラッ
ク)4個に、前記12枚の基板により1枚の平板状陰極
が形成されるようにセットし、該陰極を前記専用治具に
より横方向に架設されたカソードビームに吊り下げた。
■ Cathode: Laminated board covered with copper foil (glass epoxy board)
This board (length 330m) was
One flat cathode was formed by the 12 substrates in four inverted U-shaped rod-shaped dedicated jigs (cathode racks) that faced up and down. The cathode was suspended from a cathode beam installed in the horizontal direction using the dedicated jig.

前記基板の外周にエツジカレントによるメッキ厚異常が
生ずることを避ける1G ため、該部分に窓枠状に幅5cmの鋼板を所謂「おとり
」電極として設置した。全陰極投影面積は約1.2Mで
あった。
In order to avoid plating thickness abnormalities caused by edge current on the outer periphery of the substrate, a 5 cm wide steel plate was installed in the shape of a window frame as a so-called "decoy" electrode. The total cathode projected area was approximately 1.2M.

■ 陽極:チタンラスで長さ1420n+m x高さ8
50mm×厚さ75mm)の上部が開口するボックスを
作製し、該ボックス内部に上下方向を向く逆U字形の2
本のチタン棒を給電体として接続し、該給電体の先端部
を横方向に架設されたアノードビームに吊り下げた。こ
の構造体の電極部分に酸化イリジウムコーティングを施
し陽極とした。該陽極は前記陰極の両面から給電するた
め2個用意した。
■ Anode: Titanium lath length 1420n+m x height 8
A box with an open top (50 mm x 75 mm thick) was made, and two inverted U-shaped boxes facing up and down were placed inside the box.
A titanium rod was connected as a power supply, and the tip of the power supply was suspended from an anode beam installed laterally. The electrode portion of this structure was coated with iridium oxide to serve as an anode. Two anodes were prepared to supply power from both sides of the cathode.

■ 隔膜:デュポン社製ナフィオン#117を、前記陽
極を完全に覆うことができるように上部が開口する袋状
に熱圧着法により成形した。該隔膜で前記陽極を覆い電
解槽内に設置した。
(2) Diaphragm: Nafion #117 manufactured by DuPont was molded by thermocompression into a bag with an open top so that it could completely cover the anode. The anode was covered with the diaphragm and placed in an electrolytic cell.

■ 電解槽:有効容積が1800mm X 1200m
m X 420mm=0.91rrrである電解槽を使
用した。カソードビーム受けはカソードロッカー棒に連
結し往復運動できる機構を付加した。アノードビーム受
けはカソードを挟む位置に2ケ所固定した。底部にはエ
アバブリングのための散気管を設置した。又槽外のフィ
ルタ及び銅イオン供給塔との間で連続循環できるようノ
ズルを設置した。
■ Electrolytic cell: effective volume 1800mm x 1200m
An electrolytic cell with m x 420 mm = 0.91 rrr was used. The cathode beam receiver is connected to the cathode rocker rod and has a mechanism that allows it to reciprocate. The anode beam receivers were fixed at two locations sandwiching the cathode. A diffuser pipe was installed at the bottom for air bubbling. A nozzle was also installed to allow continuous circulation between the filter outside the tank and the copper ion supply tower.

■ 銅イオン供給塔:上部に塩基性炭酸銅を連続的に投
入できるホッパーを設置した円筒体とし、該円筒体内に
攪拌装置を組み入れた。下部より電解液を導入し、溶解
後の上澄液をオーバーフローさせ、フィルタ通過後前記
電解槽に戻すようにした。
(2) Copper ion supply tower: It was a cylindrical body equipped with a hopper at the top to which basic copper carbonate could be continuously introduced, and a stirring device was built into the cylindrical body. An electrolyte solution was introduced from the bottom, and the supernatant solution after dissolution overflowed and was returned to the electrolytic cell after passing through a filter.

まずスルーホール穴明は工程後の前記基板を端面研磨後
、脱脂洗浄し、化学銅メッキ浴にて露出前面に約0.5
μ厚の銅メッキを施した。次いで前記基板を固定した前
記カソード用治具(ランク)を電解槽の所定位置に垂下
し、エアバブリングを行いながらカソードロックを動作
させ、銅イオンを供給しつつ電気メッキを開始した。電
流600Aで陰極電流密度が2.5 A/dm”となる
ように48分間電解を行った。炭酸銅の溶解速度は銅析
出の電流効率が96%であると仮定して算出し、21.
4 g /分(CuCOz ・Cu(OR)z ・82
0として)とした。光沢剤は荏原ニーシライト株式会社
製のキュブライトTHとし、これを2.25m1/分で
注入した。浴中の銅イオンの濃度変化は殆ど見られなか
った。電気メッキ後の基板は光沢ある正常な外観を呈し
、メッキ厚(銅箔の厚さ十化学メッキの厚さ十電気メッ
キの厚さ)は41μでほぼ均一な厚さであった。
First, to drill through holes, after polishing the end surface of the substrate after the process, degrease and clean it, and apply a chemical copper plating bath to the exposed front surface with a thickness of about 0.5 mm.
Copper plating with a thickness of μ is applied. Next, the cathode jig (rank) to which the substrate was fixed was hung at a predetermined position in the electrolytic bath, the cathode lock was operated while air bubbling was performed, and electroplating was started while supplying copper ions. Electrolysis was carried out for 48 minutes at a current of 600 A and a cathode current density of 2.5 A/dm. The dissolution rate of copper carbonate was calculated assuming that the current efficiency of copper deposition was 96%.
4 g/min (CuCOz ・Cu(OR)z ・82
0)). The brightener was Cubrite TH manufactured by Ebara Nishilight Co., Ltd., and was injected at a rate of 2.25 ml/min. Almost no change in the concentration of copper ions in the bath was observed. The board after electroplating had a glossy and normal appearance, and the plating thickness (thickness of copper foil, thickness of chemical plating, and thickness of electroplating) was 41 μm, which was almost uniform.

破壊検査により、スルーホール部のつきまわり性、コナ
ークランクの発生の有無を調べたが、問題は無かった。
Destructive testing was conducted to check the throwing power of the through-hole section and the occurrence of corner cranks, but no problems were found.

又引張強度、伸び、硬度も正常であり、エツチング性、
半田濡れ性、熱サイクル試験、熱干渉試験も異常が無く
、メッキ品質はプリント基板用として十分使用できるも
のであった。
In addition, the tensile strength, elongation, and hardness are normal, and the etching property and
There were no abnormalities in solder wettability, thermal cycle tests, and thermal interference tests, and the plating quality was sufficient to be used for printed circuit boards.

前記操業を繰り返し、化学分析値により電解液中の銅イ
オン濃度等を補正しながら500回繰り返しメッキを行
ったが、メッキ外観、物性共に建浴時と同様良好に維持
できた。又陽極及び隔膜共に変色、変形等の異常は見ら
れなかった。
The above operation was repeated and plating was performed 500 times while correcting the copper ion concentration in the electrolyte based on chemical analysis values, and the plating appearance and physical properties were maintained as good as when the bath was prepared. Further, no abnormality such as discoloration or deformation was observed in either the anode or the diaphragm.

(発明の効果) 本発明による銅メッキ方法は、不溶性陽極とプリント基
板用被メッキ材から成る陰極を、隔膜により分離し、銅
イオン及び添加剤含有液を電解液として電解し、前記被
メッキ材の表面及びスルーホールのメッキを行うように
している。
(Effects of the Invention) The copper plating method according to the present invention separates an insoluble anode and a cathode made of a printed circuit board material to be plated by a diaphragm, electrolyzes the copper ion and additive-containing solution as an electrolytic solution, and then The surface and through holes are plated.

従って第1に、陰極室内の添加剤が隔膜を通して陽極室
側に透過して陽極に接触し分解されることが殆ど無いた
め、高価な添加剤を殆ど消耗することなく経済的に操業
を行うことができる。更に陽極室側を加圧しておくと前
記添加剤の隔膜を通しての陽極室側への透過がより以上
に防止され、添加剤の消耗はほぼ完全に回避される。こ
れにより本発明方法における前記添加剤の消耗を、陽極
電位が本発明方法の電位よりも低い従来の溶性陽極を使
用する銅メッキ方法における該添加剤の消耗と同等かそ
れ以下に抑えることが可能になり、更に前記隔膜として
イオン交換膜のような緻密な膜を使用すると前記添加剤
分解は更に完全に防止される。
Therefore, firstly, the additives in the cathode chamber permeate through the diaphragm to the anode chamber side, come into contact with the anode, and are hardly decomposed, so the operation can be carried out economically without wasting most of the expensive additives. I can do it. Furthermore, if the anode chamber side is pressurized, the permeation of the additive through the diaphragm into the anode chamber side is further prevented, and consumption of the additive is almost completely avoided. This makes it possible to suppress the consumption of the additive in the method of the present invention to the same level as or less than the consumption of the additive in the conventional copper plating method using a soluble anode whose anode potential is lower than that in the method of the present invention. Furthermore, if a dense membrane such as an ion exchange membrane is used as the diaphragm, the decomposition of the additive can be more completely prevented.

第2に、陽極が不溶性であるため、従来のように消耗し
た溶性陽極の交換のために操業を停止しかつ刺激性の電
解液から該溶性陽極を取りだし交換するといった手間及
び熟練を要する作業が不要となるため、作業能率が大き
く向上する。
Second, because the anode is insoluble, it is no longer necessary to stop the operation to replace a worn-out soluble anode, and to remove the soluble anode from the irritating electrolyte and replace it, which requires time and skill. Since this is no longer necessary, work efficiency is greatly improved.

第3に、陽極室が隔膜によりメッキすべき被メッキ材と
区画されているため、仮に陽極室内にスラッジ等が発生
しても該スラッジ等が前記被メッキ材上に析出すること
がなく、表面状態の良好なメッキされた被メッキ材を得
ることができる。
Thirdly, since the anode chamber is separated from the material to be plated by a diaphragm, even if sludge or the like occurs in the anode chamber, the sludge or the like will not be deposited on the material to be plated, and the surface A plated material in good condition can be obtained.

第4に、隔膜を袋状とすると、従来の溶性陽極を不溶性
陽極に換え、該不溶性陽極を前記袋状隔膜に収容するこ
と及び外部に銅供給ラインを設置するのみで、従来の溶
性陽極を使用する電解槽を本発明方法に使用する電解槽
に容易に転換することができる。
Fourth, if the diaphragm is bag-shaped, the conventional soluble anode can be replaced by an insoluble anode by simply housing the insoluble anode in the bag-shaped diaphragm and installing an external copper supply line. The electrolytic cell used can be easily converted into an electrolytic cell used in the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)不溶性金属電極から成る陽極とプリント基板用被
メッキ材から成る陰極を、隔膜により分離し、銅イオン
及び添加剤含有液を電解液として電解し、前記被メッキ
材の表面及びスルーホールのメッキを行うことを特徴と
する銅メッキ方法。
(1) An anode consisting of an insoluble metal electrode and a cathode consisting of a material to be plated for a printed circuit board are separated by a diaphragm, and a solution containing copper ions and additives is electrolyzed as an electrolyte to form a surface of the material to be plated and a through hole. A copper plating method characterized by plating.
(2)隔膜を上部が開口する袋状とし、該隔膜により陽
極を覆って該陽極と陰極を分離するようにした請求項1
に記載の方法。
(2) Claim 1, wherein the diaphragm is shaped like a bag with an open top, and the diaphragm covers the anode to separate the anode and the cathode.
The method described in.
(3)陽極室側を加圧しながら電解を行うようにした請
求項1又は2に記載の方法。
(3) The method according to claim 1 or 2, wherein the electrolysis is performed while pressurizing the anode chamber side.
(4)隔膜がイオン交換膜であり、陽極が白金族金属酸
化物をチタン系基材上に被覆した電極である請求項1か
ら3までのいずれかに記載の方法。
(4) The method according to any one of claims 1 to 3, wherein the diaphragm is an ion exchange membrane, and the anode is an electrode in which a platinum group metal oxide is coated on a titanium base material.
JP63128078A 1988-05-25 1988-05-25 Copper plating method for printed circuit boards Expired - Lifetime JP2510422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128078A JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128078A JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Publications (2)

Publication Number Publication Date
JPH01297884A true JPH01297884A (en) 1989-11-30
JP2510422B2 JP2510422B2 (en) 1996-06-26

Family

ID=14975881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128078A Expired - Lifetime JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Country Status (1)

Country Link
JP (1) JP2510422B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444377U (en) * 1990-08-15 1992-04-15
JPH04284691A (en) * 1991-03-13 1992-10-09 Arumetsukusu:Kk Electrically plating method for printed circuit board
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
JP2014105339A (en) * 2012-11-24 2014-06-09 Marunaka Kogyo Kk Horizontal transporting type electrolytic plating apparatus
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
US10240247B2 (en) 2014-02-10 2019-03-26 Ebara Corporation Anode holder and plating apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352081B2 (en) 2001-02-01 2002-12-03 株式会社アスカエンジニアリング Printed circuit board copper plating equipment
JP6621377B2 (en) 2016-06-07 2019-12-18 株式会社荏原製作所 Plating apparatus, plating method, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193295A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Method and apparatus for nickel plating
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
JPS62166265U (en) * 1986-04-08 1987-10-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193295A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Method and apparatus for nickel plating
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
JPS62166265U (en) * 1986-04-08 1987-10-22

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444377U (en) * 1990-08-15 1992-04-15
JPH04284691A (en) * 1991-03-13 1992-10-09 Arumetsukusu:Kk Electrically plating method for printed circuit board
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
JP2014105339A (en) * 2012-11-24 2014-06-09 Marunaka Kogyo Kk Horizontal transporting type electrolytic plating apparatus
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2015021154A (en) * 2013-07-18 2015-02-02 ペルメレック電極株式会社 Method and apparatus for continuous product of electrolytic metal foil
US10240247B2 (en) 2014-02-10 2019-03-26 Ebara Corporation Anode holder and plating apparatus

Also Published As

Publication number Publication date
JP2510422B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
US8801912B2 (en) Continuous copper electroplating method
US6835294B2 (en) Electrolytic copper plating method
US6099711A (en) Process for the electrolytic deposition of metal layers
EP0462943B1 (en) Method of copper plating
US6852209B2 (en) Insoluble electrode for electrochemical operations on substrates
CN101855390A (en) Anode assembly for electroplating
WO2014147180A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
KR20110041417A (en) Copper electrolytic plating bath and copper electrolytic plating method
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
JP2003503598A5 (en)
CN104093889B (en) Sn alloys electrolytic plating method and Sn alloy electrolytic plating apparatus
JP3352081B2 (en) Printed circuit board copper plating equipment
JPH01297884A (en) Copper plating of printed board
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
CN101492831B (en) Anode apparatus for electroplating and electroplating apparatus comprising the same
JPH04362199A (en) Electroplating device
EP2606163B1 (en) METHOD FOR THE ADJUSTMENT OF NICKEL CONTENT AND pH OF A PLATING SOLUTION
JPH0673393B2 (en) Copper plating method for printed circuit boards
KR100426159B1 (en) Electrodeposition method of metal film and apparatus therefor
KR20010043597A (en) Method for electro copperplating substrates
JP2012237050A (en) Copper sulfate plating method using insoluble anode and device therefor
US20240060202A1 (en) Optimized method and device for insoluble anode acid sulfate copper electroplating process
JPH04284691A (en) Electrically plating method for printed circuit board
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
CZ281552B6 (en) Process of electroplating strips

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13