JP2007273525A - Manufacturing method of cubic single crystal silicon carbide substrate - Google Patents

Manufacturing method of cubic single crystal silicon carbide substrate Download PDF

Info

Publication number
JP2007273525A
JP2007273525A JP2006094108A JP2006094108A JP2007273525A JP 2007273525 A JP2007273525 A JP 2007273525A JP 2006094108 A JP2006094108 A JP 2006094108A JP 2006094108 A JP2006094108 A JP 2006094108A JP 2007273525 A JP2007273525 A JP 2007273525A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
substrate
crystal silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006094108A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Masahiko Sasaki
正彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Ferrotec Material Technologies Corp
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Admap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Admap Inc filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006094108A priority Critical patent/JP2007273525A/en
Publication of JP2007273525A publication Critical patent/JP2007273525A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a cubic single crystal silicon carbide substrate which consists of only silicon carbide, is self-supporting, has little defect and is excellent in crystallinity. <P>SOLUTION: When starting to manufacture, a SOI substrate 1 comprising a silicon substrate 2, an embedded insulation film 3 and a surface silicon film 4 is prepared as a material. The surface silicon film 4 of the SOI substrate 1 is carbonized to transform into a single crystal silicon carbide film 5. A single crystal silicon carbide film 6 is formed on the film 5 by means of epitaxial growth. An amorphous silicon carbide film 7 is formed on the film 6 by means of vapor phase growth method. The silicon substrate 2 and the embedded insulation film 3 are removed. The substrate is heated to make the film 7 into a single crystal. Thus, a multilayer structure consisting of the single crystal silicon carbide films 5 and 6 and the single crystal silicon carbide film generated by making the amorphous silicon carbide film 7 into a single crystal is formed as the cubic single crystal silicon carbide substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化シリコンのみからなる自立型で、かつ欠陥が少なく結晶性に優れた単結晶炭化シリコン基板の製造方法に関し、特に半導体基板や結晶成長用基板として利用できる立方晶系単結晶炭化シリコン基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a single-crystal silicon carbide substrate that is made of only silicon carbide and has few defects and excellent crystallinity, and in particular, cubic single-crystal silicon carbide that can be used as a semiconductor substrate or a substrate for crystal growth. The present invention relates to a method for manufacturing a substrate.

炭化シリコン(SiC)は、耐熱性と安定性に優れ、且つワイドバンドギャップを有することから、高温・高耐圧の半導体材料として注目されている。
従来、単結晶炭化シリコンの製造方法としては、表面に種結晶を有する種結晶基板及び炭化シリコン原料粉末を用いる昇華法が一般的に採用されている。昇華法では、加熱炉中に炭化シリコン原料粉末と種結晶基板とを所定距離を隔てて配置し、炭化シリコン原料粉末と種結晶基板とを加熱する。このとき、炭化シリコン原料粉末が種結晶基板よりやや高温になるように加熱する。これにより、炭化シリコン原料粉末が昇華し、種結晶基板上の種結晶に再結晶して結晶成長する。しかし、昇華法では、成長温度の制限から低温型結晶(立方晶炭化シリコン)を作製することが困難であり、大面積で均質な単結晶立方晶炭化シリコン基板を実現することができないという問題点があった。
Silicon carbide (SiC) is attracting attention as a semiconductor material having a high temperature and a high breakdown voltage because it has excellent heat resistance and stability and has a wide band gap.
Conventionally, as a method for producing single crystal silicon carbide, a sublimation method using a seed crystal substrate having a seed crystal on the surface and silicon carbide raw material powder is generally employed. In the sublimation method, the silicon carbide raw material powder and the seed crystal substrate are arranged at a predetermined distance in a heating furnace, and the silicon carbide raw material powder and the seed crystal substrate are heated. At this time, the silicon carbide raw material powder is heated so as to be slightly higher in temperature than the seed crystal substrate. As a result, the silicon carbide raw material powder is sublimated and recrystallized into a seed crystal on the seed crystal substrate to grow crystals. However, in the sublimation method, it is difficult to produce a low-temperature type crystal (cubic silicon carbide) due to the limitation of the growth temperature, and it is impossible to realize a single crystal cubic silicon carbide substrate having a large area and being homogeneous. was there.

一方、単結晶炭化シリコンの他の製造方法として、チョクラルスキー法(CZ法)で作製したシリコン基板を下地基板として、シリコン原料ガスと炭素の原料ガスとを同時に、あるいは交互に反応炉へ供給し、気相成長法によってシリコン基板上に単結晶立方晶炭化シリコンを形成する方法が提案されている(例えば、特許文献1参照)。   On the other hand, as another manufacturing method of single crystal silicon carbide, a silicon substrate produced by the Czochralski method (CZ method) is used as a base substrate, and a silicon source gas and a carbon source gas are supplied simultaneously or alternately to a reactor. A method of forming single crystal cubic silicon carbide on a silicon substrate by a vapor phase growth method has been proposed (see, for example, Patent Document 1).

特開平9−52798号公報JP-A-9-52798

上記のように、昇華法を用いる製造方法では、大面積で均質な単結晶立方晶炭化シリコン基板を作製することが難しいという問題点があった。
一方、気相成長法を用いる製造方法では、均一性の高い単結晶立方晶炭化シリコン基板を作製することが可能であるが、単結晶シリコンからなる下地基板と単結晶立方晶炭化シリコンの物性値(例えば格子定数)の違いにより炭化シリコン結晶中に欠陥が発生するという問題点があった。また、単結晶の成長プロセスが難しく、複雑な工程が必要となるため、単結晶立方晶炭化シリコンを結晶成長させていくと、結晶中に積層欠陥などの各種欠陥が増えてしまい、高品質の単結晶炭化シリコン基板を得ることが難しいという問題点があった。
As described above, the manufacturing method using the sublimation method has a problem that it is difficult to manufacture a single crystal cubic silicon carbide substrate having a large area and a uniform area.
On the other hand, in the manufacturing method using the vapor phase growth method, a highly uniform single crystal cubic silicon carbide substrate can be produced. However, the physical properties of the base substrate made of single crystal silicon and the single crystal cubic silicon carbide are as follows. There is a problem that defects occur in the silicon carbide crystal due to a difference (for example, lattice constant). In addition, since the single crystal growth process is difficult and requires a complicated process, when single crystal cubic silicon carbide is grown, various defects such as stacking faults increase in the crystal, resulting in high quality. There was a problem that it was difficult to obtain a single crystal silicon carbide substrate.

本発明は、上記課題を解決するためになされたもので、その目的は、炭化シリコンのみからなる自立型で、かつ欠陥が少なく結晶性に優れた立方晶系単結晶炭化シリコン基板を作製することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to produce a cubic single-crystal silicon carbide substrate that is free-standing and made of only silicon carbide and has few defects and excellent crystallinity. It is in.

本発明の立方晶系単結晶炭化シリコン基板の製造方法は、シリコン基板とシリコン基板の上に形成された埋め込み絶縁膜と埋め込み絶縁膜の上に形成された表面シリコン膜とからなるSOI基板を製造開始時に準備された材料として、このSOI基板の前記表面シリコン膜を炭化処理して単結晶炭化シリコン膜に変成する炭化処理工程と、前記単結晶炭化シリコン膜の上にエピタキシャル成長法により単結晶炭化シリコン膜を形成する第1の炭化シリコン成膜工程と、この第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜の上に気相成長法により非晶質炭化シリコン膜を形成する第2の炭化シリコン成膜工程と、前記シリコン基板と前記埋め込み絶縁膜とを除去する除去工程と、この除去工程後の基板を加熱して前記非晶質炭化シリコン膜を単結晶化する単結晶化処理工程とを有し、前記炭化処理工程で形成した単結晶炭化シリコン膜と前記第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜と前記単結晶化処理工程で形成した単結晶炭化シリコン膜とからなる積層構造を立方晶系単結晶炭化シリコン基板とするようにしたものである。
また、本発明の立方晶系単結晶炭化シリコン基板の製造方法の1構成例において、前記単結晶化処理工程は、前記除去工程後の基板を800℃以上1500℃未満の温度で加熱するようにしたものである。
また、本発明の立方晶系単結晶炭化シリコン基板の製造方法の1構成例は、前記単結晶化処理工程を所望の厚さの単結晶炭化シリコン膜が得られた時点で止めて、前記非晶質炭化シリコン膜の一部を残すようにしたものである。
また、本発明の立方晶系単結晶炭化シリコン基板の製造方法の1構成例は、前記炭化処理工程で形成した単結晶炭化シリコン膜と前記第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜と前記第2の炭化シリコン成膜工程で形成した非晶質炭化シリコン膜の合計の厚さを50μm以上とするようにしたものである。
The method for manufacturing a cubic single crystal silicon carbide substrate according to the present invention manufactures an SOI substrate comprising a silicon substrate, a buried insulating film formed on the silicon substrate, and a surface silicon film formed on the buried insulating film. As a material prepared at the start, a carbonization process for carbonizing the surface silicon film of the SOI substrate to transform it into a single crystal silicon carbide film, and a single crystal silicon carbide by epitaxial growth on the single crystal silicon carbide film A first silicon carbide film-forming step for forming a film, and a second method for forming an amorphous silicon carbide film on the single-crystal silicon carbide film formed in the first silicon carbide film-forming step by vapor deposition. A silicon carbide film forming step, a removal step of removing the silicon substrate and the buried insulating film, and heating the substrate after the removal step to form the amorphous carbonization. A single crystallization process for single-crystallizing the recon film, the single crystal silicon carbide film formed in the carbonization process, the single crystal silicon carbide film formed in the first silicon carbide film formation process, and the single crystal A laminated structure composed of a single crystal silicon carbide film formed in the crystallization process is a cubic single crystal silicon carbide substrate.
Moreover, in one structural example of the manufacturing method of the cubic single crystal silicon carbide substrate of the present invention, the single crystallization treatment step is such that the substrate after the removal step is heated at a temperature of 800 ° C. or higher and lower than 1500 ° C. It is what.
Further, in one configuration example of the method for manufacturing a cubic single crystal silicon carbide substrate of the present invention, the single crystallization process is stopped when a single crystal silicon carbide film having a desired thickness is obtained, A part of the crystalline silicon carbide film is left.
Also, one configuration example of the method for manufacturing a cubic single crystal silicon carbide substrate according to the present invention includes a single crystal silicon carbide film formed in the carbonization treatment step and a single crystal carbonization formed in the first silicon carbide film formation step. The total thickness of the silicon film and the amorphous silicon carbide film formed in the second silicon carbide film forming step is set to 50 μm or more.

本発明によれば、SOI基板の表面シリコン膜を炭化処理し、炭化処理後の単結晶炭化シリコン膜上に単結晶炭化シリコン膜をエピタキシャル成長させるようにしたので、単結晶炭化シリコン膜に生じる欠陥を減少させることができる。また、本発明では、エピタキシャル成長させる単結晶炭化シリコン膜を非晶質炭化シリコン膜よりも薄くすることで、単結晶炭化シリコン膜に生じる積層欠陥などの各種欠陥の増加を防ぎ、基板としての強度を持たせる部分を製作し易い非晶質炭化シリコン膜とし、シリコン基板及び埋め込み絶縁膜を除去してから熱処理で非晶質炭化シリコン膜を単結晶化するようにしたので、欠陥が少なく結晶性に優れた自立型の立方晶系単結晶炭化シリコン基板を実現することができる。さらに、本発明では、単結晶炭化シリコン膜及び非晶質炭化シリコン膜とシリコン基板との熱膨張係数の差から発生する熱応力を緩和する緩衝層としての働きを埋め込み絶縁膜に持たせることができるので、第1の炭化シリコン成膜工程及び第2の炭化シリコン成膜工程における熱応力による単結晶炭化シリコン膜及び非晶質炭化シリコン膜の割れを回避することができる。   According to the present invention, the surface silicon film of the SOI substrate is carbonized, and the single crystal silicon carbide film is epitaxially grown on the single crystal silicon carbide film after the carbonization process. Can be reduced. In the present invention, the single crystal silicon carbide film to be epitaxially grown is made thinner than the amorphous silicon carbide film, thereby preventing an increase in various defects such as stacking faults generated in the single crystal silicon carbide film, and increasing the strength as a substrate. Since the amorphous silicon carbide film is easy to manufacture, the silicon substrate and the buried insulating film are removed, and then the amorphous silicon carbide film is single-crystallized by heat treatment, so that there are few defects and crystallinity. An excellent free-standing cubic single crystal silicon carbide substrate can be realized. Furthermore, according to the present invention, the buried insulating film can have a function as a buffer layer that relieves thermal stress generated from the difference in thermal expansion coefficient between the single crystal silicon carbide film and the amorphous silicon carbide film and the silicon substrate. Therefore, cracking of the single crystal silicon carbide film and the amorphous silicon carbide film due to thermal stress in the first silicon carbide film forming process and the second silicon carbide film forming process can be avoided.

また、本発明では、単結晶化処理工程を所望の厚さの単結晶炭化シリコン膜が得られた時点で止めて、非晶質炭化シリコン膜の一部を残すことにより、基板の加熱を短時間で終えることができる。   Further, in the present invention, the single crystallization process is stopped when a single crystal silicon carbide film having a desired thickness is obtained, and a part of the amorphous silicon carbide film is left, thereby shortening the heating of the substrate. Can finish in time.

また、本発明では、炭化処理工程で形成した単結晶炭化シリコン膜と第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜と第2の炭化シリコン成膜工程で形成した非晶質炭化シリコン膜の合計の厚さを50μm以上とすることにより、自立型の立方晶系単結晶炭化シリコン基板を実現することができる。   In the present invention, the single crystal silicon carbide film formed in the carbonization treatment step, the single crystal silicon carbide film formed in the first silicon carbide film formation step, and the amorphous carbonization formed in the second silicon carbide film formation step By setting the total thickness of the silicon films to 50 μm or more, a self-supporting cubic single crystal silicon carbide substrate can be realized.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る立方晶系単結晶炭化シリコン基板の製造方法を示す工程断面図である。
まず、単結晶シリコン基板2と、単結晶シリコン基板2上に形成された酸化シリコンからなる埋め込み絶縁膜3と、埋め込み絶縁膜3上に形成された所定の厚さの表面シリコン膜4とからなるSOI(Silicon On Insulator)基板1を用意する(図1(A))。表面シリコン膜4の厚さは例えば100nmである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a cubic single crystal silicon carbide substrate according to an embodiment of the present invention.
First, a single crystal silicon substrate 2, a buried insulating film 3 made of silicon oxide formed on the single crystal silicon substrate 2, and a surface silicon film 4 having a predetermined thickness formed on the buried insulating film 3. An SOI (Silicon On Insulator) substrate 1 is prepared (FIG. 1A). The thickness of the surface silicon film 4 is, for example, 100 nm.

続いて、SOI基板1の表面シリコン膜4を炭化水素系雰囲気中において1000〜1350℃程度で炭化処理することにより立方晶系の単結晶炭化シリコン(3C−SiC)膜5に変成する(図1(B))。これで、表面に単結晶立方晶炭化シリコン膜5が形成された下地基板が用意できた。   Subsequently, the surface silicon film 4 of the SOI substrate 1 is transformed into a cubic single crystal silicon carbide (3C—SiC) film 5 by carbonizing at about 1000 to 1350 ° C. in a hydrocarbon atmosphere (FIG. 1). (B)). Thus, a base substrate having a single crystal cubic silicon carbide film 5 formed on the surface was prepared.

次に、この下地基板を円筒形の横型炉の反応器内に水平に設置し、反応器を密閉する。窒素ガスや水素ガスを反応器内に10SLM程度の流量で約10分流し、酸素ガスを反応器内から充分に追い出す。その後、窒素ガス雰囲気中で下地基板の温度を1150〜1300℃に上げ、材料ガスとキャリアガスとしての水素ガスを反応器内に供給して、単結晶立方晶炭化シリコン膜5上にエピタキシャル成長法により単結晶立方晶炭化シリコン膜6を例えば100nm程度の厚さに形成する(図1(C))。引き続いて、単結晶立方晶炭化シリコン膜6上に気相成長法により非晶質炭化シリコン膜7を形成する(図1(D))。図1(C)の単結晶炭化シリコン成膜工程(第1の炭化シリコン成膜工程)と図1(D)の非晶質炭化シリコン成膜工程(第2の炭化シリコン成膜工程)の成長条件の詳細を表1に示す。   Next, this base substrate is horizontally installed in a reactor of a cylindrical horizontal furnace, and the reactor is sealed. Nitrogen gas or hydrogen gas is allowed to flow into the reactor at a flow rate of about 10 SLM for about 10 minutes, and oxygen gas is sufficiently expelled from the reactor. Thereafter, the temperature of the base substrate is raised to 1150 to 1300 ° C. in a nitrogen gas atmosphere, and hydrogen gas as a material gas and a carrier gas is supplied into the reactor, and epitaxial growth is performed on the single crystal cubic silicon carbide film 5. A single crystal cubic silicon carbide film 6 is formed to a thickness of, for example, about 100 nm (FIG. 1C). Subsequently, an amorphous silicon carbide film 7 is formed on the single crystal cubic silicon carbide film 6 by a vapor phase growth method (FIG. 1D). Growth of the single crystal silicon carbide film forming step (first silicon carbide film forming step) in FIG. 1C and the amorphous silicon carbide film forming step (second silicon carbide film forming step) in FIG. Details of the conditions are shown in Table 1.

Figure 2007273525
Figure 2007273525

材料ガスとしてはシリコン原料ガスにジクロロシラン(SiH2Cl2)を使用したが、SiH4,SiCl4,SiHCl3などを用いても差し支えない。炭素の原料ガスとしてアセチレン(C22)を使用したが、CH4,C26,C38などを用いることもできる。また、単結晶炭化シリコン膜と多結晶炭化シリコン膜を成膜するのに、シリコンと炭素の材料ガスを別々に使用せずに、(CH34Siなどのシリコンと炭素を共に含有する成分を気化させたガスのみで成膜することも可能である。 As the material gas, dichlorosilane (SiH 2 Cl 2 ) is used as the silicon source gas, but SiH 4 , SiCl 4 , SiHCl 3 or the like may be used. Although acetylene (C 2 H 2 ) is used as the carbon source gas, CH 4 , C 2 H 6 , C 3 H 8, etc. can also be used. In addition, a component containing both silicon and carbon such as (CH 3 ) 4 Si without using silicon and carbon material gases separately to form a single crystal silicon carbide film and a polycrystalline silicon carbide film. It is also possible to form a film only with a gas obtained by vaporizing.

単結晶立方晶炭化シリコン膜5,6と非晶質炭化シリコン膜7の合計の厚さが炭化シリコン単独で自立可能な50μm以上の厚さになったところで、図1(D)の非晶質炭化シリコン成膜工程を終える。
続いて、裏面側から単結晶シリコン基板2と埋め込み絶縁膜3をフッ硝酸等の薬品で順次除去する。これで、図1(E)のような単結晶立方晶炭化シリコン膜5,6と非晶質炭化シリコン膜7とからなる自立型の炭化シリコン基板を得ることができる。
When the total thickness of the single crystal cubic silicon carbide films 5 and 6 and the amorphous silicon carbide film 7 becomes 50 μm or more which can be self-supported by silicon carbide alone, the amorphous structure shown in FIG. The silicon carbide film forming process is completed.
Subsequently, the single crystal silicon substrate 2 and the buried insulating film 3 are sequentially removed from the back side with a chemical such as hydrofluoric acid. Thus, a self-supporting silicon carbide substrate composed of the single crystal cubic silicon carbide films 5 and 6 and the amorphous silicon carbide film 7 as shown in FIG.

最後に、この炭化シリコン基板をアルゴンやヘリウム等の不活性ガス雰囲気中において800℃以上1500℃未満の温度で加熱処理して、非晶質炭化シリコン膜7を単結晶立方晶炭化シリコン膜に変える単結晶化処理工程を行う。この単結晶化処理工程を、必要な厚さの単結晶立方晶炭化シリコン膜が得られたところで止め、非晶質炭化シリコン膜7の一部を残す。こうして、単結晶立方晶炭化シリコン膜5,6と非晶質炭化シリコン膜7を単結晶化して生成した単結晶立方晶炭化シリコン膜と残りの非晶質炭化シリコン膜7とからなる自立型の立方晶系単結晶炭化シリコン基板が完成する。   Finally, the silicon carbide substrate is heat-treated in an inert gas atmosphere such as argon or helium at a temperature of 800 ° C. or higher and lower than 1500 ° C. to change the amorphous silicon carbide film 7 into a single crystal cubic silicon carbide film. A single crystallization treatment step is performed. This single crystallization treatment step is stopped when a single crystal cubic silicon carbide film having a necessary thickness is obtained, and a part of the amorphous silicon carbide film 7 is left. In this way, a self-standing type comprising the single crystal cubic silicon carbide film formed by single crystallization of the single crystal cubic silicon carbide films 5 and 6 and the amorphous silicon carbide film 7 and the remaining amorphous silicon carbide film 7. A cubic single crystal silicon carbide substrate is completed.

以上のように、本実施の形態では、SOI基板1の表面シリコン膜4を炭化処理し、炭化処理後の単結晶立方晶炭化シリコン膜5上に単結晶立方晶炭化シリコン膜6をエピタキシャル成長させるようにしたので、従来の製造方法で問題であった下地基板(単結晶シリコン)と単結晶立方晶炭化シリコンの格子定数差を解消することができ、単結晶立方晶炭化シリコン膜5,6に生じる欠陥を減少させることができる。また、単結晶立方晶炭化シリコン膜6を非晶質炭化シリコン膜7よりも薄い100nm程度の厚さに留めることで、単結晶立方晶炭化シリコン膜6に生じる積層欠陥などの各種欠陥の増加を防ぎ、基板としての強度を持たせる部分を製作し易い非晶質炭化シリコン膜7とし、単結晶シリコン基板2及び埋め込み絶縁膜3を除去してから熱処理で非晶質炭化シリコン膜7を単結晶化するようにしたので、欠陥が少なく結晶性に優れた自立型の立方晶系単結晶炭化シリコン基板を実現することができる。単結晶立方晶炭化シリコン膜5,6及び非晶質炭化シリコン膜7を単結晶化して生成した単結晶立方晶炭化シリコン膜は、半導体基板や結晶成長用基板として必要な厚さに形成すればよい。   As described above, in the present embodiment, the surface silicon film 4 of the SOI substrate 1 is carbonized, and the single crystal cubic silicon carbide film 6 is epitaxially grown on the single crystal cubic silicon carbide film 5 after the carbonization. Therefore, the lattice constant difference between the base substrate (single crystal silicon) and the single crystal cubic silicon carbide, which has been a problem in the conventional manufacturing method, can be eliminated, and the single crystal cubic silicon carbide films 5 and 6 are generated. Defects can be reduced. Also, by keeping the single crystal cubic silicon carbide film 6 to a thickness of about 100 nm, which is thinner than the amorphous silicon carbide film 7, various defects such as stacking faults occurring in the single crystal cubic silicon carbide film 6 are increased. An amorphous silicon carbide film 7 that is easy to manufacture is formed as a portion that prevents and gives strength as a substrate, and the amorphous silicon carbide film 7 is converted into a single crystal by heat treatment after the single crystal silicon substrate 2 and the embedded insulating film 3 are removed. Therefore, a self-supporting cubic single crystal silicon carbide substrate with few defects and excellent crystallinity can be realized. A single crystal cubic silicon carbide film formed by single crystallization of the single crystal cubic silicon carbide films 5 and 6 and the amorphous silicon carbide film 7 can be formed to a thickness necessary for a semiconductor substrate or a crystal growth substrate. Good.

また、本実施の形態では、製造工程の出発材料としてSOI基板1を用いることにより、単結晶立方晶炭化シリコン膜5,6と単結晶シリコン基板2との間に非晶質の酸化シリコンからなる埋め込み絶縁膜3を挟むことになり、この埋め込み絶縁膜3が単結晶立方晶炭化シリコン膜6及び非晶質炭化シリコン膜7の成膜中にその成膜温度によって軟化するので、単結晶立方晶炭化シリコン膜6及び非晶質炭化シリコン膜7と単結晶シリコン基板2との熱膨張係数の差から発生する熱応力を緩和する緩衝層としての働きを埋め込み絶縁膜3に持たせることができる。これにより、熱応力による単結晶立方晶炭化シリコン膜6及び非晶質炭化シリコン膜7の割れや単結晶シリコン基板2の反りを回避することができる。   Further, in this embodiment, by using the SOI substrate 1 as a starting material for the manufacturing process, amorphous silicon oxide is formed between the single crystal cubic silicon carbide films 5 and 6 and the single crystal silicon substrate 2. Since the buried insulating film 3 is sandwiched, and the buried insulating film 3 is softened by the deposition temperature during the formation of the single crystal cubic silicon carbide film 6 and the amorphous silicon carbide film 7, the single crystal cubic crystal The buried insulating film 3 can have a function as a buffer layer that relieves thermal stress generated from the difference in thermal expansion coefficient between the silicon carbide film 6 and the amorphous silicon carbide film 7 and the single crystal silicon substrate 2. Thereby, cracks of single crystal cubic silicon carbide film 6 and amorphous silicon carbide film 7 and warpage of single crystal silicon substrate 2 due to thermal stress can be avoided.

本発明は、単結晶炭化シリコン基板の製造技術に適用することができる。   The present invention can be applied to a manufacturing technique of a single crystal silicon carbide substrate.

本発明の実施の形態に係る立方晶系単結晶炭化シリコン基板の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the cubic single crystal silicon carbide substrate which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…SOI基板、2…単結晶シリコン基板、3…埋め込み絶縁膜、4…表面シリコン膜、5,6…単結晶立方晶炭化シリコン膜、7…非晶質炭化シリコン膜。   DESCRIPTION OF SYMBOLS 1 ... SOI substrate, 2 ... Single crystal silicon substrate, 3 ... Embedded insulating film, 4 ... Surface silicon film, 5, 6 ... Single crystal cubic silicon carbide film, 7 ... Amorphous silicon carbide film.

Claims (4)

シリコン基板とシリコン基板の上に形成された埋め込み絶縁膜と埋め込み絶縁膜の上に形成された表面シリコン膜とからなるSOI基板を製造開始時に準備された材料として、このSOI基板の前記表面シリコン膜を炭化処理して単結晶炭化シリコン膜に変成する炭化処理工程と、
前記単結晶炭化シリコン膜の上にエピタキシャル成長法により単結晶炭化シリコン膜を形成する第1の炭化シリコン成膜工程と、
この第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜の上に気相成長法により非晶質炭化シリコン膜を形成する第2の炭化シリコン成膜工程と、
前記シリコン基板と前記埋め込み絶縁膜とを除去する除去工程と、
この除去工程後の基板を加熱して前記非晶質炭化シリコン膜を単結晶化する単結晶化処理工程とを有し、
前記炭化処理工程で形成した単結晶炭化シリコン膜と前記第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜と前記単結晶化処理工程で形成した単結晶炭化シリコン膜とからなる積層構造を立方晶系単結晶炭化シリコン基板とすることを特徴とする立方晶系単結晶炭化シリコン基板の製造方法。
As a material prepared at the start of manufacturing an SOI substrate comprising a silicon substrate, a buried insulating film formed on the silicon substrate, and a surface silicon film formed on the buried insulating film, the surface silicon film of the SOI substrate is prepared. A carbonization treatment step of carbonizing and transforming into a single crystal silicon carbide film,
A first silicon carbide film forming step of forming a single crystal silicon carbide film on the single crystal silicon carbide film by an epitaxial growth method;
A second silicon carbide film forming step of forming an amorphous silicon carbide film on the single crystal silicon carbide film formed in the first silicon carbide film forming step by vapor phase growth;
A removing step of removing the silicon substrate and the buried insulating film;
A single crystallization treatment step of heating the substrate after the removal step to single-crystallize the amorphous silicon carbide film,
A laminated structure including a single crystal silicon carbide film formed in the carbonization process, a single crystal silicon carbide film formed in the first silicon carbide film formation process, and a single crystal silicon carbide film formed in the single crystallization process A cubic single crystal silicon carbide substrate, characterized in that a cubic single crystal silicon carbide substrate is used.
請求項1記載の立方晶系単結晶炭化シリコン基板の製造方法において、
前記単結晶化処理工程は、前記除去工程後の基板を800℃以上1500℃未満の温度で加熱することを特徴とする立方晶系単結晶炭化シリコン基板の製造方法。
In the manufacturing method of the cubic system single crystal silicon carbide substrate according to claim 1,
In the method for manufacturing a cubic single crystal silicon carbide substrate, the single crystallization treatment step heats the substrate after the removal step at a temperature of 800 ° C. or higher and lower than 1500 ° C.
請求項1記載の立方晶系単結晶炭化シリコン基板の製造方法において、
前記単結晶化処理工程を所望の厚さの単結晶炭化シリコン膜が得られた時点で止めて、前記非晶質炭化シリコン膜の一部を残すことを特徴とする立方晶系単結晶炭化シリコン基板の製造方法。
In the manufacturing method of the cubic system single crystal silicon carbide substrate according to claim 1,
Cubic single crystal silicon carbide characterized in that the single crystallization treatment step is stopped when a single crystal silicon carbide film having a desired thickness is obtained and a part of the amorphous silicon carbide film is left. A method for manufacturing a substrate.
請求項1記載の立方晶系単結晶炭化シリコン基板の製造方法において、
前記炭化処理工程で形成した単結晶炭化シリコン膜と前記第1の炭化シリコン成膜工程で形成した単結晶炭化シリコン膜と前記第2の炭化シリコン成膜工程で形成した非晶質炭化シリコン膜の合計の厚さを50μm以上とすることを特徴とする立方晶系単結晶炭化シリコン基板の製造方法。
In the manufacturing method of the cubic system single crystal silicon carbide substrate according to claim 1,
A single crystal silicon carbide film formed in the carbonization process, a single crystal silicon carbide film formed in the first silicon carbide film formation process, and an amorphous silicon carbide film formed in the second silicon carbide film formation process. A method for producing a cubic single crystal silicon carbide substrate, wherein the total thickness is 50 μm or more.
JP2006094108A 2006-03-30 2006-03-30 Manufacturing method of cubic single crystal silicon carbide substrate Withdrawn JP2007273525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094108A JP2007273525A (en) 2006-03-30 2006-03-30 Manufacturing method of cubic single crystal silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094108A JP2007273525A (en) 2006-03-30 2006-03-30 Manufacturing method of cubic single crystal silicon carbide substrate

Publications (1)

Publication Number Publication Date
JP2007273525A true JP2007273525A (en) 2007-10-18

Family

ID=38676060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094108A Withdrawn JP2007273525A (en) 2006-03-30 2006-03-30 Manufacturing method of cubic single crystal silicon carbide substrate

Country Status (1)

Country Link
JP (1) JP2007273525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525535A (en) * 2023-06-09 2023-08-01 中电科先进材料技术创新有限公司 Preparation method of multilayered SOI substrate and SOI substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525535A (en) * 2023-06-09 2023-08-01 中电科先进材料技术创新有限公司 Preparation method of multilayered SOI substrate and SOI substrate
CN116525535B (en) * 2023-06-09 2024-01-30 中电科先进材料技术创新有限公司 Preparation method of multilayered SOI substrate and SOI substrate

Similar Documents

Publication Publication Date Title
JP2007273524A (en) Manufacturing method of multilayer-structured silicon carbide substrate
TWI305660B (en)
JP2010515661A (en) Induced diameter SiC sublimation growth using multilayer growth guide
US20160307800A1 (en) Method for manufacturing a silicon carbide wafer and respective equipment
JP2013124215A (en) METHOD FOR GROWING SiC CRYSTAL AND SiC CRYSTAL SUBSTRATE
JP2007261900A (en) Method for manufacturing single crystal silicon carbide substrate
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP2000109393A (en) Single crystal silicon carbide
JP2007273525A (en) Manufacturing method of cubic single crystal silicon carbide substrate
JP5573725B2 (en) Method for manufacturing cubic silicon carbide semiconductor substrate
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
JP2016216297A (en) Silicon carbide substrate, and production method of silicon carbide substrate
JP2002255692A (en) Silicon carbide epitaxial substrate and manufacturing method thereof
JPH11268995A (en) Production of silicon carbide single crystal
JP4069508B2 (en) Method for producing silicon carbide single crystal
JP2004103671A (en) METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH
JP2010225733A (en) Method of manufacturing semiconductor substrate
JP4353369B2 (en) SiC semiconductor and manufacturing method thereof
JP2010225734A (en) Method of manufacturing semiconductor substrate
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP2936481B1 (en) Single crystal SiC and method for producing the same
JP7218832B1 (en) Manufacturing method of heteroepitaxial wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602