JP2007271284A - Qcm sensor element and method of manufacturing same - Google Patents

Qcm sensor element and method of manufacturing same Download PDF

Info

Publication number
JP2007271284A
JP2007271284A JP2006093705A JP2006093705A JP2007271284A JP 2007271284 A JP2007271284 A JP 2007271284A JP 2006093705 A JP2006093705 A JP 2006093705A JP 2006093705 A JP2006093705 A JP 2006093705A JP 2007271284 A JP2007271284 A JP 2007271284A
Authority
JP
Japan
Prior art keywords
quartz plate
sensor element
dry
beveling
qcm sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006093705A
Other languages
Japanese (ja)
Inventor
Akira Ito
章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006093705A priority Critical patent/JP2007271284A/en
Publication of JP2007271284A publication Critical patent/JP2007271284A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the symmetricalness of the outside and inside shapes, to prevent the occurrence of unnecessary parasitic oscillation, to reduce the adhesion of a contaminant and to enhance reliability with respect to damage. <P>SOLUTION: A slope 21 is formed to the outer peripheral part of a quartz plate 2 so as to become thin toward the outside by applying dry bevelling processing to the quartz plate 2 subjected to lapping processing so as to become uniform in predetermined thickness and mirror surface processing is applied to the surface and back of the quartz plate 2 containing a part (slope 21) subjected to dry processing after the dry bevelling processing by wet bevelling processing and an exciting electrode 3 is provided to the central part of the quartz plate 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微少な量の質量変化を共振周波数の減少量によって検出するQCMセンサ素子に関する。   The present invention relates to a QCM sensor element that detects a minute amount of mass change by a decrease amount of a resonance frequency.

従来より、QCM(Quartz Crystal Microbalance)センサ素子は、ラッピング加工された水晶板(図2(a)参照)において、平面視円板形状となる水晶板の外周部分を乾式ベベリング加工により外周部分を傾斜させた形状となっている。つまり、従来のQCMセンサ素子は、厚さが一定となる平坦部と外側に向かうにつれて厚さが薄くなる傾斜部とを備え(図2(b)参照)、この平端部表面の内部側には励振電極(図示せず)が形成されている。これにより、QCMセンサ素子は、この励振電極表面に付着した微少な量の質量変化を素子の共振周波数の減少量によって検出することができるようになっている。
このようなQCMセンサ素子において、例えば、従来から用いられている液相系QCMセンサ素子は、試料液体との摩擦抵抗によりCI(クリスタル・インピーダンス)が大きくなってしまうため、これを防ぐためにその励振部分となる平坦部の表面が鏡面加工されているものが提案されている(例えば、特許文献1参照)。
特開2004−128979号公報(段落0011〜0017、図1)
Conventionally, a QCM (Quartz Crystal Microbalance) sensor element in a lapped quartz crystal plate (see FIG. 2A), the outer circumference portion of the quartz crystal plate having a circular shape in plan view is inclined by dry beveling. The shape is That is, the conventional QCM sensor element includes a flat portion having a constant thickness and an inclined portion that decreases in thickness toward the outside (see FIG. 2B). Excitation electrodes (not shown) are formed. As a result, the QCM sensor element can detect a minute amount of mass change adhering to the surface of the excitation electrode by the amount of decrease in the resonance frequency of the element.
In such a QCM sensor element, for example, a conventionally used liquid phase QCM sensor element has a large CI (Crystal Impedance) due to frictional resistance with the sample liquid. A surface in which the surface of a flat portion serving as a portion is mirror-finished has been proposed (for example, see Patent Document 1).
JP 2004-128979 A (paragraphs 0011 to 0017, FIG. 1)

しかしながら、乾式ベベリング加工によって水晶板の外周部分に外側に向かうにつれて厚みが薄くなるようにテーパ(傾斜部)を付けることができるが、この乾式ベベリング加工によって厚さが一定となる平坦部が水晶板同士の衝突により局部的に加工キズを生じさせてしまうことがある。このため、平坦部を鏡面にするためには、ポリッシュ加工を行う際の加工量を多くするか、若しくは、ラッピング加工をした後にポリッシュ加工を行うなど、加工量を多くした研磨処理が必要となる。このとき、両面加工機での上下面の研磨処理で、上面と下面とでアンバランスな加工量となり、QCMセンサ素子全体の対称性が悪くなってしまう(図2(c)参照)。また、QCMセンサ素子全体の対称性が悪くなると、不要な寄生振動が発生してしまう。
また、ベベリング加工された傾斜部は、その後の両面加工機による研磨処理が行われないために粗面となっており、試料液体中で使用する場合に汚れが付着しやすい状態となる。
また、QCMセンサ素子の側面と傾斜部との交わるエッジ部分が立っているので、製造段階でチッピングが生じやすく、長期的に温度サイクルがかかる環境で破損する恐れがある。
However, a taper (inclined part) can be attached to the outer peripheral portion of the quartz plate by the dry beveling process so that the thickness decreases toward the outside. A processing flaw may be caused locally by the collision of each other. For this reason, in order to make the flat portion into a mirror surface, a polishing process with a large processing amount is required, such as increasing the processing amount when performing the polishing process, or performing the polishing process after lapping. . At this time, the polishing process of the upper and lower surfaces by the double-side processing machine results in an unbalanced processing amount between the upper surface and the lower surface, and the symmetry of the entire QCM sensor element is deteriorated (see FIG. 2C). Further, if the symmetry of the entire QCM sensor element is deteriorated, unnecessary parasitic vibration is generated.
In addition, the beveled inclined portion is rough because no subsequent polishing process is performed by the double-sided processing machine, and when used in the sample liquid, the dirt is likely to adhere.
In addition, since the edge portion where the side surface of the QCM sensor element intersects with the inclined portion stands, chipping is likely to occur in the manufacturing stage, and there is a risk of breakage in an environment where a temperature cycle is applied for a long time.

そこで、本発明では、前記した問題を解決し、裏表の形状の対称性を向上させ、不要な寄生振動の発生を防ぎ、汚れの付着を軽減させ、破損に対する信頼性を向上させるQCMセンサ素子及びQCMセンサ素子の製造方法を提供することを課題とする。   Therefore, in the present invention, a QCM sensor element that solves the above-described problems, improves the symmetry of the shape of the front and back, prevents the occurrence of unnecessary parasitic vibration, reduces the adhesion of dirt, and improves the reliability against breakage, and It is an object to provide a method for manufacturing a QCM sensor element.

前記課題を解決するため、本発明は、QCMセンサ素子であって、乾式ベベリング加工された水晶板の表面が湿式ベベリング加工され、前記水晶板の中央部に励振電極が形成されたことを特徴とする。   In order to solve the above-mentioned problems, the present invention is a QCM sensor element, characterized in that a dry beveled quartz plate surface is wet beveled and an excitation electrode is formed at a central portion of the quartz plate. To do.

また、本発明は、QCMセンサ素子の製造方法であって、所定の厚さにラッピング加工された水晶板に乾式ベベリング加工を行う工程と、前記乾式ベベリング後に乾式ベベリング加工された部分を含む前記水晶板の表面を湿式ベベリング加工により鏡面処理を行う工程と、前記水晶板の中央部に励振電極を設ける工程と、を備えて構成されることを特徴とする。   The present invention is also a method for manufacturing a QCM sensor element, wherein the quartz plate includes a step of dry-beveling a quartz plate lapped to a predetermined thickness, and a portion that is dry-beveled after the dry beveling. It is characterized by comprising a step of performing a mirror surface treatment on the surface of the plate by wet beveling and a step of providing an excitation electrode at the center of the quartz plate.

このようなQCMセンサ素子によれば、QCMセンサ素子全体の裏表の形状の対称性を向上させることができるので、不要な寄生振動の発生を防ぐとともに汚れの付着を軽減させることができ、さらに、破損に対する信頼性を向上させることができる。
また、QCMセンサ素子の製造方法によれば、QCMセンサ素子全体の裏表の形状の対称性を向上させることができるので、不要な寄生振動の発生を防ぐとともに汚れの付着を軽減させ、破損に対する信頼性を向上させることができるQCMセンサ素子を製造することができる。
According to such a QCM sensor element, the symmetry of the shape of the back and front of the entire QCM sensor element can be improved, so that unnecessary parasitic vibration can be prevented and the adhesion of dirt can be reduced. Reliability against breakage can be improved.
Further, according to the manufacturing method of the QCM sensor element, the symmetry of the front and back shapes of the entire QCM sensor element can be improved, so that unnecessary parasitic vibration is prevented and the adhesion of dirt is reduced, and the reliability against damage is reduced. A QCM sensor element capable of improving the performance can be manufactured.

次に、本発明を実施するための最良の形態(以下、「実施形態」という。)について、適宜図面を参照しながら詳細に説明する。
図1(a)はラッピング加工後の水晶板の形状の一例を示す断面図であり、(b)は乾式ベベリング加工後の水晶板の形状の一例を示す断面図であり、(c)は湿式ベベリング加工後の水晶板の形状の一例を示す断面図であり、(d)は本発明の実施形態に係るQCMセンサ素子の一例を示す断面図である。
Next, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate.
1A is a cross-sectional view showing an example of the shape of a quartz plate after lapping, FIG. 1B is a cross-sectional view showing an example of the shape of a quartz plate after dry beveling, and FIG. It is sectional drawing which shows an example of the shape of the quartz plate after a beveling process, (d) is sectional drawing which shows an example of the QCM sensor element which concerns on embodiment of this invention.

図1(d)に示すように、本発明の実施形態に係るQCMセンサ素子10は、水晶板2とこの水晶板2を挟む2つ一対の励振電極3と、から構成されている。   As shown in FIG. 1 (d), the QCM sensor element 10 according to the embodiment of the present invention includes a crystal plate 2 and a pair of excitation electrodes 3 sandwiching the crystal plate 2.

水晶板2は、外側に向かうにつれて厚さが薄くなる傾斜部21(図1(b)参照)と厚さが一定となる平坦部22とから構成される。
この水晶板2は、まず、所定のカットアングルでカットされた後に所定の厚さとなるようにラッピング加工が施されたウェハから円盤状(図1(a)参照)に形成される。
そして、この水晶板2は、外周部分に対して乾式ベベリング加工が行われて、外側に向かうにつれて厚さが薄くなる傾斜部21が形成される(図1(b)参照)。
この傾斜部21は、裏表の傾斜の形状が対称となるように形成されるので、QCMセンサ素子10の裏表の形状の対称性が良好になる。
The quartz plate 2 includes an inclined portion 21 (see FIG. 1B) whose thickness decreases toward the outside and a flat portion 22 whose thickness becomes constant.
The quartz plate 2 is first formed into a disk shape (see FIG. 1A) from a wafer that has been cut at a predetermined cut angle and then lapped so as to have a predetermined thickness.
The quartz plate 2 is subjected to a dry beveling process on the outer peripheral portion to form an inclined portion 21 whose thickness decreases toward the outside (see FIG. 1B).
Since the inclined portion 21 is formed so that the shape of the inclined surface is symmetrical, the symmetry of the shape of the reverse surface of the QCM sensor element 10 is improved.

また、乾式ベベリング加工とは、金属製ベベリング容器内に研磨材(例えば、GC(GreenSilicon Carbide)#800)と圧電素板(水晶板2)とを入れて、金属製ベベリング容器を回転させることで研磨剤により圧電素板の端部(外周部分)を削り、傾斜部21を形成する加工をいう。この乾式ベベリング加工では、形成される傾斜部21の表面が所定の研磨剤等により粗面(透明の部材が曇る程度)となる。   The dry beveling process is performed by putting an abrasive (for example, GC (Green Silicon Carbide) # 800) and a piezoelectric element plate (crystal plate 2) in a metal beveling container and rotating the metal beveling container. This refers to a process in which the end (outer peripheral portion) of the piezoelectric element plate is cut with an abrasive to form the inclined portion 21. In this dry-type beveling process, the surface of the inclined portion 21 to be formed becomes a rough surface (a degree that the transparent member becomes cloudy) with a predetermined abrasive or the like.

さらに、傾斜部21の裏表の表面と平坦部22の裏表の表面とに対して湿式ベベリング加工が行われ、傾斜部21の裏表の表面と平坦部22の裏表の表面とが鏡面となる。これにより、傾斜部21とQCMセンサ素子10の側面とのエッジ部が曲面となるように丸く削られる(図1(c)参照)。   Further, wet beveling is performed on the front and back surfaces of the inclined portion 21 and the back and front surfaces of the flat portion 22, and the back and front surfaces of the inclined portion 21 and the back and front surfaces of the flat portion 22 become mirror surfaces. Thus, the edge portion between the inclined portion 21 and the side surface of the QCM sensor element 10 is cut into a round shape (see FIG. 1C).

湿式ベベリング加工とは、水などの溶液中に加工対象となる圧電素板(水晶板2)、研磨材(例えば、粒径が0.9μmの酸化セリウム)、メディア(例えば、水晶板2より小さい不定形のも)などを加工容器に入れて行う加工をいう。   The wet beveling process is a piezoelectric element plate (crystal plate 2) to be processed in a solution such as water, an abrasive (for example, cerium oxide having a particle size of 0.9 μm), a medium (for example, smaller than the crystal plate 2). This refers to processing performed by placing an irregular shape) in a processing container.

例えば、前記条件(研磨材(例えば、粒径が0.9μmの酸化セリウム)、メディア(例えば、水晶板2より小さい不定形のも)において、水晶板2に対して湿式ベベリング加工を行うと、水の中に含まれるメディアと研磨剤とが水晶板2に接触しつつも水の中を動くので、水晶板2の傾斜部21の裏表の表面と平坦部22の裏表の表面とに均一に接触し、水晶板2の傾斜部21の裏表の表面と平坦部22の裏表の表面とを鏡面とすることができる。   For example, when wet beveling is performed on the crystal plate 2 under the above-described conditions (abrasive material (for example, cerium oxide having a particle size of 0.9 μm) and media (for example, an irregular shape smaller than the crystal plate 2), Since the medium and the abrasive contained in the water move in the water while being in contact with the quartz plate 2, the back and front surfaces of the inclined portion 21 of the quartz plate 2 and the back and front surfaces of the flat portion 22 are uniformly distributed. In contact, the front and back surfaces of the inclined portion 21 of the quartz plate 2 and the back and front surfaces of the flat portion 22 can be mirror surfaces.

このように、水晶板2は、平面視円形状であって、外側に向かうにつれて薄くなる傾斜部21と一定の厚さとなる平坦部22とからなり、傾斜部21の裏表の表面と平坦部22の裏表の表面とが鏡面となっている。   Thus, the crystal plate 2 has a circular shape in plan view, and includes the inclined portion 21 that becomes thinner toward the outside and the flat portion 22 that has a constant thickness, and the front and back surfaces of the inclined portion 21 and the flat portion 22. The front and back surfaces of the mirror are mirror surfaces.

励振電極3は、従来周知の蒸着法により表面が鏡面となった平坦部22表面の内部側に設けられる(図1(d)参照)。つまり、平坦部22の直径より小さい直径で励振電極3が形成される。この励振電極3は、裏表対称となるようにずれることなく平坦部22に設けられる。   The excitation electrode 3 is provided on the inner side of the surface of the flat portion 22 whose surface is a mirror surface by a conventionally known vapor deposition method (see FIG. 1D). That is, the excitation electrode 3 is formed with a diameter smaller than the diameter of the flat portion 22. The excitation electrode 3 is provided on the flat portion 22 without being shifted so as to be symmetric with respect to the front and back.

なお、平坦部22に励振電極3を設ける前に、この平坦部22の裏表の表面をポリッシュ加工してもよい。これにより、振動する部分である平坦部22の平坦精度が向上されて、周波数のばらつきを改善することができる。   Note that the front and back surfaces of the flat portion 22 may be polished before providing the excitation electrode 3 on the flat portion 22. Thereby, the flatness accuracy of the flat part 22 which is a vibrating part is improved, and variation in frequency can be improved.

このように本発明のQCMセンサ素子を構成したことにより、乾式ベベリング加工をした後に湿式ベベリング加工をしたので、平坦部22の裏表の表面の加工量が均一となることによりQCMセンサ素子10全体の対称性を向上させることができる。また、QCMセンサ素子10全体の対称性が向上するので、不要な寄生振動の発生を防ぐことができるので、安定した振動特性を得ることができる。また、乾式ベベリング加工した傾斜部21が鏡面となることにより汚れの付着を軽減させることができる。   Since the QCM sensor element of the present invention is configured as described above, the wet beveling process is performed after the dry beveling process. Therefore, the processing amount of the front and back surfaces of the flat portion 22 becomes uniform, so that the entire QCM sensor element 10 is obtained. Symmetry can be improved. In addition, since the symmetry of the entire QCM sensor element 10 is improved, unnecessary parasitic vibration can be prevented, and stable vibration characteristics can be obtained. In addition, the inclined portion 21 subjected to the dry beveling process becomes a mirror surface, so that adhesion of dirt can be reduced.

さらに、湿式ベベリング加工では、水が緩衝材として機能するため、水晶板2どうしが接触する際の勢いが緩和されるため、水晶板2の表面にキズやチッピングが発生しにくく、破損に対する信頼性を向上させることができる。   Further, in the wet beveling process, since water functions as a cushioning material, the momentum when the quartz plates 2 come into contact with each other is reduced. Can be improved.

次に、本発明の実施形態に係るQCMセンサ素子の製造方法について説明する。
初めの工程として、所定の厚さにラッピング加工された水晶板2(図1(a)参照)の外周部分に対して乾式ベベリング加工を行う。この乾式ベベリング加工の後の水晶板2の状態は、乾式ベベリング加工によって形成された傾斜部21(図1(b)参照)の裏表の表面は粗面となっている。そして、次の工程として、この粗面となる傾斜部21の裏表の表面と平坦部22の裏表の表面とに対して湿式ベベリング加工を行う。つまり、乾式ベベリング後に乾式ベベリング加工された部分(傾斜部21)を含む水晶板2の裏表の表面に対して湿式ベベリング加工を行う。これにより水晶板2の裏表の表面が鏡面処理された状態となり、また、水晶板2のエッジ部が丸く形成される(図1(c)参照)。この状態において、次の工程として、水晶板2の中央部(平坦部22)に励振電極3を設ける(図1(d)参照)。
Next, a method for manufacturing the QCM sensor element according to the embodiment of the present invention will be described.
As an initial step, dry beveling is performed on the outer peripheral portion of the quartz plate 2 (see FIG. 1A) lapped to a predetermined thickness. In the state of the quartz plate 2 after the dry beveling process, the front and back surfaces of the inclined portion 21 (see FIG. 1B) formed by the dry beveling process are rough. Then, as the next step, wet beveling is performed on the front and back surfaces of the inclined portion 21 and the front and back surfaces of the flat portion 22 as the rough surface. That is, wet beveling is performed on the front and back surfaces of the quartz plate 2 including the dry beveled portion (inclined portion 21). As a result, the front and back surfaces of the quartz plate 2 are mirror-finished, and the edge portion of the quartz plate 2 is formed round (see FIG. 1C). In this state, as the next step, the excitation electrode 3 is provided in the central portion (flat portion 22) of the crystal plate 2 (see FIG. 1D).

このようにしてQCMセンサ素子10を製造するので、湿式ベベリング加工の際に、水に含まれた研磨剤とメディアとにより水晶板2の平坦部22と傾斜部21とに均一に接触するので、平坦部22の裏表の表面と傾斜部21の裏表の表面とが同時に研磨されることとなり、いずれも良好な鏡面とすることができ、また、裏表の形状の対称性が良い水晶板2とすることができる。
また、湿式ベベリング加工の際に、水が緩衝材となって水晶板2どうしの接触の勢いを緩和することができるので、接触時にキズやチッピングを起こしにくくすることができる。
Since the QCM sensor element 10 is manufactured in this manner, the flat portion 22 and the inclined portion 21 of the quartz plate 2 are uniformly contacted by the abrasive and media contained in water during the wet beveling process. The front and back surfaces of the flat portion 22 and the back and front surfaces of the inclined portion 21 are simultaneously polished, and both can be made to have a good mirror surface, and the crystal plate 2 has a good symmetry in the shape of the back and front. be able to.
In addition, during the wet beveling process, water becomes a buffer material and the momentum of contact between the crystal plates 2 can be reduced, so that scratches and chipping are less likely to occur during contact.

(a)はラッピング加工後の水晶板の形状の一例を示す断面図であり、(b)は乾式ベベリング加工後の水晶板の形状の一例を示す断面図であり、(c)は湿式ベベリング加工後の水晶板の形状の一例を示す断面図であり、(d)は本発明の実施形態に係るQCMセンサ素子の一例を示す断面図である。(A) is sectional drawing which shows an example of the shape of the quartz plate after a lapping process, (b) is sectional drawing which shows an example of the shape of the quartz plate after a dry-type beveling process, (c) is a wet beveling process It is sectional drawing which shows an example of the shape of a subsequent quartz plate, (d) is sectional drawing which shows an example of the QCM sensor element which concerns on embodiment of this invention. 従来の加工工程を示す図であって、(a)はラッピング加工後の水晶板の形状の一例を示す断面図であり、(b)は乾式ベベリング加工後の水晶板の形状の一例を示す断面図であり、(c)は研磨処理後の水晶板の形状の一例を示す断面図である。It is a figure which shows the conventional process, Comprising: (a) is sectional drawing which shows an example of the shape of the quartz plate after lapping, (b) is a cross section which shows an example of the shape of the quartz plate after dry-type beveling processing It is a figure and (c) is sectional drawing which shows an example of the shape of the quartz plate after a grinding | polishing process.

符号の説明Explanation of symbols

10 QCMセンサ素子
2 水晶板
21 傾斜部
22 平坦部
3 励振電極
10 QCM sensor element 2 Crystal plate 21 Inclined part 22 Flat part 3 Excitation electrode

Claims (2)

乾式ベベリング加工された水晶板の表面が湿式ベベリング加工され、前記水晶板の中央部に励振電極が形成されたことを特徴とするQCMセンサ素子。   A QCM sensor element, wherein a surface of a quartz plate subjected to a dry beveling process is subjected to a wet beveling process, and an excitation electrode is formed at a central portion of the quartz plate. 所定の厚さにラッピング加工された水晶板に乾式ベベリング加工を行う工程と、
前記乾式ベベリング後に乾式ベベリング加工された部分を含む前記水晶板の表面を湿式ベベリング加工により鏡面処理を行う工程と、
前記水晶板の中央部に励振電極を設ける工程と、
を備えて構成されることを特徴とするQCMセンサ素子の製造方法。
A process of dry beveling a quartz plate lapped to a predetermined thickness;
Performing a mirror surface treatment by wet beveling on the surface of the quartz plate including the dry beveled portion after the dry beveling; and
Providing an excitation electrode in the center of the quartz plate;
A method of manufacturing a QCM sensor element, comprising:
JP2006093705A 2006-03-30 2006-03-30 Qcm sensor element and method of manufacturing same Pending JP2007271284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093705A JP2007271284A (en) 2006-03-30 2006-03-30 Qcm sensor element and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093705A JP2007271284A (en) 2006-03-30 2006-03-30 Qcm sensor element and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007271284A true JP2007271284A (en) 2007-10-18

Family

ID=38674258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093705A Pending JP2007271284A (en) 2006-03-30 2006-03-30 Qcm sensor element and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007271284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833606A (en) * 2015-05-11 2015-08-12 电子科技大学 High-quality factor QCM sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261556A (en) * 2001-02-28 2002-09-13 Kinseki Ltd Method of beveling and working small piezoelectric blank plate
JP2003110387A (en) * 2001-09-28 2003-04-11 Kinseki Ltd Structure of process container, and process method for surface reforming of piezoelectric element plate by beveling
JP2004128979A (en) * 2002-10-03 2004-04-22 Nippon Dempa Kogyo Co Ltd Quartz oscillator for viscosity sensor
JP2005244001A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Forming method of piezoelectric thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261556A (en) * 2001-02-28 2002-09-13 Kinseki Ltd Method of beveling and working small piezoelectric blank plate
JP2003110387A (en) * 2001-09-28 2003-04-11 Kinseki Ltd Structure of process container, and process method for surface reforming of piezoelectric element plate by beveling
JP2004128979A (en) * 2002-10-03 2004-04-22 Nippon Dempa Kogyo Co Ltd Quartz oscillator for viscosity sensor
JP2005244001A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Forming method of piezoelectric thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833606A (en) * 2015-05-11 2015-08-12 电子科技大学 High-quality factor QCM sensor

Similar Documents

Publication Publication Date Title
US10211389B2 (en) Composite substrate
US8847469B2 (en) Composite substrate and method for manufacturing the composite substrate
KR101579344B1 (en) Composite substrate and manufacturing method for the same
TWI637540B (en) Method for manufacturing piezoelectric device, piezoelectric device and piezoelectric independent substrate
WO2006046403A1 (en) Production method of semiconductor wafer, and semiconductor wafer
JP2009035461A (en) Method for manufacturing glass substrate for magnetic disk
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JP2011135535A (en) Composite substrate, and method for manufacturing the same
JP6226774B2 (en) Composite substrate manufacturing method and composite substrate
JP2007271284A (en) Qcm sensor element and method of manufacturing same
JP4103808B2 (en) Wafer grinding method and wafer
JP2001332949A (en) Method for manufacturing surface acoustic wave element
JP5074845B2 (en) Semiconductor wafer grinding method and semiconductor wafer processing method
JP2010040549A (en) Semiconductor wafer and manufacturing method thereof
JP2010017779A (en) Wafer processing method
JPH11189500A (en) Production of oxide single crystal substrate
JP2015129056A (en) Method of cutting glass substrate and method of manufacturing glass substrate for magnetic recording medium
JP2013220516A (en) Wafer substrate and method of manufacturing the same
JP5459016B2 (en) Wafer substrate polishing method and polishing plate
JP2009277947A (en) Semiconductor wafer
JP2007205806A (en) Method for manufacturing sensor element for measurement of very small mass and its element
JP6072166B1 (en) Surface altered layer depth measuring method, semiconductor wafer grinding method, and semiconductor wafer manufacturing method
JP2005034926A (en) Polishing method of wafer substrate, and wafer
JPH10209786A (en) Crystal-vibrating piece and machining method for crystal-vibrating piece
JP2000188434A (en) Piezoelectric element and its processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Effective date: 20110411

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Effective date: 20110620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120124

Free format text: JAPANESE INTERMEDIATE CODE: A02