JP2007270060A - Method for hydrogenating wax - Google Patents

Method for hydrogenating wax Download PDF

Info

Publication number
JP2007270060A
JP2007270060A JP2006100177A JP2006100177A JP2007270060A JP 2007270060 A JP2007270060 A JP 2007270060A JP 2006100177 A JP2006100177 A JP 2006100177A JP 2006100177 A JP2006100177 A JP 2006100177A JP 2007270060 A JP2007270060 A JP 2007270060A
Authority
JP
Japan
Prior art keywords
wax
hydrocracking
distillate
catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006100177A
Other languages
Japanese (ja)
Other versions
JP4714066B2 (en
Inventor
Hiroyuki Seki
浩幸 関
Masahiro Azuma
正浩 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006100177A priority Critical patent/JP4714066B2/en
Priority to AU2007232010A priority patent/AU2007232010B2/en
Priority to RU2008143259/04A priority patent/RU2443757C2/en
Priority to CN200780011369.0A priority patent/CN101410487B/en
Priority to PCT/JP2007/053933 priority patent/WO2007113962A1/en
Priority to MYPI20083624 priority patent/MY146925A/en
Publication of JP2007270060A publication Critical patent/JP2007270060A/en
Application granted granted Critical
Publication of JP4714066B2 publication Critical patent/JP4714066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for hydrogenating wax, which improves catalytic activity deteriorating with time and obtains a fuel base having a sufficiently reduced normal paraffin content is obtained in hydrocracking FT wax for a long period of time. <P>SOLUTION: The method for hydrogenating wax comprises a process for using wax obtained by an FT synthesis as a raw material and hydrocracking the wax in the presence of hydrogen and a catalyst obtained by supporting a metal of the group VIII of the periodic table on a zeolite-containing carrier, a process for temporarily changing the raw material from the wax to a distillate obtained by distilling a mixture of the hydrocracked product of the wax obtained by the first process and the hydrocracked product of a middle distillate formed by the FT synthesis and hydrocracking the distillate in the presence of hydrogen at 160-330°C reaction temperature and a process for changing the raw material from the distillate to the wax and hydrocracking the wax in the presence of hydrogen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ワックスの水素化処理方法に関する。   The present invention relates to a method for hydrotreating wax.

近年、環境保護の立場からガソリンや軽油のような液体燃料中の硫黄分規制が急速に厳しくなってきている。このため、硫黄分や芳香族炭化水素の含有量が低いクリーンな液体燃料への期待が高まってきている。このようなクリーン燃料の製造方法の一つとして、石炭やアスファルトのガス化または天然ガスの改質などから得られる一酸化炭素と水素とを原料としたフィッシャー・トロプシュ(FT)合成法が挙げられる。   In recent years, the regulation of sulfur content in liquid fuels such as gasoline and light oil has become stricter from the standpoint of environmental protection. For this reason, the expectation for the clean liquid fuel with low content of sulfur content and aromatic hydrocarbon is increasing. One of the methods for producing such clean fuel is a Fischer-Tropsch (FT) synthesis method using carbon monoxide and hydrogen obtained from gasification of coal or asphalt or reforming of natural gas as raw materials. .

FT合成法で得られる燃料基材はノルマルパラフィンが主成分であり、含酸素化合物が一部含まれることから、そのまま燃料として使用することが困難であり、水素化精製によって含酸素化合物の除去またはノルマルパラフィンからイソパラフィンへの異性化が行われる。また、FT合成法では重質なワックス留分(FTワックス)も同時に生成され、このFTワックスは、水素化分解によりイソパラフィンに富んだ中間留分(灯油や軽油基材)へと変換されるのが一般的である。   The fuel base material obtained by the FT synthesis method is composed of normal paraffin as a main component and contains a part of oxygen-containing compounds, so that it is difficult to use as fuel as it is. Isomerization from normal paraffin to isoparaffin is performed. In the FT synthesis method, a heavy wax fraction (FT wax) is also produced at the same time, and this FT wax is converted into an intermediate fraction (kerosene or light oil base material) rich in isoparaffin by hydrocracking. Is common.

FTワックスの水素化分解又はFT合成により製造される中間留分を燃料基材として使用する場合、収率が高いことはプロセスの経済性の観点から重要であるが、燃料性状の観点からは、ノルマルパラフィン含有量が低く、逆にイソパラフィン含有量が高いことが望ましい。例えば軽油では、ノルマルパラフィン含有量が多くなると低温流動性が悪化し、最悪の場合、商品としての使用が制限される。FT合成で生成する軽油はほとんどがノルマルパラフィンであるため、これをそのまま使用することは困難である。   When a middle distillate produced by hydrocracking or FT synthesis of FT wax is used as a fuel substrate, a high yield is important from the viewpoint of economics of the process, but from the viewpoint of fuel properties, It is desirable that the normal paraffin content is low and the isoparaffin content is high. For example, in light oil, when normal paraffin content increases, low-temperature fluidity | liquidity will deteriorate, and the use as goods is restricted in the worst case. Since most of the light oil produced by FT synthesis is normal paraffin, it is difficult to use it as it is.

なお、FTワックスを水素化分解して燃料基材を製造する技術はこれまでにも検討されており、例えば、FTワックスを原料とした水素化分解方法が、下記特許文献1〜3に記載されている。
国際公開第2004/028688号パンフレット 特開2004−255241号公報 特開2004−255242号公報
A technique for producing a fuel base material by hydrocracking FT wax has been studied so far. For example, hydrocracking methods using FT wax as a raw material are described in Patent Documents 1 to 3 below. ing.
International Publication No. 2004/028688 Pamphlet Japanese Patent Laid-Open No. 2004-255241 JP 2004-255242 A

しかしながら、上記特許文献1〜3に記載されているワックスの水素化分解方法では、長期間にわたってワックスの水素化分解を行なった場合、触媒の触媒活性が経時的に劣化し、得られる燃料基材のノルマルパラフィン含有量が増加してしまうという問題が生じる。   However, in the wax hydrocracking method described in Patent Documents 1 to 3, when the wax hydrocracking is performed for a long period of time, the catalytic activity of the catalyst deteriorates with time, and the fuel base material obtained There arises a problem that the normal paraffin content of the resin increases.

従来は高性能なワックス水素化分解用触媒の開発が中心であり、運転中における触媒の活性向上、即ち触媒寿命の延長に関する報告は無いに等しい。石油精製の分野における中間留分の製造方法としては減圧軽油を水素化分解する方法が代表的であり、このプロセスから低硫黄軽油を製造することができる。このプロセスにおいては、触媒の劣化が予想以上に大きい場合、予定の期間運転するために原料供給量を削減したり、分解率を低下させたり等の処置が取られるのが一般的である。しかし、このような処置は運転効率を低下させるため、好ましくない。したがって、触媒劣化の抑制、即ち予想以上の触媒劣化が起きた場合などに対応できる触媒の再活性化方法の開発が強く望まれている。   Conventionally, the development of a high-performance wax hydrocracking catalyst has been centered, and there are no reports on improving the activity of the catalyst during operation, that is, extending the catalyst life. A typical method for producing middle distillate in the field of oil refining is hydrocracking vacuum gas oil, and low sulfur gas oil can be produced from this process. In this process, when the deterioration of the catalyst is greater than expected, it is common to take measures such as reducing the amount of raw material supply or reducing the decomposition rate in order to operate for a predetermined period. However, such treatment is not preferable because it reduces the operation efficiency. Therefore, there is a strong demand for the development of a catalyst reactivation method that can suppress catalyst deterioration, that is, cope with a case where catalyst deterioration occurs more than expected.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、長期間にわたってFTワックスを水素化分解する際に、経時劣化する触媒活性を向上させると共に、ノルマルパラフィン含有量が十分に低減された燃料基材を得ることが可能なワックスの水素化処理方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art. When hydrocracking FT wax over a long period of time, the catalytic activity that deteriorates with time is improved and the normal paraffin content is sufficiently reduced. It is an object of the present invention to provide a method for hydrotreating wax capable of obtaining a finished fuel substrate.

上記目的を達成するために、本発明は、フィッシャー・トロプシュ合成により生成されたワックスを原料とし、水素の存在下で、上記ワックスを、ゼオライトを含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから、上記第1の工程により得られた上記ワックスの水素化分解生成物と、フィッシャー・トロプシュ合成により生成された中間留分の水素化分解生成物との混合物を蒸留して得られる留出油に切り替え、水素の存在下、反応温度160〜330℃の条件で、上記留出油を上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記留出油から上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とするワックスの水素化処理方法を提供する。   In order to achieve the above object, the present invention uses a wax produced by Fischer-Tropsch synthesis as a raw material, and in the presence of hydrogen, the wax is placed on a carrier containing zeolite in the Group VIII metal in the periodic table. A first step of hydrocracking by bringing the catalyst into contact with a catalyst, and the hydrocracking product of the wax obtained by the first step from the wax temporarily, The distillate obtained by distilling the mixture of hydrocracked product of middle distillate produced by Fischer-Tropsch synthesis is switched to distillate oil, and the above distillate is obtained in the presence of hydrogen at a reaction temperature of 160 to 330 ° C. A second step of hydrocracking oil by contacting with the catalyst, and switching the raw material from the distillate oil to the wax, and in the presence of hydrogen, the wax Providing hydrotreating process of the wax, which comprises a third step of decomposing hydrogenation, the by contacting with the catalyst.

かかるワックスの水素化処理方法によれば、ゼオライトを含む担体上に周期律表における第VIII族の金属を担持してなる触媒を用いてFTワックスを水素化分解する際に、一時的に原料を上記の留出油に切り替え、上記の温度条件で当該留出油を上記触媒により水素化分解することで、それ以前のFTワックスの水素化分解の際に経時劣化した上記触媒の触媒活性を向上させることができ、その後、原料を再びFTワックスに切り替えることにより、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を得ることができる。   According to the wax hydrotreating method, when the FT wax is hydrocracked using a catalyst in which a group VIII metal in the periodic table is supported on a support containing zeolite, the raw material is temporarily used. By switching to the above distillate and hydrocracking the distillate with the catalyst under the above temperature conditions, the catalytic activity of the catalyst deteriorated with time during the hydrocracking of the previous FT wax is improved. After that, by switching the raw material to FT wax again, a fuel base material in which the normal paraffin content is sufficiently reduced over a long period of time can be obtained.

また、本発明のワックスの水素化処理方法において、上記ゼオライトは、超安定Y型ゼオライト(以下、場合により「USYゼオライト」という)であることが好ましい。   In the wax hydrotreating method of the present invention, the zeolite is preferably an ultrastable Y-type zeolite (hereinafter sometimes referred to as “USY zeolite”).

本発明によれば、長期間にわたってFTワックスを水素化分解する際に、経時劣化する触媒の触媒活性を向上させ、ノルマルパラフィン含有量が十分に低減された燃料基材を得ることが可能なワックスの水素化処理方法を提供することができる。   According to the present invention, when hydrocracking FT wax over a long period of time, it is possible to improve the catalytic activity of a catalyst that deteriorates with time and to obtain a fuel base material with a sufficiently reduced normal paraffin content. The hydrotreating method can be provided.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明のワックスの水素化処理方法は、フィッシャー・トロプシュ合成により生成されたワックスを原料とし、水素の存在下で、上記ワックスを、ゼオライトを含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから、上記第1の工程により得られた上記ワックスの水素化分解生成物と、フィッシャー・トロプシュ合成により生成された中間留分の水素化分解生成物との混合物を蒸留して得られる留出油に切り替え、水素の存在下、反応温度160〜330℃の条件で、上記留出油を上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記留出油から上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とする方法である。   The method for hydrotreating a wax according to the present invention uses a wax produced by Fischer-Tropsch synthesis as a raw material, and in the presence of hydrogen, the wax is placed on a carrier containing zeolite with a Group VIII metal in the periodic table. A first step of hydrocracking by bringing the catalyst into contact with a supported catalyst; a hydrocracking product of the wax obtained by the first step; Switch to a distillate obtained by distillation of a mixture of hydrocracked product of middle distillate produced by Tropsch synthesis and distillate the above distillate under the conditions of reaction temperature 160-330 ° C. in the presence of hydrogen. A second step of hydrocracking by contacting the catalyst with the catalyst, and switching the raw material from the distillate oil to the wax, and in the presence of hydrogen, the wax A method which comprises a third step of decomposing hydrogenated by contacting with the catalyst.

本発明におけるワックスの水素化処理は、例えば、触媒が充填された固定床反応装置を用いて行うことができる。原料としてのFTワックスは、固定床反応装置内に導入され、水素雰囲気下で触媒と接触することで水素化分解され、生成油が得られることとなる。   The wax hydrogenation treatment in the present invention can be carried out, for example, using a fixed bed reactor filled with a catalyst. The FT wax as a raw material is introduced into a fixed bed reactor and hydrocracked by contacting with a catalyst in a hydrogen atmosphere to obtain a product oil.

ここで、反応装置内に充填される水素化分解用の触媒としては、ゼオライトを含む担体上に周期律表における第VIII族の金属を担持してなるものが用いられる。ゼオライトとしては、例えば、USYゼオライト、モルデナイト、SAPO−11などが挙げられ、これらの中でもUSYゼオライトが好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。   Here, as the hydrocracking catalyst charged in the reactor, a catalyst obtained by supporting a Group VIII metal in the periodic table on a support containing zeolite is used. Examples of zeolite include USY zeolite, mordenite, and SAPO-11. Among these, USY zeolite is preferably used. These can be used individually by 1 type or in combination of 2 or more types.

また、ゼオライトとしてUSYゼオライトを用いる場合、USYゼオライト中のシリカとアルミナのモル比(シリカ/アルミナ)は、20〜96であることが好ましく、25〜60であることがより好ましく、30〜45であることが更に好ましい。   When USY zeolite is used as the zeolite, the molar ratio of silica to alumina in the USY zeolite (silica / alumina) is preferably 20 to 96, more preferably 25 to 60, and 30 to 45. More preferably it is.

また、USYゼオライトの平均粒子径の上限値は、1.0μmであることが好ましく、0.5μmであることがより好ましい。一方、USYゼオライトの平均粒子径の下限値は、0.05μmであることが好ましい。   The upper limit of the average particle size of USY zeolite is preferably 1.0 μm, and more preferably 0.5 μm. On the other hand, the lower limit of the average particle size of USY zeolite is preferably 0.05 μm.

また、担体は、シリカアルミナ、シリカジルコニア、アルミナボリア、シリカマグネシアなどのアモルファス固体酸を含んでいてもよい。   The carrier may contain an amorphous solid acid such as silica alumina, silica zirconia, alumina boria, silica magnesia and the like.

また、担体としては、ゼオライト及び必要に応じて用いられるアモルファス固体酸等をバインダーを用いてペレット状に成型したものを用いることが好ましい。バインダーとしては、例えば、シリカ、アルミナ等を用いることができ、アルミナを用いることが好ましい。   Moreover, as a support | carrier, it is preferable to use what shape | molded the pellet and the amorphous solid acid etc. which are used as needed using a binder. As the binder, for example, silica, alumina or the like can be used, and alumina is preferably used.

また、担体上に担持される周期律表における第VIII族の金属としては、例えば、ニッケル、ロジウム、パラジウム、イリジウム、白金等が挙げられ、これらの中でもパラジウム、白金が好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。   In addition, examples of the Group VIII metal in the periodic table supported on the carrier include nickel, rhodium, palladium, iridium, and platinum. Of these, palladium and platinum are preferably used. These can be used individually by 1 type or in combination of 2 or more types.

本発明のワックスの水素化処理方法における第1の工程及び第3の工程で原料として使用されるワックスは、フィッシャー・トロプシュ(FT)合成により生成されたワックス(FTワックス)であり、炭素数が16以上、好ましくは炭素数が20以上のノルマルパラフィンを70質量%以上含んだワックスである。FTワックスの炭素数分布はFT合成の条件で決まるが、本発明で使用するFTワックスは、その炭素数分布に特に制限はない。   The wax used as a raw material in the first step and the third step in the wax hydrotreating method of the present invention is a wax (FT wax) produced by Fischer-Tropsch (FT) synthesis and has a carbon number. A wax containing 70% by mass or more of normal paraffin having 16 or more, preferably 20 or more carbon atoms. The carbon number distribution of the FT wax is determined by the conditions of FT synthesis, but the FT wax used in the present invention is not particularly limited in the carbon number distribution.

本発明のワックスの水素化処理方法における第2の工程で原料として使用される留出油は、上記第1の工程により得られたFTワックスの水素化分解生成物とフィッシャー・トロプシュ合成により生成された中間留分の水素化分解生成物との混合物を蒸留して得られるものである。   The distillate used as a raw material in the second step in the wax hydrotreating method of the present invention is produced by the hydrocracking product of the FT wax obtained in the first step and the Fischer-Tropsch synthesis. The middle distillate hydrocracked product is obtained by distillation.

FT合成で製造された中間留分の水素化分解は、固定床反応装置を用いて行うことができる。この時の反応条件は特に制限されないが、ガスやナフサの生成が十分に抑制され、効率良く含酸素化合物の除去またはオレフィンの水素化が行われる条件とすることが望ましい。また、触媒としては、例えば、固体酸を含む担体上に周期律表における第VIII族の金属、具体的にはニッケル、ロジウム、パラジウム、イリジウム、白金から1種類以上を選択した金属が担持されてなる触媒を用いることが好ましい。   The hydrocracking of middle distillate produced by FT synthesis can be performed using a fixed bed reactor. The reaction conditions at this time are not particularly limited, but it is desirable that the generation of gas and naphtha is sufficiently suppressed and the oxygen-containing compound is removed or the olefin is hydrogenated efficiently. Further, as the catalyst, for example, a group VIII metal in the periodic table, specifically, a metal selected from one or more of nickel, rhodium, palladium, iridium, and platinum is supported on a support containing a solid acid. It is preferable to use a catalyst.

上記各水素化分解生成物の混合物を蒸留することで得られる留出油は、特に制限されないが、その炭素数が9〜25であることが好ましく、10〜20であることがより好ましい。また、上記混合物を蒸留する際に、例えば炭素数10〜15の灯油留分と炭素数16〜20の軽油留分とに分ける場合、これらを適宜混合して使用することもできる。   Although the distillate obtained by distilling the mixture of each said hydrocracking product is not restrict | limited, It is preferable that the carbon number is 9-25, and it is more preferable that it is 10-20. Moreover, when distilling the said mixture, for example, when dividing into a C10-C15 kerosene fraction and a C16-C20 light oil fraction, these can also be mixed and used suitably.

なお、第1の工程において、第2の工程を行う直前の反応温度は特に制限されないが、340℃以上の場合、第2の工程における触媒活性の回復度合いが低下するため、340℃未満であることが好ましい。言い換えれば、第1の工程における反応温度が触媒劣化により340℃に達する前に、原料の切り替えを行う(第2の工程を開始する)ことが好ましい。   In the first step, the reaction temperature immediately before performing the second step is not particularly limited. However, when the temperature is 340 ° C. or higher, the degree of recovery of the catalytic activity in the second step is reduced, so that it is less than 340 ° C. It is preferable. In other words, it is preferable to switch the raw materials (start the second step) before the reaction temperature in the first step reaches 340 ° C. due to catalyst deterioration.

また、第2の工程における反応条件としては、通常、反応温度を160〜330℃とすることが好ましく、170〜320℃とすることがより好ましい。反応温度が160℃未満であるか又は330℃を超えると、触媒活性の回復が十分に行われない。   Moreover, as reaction conditions in a 2nd process, it is preferable that reaction temperature shall be 160-330 degreeC normally, and it is more preferable to set it as 170-320 degreeC normally. When the reaction temperature is lower than 160 ° C or higher than 330 ° C, the catalyst activity is not sufficiently recovered.

また、第2の工程において、固定床反応装置内の触媒に対する軽質パラフィンの液空間速度(LHSV)は、0.1〜10.0h−1とすることが好ましく、0.5〜5.0h−1とすることがより好ましい。液空間速度が0.1h−1未満であると、触媒活性の十分な向上に時間がかかるため好ましくない。 In the second step, the liquid space velocity (LHSV) of the light paraffin with respect to the catalyst in the fixed bed reactor is preferably 0.1 to 10.0 h −1, and preferably 0.5 to 5.0 h −. More preferably, it is 1 . If the liquid space velocity is less than 0.1 h −1 , it takes time to sufficiently improve the catalyst activity, which is not preferable.

更に、第2の工程において、反応時の圧力は、1〜12MPaとすることが好ましく、2〜6MPaとすることがより好ましい。   Furthermore, in the second step, the pressure during the reaction is preferably 1 to 12 MPa, and more preferably 2 to 6 MPa.

また、第2の工程において、水素油比は特に制限されないが、通常、100〜850NL/Lとすることが好ましく、200〜650NL/Lとすることがより好ましい。   In the second step, the hydrogen oil ratio is not particularly limited, but is usually preferably 100 to 850 NL / L, and more preferably 200 to 650 NL / L.

上述した第1〜第3の工程を経てワックスの水素化処理を行うことにより、経時劣化する触媒の触媒活性を第2の工程を行うことで向上させることができ、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を得ることが可能となる。   By performing the wax hydrogenation process through the first to third steps described above, the catalytic activity of the catalyst that deteriorates with time can be improved by performing the second step, and the normal paraffin content over a long period of time. It is possible to obtain a fuel base material with sufficiently reduced.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
FTワックス(炭素数20〜80、ノルマルパラフィン含有量:96質量%)を水素化分解の原料として用意した。また、USYゼオライトとシリカアルミナ(アルミナ含有量:17モル%)とアルミナバインダーとを質量比3:57:40で混合し、直径約1.5mm、長さ3mmの円柱状に成型した後、500℃で1時間焼成して触媒担体を得た。なお、上記USYゼオライトとしては、該USYゼオライト中のシリカとアルミナのモル比が37であり、平均粒子径が0.82μmであるものを用いた。得られた触媒担体に、ジクロロテトラアンミン白金(II)水溶液を含浸し、120℃で3時間乾燥した後、500℃で1時間焼成することで、触媒担体上に白金が触媒全量を基準として0.8質量%担持されてなる水素化分解触媒を作製した。
Example 1
FT wax (carbon number 20 to 80, normal paraffin content: 96 mass%) was prepared as a raw material for hydrocracking. Further, USY zeolite, silica alumina (alumina content: 17 mol%) and alumina binder were mixed at a mass ratio of 3:57:40, and molded into a cylindrical shape having a diameter of about 1.5 mm and a length of 3 mm, and then 500 The catalyst carrier was obtained by calcination at 1 ° C. for 1 hour. In addition, as said USY zeolite, the molar ratio of the silica and alumina in this USY zeolite is 37, and the average particle diameter is 0.82 micrometer. The obtained catalyst carrier was impregnated with an aqueous solution of dichlorotetraammineplatinum (II), dried at 120 ° C. for 3 hours, and then calcined at 500 ° C. for 1 hour, so that the platinum on the catalyst carrier was 0. A hydrocracking catalyst supported by 8% by mass was prepared.

次に、上記触媒300mlを固定床反応塔に充填し、反応前に水素気流下、345℃で4時間、金属(白金)の還元処理を行った。その後、上記触媒に対する上記原料の液空間速度2.0h−1(液流速として600ml/h)、圧力3.0MPa、水素油比570NL/Lの条件で、原料の分解率が70質量%になるように常に反応温度を調節しつつ、原料の水素化処理を45日間連続して行った(第1の工程)。この間に得られた生成油をまとめて蒸留し、炭素数10〜20の水素化分解生成物A(ノルマルパラフィン含有量:60質量%)を得た。 Next, 300 ml of the catalyst was packed in a fixed bed reaction tower, and metal (platinum) was reduced under a hydrogen stream at 345 ° C. for 4 hours before the reaction. Thereafter, the decomposition rate of the raw material becomes 70% by mass under the conditions of the liquid space velocity of the raw material with respect to the catalyst of 2.0 h −1 (600 ml / h as the liquid flow rate), the pressure of 3.0 MPa, and the hydrogen oil ratio of 570 NL / L. In this way, the raw material was subjected to hydrogenation treatment continuously for 45 days while always adjusting the reaction temperature (first step). The product oil obtained during this time was distilled together to obtain a hydrocracked product A (normal paraffin content: 60% by mass) having 10 to 20 carbon atoms.

一方、FT合成で生成した中間留分を、白金が触媒全量を基準として0.2質量%担持されてなるアルミナ触媒を用いて、温度230℃、液空間速度1.0h−1、圧力2.8MPa、水素油比380NL/Lの条件で水素化精製した。こうして得られた生成物を蒸留し、炭素数10〜20の水素化分解生成物B(ノルマルパラフィン含有量:60質量%)を得た。次に、水素化分解生成物Aと水素化分解生成物Bとを質量比40:60で混合し、得られた混合物を蒸留することで、留出油(炭素数10〜20、ノルマルパラフィン含有量:60質量%)を得た。 On the other hand, the middle distillate produced by the FT synthesis is treated with an alumina catalyst in which 0.2 mass% of platinum is supported on the basis of the total amount of the catalyst, at a temperature of 230 ° C., a liquid space velocity of 1.0 h −1 , and a pressure of 2. Hydrorefining was carried out under conditions of 8 MPa and a hydrogen oil ratio of 380 NL / L. The product thus obtained was distilled to obtain a hydrocracked product B (normal paraffin content: 60% by mass) having 10 to 20 carbon atoms. Next, the hydrocracking product A and the hydrocracking product B are mixed at a mass ratio of 40:60, and the resulting mixture is distilled to obtain a distillate oil (10 to 20 carbon atoms, containing normal paraffin). Amount: 60% by mass) was obtained.

上記第1の工程における水素化処理の運転開始から45日後、原料をFTワックスから上記留出油に切り替え、この留出油の水素化処理を2日間行った(第2の工程)。この処理における反応条件は、反応温度310℃、液空間速度2.5h−1、圧力3.0MPa、水素油比350NL/Lとした。 45 days after the start of the hydrotreating operation in the first step, the raw material was switched from the FT wax to the distillate, and the distillate was hydrotreated for two days (second step). The reaction conditions in this treatment were a reaction temperature of 310 ° C., a liquid space velocity of 2.5 h −1 , a pressure of 3.0 MPa, and a hydrogen oil ratio of 350 NL / L.

留出油の水素化処理後、再び原料をFTワックスに戻し、第1の工程と同様の条件にて水素化処理を行った(第3の工程)。   After the distillate oil hydrogenation treatment, the raw material was returned to the FT wax again, and the hydrogenation treatment was performed under the same conditions as in the first step (third step).

上記一連の水素化処理における反応温度として、反応開始時の温度(反応開始温度)、原料をFTワックスから留出油に切り替える直前の温度(第2の工程前温度)、及び、原料を軽質パラフィンから再度FTワックスに切り替えた直後の温度(第2の工程後温度)を表1に示す。この反応温度は触媒活性の指標となるものであり、反応温度が低いほど触媒活性が良好であることを示す。また、原料を留出油から再度FTワックスに切り替えた後の水素化処理で得られた生成油のうち、炭素数10〜20の生成油のノルマルパラフィン含有量(異性化の指標)を表1に示す。   As the reaction temperature in the above-described series of hydrotreating processes, the temperature at the start of the reaction (reaction start temperature), the temperature immediately before switching the raw material from FT wax to distillate (temperature before the second step), and the raw material as light paraffin Table 1 shows the temperature immediately after switching from FT to FT wax again (temperature after the second step). This reaction temperature is an indicator of the catalyst activity, and the lower the reaction temperature, the better the catalyst activity. Table 1 shows the normal paraffin content (index of isomerization) of the product oil having 10 to 20 carbon atoms among the product oils obtained by the hydrotreating process after switching the raw material from distillate oil to FT wax again. Shown in

(比較例1)
第2の工程での留出油の水素化処理における反応温度を130℃としたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、炭素数10〜20の生成油のノルマルパラフィン含有量(異性化の指標)を表1に示す。
(Comparative Example 1)
The hydrogenation process of the said 1st-3rd process was performed like Example 1 except having made the reaction temperature in the hydrogenation process of the distillate oil in the 2nd process into 130 degreeC. Table 1 shows each reaction temperature in the above-described series of hydrotreating and the normal paraffin content (an index of isomerization) of the product oil having 10 to 20 carbon atoms.

(比較例2)
第2の工程での原料として、留出油に代えて、FT合成で生成した未精製の中間留分(炭素数10〜20、アルコール含有量:8.2質量%、ノルマルパラフィン含有量:80.6質量%)を単独で用いたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、炭素数10〜20の生成油のノルマルパラフィン含有量(異性化の指標)を表1に示す。
(Comparative Example 2)
As a raw material in the second step, instead of distillate oil, an unrefined middle distillate produced by FT synthesis (carbon number 10 to 20, alcohol content: 8.2 mass%, normal paraffin content: 80 .6 mass%) was used in the same manner as in Example 1 except that the hydrogenation treatment in the first to third steps was performed. Table 1 shows each reaction temperature in the above-described series of hydrotreating and the normal paraffin content (an index of isomerization) of the product oil having 10 to 20 carbon atoms.

Figure 2007270060
Figure 2007270060

表1に示した結果から明らかなように、長期間にわたってワックスの水素化分解を行う際に、特定の条件下で水素化分解運転中に一時的に特定の留出油(FTワックスの水素化分解生成物とFT合成で生成した中間留分の水素化分解生成物とを同時に蒸留して得られた留出油)を供給することで、経時劣化した触媒の活性を向上させることができ、イソパラフィンに富んだ(ノルマルパラフィンの少ない)燃料基材を得ることができることが確認された。
As is apparent from the results shown in Table 1, when hydrocracking wax over a long period of time, a specific distillate (FT wax hydrogenation) is temporarily used during hydrocracking operation under specific conditions. The distillate obtained by distilling the cracked product and the hydrocracked product of the middle distillate produced by the FT synthesis at the same time), the activity of the catalyst deteriorated over time can be improved, It was confirmed that a fuel substrate rich in isoparaffin (low in normal paraffin) can be obtained.

Claims (2)

フィッシャー・トロプシュ合成により生成されたワックスを原料とし、水素の存在下で、前記ワックスを、ゼオライトを含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、
前記原料を一時的に前記ワックスから、前記第1の工程により得られた前記ワックスの水素化分解生成物と、フィッシャー・トロプシュ合成により生成された中間留分の水素化分解生成物との混合物を蒸留して得られる留出油に切り替え、水素の存在下、反応温度160〜330℃の条件で、前記留出油を前記触媒と接触させることにより水素化分解する第2の工程と、
前記原料を前記留出油から前記ワックスに切り替え、水素の存在下で、前記ワックスを前記触媒と接触させることにより水素化分解する第3の工程と、
を含むことを特徴とするワックスの水素化処理方法。
A wax produced by Fischer-Tropsch synthesis is used as a raw material, and in the presence of hydrogen, the wax is brought into contact with a catalyst formed by supporting a Group VIII metal in the periodic table on a support containing zeolite. A first step of chemical decomposition;
A mixture of the hydrocracking product of the wax obtained by the first step and the hydrocracking product of the middle distillate produced by Fischer-Tropsch synthesis from the wax temporarily from the wax. A second step of switching to a distillate obtained by distillation and hydrocracking by contacting the distillate with the catalyst in the presence of hydrogen at a reaction temperature of 160 to 330 ° C;
A third step in which the raw material is switched from the distillate oil to the wax and hydrocracked by contacting the wax with the catalyst in the presence of hydrogen;
A method for hydrotreating a wax, comprising:
前記ゼオライトが、超安定Y型ゼオライトであることを特徴とする請求項1記載のワックスの水素化処理方法。
2. The wax hydrotreating method according to claim 1, wherein the zeolite is an ultrastable Y-type zeolite.
JP2006100177A 2006-03-31 2006-03-31 Method for hydrotreating wax Active JP4714066B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006100177A JP4714066B2 (en) 2006-03-31 2006-03-31 Method for hydrotreating wax
AU2007232010A AU2007232010B2 (en) 2006-03-31 2007-03-01 Method of hydrotreating wax and process for producing fuel base
RU2008143259/04A RU2443757C2 (en) 2006-03-31 2007-03-01 Paraffin hydrotreatment method and base fuel production method
CN200780011369.0A CN101410487B (en) 2006-03-31 2007-03-01 Method of hydrotreating wax and process for producing fuel base
PCT/JP2007/053933 WO2007113962A1 (en) 2006-03-31 2007-03-01 Method of hydrotreating wax and process for producing fuel base
MYPI20083624 MY146925A (en) 2006-03-31 2007-03-01 Method of hydrotreating wax and process for producing fuel base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100177A JP4714066B2 (en) 2006-03-31 2006-03-31 Method for hydrotreating wax

Publications (2)

Publication Number Publication Date
JP2007270060A true JP2007270060A (en) 2007-10-18
JP4714066B2 JP4714066B2 (en) 2011-06-29

Family

ID=38563234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100177A Active JP4714066B2 (en) 2006-03-31 2006-03-31 Method for hydrotreating wax

Country Status (6)

Country Link
JP (1) JP4714066B2 (en)
CN (1) CN101410487B (en)
AU (1) AU2007232010B2 (en)
MY (1) MY146925A (en)
RU (1) RU2443757C2 (en)
WO (1) WO2007113962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147201A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 Method for producing lubricant base oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737981B2 (en) 2011-02-04 2015-06-17 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing hydrocarbon oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158563A (en) * 1962-03-27 1964-11-24 Standard Oil Co Process for rejuvenation of hydrocracking catalysts
US3376218A (en) * 1965-03-17 1968-04-02 Standard Oil Co Refining of lubricating oil and reactivation of the catalyst
JPS5670840A (en) * 1979-11-12 1981-06-13 Chiyoda Chem Eng & Constr Co Ltd Method of removing carbonaceous substances deposited on catalyst
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons
WO2005002701A2 (en) * 2003-07-02 2005-01-13 Chevron U.S.A. Inc. Catalytic filtering of a fischer-tropsch derived hydrocarbon stream
JP2005503451A (en) * 2001-04-04 2005-02-03 シェブロン ユー.エス.エー. インコーポレイテッド Fischer-Tropsch wax reforming process using split feed hydrocracking / hydrotreating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723946A (en) * 1950-05-29 1955-11-15 Universal Oil Prod Co Hydrocarbon conversion process
GB9119504D0 (en) * 1991-09-12 1991-10-23 Shell Int Research Process for the preparation of naphtha
AR032930A1 (en) * 2001-03-05 2003-12-03 Shell Int Research PROCEDURE TO PREPARE AN OIL BASED OIL AND GAS OIL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158563A (en) * 1962-03-27 1964-11-24 Standard Oil Co Process for rejuvenation of hydrocracking catalysts
US3376218A (en) * 1965-03-17 1968-04-02 Standard Oil Co Refining of lubricating oil and reactivation of the catalyst
JPS5670840A (en) * 1979-11-12 1981-06-13 Chiyoda Chem Eng & Constr Co Ltd Method of removing carbonaceous substances deposited on catalyst
JP2005503451A (en) * 2001-04-04 2005-02-03 シェブロン ユー.エス.エー. インコーポレイテッド Fischer-Tropsch wax reforming process using split feed hydrocracking / hydrotreating
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons
WO2005002701A2 (en) * 2003-07-02 2005-01-13 Chevron U.S.A. Inc. Catalytic filtering of a fischer-tropsch derived hydrocarbon stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147201A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 Method for producing lubricant base oil
JPWO2013147201A1 (en) * 2012-03-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Manufacturing method of base oil for lubricating oil

Also Published As

Publication number Publication date
RU2008143259A (en) 2010-05-10
AU2007232010A1 (en) 2007-10-11
WO2007113962A1 (en) 2007-10-11
CN101410487B (en) 2012-06-27
JP4714066B2 (en) 2011-06-29
MY146925A (en) 2012-10-15
RU2443757C2 (en) 2012-02-27
AU2007232010B2 (en) 2011-09-01
CN101410487A (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4908022B2 (en) Method for producing hydrocarbon oil and hydrocarbon oil
JP5179504B2 (en) Method for producing synthetic naphtha
JP4908038B2 (en) Method for treating synthetic oil, hydrocarbon oil for hydrogen production and hydrocarbon oil for diesel fuel base material
JP5349736B2 (en) Method for hydrocracking wax
JP4769085B2 (en) Method for hydrotreating wax
JP4714066B2 (en) Method for hydrotreating wax
WO2007113967A1 (en) Method for treatment of synthetic oil, process for production of hydrocarbon oil, hydrocarbon oil for hydrogen production, hydrocarbon oil for the smoke point improver for kerosene, and hydrocarbon oil for diesel fuel base
JP4714035B2 (en) Method for hydrotreating wax
JP4848191B2 (en) Method for hydrotreating synthetic oil
JP4908037B2 (en) Method for treating synthetic oil, hydrocarbon oil for kerosene smoke point improver and hydrocarbon oil for diesel fuel base material
JP4783645B2 (en) Method for hydrotreating wax
JP4861838B2 (en) Method for producing liquid fuel
JP4791167B2 (en) Hydrorefining method
JP2007270061A (en) Method for producing liquid fuel base
JP4886338B2 (en) Wax hydrocracking method and fuel substrate manufacturing method
JP5443206B2 (en) Hydrocracking method
JP4778816B2 (en) Hydrotreating method
JP4773232B2 (en) Method for hydrocracking wax
JP2007269897A (en) Method for hydrocracking wax
JP2012211344A (en) Method of hydrocracking wax
JP2007269824A (en) Method for producing liquid fuel base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4714066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250