JP4714035B2 - Method for hydrotreating wax - Google Patents
Method for hydrotreating wax Download PDFInfo
- Publication number
- JP4714035B2 JP4714035B2 JP2006030047A JP2006030047A JP4714035B2 JP 4714035 B2 JP4714035 B2 JP 4714035B2 JP 2006030047 A JP2006030047 A JP 2006030047A JP 2006030047 A JP2006030047 A JP 2006030047A JP 4714035 B2 JP4714035 B2 JP 4714035B2
- Authority
- JP
- Japan
- Prior art keywords
- wax
- catalyst
- raw material
- hydrocracking
- paraffin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 30
- 239000001993 wax Substances 0.000 claims description 68
- 239000012188 paraffin wax Substances 0.000 claims description 53
- 239000003054 catalyst Substances 0.000 claims description 47
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000002994 raw material Substances 0.000 claims description 28
- 238000004517 catalytic hydrocracking Methods 0.000 claims description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000011973 solid acid Substances 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000003921 oil Substances 0.000 description 28
- 239000000446 fuel Substances 0.000 description 22
- 238000005984 hydrogenation reaction Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000006317 isomerization reaction Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1022—Fischer-Tropsch products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
本発明は、ワックスの水素化処理方法に関する。 The present invention relates to a method for hydrotreating wax.
近年、環境保護の立場からガソリンや軽油のような液体燃料中の硫黄分規制が急速に厳しくなってきている。このため、硫黄分や芳香族炭化水素の含有量が低いクリーンな液体燃料への期待が高まってきている。このようなクリーン燃料の製造方法の一つとして、石炭やアスファルトのガス化または天然ガスの改質などから得られる一酸化炭素と水素とを原料としたフィッシャー・トロプシュ(FT)合成法が挙げられる。FT合成法によれば、パラフィン含有量に富み、且つ硫黄分を含まない液体燃料基材を製造することができるとともに、ワックス(FTワックス)も同時に製造することができる。そして、FTワックスは、水素化分解により中間留分(灯油や軽油基材)へと変換される。 In recent years, the regulation of sulfur content in liquid fuels such as gasoline and light oil has become stricter from the standpoint of environmental protection. For this reason, the expectation for the clean liquid fuel with low content of sulfur content and aromatic hydrocarbon is increasing. One of the methods for producing such clean fuel is a Fischer-Tropsch (FT) synthesis method using carbon monoxide and hydrogen obtained from gasification of coal or asphalt or reforming of natural gas as raw materials. . According to the FT synthesis method, it is possible to produce a liquid fuel base material that is rich in paraffin and does not contain sulfur, and wax (FT wax) can also be produced simultaneously. And FT wax is converted into middle distillates (kerosene or light oil base material) by hydrocracking.
ワックスの水素化分解又はFT合成により製造される中間留分を燃料基材として使用する場合、収率が高いことはプロセスの経済性の観点から重要であるが、燃料性状の観点からは、ノルマルパラフィン含有量が低く、逆にイソパラフィン含有量が高いことが望ましい。例えば軽油では、ノルマルパラフィン含有量が多くなると低温流動性が悪化し、最悪の場合、商品としての使用が制限される。FT合成で生成する軽油はほとんどがノルマルパラフィンであるため、これをそのまま使用することは困難である。 When middle distillate produced by wax hydrocracking or FT synthesis is used as a fuel substrate, a high yield is important from the viewpoint of economics of the process, but from the viewpoint of fuel properties, it is normal. It is desirable that the paraffin content is low and the isoparaffin content is high. For example, in light oil, when normal paraffin content increases, low-temperature fluidity | liquidity will deteriorate, and the use as goods is restricted in the worst case. Since most of the light oil produced by FT synthesis is normal paraffin, it is difficult to use it as it is.
なお、ワックスを水素化分解して燃料基材を製造する技術はこれまでにも検討されており、例えば、FTワックスを原料とした水素化分解方法が、下記特許文献1〜3に記載されている。
しかしながら、上記特許文献1〜3に記載されているワックスの水素化分解方法では、長期間にわたってワックスの水素化分解を行なった場合、触媒の触媒活性が経時的に劣化し、得られる燃料基材のノルマルパラフィン含有量が増加したり、燃料基材の収率が低下したりといった問題が生じる。 However, in the wax hydrocracking method described in Patent Documents 1 to 3, when the wax hydrocracking is performed for a long period of time, the catalytic activity of the catalyst deteriorates with time, and the fuel base material obtained The normal paraffin content increases, and the yield of the fuel base material decreases.
従来は高性能なワックス水素化分解用触媒の開発が中心であり、運転中における触媒の活性向上、即ち触媒寿命の延長に関する報告は無いに等しい。石油精製の分野における中間留分の製造方法としては減圧軽油を水素化分解する方法が代表的であり、このプロセスから低硫黄軽油を製造することができる。このプロセスにおいては、触媒の劣化が予想以上に大きい場合、予定の期間運転するために原料供給量を削減したり、分解率を低下させたり等の処置が取られるのが一般的である。しかし、このような処置は運転効率を低下させるため、好ましくない。したがって、触媒劣化の抑制、即ち予想以上の触媒劣化が起きた場合などに対応できる触媒の再活性化方法の開発が強く望まれている。 Conventionally, the development of a high-performance wax hydrocracking catalyst has been centered, and there are no reports on improving the activity of the catalyst during operation, that is, extending the catalyst life. A typical method for producing middle distillate in the field of oil refining is hydrocracking vacuum gas oil, and low sulfur gas oil can be produced from this process. In this process, when the deterioration of the catalyst is greater than expected, it is common to take measures such as reducing the amount of raw material supply or reducing the decomposition rate in order to operate for a predetermined period. However, such treatment is not preferable because it reduces the operation efficiency. Therefore, there is a strong demand for the development of a catalyst reactivation method that can suppress catalyst deterioration, that is, cope with a case where catalyst deterioration occurs more than expected.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、長期間にわたってワックスを水素化分解する際に、経時劣化する触媒活性を向上させると共に、ノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能なワックスの水素化処理方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and when hydrocracking wax over a long period of time, it improves the catalytic activity that deteriorates over time, and the normal paraffin content is sufficiently reduced. Another object of the present invention is to provide a method for hydrotreating wax capable of obtaining a good fuel substrate in a good yield.
上記目的を達成するために、本発明は、炭素数16以上のノルマルパラフィンを70質量%以上含有するワックスを原料とし、水素の存在下で、上記ワックスを、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、上記軽質パラフィンを上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記軽質パラフィンから上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とするワックスの水素化処理方法を提供する。 In order to achieve the above object, the present invention uses, as a raw material, a wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms, and in the presence of hydrogen, the wax is cycled on a carrier containing an amorphous solid acid. A first step of hydrocracking by bringing it into contact with a catalyst supporting a Group VIII metal in the table, and 60 wt% or more of paraffins having 9 to 21 carbon atoms from the wax temporarily from the wax A second step of hydrocracking by bringing the light paraffin into contact with the catalyst in the presence of hydrogen in the presence of hydrogen, and switching the raw material from the light paraffin to the wax in the presence of hydrogen. And a third step of hydrocracking the wax by contacting it with the catalyst. To provide a management method.
かかるワックスの水素化処理方法によれば、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒を用いてワックスを水素化分解する際に、一時的に原料を軽質パラフィンに切り替え、当該軽質パラフィンを上記触媒により水素化分解することで、それ以前のワックスの水素化分解の際に経時劣化した上記触媒の触媒活性を向上させることができ、その後、原料を再びワックスに切り替えることにより、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることができる。 According to the wax hydrotreating method, when the wax is hydrocracked using a catalyst in which a group VIII metal in the periodic table is supported on a support containing an amorphous solid acid, the raw material is temporarily used. By switching to light paraffin and hydrocracking the light paraffin with the catalyst, the catalytic activity of the catalyst deteriorated with time during the hydrocracking of the previous wax can be improved. By switching to wax again, a fuel base material in which the normal paraffin content is sufficiently reduced over a long period of time can be obtained with good yield.
また、本発明のワックスの水素化処理方法において、上記ワックスは、フィッシャー・トロプシュ合成(FT合成)により生成されたもの(FTワックス)であることが好ましい。かかるFTワックスを原料として用いることにより、中間留分の収率が向上する傾向がある。 In the wax hydrotreating method of the present invention, the wax is preferably one produced by Fischer-Tropsch synthesis (FT synthesis) (FT wax). By using such FT wax as a raw material, the yield of middle distillate tends to be improved.
また、本発明のワックスの水素化処理方法において、上記軽質パラフィンは、フィッシャー・トロプシュ合成により生成されたものであることが好ましい。かかる軽質パラフィンを用いることにより、第3の工程での反応温度をより十分に低くすることができる傾向がある。 In the wax hydrotreating method of the present invention, the light paraffin is preferably produced by Fischer-Tropsch synthesis. By using such light paraffin, the reaction temperature in the third step tends to be sufficiently lowered.
更に、本発明のワックスの水素化処理方法において、上記第2の工程を、反応温度150〜320℃の条件で行うことが好ましい。軽質パラフィンの水素化処理を反応温度150〜320℃の条件で行うことにより、経時劣化した触媒の触媒活性をより十分に向上させることができ、長期間にわたってノルマルパラフィン含有量がより十分に低減された燃料基材をより高い収率で得ることが可能となる。 Furthermore, in the method for hydrotreating a wax of the present invention, the second step is preferably performed under a reaction temperature of 150 to 320 ° C. By performing the hydrogenation treatment of light paraffin at a reaction temperature of 150 to 320 ° C., the catalytic activity of the catalyst deteriorated with time can be more sufficiently improved, and the normal paraffin content is more sufficiently reduced over a long period of time. It is possible to obtain a higher fuel substrate with a higher yield.
本発明によれば、長期間にわたってワックスを水素化分解する際に、経時劣化する触媒の触媒活性を向上させ、ノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能なワックスの水素化処理方法を提供することができる。 According to the present invention, when hydrocracking wax over a long period of time, it is possible to improve the catalytic activity of a catalyst that deteriorates with time and to obtain a fuel base material with a sufficiently reduced normal paraffin content in good yield. A wax hydroprocessing method can be provided.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
本発明のワックスの水素化処理方法は、炭素数16以上のノルマルパラフィンを70質量%以上含有するワックスを原料とし、水素の存在下で、上記ワックスを、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、上記軽質パラフィンを上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記軽質パラフィンから上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とする方法である。 The wax hydrotreating method of the present invention uses, as a raw material, a wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms, and in the presence of hydrogen, the wax is periodically regulated on a carrier containing an amorphous solid acid. 1st process of hydrocracking by making it contact with the catalyst which carry | supports the group VIII metal in a table | surface, and the said raw material contains 60 mass% or more of paraffins of 9-21 carbon atoms from the said wax temporarily. A second step of hydrocracking by contacting the light paraffin with the catalyst in the presence of hydrogen, and switching the raw material from the light paraffin to the wax, in the presence of hydrogen. And a third step of hydrocracking the wax by contacting with the catalyst.
本発明におけるワックスの水素化処理は、例えば、触媒が充填された固定床反応装置を用いて行うことができる。原料としてのワックスは、固定床反応装置内に導入され、水素雰囲気下で触媒と接触することで水素化分解され、生成油が得られることとなる。 The wax hydrogenation treatment in the present invention can be carried out, for example, using a fixed bed reactor filled with a catalyst. The wax as a raw material is introduced into a fixed bed reactor and hydrocracked by contacting with a catalyst in a hydrogen atmosphere to obtain a product oil.
ここで、反応装置内に充填される水素化分解用の触媒としては、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなるものが用いられる。また、担体としては、アモルファス固体酸をバインダーを用いてペレット状に成型したものを用いることが好ましい。 Here, as the hydrocracking catalyst charged in the reactor, a catalyst obtained by supporting a Group VIII metal in the periodic table on a support containing an amorphous solid acid is used. Moreover, as a support | carrier, it is preferable to use what shape | molded the amorphous solid acid into the pellet form using the binder.
アモルファス固体酸としては、例えば、シリカアルミナ、シリカジルコニア、アルミナボリア、シリカマグネシア等が挙げられ、これらの中でもシリカアルミナ、アルミナボリアが好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。また、触媒中のアモルファス固体酸の含有量は、触媒全量を基準として20〜100質量%であることが好ましく、50〜100質量%であることがより好ましい。 Examples of the amorphous solid acid include silica alumina, silica zirconia, alumina boria, and silica magnesia. Among these, silica alumina and alumina boria are preferably used. These can be used individually by 1 type or in combination of 2 or more types. Further, the content of the amorphous solid acid in the catalyst is preferably 20 to 100% by mass, more preferably 50 to 100% by mass based on the total amount of the catalyst.
バインダーとしては、例えば、シリカ、アルミナ等を用いることができ、アルミナを用いることが好ましい。触媒中のバインダーの含有量は、触媒全量を基準として0〜80質量%であることが好ましく、0〜50質量%であることがより好ましい。 As the binder, for example, silica, alumina or the like can be used, and alumina is preferably used. The content of the binder in the catalyst is preferably 0 to 80% by mass, more preferably 0 to 50% by mass based on the total amount of the catalyst.
また、担体上に担持される周期律表における第VIII族の金属としては、例えば、ニッケル、ロジウム、パラジウム、イリジウム、白金等が挙げられ、これらの中でもパラジウム、白金が好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。特に、油分を含んだスラックワックスを原料とする場合は、パラジウムと白金とを混合して担体上に担持させることが好ましい。触媒中の第VIII族の金属の担持量は、触媒全量を基準として0.01〜2.0質量%であることが好ましく、0.1〜1.0質量%であることがより好ましい。 In addition, examples of the Group VIII metal in the periodic table supported on the carrier include nickel, rhodium, palladium, iridium, and platinum. Of these, palladium and platinum are preferably used. These can be used individually by 1 type or in combination of 2 or more types. In particular, when using a slack wax containing oil as a raw material, it is preferable to mix palladium and platinum and carry them on a carrier. The loading amount of the Group VIII metal in the catalyst is preferably 0.01 to 2.0 mass%, more preferably 0.1 to 1.0 mass%, based on the total amount of the catalyst.
本発明のワックスの水素化処理方法における第1の工程及び第3の工程で原料として使用されるワックスは、炭素数が16以上、好ましくは炭素数が20以上、より好ましくは炭素数が21以上のノルマルパラフィンを70質量%以上含んだ石油系または合成系ワックスである。石油系ワックスとしては、例えば、スラックワックス、マイクロワックス等が挙げられ、合成系ワックスとしては、例えば、FT合成で製造されるいわゆるFTワックス等が挙げられる。これらの中でも、FTワックスを用いることが好ましい。 The wax used as a raw material in the first and third steps of the wax hydrotreating method of the present invention has 16 or more carbon atoms, preferably 20 or more carbon atoms, more preferably 21 or more carbon atoms. This is a petroleum or synthetic wax containing 70% by mass or more of normal paraffin. Examples of the petroleum wax include slack wax and micro wax, and examples of the synthetic wax include so-called FT wax produced by FT synthesis. Among these, it is preferable to use FT wax.
本発明のワックスの水素化処理方法における第2の工程で原料として使用される軽質パラフィンは、炭素数9〜21のパラフィンを60質量%以上含んだ燃料基材であり、炭素数9〜20のパラフィンを60質量%以上含んだ燃料基材であることが好ましく、炭素数9〜20のパラフィンを70質量%以上含んだ燃料基材であることがより好ましく、炭素数9〜20のFT合成生成油であることが更に好ましい。 The light paraffin used as a raw material in the second step of the wax hydrotreating method of the present invention is a fuel base material containing 60% by mass or more of paraffin having 9 to 21 carbon atoms, and having 9 to 20 carbon atoms. It is preferably a fuel substrate containing 60% by mass or more of paraffin, more preferably a fuel substrate containing 70% by mass or more of paraffin having 9 to 20 carbon atoms, and FT synthesis production having 9 to 20 carbon atoms. More preferably, it is an oil.
第1及び第3の工程における反応条件としては、通常、反応温度を270〜360℃とすることが好ましく、300〜350℃とすることがより好ましい。反応温度が270℃未満では、生成した中間留分のノルマルパラフィン含有量が高くなる傾向にあり、360℃を超えると、中間留分の収率が低下する傾向にある。特に、反応温度が370℃を超えると、反応温度が上記範囲内である場合と比較して芳香族化合物が生成しやすくなるため、クリーンな燃料基材を得る観点から好ましくない。 As reaction conditions in the first and third steps, the reaction temperature is usually preferably 270 to 360 ° C, more preferably 300 to 350 ° C. When the reaction temperature is less than 270 ° C., the normal paraffin content of the produced middle distillate tends to increase, and when it exceeds 360 ° C., the yield of the middle distillate tends to decrease. In particular, when the reaction temperature exceeds 370 ° C., an aromatic compound is easily generated as compared with the case where the reaction temperature is within the above range, which is not preferable from the viewpoint of obtaining a clean fuel substrate.
また、第1及び第3の工程において、固定床反応装置内の触媒に対するワックスの液空間速度(LHSV)は、0.1〜5.0h−1とすることが好ましく、0.3〜3.0h−1とすることがより好ましい。液空間速度が0.1h−1未満であると、生成した中間留分のノルマルパラフィン含有量が高くなる傾向にあり、5.0h−1を超えると、中間留分の収率が低下する傾向にある。 In the first and third steps, the liquid hourly space velocity (LHSV) of the wax with respect to the catalyst in the fixed bed reactor is preferably 0.1 to 5.0 h −1, and is preferably 0.3 to 3. More preferably, it is 0h- 1 . Tendency to liquid hourly space velocity is less than 0.1 h -1, is in the resulting tendency of normal paraffin content of the middle distillate is high, exceeding 5.0 h -1, the yield of middle distillate lowered It is in.
更に、第1及び第3の工程において、反応時の圧力は、分解活性に影響する為、1.0〜10.0MPaとすることが好ましく、2.0〜7.0MPaとすることがより好ましい。圧力が1.0MPa未満であると、触媒が劣化しやすい傾向にあり、10.0MPaを超えると、中間留分の収率が低下する傾向にある。 Furthermore, in the first and third steps, the pressure during the reaction affects the decomposition activity, so that it is preferably 1.0 to 10.0 MPa, more preferably 2.0 to 7.0 MPa. . If the pressure is less than 1.0 MPa, the catalyst tends to deteriorate, and if it exceeds 10.0 MPa, the yield of middle distillate tends to decrease.
また、第1及び第3の工程において、水素油比は特に制限されないが、通常、50NL/L以上とすることが好ましい。水素油比が50NL/L未満であると、生成した中間留分にオレフィンが含まれやすく、燃料としての酸化安定性が低下する傾向にある。 In the first and third steps, the hydrogen oil ratio is not particularly limited, but it is usually preferably 50 NL / L or more. When the hydrogen oil ratio is less than 50 NL / L, olefins are easily contained in the produced middle distillate, and the oxidation stability as a fuel tends to be lowered.
また、第2の工程における反応条件としては、反応温度を150〜320℃とすることが好ましく、180〜310℃とすることがより好ましい。反応温度が150℃未満では、軽質パラフィンの異性化が起こりにくく、触媒活性の向上が不十分となって、第3の工程において得られる燃料基材のノルマルパラフィン含有量が増加する傾向にあり、320℃を超えると、原料である軽質パラフィンの軽質化が起こり、最終的に得られる燃料基材の収率が低下する傾向にある。 Moreover, as reaction conditions in a 2nd process, it is preferable that reaction temperature shall be 150-320 degreeC, and it is more preferable to set it as 180-310 degreeC. If the reaction temperature is less than 150 ° C., isomerization of light paraffin hardly occurs, the catalytic activity is not sufficiently improved, and the normal paraffin content of the fuel substrate obtained in the third step tends to increase. When it exceeds 320 ° C., the light paraffin as a raw material is lightened, and the yield of the finally obtained fuel base material tends to decrease.
また、第2の工程において、固定床反応装置内の触媒に対する軽質パラフィンの液空間速度(LHSV)は、0.1h−1以上とすることが好ましく、0.5h−1以上とすることがより好ましい。液空間速度が0.1h−1未満であると、触媒活性の十分な向上に時間がかかるため好ましくない。 In the second step, the liquid hourly space velocity of light paraffins to catalyst in the fixed bed reactor (LHSV) is preferably set to 0.1 h -1 or more, more it is 0.5h -1 or preferable. When the liquid space velocity is less than 0.1 h −1 , it takes time to sufficiently improve the catalyst activity, which is not preferable.
更に、第2の工程において、反応時の圧力は特に制限されないが、第1の工程と同様の範囲の圧力とすることが好ましく、運転操作上、第1の工程の圧力を維持することがより好ましい。また、第2の工程において、水素油比は特に制限されないが、第1の工程と同様の範囲の水素油比とすることが好ましく、運転操作上、第1の工程の水素油比を維持することがより好ましい。 Furthermore, in the second step, the pressure during the reaction is not particularly limited, but it is preferably a pressure in the same range as the first step, and it is more preferable to maintain the pressure in the first step in terms of operation. preferable. Further, in the second step, the hydrogen oil ratio is not particularly limited, but is preferably set to a hydrogen oil ratio in the same range as the first step, and the hydrogen oil ratio in the first step is maintained for operation. It is more preferable.
上述した第1〜第3の工程を経てワックスの水素化処理を行うことにより、経時劣化する触媒の触媒活性を第2の工程を行うことで向上させることができ、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能となる。 By performing the wax hydrogenation process through the first to third steps described above, the catalytic activity of the catalyst that deteriorates with time can be improved by performing the second step, and the normal paraffin content over a long period of time. Thus, it is possible to obtain a fuel base material with a sufficient reduction in the yield.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
(実施例1)
FTワックス(炭素数20〜80、炭素数21以上のノルマルパラフィン含有量:95質量%)を水素化分解の原料として用意した。また、シリカアルミナ(アルミナ含有量:0.16モル%)とアルミナバインダーとを質量比80:20で混合し、直径約1.5mm、長さ約3mmの円柱状に成型した後、500℃で1時間焼成して触媒担体を得た。得られた触媒担体に、塩化白金酸及びテトラアンミンジクロロパラジウムの混合水溶液を含浸し、120℃で3時間乾燥した後、500℃で1時間焼成することで、触媒担体上に白金とパラジウムとが質量比90:10の割合で、触媒全量を基準として0.8質量%担持されてなる水素化分解触媒を作製した。
Example 1
FT wax (20 to 80 carbon atoms, normal paraffin content of 21 or more carbon atoms: 95 mass%) was prepared as a raw material for hydrocracking. In addition, silica alumina (alumina content: 0.16 mol%) and an alumina binder were mixed at a mass ratio of 80:20, molded into a cylindrical shape having a diameter of about 1.5 mm and a length of about 3 mm, and then at 500 ° C. The catalyst carrier was obtained by calcination for 1 hour. The obtained catalyst carrier was impregnated with a mixed aqueous solution of chloroplatinic acid and tetraamminedichloropalladium, dried at 120 ° C. for 3 hours, and then calcined at 500 ° C. for 1 hour, whereby platinum and palladium were massed on the catalyst carrier. A hydrocracking catalyst having a ratio of 90:10 and 0.8% by mass supported based on the total amount of the catalyst was produced.
次に、上記触媒200mlを固定床反応装置に充填し、反応前に水素気流下、345℃で4時間、金属(白金及びパラジウム)の還元処理を行った。その後、上記触媒に対する上記原料の液空間速度1.5h−1(液流速として300ml/h)、圧力2.8MPa、水素油比570NL/Lの条件で、原料の分解率が80質量%になるように常に反応温度を調節しつつ、原料の水素化処理を30日間連続して行った(第1の工程)。この間に得られた生成油をまとめて蒸留し、炭素数10〜20の軽質パラフィンA(パラフィン含有量:99質量%)を得た。 Next, 200 ml of the catalyst was charged into a fixed bed reactor, and metal (platinum and palladium) was reduced under a hydrogen stream at 345 ° C. for 4 hours before the reaction. Thereafter, the decomposition rate of the raw material becomes 80% by mass under the conditions of the liquid space velocity of the raw material with respect to the catalyst of 1.5 h −1 (the liquid flow rate is 300 ml / h), the pressure of 2.8 MPa, and the hydrogen oil ratio of 570 NL / L. In this way, the raw material was subjected to hydrogenation treatment continuously for 30 days while always adjusting the reaction temperature (first step). The product oil obtained during this time was distilled together to obtain light paraffin A having 10 to 20 carbon atoms (paraffin content: 99% by mass).
上記水素化処理の運転開始から30日後、原料をFTワックスから軽質パラフィンAに切り替え、軽質パラフィンAの水素化処理を24時間行った(第2の工程)。この処理における反応条件は、反応温度310℃、液空間速度2.5h−1、圧力2.8MPa、水素油比350NL/Lとした。 Thirty days after the start of the hydrogenation operation, the raw material was switched from FT wax to light paraffin A, and light paraffin A was subjected to hydrogenation treatment for 24 hours (second step). The reaction conditions in this treatment were a reaction temperature of 310 ° C., a liquid space velocity of 2.5 h −1 , a pressure of 2.8 MPa, and a hydrogen oil ratio of 350 NL / L.
軽質パラフィンAの水素化処理後、再び原料をFTワックスに戻し、初めの条件(第1の工程と同様の分解率80質量%の条件)にて水素化処理を行った(第3の工程)。 After the hydrogenation treatment of light paraffin A, the raw material was returned to the FT wax again, and the hydrogenation treatment was performed under the initial conditions (similar decomposition rate of 80% by mass as in the first step) (third step). .
上記一連の水素化処理における反応温度として、反応開始時の温度(反応開始温度)、原料をFTワックスから軽質パラフィンAに切り替える直前の温度(軽質油処理前温度)、及び、原料を軽質パラフィンから再度FTワックスに切り替えた直後の温度(軽質油処理後温度)を表1に示す。この反応温度は触媒活性の指標となるものであり、反応温度が低いほど触媒活性が良好であることを示す。また、原料を軽質パラフィンから再度FTワックスに切り替えた後の水素化処理で得られた生成油のうち、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。 As the reaction temperature in the above-mentioned series of hydroprocessing, the temperature at the start of the reaction (reaction start temperature), the temperature immediately before switching the raw material from FT wax to light paraffin A (temperature before light oil treatment), and the raw material from light paraffin Table 1 shows the temperature immediately after switching to the FT wax (temperature after light oil treatment). This reaction temperature is an indicator of the catalyst activity, and the lower the reaction temperature, the better the catalyst activity. In addition, among the product oils obtained by hydroprocessing after switching the raw material from light paraffin to FT wax again, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C. and its yield Is shown in Table 1.
(実施例2)
第2の工程における原料として、軽質パラフィンAに代えて、FT合成で生成した炭素数9〜22の中間留分(炭素数9〜20のパラフィン含有量:89質量%)を用いたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Example 2)
As a raw material in the second step, instead of the light paraffin A, a middle distillate having 9 to 22 carbon atoms produced by FT synthesis (paraffin content having 9 to 20 carbon atoms: 89% by mass) was used. The hydrogenation process of the said 1st-3rd process was performed like Example 1. FIG. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.
(実施例3)
第2の工程での軽質パラフィンAの水素化処理における反応温度を335℃としたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Example 3)
The hydrogenation process of the said 1st-3rd process was performed like Example 1 except having made reaction temperature in the hydrogenation process of the light paraffin A in a 2nd process into 335 degreeC. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.
(実施例4)
第2の工程での軽質パラフィンAの水素化処理における反応温度を120℃としたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
Example 4
The hydrogenation process of the said 1st-3rd process was performed like Example 1 except having made the reaction temperature in the hydrogenation process of the light paraffin A in a 2nd process into 120 degreeC. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.
(比較例1)
第2の工程を行わず、第1の工程を連続して行ったこと以外は実施例1と同様にして、FTワックスの水素化処理を行った。FTワックスの水素化処理の運転開始から30日後の反応温度を「軽質油処理前温度」として、それから更に24時間経過後の反応温度を「軽質油処理後温度」として、それぞれ表1に示す。また、運転開始から31日経過した後に得られた沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Comparative Example 1)
The FT wax was hydrogenated in the same manner as in Example 1 except that the first step was continuously performed without performing the second step. Table 1 shows the reaction temperature 30 days after the start of the FT wax hydrogenation operation as “temperature before light oil treatment” and the reaction temperature after 24 hours as “temperature after light oil treatment”. Table 1 shows the normal paraffin content (an index of isomerization) and the yield of the product oil having a boiling point of 145 to 360 ° C. obtained after 31 days from the start of operation.
表1に示した結果から明らかなように、長期間にわたってワックスの水素化分解を行う際、水素化分解運転中に一時的に軽質パラフィンを供給することで、経時劣化した触媒の活性を向上させることができ、イソパラフィンに富んだ(ノルマルパラフィンの少ない)燃料基材を収率良く得ることができることが確認された。 As is apparent from the results shown in Table 1, when hydrocracking wax for a long period of time, the activity of the catalyst deteriorated with time is improved by supplying light paraffin temporarily during the hydrocracking operation. It was confirmed that a fuel base material rich in isoparaffin (low in normal paraffin) can be obtained with good yield.
Claims (4)
前記原料を一時的に前記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、前記軽質パラフィンを前記触媒と接触させることにより水素化分解する第2の工程と、
前記原料を前記軽質パラフィンから前記ワックスに切り替え、水素の存在下で、前記ワックスを前記触媒と接触させることにより水素化分解する第3の工程と、
を含むことを特徴とするワックスの水素化処理方法。 A wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms is used as a raw material, and in the presence of hydrogen, the wax is supported on a carrier containing an amorphous solid acid with a Group VIII metal in the periodic table. A first step of hydrocracking by contacting with a catalyst comprising:
The raw material is temporarily changed from the wax to a light paraffin containing 9 to 21 mass% of paraffins having 9 to 21 carbon atoms, and hydrocracked by bringing the light paraffin into contact with the catalyst in the presence of hydrogen. Two steps;
A third step of switching the raw material from the light paraffin to the wax and hydrocracking the wax in contact with the catalyst in the presence of hydrogen;
A method for hydrotreating a wax, comprising:
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030047A JP4714035B2 (en) | 2006-02-07 | 2006-02-07 | Method for hydrotreating wax |
PCT/JP2007/051917 WO2007091518A1 (en) | 2006-02-07 | 2007-02-05 | Process for hydrogenation of wax and process for production of fuel base |
MYPI20082929 MY147199A (en) | 2006-02-07 | 2007-02-05 | Process for hydrogenation of wax and process for production of fuel base |
RU2008135960/04A RU2425092C2 (en) | 2006-02-07 | 2007-02-05 | Paraffin hydrogenation process and process for obtaining fuel base |
AU2007213211A AU2007213211B2 (en) | 2006-02-07 | 2007-02-05 | Process for hydrogenation of wax and process for production of fuel base |
CN200780009356.XA CN101405372B (en) | 2006-02-07 | 2007-02-05 | Process for hydrogenation of wax and process for production of fuel base |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030047A JP4714035B2 (en) | 2006-02-07 | 2006-02-07 | Method for hydrotreating wax |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007211057A JP2007211057A (en) | 2007-08-23 |
JP4714035B2 true JP4714035B2 (en) | 2011-06-29 |
Family
ID=38345116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006030047A Active JP4714035B2 (en) | 2006-02-07 | 2006-02-07 | Method for hydrotreating wax |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP4714035B2 (en) |
CN (1) | CN101405372B (en) |
AU (1) | AU2007213211B2 (en) |
MY (1) | MY147199A (en) |
RU (1) | RU2425092C2 (en) |
WO (1) | WO2007091518A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5378123B2 (en) * | 2009-09-07 | 2013-12-25 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Regeneration method of hydrotreating catalyst for Fischer-Tropsch synthetic oil |
JP5737981B2 (en) * | 2011-02-04 | 2015-06-17 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Method for producing hydrocarbon oil |
KR101577617B1 (en) * | 2012-03-30 | 2015-12-15 | 제이엑스 닛코닛세키에너지주식회사 | Method for producing lubricant base oil |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2723946A (en) * | 1950-05-29 | 1955-11-15 | Universal Oil Prod Co | Hydrocarbon conversion process |
US3158563A (en) * | 1962-03-27 | 1964-11-24 | Standard Oil Co | Process for rejuvenation of hydrocracking catalysts |
US3376218A (en) * | 1965-03-17 | 1968-04-02 | Standard Oil Co | Refining of lubricating oil and reactivation of the catalyst |
JPS5670840A (en) * | 1979-11-12 | 1981-06-13 | Chiyoda Chem Eng & Constr Co Ltd | Method of removing carbonaceous substances deposited on catalyst |
GB9119504D0 (en) * | 1991-09-12 | 1991-10-23 | Shell Int Research | Process for the preparation of naphtha |
JPH05124350A (en) * | 1991-11-05 | 1993-05-21 | Mitsubishi Paper Mills Ltd | Thermal recording material |
JP4047206B2 (en) * | 2003-03-20 | 2008-02-13 | 株式会社ジャパンエナジー | Environment-friendly diesel oil and method for producing the same |
US7150823B2 (en) * | 2003-07-02 | 2006-12-19 | Chevron U.S.A. Inc. | Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream |
-
2006
- 2006-02-07 JP JP2006030047A patent/JP4714035B2/en active Active
-
2007
- 2007-02-05 RU RU2008135960/04A patent/RU2425092C2/en active
- 2007-02-05 MY MYPI20082929 patent/MY147199A/en unknown
- 2007-02-05 WO PCT/JP2007/051917 patent/WO2007091518A1/en active Application Filing
- 2007-02-05 AU AU2007213211A patent/AU2007213211B2/en active Active
- 2007-02-05 CN CN200780009356.XA patent/CN101405372B/en active Active
Also Published As
Publication number | Publication date |
---|---|
RU2008135960A (en) | 2010-03-20 |
CN101405372A (en) | 2009-04-08 |
WO2007091518A1 (en) | 2007-08-16 |
RU2425092C2 (en) | 2011-07-27 |
CN101405372B (en) | 2012-06-20 |
MY147199A (en) | 2012-11-14 |
JP2007211057A (en) | 2007-08-23 |
AU2007213211B2 (en) | 2011-09-01 |
AU2007213211A1 (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2429278C2 (en) | Method for hydrofining fuel base | |
JP4908022B2 (en) | Method for producing hydrocarbon oil and hydrocarbon oil | |
AU2012233954A1 (en) | Hydrogenation refining catalyst and method for producing a hydrocarbon oil | |
JP5349736B2 (en) | Method for hydrocracking wax | |
JP4714035B2 (en) | Method for hydrotreating wax | |
JP3945772B2 (en) | Environment-friendly diesel oil and method for producing the same | |
JP4769085B2 (en) | Method for hydrotreating wax | |
AU2007231962B2 (en) | Process for producing liquid fuel base | |
JP2004285155A (en) | Eco-friendly gas oil and method for producing the same | |
JP4714066B2 (en) | Method for hydrotreating wax | |
JP4848191B2 (en) | Method for hydrotreating synthetic oil | |
JP4791167B2 (en) | Hydrorefining method | |
JP4886338B2 (en) | Wax hydrocracking method and fuel substrate manufacturing method | |
JP4773232B2 (en) | Method for hydrocracking wax | |
JP2007269897A (en) | Method for hydrocracking wax | |
JP2007270052A (en) | Method for producing liquid hydrocarbon composition, automobile fuel and lubricating oil | |
JP2008101214A (en) | Method for producing environmentally friendly light oil | |
JP2012211344A (en) | Method of hydrocracking wax | |
JP2007145901A (en) | Gas oil composition and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110325 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4714035 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |