JP4714035B2 - Method for hydrotreating wax - Google Patents

Method for hydrotreating wax Download PDF

Info

Publication number
JP4714035B2
JP4714035B2 JP2006030047A JP2006030047A JP4714035B2 JP 4714035 B2 JP4714035 B2 JP 4714035B2 JP 2006030047 A JP2006030047 A JP 2006030047A JP 2006030047 A JP2006030047 A JP 2006030047A JP 4714035 B2 JP4714035 B2 JP 4714035B2
Authority
JP
Japan
Prior art keywords
wax
catalyst
raw material
hydrocracking
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006030047A
Other languages
Japanese (ja)
Other versions
JP2007211057A (en
Inventor
浩幸 関
正浩 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2006030047A priority Critical patent/JP4714035B2/en
Priority to PCT/JP2007/051917 priority patent/WO2007091518A1/en
Priority to MYPI20082929 priority patent/MY147199A/en
Priority to RU2008135960/04A priority patent/RU2425092C2/en
Priority to AU2007213211A priority patent/AU2007213211B2/en
Priority to CN200780009356.XA priority patent/CN101405372B/en
Publication of JP2007211057A publication Critical patent/JP2007211057A/en
Application granted granted Critical
Publication of JP4714035B2 publication Critical patent/JP4714035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

本発明は、ワックスの水素化処理方法に関する。   The present invention relates to a method for hydrotreating wax.

近年、環境保護の立場からガソリンや軽油のような液体燃料中の硫黄分規制が急速に厳しくなってきている。このため、硫黄分や芳香族炭化水素の含有量が低いクリーンな液体燃料への期待が高まってきている。このようなクリーン燃料の製造方法の一つとして、石炭やアスファルトのガス化または天然ガスの改質などから得られる一酸化炭素と水素とを原料としたフィッシャー・トロプシュ(FT)合成法が挙げられる。FT合成法によれば、パラフィン含有量に富み、且つ硫黄分を含まない液体燃料基材を製造することができるとともに、ワックス(FTワックス)も同時に製造することができる。そして、FTワックスは、水素化分解により中間留分(灯油や軽油基材)へと変換される。   In recent years, the regulation of sulfur content in liquid fuels such as gasoline and light oil has become stricter from the standpoint of environmental protection. For this reason, the expectation for the clean liquid fuel with low content of sulfur content and aromatic hydrocarbon is increasing. One of the methods for producing such clean fuel is a Fischer-Tropsch (FT) synthesis method using carbon monoxide and hydrogen obtained from gasification of coal or asphalt or reforming of natural gas as raw materials. . According to the FT synthesis method, it is possible to produce a liquid fuel base material that is rich in paraffin and does not contain sulfur, and wax (FT wax) can also be produced simultaneously. And FT wax is converted into middle distillates (kerosene or light oil base material) by hydrocracking.

ワックスの水素化分解又はFT合成により製造される中間留分を燃料基材として使用する場合、収率が高いことはプロセスの経済性の観点から重要であるが、燃料性状の観点からは、ノルマルパラフィン含有量が低く、逆にイソパラフィン含有量が高いことが望ましい。例えば軽油では、ノルマルパラフィン含有量が多くなると低温流動性が悪化し、最悪の場合、商品としての使用が制限される。FT合成で生成する軽油はほとんどがノルマルパラフィンであるため、これをそのまま使用することは困難である。   When middle distillate produced by wax hydrocracking or FT synthesis is used as a fuel substrate, a high yield is important from the viewpoint of economics of the process, but from the viewpoint of fuel properties, it is normal. It is desirable that the paraffin content is low and the isoparaffin content is high. For example, in light oil, when normal paraffin content increases, low-temperature fluidity | liquidity will deteriorate, and the use as goods is restricted in the worst case. Since most of the light oil produced by FT synthesis is normal paraffin, it is difficult to use it as it is.

なお、ワックスを水素化分解して燃料基材を製造する技術はこれまでにも検討されており、例えば、FTワックスを原料とした水素化分解方法が、下記特許文献1〜3に記載されている。
国際公開第2004/028688号パンフレット 特開2004−255241号公報 特開2004−255242号公報
A technique for producing a fuel base material by hydrocracking wax has been studied so far. For example, hydrocracking methods using FT wax as a raw material are described in Patent Documents 1 to 3 below. Yes.
International Publication No. 2004/028688 Pamphlet Japanese Patent Laid-Open No. 2004-255241 JP 2004-255242 A

しかしながら、上記特許文献1〜3に記載されているワックスの水素化分解方法では、長期間にわたってワックスの水素化分解を行なった場合、触媒の触媒活性が経時的に劣化し、得られる燃料基材のノルマルパラフィン含有量が増加したり、燃料基材の収率が低下したりといった問題が生じる。   However, in the wax hydrocracking method described in Patent Documents 1 to 3, when the wax hydrocracking is performed for a long period of time, the catalytic activity of the catalyst deteriorates with time, and the fuel base material obtained The normal paraffin content increases, and the yield of the fuel base material decreases.

従来は高性能なワックス水素化分解用触媒の開発が中心であり、運転中における触媒の活性向上、即ち触媒寿命の延長に関する報告は無いに等しい。石油精製の分野における中間留分の製造方法としては減圧軽油を水素化分解する方法が代表的であり、このプロセスから低硫黄軽油を製造することができる。このプロセスにおいては、触媒の劣化が予想以上に大きい場合、予定の期間運転するために原料供給量を削減したり、分解率を低下させたり等の処置が取られるのが一般的である。しかし、このような処置は運転効率を低下させるため、好ましくない。したがって、触媒劣化の抑制、即ち予想以上の触媒劣化が起きた場合などに対応できる触媒の再活性化方法の開発が強く望まれている。   Conventionally, the development of a high-performance wax hydrocracking catalyst has been centered, and there are no reports on improving the activity of the catalyst during operation, that is, extending the catalyst life. A typical method for producing middle distillate in the field of oil refining is hydrocracking vacuum gas oil, and low sulfur gas oil can be produced from this process. In this process, when the deterioration of the catalyst is greater than expected, it is common to take measures such as reducing the amount of raw material supply or reducing the decomposition rate in order to operate for a predetermined period. However, such treatment is not preferable because it reduces the operation efficiency. Therefore, there is a strong demand for the development of a catalyst reactivation method that can suppress catalyst deterioration, that is, cope with a case where catalyst deterioration occurs more than expected.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、長期間にわたってワックスを水素化分解する際に、経時劣化する触媒活性を向上させると共に、ノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能なワックスの水素化処理方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and when hydrocracking wax over a long period of time, it improves the catalytic activity that deteriorates over time, and the normal paraffin content is sufficiently reduced. Another object of the present invention is to provide a method for hydrotreating wax capable of obtaining a good fuel substrate in a good yield.

上記目的を達成するために、本発明は、炭素数16以上のノルマルパラフィンを70質量%以上含有するワックスを原料とし、水素の存在下で、上記ワックスを、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、上記軽質パラフィンを上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記軽質パラフィンから上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とするワックスの水素化処理方法を提供する。   In order to achieve the above object, the present invention uses, as a raw material, a wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms, and in the presence of hydrogen, the wax is cycled on a carrier containing an amorphous solid acid. A first step of hydrocracking by bringing it into contact with a catalyst supporting a Group VIII metal in the table, and 60 wt% or more of paraffins having 9 to 21 carbon atoms from the wax temporarily from the wax A second step of hydrocracking by bringing the light paraffin into contact with the catalyst in the presence of hydrogen in the presence of hydrogen, and switching the raw material from the light paraffin to the wax in the presence of hydrogen. And a third step of hydrocracking the wax by contacting it with the catalyst. To provide a management method.

かかるワックスの水素化処理方法によれば、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒を用いてワックスを水素化分解する際に、一時的に原料を軽質パラフィンに切り替え、当該軽質パラフィンを上記触媒により水素化分解することで、それ以前のワックスの水素化分解の際に経時劣化した上記触媒の触媒活性を向上させることができ、その後、原料を再びワックスに切り替えることにより、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることができる。   According to the wax hydrotreating method, when the wax is hydrocracked using a catalyst in which a group VIII metal in the periodic table is supported on a support containing an amorphous solid acid, the raw material is temporarily used. By switching to light paraffin and hydrocracking the light paraffin with the catalyst, the catalytic activity of the catalyst deteriorated with time during the hydrocracking of the previous wax can be improved. By switching to wax again, a fuel base material in which the normal paraffin content is sufficiently reduced over a long period of time can be obtained with good yield.

また、本発明のワックスの水素化処理方法において、上記ワックスは、フィッシャー・トロプシュ合成(FT合成)により生成されたもの(FTワックス)であることが好ましい。かかるFTワックスを原料として用いることにより、中間留分の収率が向上する傾向がある。   In the wax hydrotreating method of the present invention, the wax is preferably one produced by Fischer-Tropsch synthesis (FT synthesis) (FT wax). By using such FT wax as a raw material, the yield of middle distillate tends to be improved.

また、本発明のワックスの水素化処理方法において、上記軽質パラフィンは、フィッシャー・トロプシュ合成により生成されたものであることが好ましい。かかる軽質パラフィンを用いることにより、第3の工程での反応温度をより十分に低くすることができる傾向がある。   In the wax hydrotreating method of the present invention, the light paraffin is preferably produced by Fischer-Tropsch synthesis. By using such light paraffin, the reaction temperature in the third step tends to be sufficiently lowered.

更に、本発明のワックスの水素化処理方法において、上記第2の工程を、反応温度150〜320℃の条件で行うことが好ましい。軽質パラフィンの水素化処理を反応温度150〜320℃の条件で行うことにより、経時劣化した触媒の触媒活性をより十分に向上させることができ、長期間にわたってノルマルパラフィン含有量がより十分に低減された燃料基材をより高い収率で得ることが可能となる。   Furthermore, in the method for hydrotreating a wax of the present invention, the second step is preferably performed under a reaction temperature of 150 to 320 ° C. By performing the hydrogenation treatment of light paraffin at a reaction temperature of 150 to 320 ° C., the catalytic activity of the catalyst deteriorated with time can be more sufficiently improved, and the normal paraffin content is more sufficiently reduced over a long period of time. It is possible to obtain a higher fuel substrate with a higher yield.

本発明によれば、長期間にわたってワックスを水素化分解する際に、経時劣化する触媒の触媒活性を向上させ、ノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能なワックスの水素化処理方法を提供することができる。   According to the present invention, when hydrocracking wax over a long period of time, it is possible to improve the catalytic activity of a catalyst that deteriorates with time and to obtain a fuel base material with a sufficiently reduced normal paraffin content in good yield. A wax hydroprocessing method can be provided.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明のワックスの水素化処理方法は、炭素数16以上のノルマルパラフィンを70質量%以上含有するワックスを原料とし、水素の存在下で、上記ワックスを、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、上記原料を一時的に上記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、上記軽質パラフィンを上記触媒と接触させることにより水素化分解する第2の工程と、上記原料を上記軽質パラフィンから上記ワックスに切り替え、水素の存在下で、上記ワックスを上記触媒と接触させることにより水素化分解する第3の工程と、を含むことを特徴とする方法である。   The wax hydrotreating method of the present invention uses, as a raw material, a wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms, and in the presence of hydrogen, the wax is periodically regulated on a carrier containing an amorphous solid acid. 1st process of hydrocracking by making it contact with the catalyst which carry | supports the group VIII metal in a table | surface, and the said raw material contains 60 mass% or more of paraffins of 9-21 carbon atoms from the said wax temporarily. A second step of hydrocracking by contacting the light paraffin with the catalyst in the presence of hydrogen, and switching the raw material from the light paraffin to the wax, in the presence of hydrogen. And a third step of hydrocracking the wax by contacting with the catalyst.

本発明におけるワックスの水素化処理は、例えば、触媒が充填された固定床反応装置を用いて行うことができる。原料としてのワックスは、固定床反応装置内に導入され、水素雰囲気下で触媒と接触することで水素化分解され、生成油が得られることとなる。   The wax hydrogenation treatment in the present invention can be carried out, for example, using a fixed bed reactor filled with a catalyst. The wax as a raw material is introduced into a fixed bed reactor and hydrocracked by contacting with a catalyst in a hydrogen atmosphere to obtain a product oil.

ここで、反応装置内に充填される水素化分解用の触媒としては、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなるものが用いられる。また、担体としては、アモルファス固体酸をバインダーを用いてペレット状に成型したものを用いることが好ましい。   Here, as the hydrocracking catalyst charged in the reactor, a catalyst obtained by supporting a Group VIII metal in the periodic table on a support containing an amorphous solid acid is used. Moreover, as a support | carrier, it is preferable to use what shape | molded the amorphous solid acid into the pellet form using the binder.

アモルファス固体酸としては、例えば、シリカアルミナ、シリカジルコニア、アルミナボリア、シリカマグネシア等が挙げられ、これらの中でもシリカアルミナ、アルミナボリアが好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。また、触媒中のアモルファス固体酸の含有量は、触媒全量を基準として20〜100質量%であることが好ましく、50〜100質量%であることがより好ましい。   Examples of the amorphous solid acid include silica alumina, silica zirconia, alumina boria, and silica magnesia. Among these, silica alumina and alumina boria are preferably used. These can be used individually by 1 type or in combination of 2 or more types. Further, the content of the amorphous solid acid in the catalyst is preferably 20 to 100% by mass, more preferably 50 to 100% by mass based on the total amount of the catalyst.

バインダーとしては、例えば、シリカ、アルミナ等を用いることができ、アルミナを用いることが好ましい。触媒中のバインダーの含有量は、触媒全量を基準として0〜80質量%であることが好ましく、0〜50質量%であることがより好ましい。   As the binder, for example, silica, alumina or the like can be used, and alumina is preferably used. The content of the binder in the catalyst is preferably 0 to 80% by mass, more preferably 0 to 50% by mass based on the total amount of the catalyst.

また、担体上に担持される周期律表における第VIII族の金属としては、例えば、ニッケル、ロジウム、パラジウム、イリジウム、白金等が挙げられ、これらの中でもパラジウム、白金が好ましく用いられる。これらは一種を単独で又は2種以上を組み合わせて用いることができる。特に、油分を含んだスラックワックスを原料とする場合は、パラジウムと白金とを混合して担体上に担持させることが好ましい。触媒中の第VIII族の金属の担持量は、触媒全量を基準として0.01〜2.0質量%であることが好ましく、0.1〜1.0質量%であることがより好ましい。   In addition, examples of the Group VIII metal in the periodic table supported on the carrier include nickel, rhodium, palladium, iridium, and platinum. Of these, palladium and platinum are preferably used. These can be used individually by 1 type or in combination of 2 or more types. In particular, when using a slack wax containing oil as a raw material, it is preferable to mix palladium and platinum and carry them on a carrier. The loading amount of the Group VIII metal in the catalyst is preferably 0.01 to 2.0 mass%, more preferably 0.1 to 1.0 mass%, based on the total amount of the catalyst.

本発明のワックスの水素化処理方法における第1の工程及び第3の工程で原料として使用されるワックスは、炭素数が16以上、好ましくは炭素数が20以上、より好ましくは炭素数が21以上のノルマルパラフィンを70質量%以上含んだ石油系または合成系ワックスである。石油系ワックスとしては、例えば、スラックワックス、マイクロワックス等が挙げられ、合成系ワックスとしては、例えば、FT合成で製造されるいわゆるFTワックス等が挙げられる。これらの中でも、FTワックスを用いることが好ましい。   The wax used as a raw material in the first and third steps of the wax hydrotreating method of the present invention has 16 or more carbon atoms, preferably 20 or more carbon atoms, more preferably 21 or more carbon atoms. This is a petroleum or synthetic wax containing 70% by mass or more of normal paraffin. Examples of the petroleum wax include slack wax and micro wax, and examples of the synthetic wax include so-called FT wax produced by FT synthesis. Among these, it is preferable to use FT wax.

本発明のワックスの水素化処理方法における第2の工程で原料として使用される軽質パラフィンは、炭素数9〜21のパラフィンを60質量%以上含んだ燃料基材であり、炭素数9〜20のパラフィンを60質量%以上含んだ燃料基材であることが好ましく、炭素数9〜20のパラフィンを70質量%以上含んだ燃料基材であることがより好ましく、炭素数9〜20のFT合成生成油であることが更に好ましい。   The light paraffin used as a raw material in the second step of the wax hydrotreating method of the present invention is a fuel base material containing 60% by mass or more of paraffin having 9 to 21 carbon atoms, and having 9 to 20 carbon atoms. It is preferably a fuel substrate containing 60% by mass or more of paraffin, more preferably a fuel substrate containing 70% by mass or more of paraffin having 9 to 20 carbon atoms, and FT synthesis production having 9 to 20 carbon atoms. More preferably, it is an oil.

第1及び第3の工程における反応条件としては、通常、反応温度を270〜360℃とすることが好ましく、300〜350℃とすることがより好ましい。反応温度が270℃未満では、生成した中間留分のノルマルパラフィン含有量が高くなる傾向にあり、360℃を超えると、中間留分の収率が低下する傾向にある。特に、反応温度が370℃を超えると、反応温度が上記範囲内である場合と比較して芳香族化合物が生成しやすくなるため、クリーンな燃料基材を得る観点から好ましくない。   As reaction conditions in the first and third steps, the reaction temperature is usually preferably 270 to 360 ° C, more preferably 300 to 350 ° C. When the reaction temperature is less than 270 ° C., the normal paraffin content of the produced middle distillate tends to increase, and when it exceeds 360 ° C., the yield of the middle distillate tends to decrease. In particular, when the reaction temperature exceeds 370 ° C., an aromatic compound is easily generated as compared with the case where the reaction temperature is within the above range, which is not preferable from the viewpoint of obtaining a clean fuel substrate.

また、第1及び第3の工程において、固定床反応装置内の触媒に対するワックスの液空間速度(LHSV)は、0.1〜5.0h−1とすることが好ましく、0.3〜3.0h−1とすることがより好ましい。液空間速度が0.1h−1未満であると、生成した中間留分のノルマルパラフィン含有量が高くなる傾向にあり、5.0h−1を超えると、中間留分の収率が低下する傾向にある。 In the first and third steps, the liquid hourly space velocity (LHSV) of the wax with respect to the catalyst in the fixed bed reactor is preferably 0.1 to 5.0 h −1, and is preferably 0.3 to 3. More preferably, it is 0h- 1 . Tendency to liquid hourly space velocity is less than 0.1 h -1, is in the resulting tendency of normal paraffin content of the middle distillate is high, exceeding 5.0 h -1, the yield of middle distillate lowered It is in.

更に、第1及び第3の工程において、反応時の圧力は、分解活性に影響する為、1.0〜10.0MPaとすることが好ましく、2.0〜7.0MPaとすることがより好ましい。圧力が1.0MPa未満であると、触媒が劣化しやすい傾向にあり、10.0MPaを超えると、中間留分の収率が低下する傾向にある。   Furthermore, in the first and third steps, the pressure during the reaction affects the decomposition activity, so that it is preferably 1.0 to 10.0 MPa, more preferably 2.0 to 7.0 MPa. . If the pressure is less than 1.0 MPa, the catalyst tends to deteriorate, and if it exceeds 10.0 MPa, the yield of middle distillate tends to decrease.

また、第1及び第3の工程において、水素油比は特に制限されないが、通常、50NL/L以上とすることが好ましい。水素油比が50NL/L未満であると、生成した中間留分にオレフィンが含まれやすく、燃料としての酸化安定性が低下する傾向にある。   In the first and third steps, the hydrogen oil ratio is not particularly limited, but it is usually preferably 50 NL / L or more. When the hydrogen oil ratio is less than 50 NL / L, olefins are easily contained in the produced middle distillate, and the oxidation stability as a fuel tends to be lowered.

また、第2の工程における反応条件としては、反応温度を150〜320℃とすることが好ましく、180〜310℃とすることがより好ましい。反応温度が150℃未満では、軽質パラフィンの異性化が起こりにくく、触媒活性の向上が不十分となって、第3の工程において得られる燃料基材のノルマルパラフィン含有量が増加する傾向にあり、320℃を超えると、原料である軽質パラフィンの軽質化が起こり、最終的に得られる燃料基材の収率が低下する傾向にある。   Moreover, as reaction conditions in a 2nd process, it is preferable that reaction temperature shall be 150-320 degreeC, and it is more preferable to set it as 180-310 degreeC. If the reaction temperature is less than 150 ° C., isomerization of light paraffin hardly occurs, the catalytic activity is not sufficiently improved, and the normal paraffin content of the fuel substrate obtained in the third step tends to increase. When it exceeds 320 ° C., the light paraffin as a raw material is lightened, and the yield of the finally obtained fuel base material tends to decrease.

また、第2の工程において、固定床反応装置内の触媒に対する軽質パラフィンの液空間速度(LHSV)は、0.1h−1以上とすることが好ましく、0.5h−1以上とすることがより好ましい。液空間速度が0.1h−1未満であると、触媒活性の十分な向上に時間がかかるため好ましくない。 In the second step, the liquid hourly space velocity of light paraffins to catalyst in the fixed bed reactor (LHSV) is preferably set to 0.1 h -1 or more, more it is 0.5h -1 or preferable. When the liquid space velocity is less than 0.1 h −1 , it takes time to sufficiently improve the catalyst activity, which is not preferable.

更に、第2の工程において、反応時の圧力は特に制限されないが、第1の工程と同様の範囲の圧力とすることが好ましく、運転操作上、第1の工程の圧力を維持することがより好ましい。また、第2の工程において、水素油比は特に制限されないが、第1の工程と同様の範囲の水素油比とすることが好ましく、運転操作上、第1の工程の水素油比を維持することがより好ましい。   Furthermore, in the second step, the pressure during the reaction is not particularly limited, but it is preferably a pressure in the same range as the first step, and it is more preferable to maintain the pressure in the first step in terms of operation. preferable. Further, in the second step, the hydrogen oil ratio is not particularly limited, but is preferably set to a hydrogen oil ratio in the same range as the first step, and the hydrogen oil ratio in the first step is maintained for operation. It is more preferable.

上述した第1〜第3の工程を経てワックスの水素化処理を行うことにより、経時劣化する触媒の触媒活性を第2の工程を行うことで向上させることができ、長期間にわたってノルマルパラフィン含有量が十分に低減された燃料基材を収率良く得ることが可能となる。   By performing the wax hydrogenation process through the first to third steps described above, the catalytic activity of the catalyst that deteriorates with time can be improved by performing the second step, and the normal paraffin content over a long period of time. Thus, it is possible to obtain a fuel base material with a sufficient reduction in the yield.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
FTワックス(炭素数20〜80、炭素数21以上のノルマルパラフィン含有量:95質量%)を水素化分解の原料として用意した。また、シリカアルミナ(アルミナ含有量:0.16モル%)とアルミナバインダーとを質量比80:20で混合し、直径約1.5mm、長さ約3mmの円柱状に成型した後、500℃で1時間焼成して触媒担体を得た。得られた触媒担体に、塩化白金酸及びテトラアンミンジクロロパラジウムの混合水溶液を含浸し、120℃で3時間乾燥した後、500℃で1時間焼成することで、触媒担体上に白金とパラジウムとが質量比90:10の割合で、触媒全量を基準として0.8質量%担持されてなる水素化分解触媒を作製した。
Example 1
FT wax (20 to 80 carbon atoms, normal paraffin content of 21 or more carbon atoms: 95 mass%) was prepared as a raw material for hydrocracking. In addition, silica alumina (alumina content: 0.16 mol%) and an alumina binder were mixed at a mass ratio of 80:20, molded into a cylindrical shape having a diameter of about 1.5 mm and a length of about 3 mm, and then at 500 ° C. The catalyst carrier was obtained by calcination for 1 hour. The obtained catalyst carrier was impregnated with a mixed aqueous solution of chloroplatinic acid and tetraamminedichloropalladium, dried at 120 ° C. for 3 hours, and then calcined at 500 ° C. for 1 hour, whereby platinum and palladium were massed on the catalyst carrier. A hydrocracking catalyst having a ratio of 90:10 and 0.8% by mass supported based on the total amount of the catalyst was produced.

次に、上記触媒200mlを固定床反応装置に充填し、反応前に水素気流下、345℃で4時間、金属(白金及びパラジウム)の還元処理を行った。その後、上記触媒に対する上記原料の液空間速度1.5h−1(液流速として300ml/h)、圧力2.8MPa、水素油比570NL/Lの条件で、原料の分解率が80質量%になるように常に反応温度を調節しつつ、原料の水素化処理を30日間連続して行った(第1の工程)。この間に得られた生成油をまとめて蒸留し、炭素数10〜20の軽質パラフィンA(パラフィン含有量:99質量%)を得た。 Next, 200 ml of the catalyst was charged into a fixed bed reactor, and metal (platinum and palladium) was reduced under a hydrogen stream at 345 ° C. for 4 hours before the reaction. Thereafter, the decomposition rate of the raw material becomes 80% by mass under the conditions of the liquid space velocity of the raw material with respect to the catalyst of 1.5 h −1 (the liquid flow rate is 300 ml / h), the pressure of 2.8 MPa, and the hydrogen oil ratio of 570 NL / L. In this way, the raw material was subjected to hydrogenation treatment continuously for 30 days while always adjusting the reaction temperature (first step). The product oil obtained during this time was distilled together to obtain light paraffin A having 10 to 20 carbon atoms (paraffin content: 99% by mass).

上記水素化処理の運転開始から30日後、原料をFTワックスから軽質パラフィンAに切り替え、軽質パラフィンAの水素化処理を24時間行った(第2の工程)。この処理における反応条件は、反応温度310℃、液空間速度2.5h−1、圧力2.8MPa、水素油比350NL/Lとした。 Thirty days after the start of the hydrogenation operation, the raw material was switched from FT wax to light paraffin A, and light paraffin A was subjected to hydrogenation treatment for 24 hours (second step). The reaction conditions in this treatment were a reaction temperature of 310 ° C., a liquid space velocity of 2.5 h −1 , a pressure of 2.8 MPa, and a hydrogen oil ratio of 350 NL / L.

軽質パラフィンAの水素化処理後、再び原料をFTワックスに戻し、初めの条件(第1の工程と同様の分解率80質量%の条件)にて水素化処理を行った(第3の工程)。   After the hydrogenation treatment of light paraffin A, the raw material was returned to the FT wax again, and the hydrogenation treatment was performed under the initial conditions (similar decomposition rate of 80% by mass as in the first step) (third step). .

上記一連の水素化処理における反応温度として、反応開始時の温度(反応開始温度)、原料をFTワックスから軽質パラフィンAに切り替える直前の温度(軽質油処理前温度)、及び、原料を軽質パラフィンから再度FTワックスに切り替えた直後の温度(軽質油処理後温度)を表1に示す。この反応温度は触媒活性の指標となるものであり、反応温度が低いほど触媒活性が良好であることを示す。また、原料を軽質パラフィンから再度FTワックスに切り替えた後の水素化処理で得られた生成油のうち、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。   As the reaction temperature in the above-mentioned series of hydroprocessing, the temperature at the start of the reaction (reaction start temperature), the temperature immediately before switching the raw material from FT wax to light paraffin A (temperature before light oil treatment), and the raw material from light paraffin Table 1 shows the temperature immediately after switching to the FT wax (temperature after light oil treatment). This reaction temperature is an indicator of the catalyst activity, and the lower the reaction temperature, the better the catalyst activity. In addition, among the product oils obtained by hydroprocessing after switching the raw material from light paraffin to FT wax again, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C. and its yield Is shown in Table 1.

(実施例2)
第2の工程における原料として、軽質パラフィンAに代えて、FT合成で生成した炭素数9〜22の中間留分(炭素数9〜20のパラフィン含有量:89質量%)を用いたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Example 2)
As a raw material in the second step, instead of the light paraffin A, a middle distillate having 9 to 22 carbon atoms produced by FT synthesis (paraffin content having 9 to 20 carbon atoms: 89% by mass) was used. The hydrogenation process of the said 1st-3rd process was performed like Example 1. FIG. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.

(実施例3)
第2の工程での軽質パラフィンAの水素化処理における反応温度を335℃としたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Example 3)
The hydrogenation process of the said 1st-3rd process was performed like Example 1 except having made reaction temperature in the hydrogenation process of the light paraffin A in a 2nd process into 335 degreeC. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.

(実施例4)
第2の工程での軽質パラフィンAの水素化処理における反応温度を120℃としたこと以外は実施例1と同様にして、上記第1〜第3の工程の水素化処理を行った。上記一連の水素化処理における各反応温度、沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
Example 4
The hydrogenation process of the said 1st-3rd process was performed like Example 1 except having made the reaction temperature in the hydrogenation process of the light paraffin A in a 2nd process into 120 degreeC. Table 1 shows the reaction temperature, the normal paraffin content (index of isomerization) of the product oil having a boiling point of 145 to 360 ° C., and the yield thereof in the series of hydroprocessing.

(比較例1)
第2の工程を行わず、第1の工程を連続して行ったこと以外は実施例1と同様にして、FTワックスの水素化処理を行った。FTワックスの水素化処理の運転開始から30日後の反応温度を「軽質油処理前温度」として、それから更に24時間経過後の反応温度を「軽質油処理後温度」として、それぞれ表1に示す。また、運転開始から31日経過した後に得られた沸点145〜360℃の生成油のノルマルパラフィン含有量(異性化の指標)及びその収率を表1に示す。
(Comparative Example 1)
The FT wax was hydrogenated in the same manner as in Example 1 except that the first step was continuously performed without performing the second step. Table 1 shows the reaction temperature 30 days after the start of the FT wax hydrogenation operation as “temperature before light oil treatment” and the reaction temperature after 24 hours as “temperature after light oil treatment”. Table 1 shows the normal paraffin content (an index of isomerization) and the yield of the product oil having a boiling point of 145 to 360 ° C. obtained after 31 days from the start of operation.

Figure 0004714035
Figure 0004714035

表1に示した結果から明らかなように、長期間にわたってワックスの水素化分解を行う際、水素化分解運転中に一時的に軽質パラフィンを供給することで、経時劣化した触媒の活性を向上させることができ、イソパラフィンに富んだ(ノルマルパラフィンの少ない)燃料基材を収率良く得ることができることが確認された。   As is apparent from the results shown in Table 1, when hydrocracking wax for a long period of time, the activity of the catalyst deteriorated with time is improved by supplying light paraffin temporarily during the hydrocracking operation. It was confirmed that a fuel base material rich in isoparaffin (low in normal paraffin) can be obtained with good yield.

Claims (4)

炭素数16以上のノルマルパラフィンを70質量%以上含有するワックスを原料とし、水素の存在下で、前記ワックスを、アモルファス固体酸を含む担体上に周期律表における第VIII族の金属を担持してなる触媒と接触させることにより水素化分解する第1の工程と、
前記原料を一時的に前記ワックスから炭素数9〜21のパラフィンを60質量%以上含有する軽質パラフィンに切り替え、水素の存在下で、前記軽質パラフィンを前記触媒と接触させることにより水素化分解する第2の工程と、
前記原料を前記軽質パラフィンから前記ワックスに切り替え、水素の存在下で、前記ワックスを前記触媒と接触させることにより水素化分解する第3の工程と、
を含むことを特徴とするワックスの水素化処理方法。
A wax containing 70% by mass or more of normal paraffins having 16 or more carbon atoms is used as a raw material, and in the presence of hydrogen, the wax is supported on a carrier containing an amorphous solid acid with a Group VIII metal in the periodic table. A first step of hydrocracking by contacting with a catalyst comprising:
The raw material is temporarily changed from the wax to a light paraffin containing 9 to 21 mass% of paraffins having 9 to 21 carbon atoms, and hydrocracked by bringing the light paraffin into contact with the catalyst in the presence of hydrogen. Two steps;
A third step of switching the raw material from the light paraffin to the wax and hydrocracking the wax in contact with the catalyst in the presence of hydrogen;
A method for hydrotreating a wax, comprising:
前記ワックスが、フィッシャー・トロプシュ合成により生成されたものであることを特徴とする請求項1に記載のワックスの水素化処理方法。   2. The wax hydrotreating method according to claim 1, wherein the wax is produced by Fischer-Tropsch synthesis. 前記軽質パラフィンが、フィッシャー・トロプシュ合成により生成されたものであることを特徴とする請求項1又は2に記載のワックスの水素化処理方法。   3. The wax hydrotreating method according to claim 1, wherein the light paraffin is produced by Fischer-Tropsch synthesis. 前記第2の工程を、反応温度150〜320℃の条件で行うことを特徴とする請求項1〜3のうちのいずれか一項に記載のワックスの水素化処理方法。   The wax hydrotreating method according to any one of claims 1 to 3, wherein the second step is performed under a reaction temperature of 150 to 320 ° C.
JP2006030047A 2006-02-07 2006-02-07 Method for hydrotreating wax Active JP4714035B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006030047A JP4714035B2 (en) 2006-02-07 2006-02-07 Method for hydrotreating wax
PCT/JP2007/051917 WO2007091518A1 (en) 2006-02-07 2007-02-05 Process for hydrogenation of wax and process for production of fuel base
MYPI20082929 MY147199A (en) 2006-02-07 2007-02-05 Process for hydrogenation of wax and process for production of fuel base
RU2008135960/04A RU2425092C2 (en) 2006-02-07 2007-02-05 Paraffin hydrogenation process and process for obtaining fuel base
AU2007213211A AU2007213211B2 (en) 2006-02-07 2007-02-05 Process for hydrogenation of wax and process for production of fuel base
CN200780009356.XA CN101405372B (en) 2006-02-07 2007-02-05 Process for hydrogenation of wax and process for production of fuel base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030047A JP4714035B2 (en) 2006-02-07 2006-02-07 Method for hydrotreating wax

Publications (2)

Publication Number Publication Date
JP2007211057A JP2007211057A (en) 2007-08-23
JP4714035B2 true JP4714035B2 (en) 2011-06-29

Family

ID=38345116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030047A Active JP4714035B2 (en) 2006-02-07 2006-02-07 Method for hydrotreating wax

Country Status (6)

Country Link
JP (1) JP4714035B2 (en)
CN (1) CN101405372B (en)
AU (1) AU2007213211B2 (en)
MY (1) MY147199A (en)
RU (1) RU2425092C2 (en)
WO (1) WO2007091518A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378123B2 (en) * 2009-09-07 2013-12-25 独立行政法人石油天然ガス・金属鉱物資源機構 Regeneration method of hydrotreating catalyst for Fischer-Tropsch synthetic oil
JP5737981B2 (en) * 2011-02-04 2015-06-17 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing hydrocarbon oil
KR101577617B1 (en) * 2012-03-30 2015-12-15 제이엑스 닛코닛세키에너지주식회사 Method for producing lubricant base oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723946A (en) * 1950-05-29 1955-11-15 Universal Oil Prod Co Hydrocarbon conversion process
US3158563A (en) * 1962-03-27 1964-11-24 Standard Oil Co Process for rejuvenation of hydrocracking catalysts
US3376218A (en) * 1965-03-17 1968-04-02 Standard Oil Co Refining of lubricating oil and reactivation of the catalyst
JPS5670840A (en) * 1979-11-12 1981-06-13 Chiyoda Chem Eng & Constr Co Ltd Method of removing carbonaceous substances deposited on catalyst
GB9119504D0 (en) * 1991-09-12 1991-10-23 Shell Int Research Process for the preparation of naphtha
JPH05124350A (en) * 1991-11-05 1993-05-21 Mitsubishi Paper Mills Ltd Thermal recording material
JP4047206B2 (en) * 2003-03-20 2008-02-13 株式会社ジャパンエナジー Environment-friendly diesel oil and method for producing the same
US7150823B2 (en) * 2003-07-02 2006-12-19 Chevron U.S.A. Inc. Catalytic filtering of a Fischer-Tropsch derived hydrocarbon stream

Also Published As

Publication number Publication date
RU2008135960A (en) 2010-03-20
CN101405372A (en) 2009-04-08
WO2007091518A1 (en) 2007-08-16
RU2425092C2 (en) 2011-07-27
CN101405372B (en) 2012-06-20
MY147199A (en) 2012-11-14
JP2007211057A (en) 2007-08-23
AU2007213211B2 (en) 2011-09-01
AU2007213211A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
RU2429278C2 (en) Method for hydrofining fuel base
JP4908022B2 (en) Method for producing hydrocarbon oil and hydrocarbon oil
AU2012233954A1 (en) Hydrogenation refining catalyst and method for producing a hydrocarbon oil
JP5349736B2 (en) Method for hydrocracking wax
JP4714035B2 (en) Method for hydrotreating wax
JP3945772B2 (en) Environment-friendly diesel oil and method for producing the same
JP4769085B2 (en) Method for hydrotreating wax
AU2007231962B2 (en) Process for producing liquid fuel base
JP2004285155A (en) Eco-friendly gas oil and method for producing the same
JP4714066B2 (en) Method for hydrotreating wax
JP4848191B2 (en) Method for hydrotreating synthetic oil
JP4791167B2 (en) Hydrorefining method
JP4886338B2 (en) Wax hydrocracking method and fuel substrate manufacturing method
JP4773232B2 (en) Method for hydrocracking wax
JP2007269897A (en) Method for hydrocracking wax
JP2007270052A (en) Method for producing liquid hydrocarbon composition, automobile fuel and lubricating oil
JP2008101214A (en) Method for producing environmentally friendly light oil
JP2012211344A (en) Method of hydrocracking wax
JP2007145901A (en) Gas oil composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4714035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250