JP2007267033A - Surface acoustic wave element and surface acoustic wave device - Google Patents

Surface acoustic wave element and surface acoustic wave device Download PDF

Info

Publication number
JP2007267033A
JP2007267033A JP2006089541A JP2006089541A JP2007267033A JP 2007267033 A JP2007267033 A JP 2007267033A JP 2006089541 A JP2006089541 A JP 2006089541A JP 2006089541 A JP2006089541 A JP 2006089541A JP 2007267033 A JP2007267033 A JP 2007267033A
Authority
JP
Japan
Prior art keywords
idt
saw
electrode
frequency
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006089541A
Other languages
Japanese (ja)
Inventor
Keigo Iizawa
慶吾 飯澤
Naohisa Obata
直久 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006089541A priority Critical patent/JP2007267033A/en
Publication of JP2007267033A publication Critical patent/JP2007267033A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress variations in temperature characteristics to be suppressed in a SAW device, and to enable miniaturization to be suited for mass production. <P>SOLUTION: A single type IDT 13 composed of crossed-finger electrodes 12a, 12b each having thickness H to be H/λ≤0.085 relating to wave length λ of the SAW is to be formed on a main surface of a crystal substrate 11 composed of an in-plane rotation ST cut crystal having an Eiler angle to be indicated by (0°,θ,0°<¾Ψ¾<90°), preferably by (0°,θ,9°<¾Ψ¾<46°), more preferably by (0°,95°<θ<155°,33°<¾Ψ¾<46°). Thereby good temperature characteristics for making frequency variation width Δfab suppressed to be equal to or lower than 25 ppm within a usage temperature range (0 to 70°C) including variations in manufacturing can be acquired by exciting in an upper bound mode of a stop band. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、弾性表面波(SAW:surface acoustic wave )を利用したSAW素子及びかかるSAW素子を有するSAWデバイスに関する。   The present invention relates to a SAW element using a surface acoustic wave (SAW) and a SAW device having such a SAW element.

従来から、圧電基板の表面に形成した交差指電極からなるIDT(すだれ状トランスデューサ)により励振する弾性表面波を利用したSAW素子を備える共振子、フィルタ、発振器等のSAWデバイスが、様々な電子機器に幅広く利用されている。最近は、携帯通信機器などの発達により、通信の高速化に対応したSAWデバイスの高周波化及び高精度化と共に、小型化が要求されている。   Conventionally, SAW devices such as resonators, filters, oscillators, and the like having SAW elements using surface acoustic waves excited by IDTs (interdigital transducers) formed of interdigitated electrodes formed on the surface of a piezoelectric substrate are various electronic devices. Widely used. Recently, due to the development of mobile communication devices and the like, miniaturization is required along with higher frequency and higher accuracy of SAW devices that support higher communication speeds.

SAW素子の圧電基板には、一般に高い温度安定性を有する水晶が利用されており、中でも周波数温度特性の良好なSTカット水晶板が多く使用されている。図3に例示するように、水晶の直交する3つの結晶軸を電気軸(X軸)、機械軸(Y軸)、光学軸(Z軸)とし、オイラー角(φ,θ,ψ)が(0°,0°,0°)の水晶Z板1をX軸周りに角度θ=113〜135°回転させて得られる新しい座標軸(X,Y´,Z´)に沿って切り出したものがSTカット水晶板2である。   A crystal having high temperature stability is generally used for the piezoelectric substrate of the SAW element, and among them, an ST-cut quartz plate having a good frequency temperature characteristic is often used. As illustrated in FIG. 3, three orthogonal crystal axes of crystal are an electric axis (X axis), a mechanical axis (Y axis), and an optical axis (Z axis), and Euler angles (φ, θ, ψ) are ( ST cut out a new crystal axis (X, Y ′, Z ′) obtained by rotating the crystal Z plate 1 of 0 °, 0 °, 0 °) around the X axis by an angle θ = 113 to 135 °. This is a cut crystal plate 2.

SAW素子の周波数温度特性を向上させるために、STカット水晶板2をZ´軸周りに角度ψ回転させた面内回転STカット水晶板3が知られている。面内回転STカット水晶板3は、温度特性が3次関数で表されることから、オイラー角を(0°,θ=113〜135°,ψ=±(40°〜49°))に設定し、かつその温度特性を変曲点周りに回転させて、使用温度範囲における周波数変動幅を最小に調整したSAW装置が提案されている(例えば、特許文献1を参照)。   In order to improve the frequency temperature characteristics of the SAW element, an in-plane rotated ST-cut quartz plate 3 obtained by rotating the ST-cut quartz plate 2 by an angle ψ about the Z ′ axis is known. Since the temperature characteristics of the in-plane rotating ST-cut quartz plate 3 are expressed by a cubic function, the Euler angles are set to (0 °, θ = 113 to 135 °, ψ = ± (40 ° to 49 °)). In addition, a SAW device has been proposed in which the temperature characteristic is rotated around an inflection point to adjust the frequency fluctuation range in the operating temperature range to a minimum (see, for example, Patent Document 1).

更に、特許文献1に記載の面内回転STカット水晶板を用いたSAW装置において、IDTの電極幅のばらつきに対する共振周波数の変動を少なくするために、IDTの電極ピッチに対する電極幅の比率を0.5以上、0.65以下にすることが知られている(例えば、特許文献2を参照)。   Furthermore, in the SAW device using the in-plane rotating ST-cut quartz plate described in Patent Document 1, the ratio of the electrode width to the electrode pitch of the IDT is set to 0 in order to reduce the variation of the resonance frequency with respect to the variation in the electrode width of the IDT. It is known that it is set to .5 or more and 0.65 or less (for example, see Patent Document 2).

他方、IDTにより励振されるSAWの代表的なものはレイリー波であるが、計算によりストップバンドと呼ばれる2つの周波数解を得られることが知られている。レイリー波が励振されるSAW素子は、その低い方(下限モード)又は高い方(上限モード)のいずれかの周波数を使用する。これらの周波数を比較すると、上限モードの方が下限モードよりも、周波数温度特性の2次温度係数の絶対値が小さく、IDTの電極膜厚を増加させたときに2次温度係数の絶対値の変化も小さいことが知られている(例えば、非特許文献1を参照)。従って、上限モードの方が周波数温度特性が良好で、高周波化に適していることが分かっている。   On the other hand, a typical SAW excited by the IDT is a Rayleigh wave, but it is known that two frequency solutions called stop bands can be obtained by calculation. The SAW element in which the Rayleigh wave is excited uses either the lower frequency (lower limit mode) or the higher frequency (upper limit mode). Comparing these frequencies, the absolute value of the secondary temperature coefficient of the frequency temperature characteristic is smaller in the upper limit mode than in the lower limit mode, and the absolute value of the secondary temperature coefficient is increased when the IDT electrode film thickness is increased. It is known that the change is small (see, for example, Non-Patent Document 1). Therefore, it has been found that the upper limit mode has better frequency temperature characteristics and is suitable for higher frequencies.

ところが、STカット水晶基板を用いたSAW素子は、IDTがSAWの1波長中に2本の電極指を設けたシングル型の場合、SAWがストップバンドの上限モードではなく、下限モードでのみ励振される。そこで、SAWの1波長中に3本又はそれ以上の電極指を設けた反射反転型のIDT電極を有し、ストップバンドの上限モードでの励振を可能にしたSAW装置が知られている(例えば、特許文献3を参照)。   However, the SAW element using the ST cut quartz substrate is excited only in the lower limit mode, not the upper limit mode of the stop band, when the IDT is a single type in which two electrode fingers are provided in one wavelength of SAW. The Therefore, a SAW device having a reflection inversion type IDT electrode in which three or more electrode fingers are provided in one SAW wavelength and enabling excitation in an upper limit mode of a stop band is known (for example, , See Patent Document 3).

また、STカット水晶基板にIDTとその両側に反射器とを設けたSAW素子は、アルミニウムで形成した反射器の電極当たりの反射係数が0.02程度であり、高い反射効率を得るためには電極本数が増えて、小型化を妨げるという問題がある。そこで、オイラー角が(0°、113°〜135°、0°)であるSTカット水晶基板、又は(0°、113°〜135°、±(40°〜49°))である面内回転STカット水晶基板を用いてレイリー波を励起し、かつIDTを形成する金属材料よりも重い金属材料で反射器を形成することにより、チップサイズを小型化しかつ周波数温度特性を良好にしたSAWチップが知られている(例えば、特許文献4を参照)。   In addition, a SAW element in which an IDT and reflectors on both sides thereof are provided on an ST-cut quartz substrate has a reflection coefficient per electrode of a reflector formed of aluminum of about 0.02, and in order to obtain high reflection efficiency. There is a problem that the number of electrodes increases and hinders downsizing. Therefore, an ST-cut quartz substrate with Euler angles (0 °, 113 ° to 135 °, 0 °) or in-plane rotation with (0 °, 113 ° to 135 °, ± (40 ° to 49 °)) A SAW chip that uses a ST-cut quartz substrate to excite Rayleigh waves and that is made of a metal material heavier than the metal material that forms the IDT, thereby reducing the chip size and improving the frequency temperature characteristics. It is known (see, for example, Patent Document 4).

信学技報、社団法人電子情報通信学会、US99−20(1999−06)、p.37−42IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, US99-20 (1999-06), p. 37-42 特開2003−152487号公報JP 2003-152487 A 特開2003−258601号公報JP 2003-258601 A 特開2002−100959号公報JP 2002-100959 A 特開2005−184340号公報JP 2005-184340 A

一般に、STカット水晶基板を用いたSAW素子は、発振周波数がIDTの電極ピッチにより決定され、その高周波化にはIDTの電極ピッチを小さくする必要がある。IDTの設計では、電極ピッチを小さくする際に、それと同時に電極幅及び電極膜厚も比例して小さくするのが通例である。しかしながら、それではIDTの抵抗値も大きくなり、SAW素子のインピーダンスが大きくなるので好ましくない。   In general, in a SAW element using an ST cut quartz substrate, the oscillation frequency is determined by the electrode pitch of the IDT, and it is necessary to reduce the electrode pitch of the IDT in order to increase the frequency. In the IDT design, when the electrode pitch is made smaller, the electrode width and the electrode film thickness are usually made smaller at the same time. However, this is not preferable because the resistance value of the IDT also increases and the impedance of the SAW element increases.

これに対し、IDTの電極膜厚を大きくすれば、一般に発振周波数が大きく降下するという、当業者によく知られた問題を生じる。そこで、更にIDTの電極幅を微細にして高周波化しようとすれば、一般に採用されているウエットエッチングによる製造工程では、加工精度の問題を生じ、製造歩留まりを低下させてコストの増加を招く虞がある。特に上述した反射反転型のIDTを有するSAW素子の場合、高周波化しようとすると、シングル型のIDTよりも更に電極幅を微細化する必要がある。また、IDTの電極膜厚を大きくすることによって、周波数温度特性における2次温度係数の絶対値が大きくなり、その結果、却って水晶基板に固有の温度安定性を損ねる虞がある(例えば、非特許文献1を参照)。   On the other hand, if the electrode film thickness of the IDT is increased, a problem that is well known to those skilled in the art that the oscillation frequency generally decreases greatly occurs. Therefore, if the electrode width of the IDT is further reduced to increase the frequency, the manufacturing process using wet etching generally employed may cause a problem of processing accuracy, which may reduce the manufacturing yield and increase the cost. is there. In particular, in the case of the SAW element having the reflection inversion type IDT described above, it is necessary to make the electrode width finer than that of the single type IDT in order to increase the frequency. In addition, by increasing the electrode film thickness of the IDT, the absolute value of the second-order temperature coefficient in the frequency temperature characteristic increases, and as a result, the temperature stability inherent to the quartz substrate may be impaired (for example, non-patent) Reference 1).

また、上記特許文献1に記載される面内回転STカット水晶板を用いたSAW素子は、電極1本当たりの反射係数が0.015程度で、STカット水晶板よりも小さくなる。そのために電極指の本数が多くなり、SAW素子のチップサイズを小型化することが困難になるという問題がある。   Further, the SAW element using the in-plane rotating ST-cut quartz plate described in Patent Document 1 has a reflection coefficient of about 0.015 per electrode and is smaller than that of the ST-cut quartz plate. Therefore, the number of electrode fingers increases, and there is a problem that it is difficult to reduce the chip size of the SAW element.

本願出願人は、オイラー角(0°,θ,ψ)の面内回転STカット水晶板について更に様々検討した結果、角度ψを適当に選択し、より好ましくは更に角度θを適当に選択することによって、シングル型のIDTでレイリー波をストップバンドの上限モードで励振できることを見出した。更に、その場合にIDTの電極指の反射係数がSTカット水晶板と同程度であることが分かった。   As a result of further various studies on the in-plane rotated ST-cut quartz plate with Euler angles (0 °, θ, ψ), the applicant of the present application appropriately selects the angle ψ, and more preferably appropriately selects the angle θ. Thus, it has been found that a Rayleigh wave can be excited in the upper limit mode of the stop band with a single type IDT. Further, in that case, it was found that the reflection coefficient of the electrode finger of the IDT is comparable to that of the ST cut quartz plate.

また、上記非特許文献1に記載される解析方法を利用することにより、面内回転STカット水晶板において、使用温度範囲(0〜70°)における温度変化に対する周波数の変動幅Δf即ち温度特性は、角度ψに依存してばらつきを生じることが分かった。即ち、角度ψを様々に変えて温度特性の変化を観察したとき、角度ψの変化に対する周波数変動幅Δfの変化を最小にできることを見出した。また、角度ψの変化による周波数変動幅Δfの変化は、IDTの電極膜厚の変動に影響を受けることが分かった。この場合、角度ψの変化に対して、IDTの電極膜厚が大きいほど、Δfの変動は大きくなり、逆にIDTの電極膜厚が小さいほど、Δfの変動は小さくなる。   Further, by utilizing the analysis method described in Non-Patent Document 1, in the in-plane rotation ST-cut quartz plate, the frequency fluctuation range Δf with respect to the temperature change in the operating temperature range (0 to 70 °), that is, the temperature characteristic is It has been found that variation occurs depending on the angle ψ. That is, it was found that when the change in the temperature characteristic was observed while changing the angle ψ in various ways, the change in the frequency fluctuation range Δf with respect to the change in the angle ψ could be minimized. It was also found that the change in the frequency fluctuation width Δf due to the change in the angle ψ is affected by the change in the electrode film thickness of the IDT. In this case, with respect to the change in the angle ψ, the variation in Δf increases as the electrode film thickness of IDT increases, and conversely, the variation in Δf decreases as the electrode film thickness of IDT decreases.

他方、工業的なSAW素子の大量製造においては、当然ながら製造上許容され得る誤差範囲即ち公差を考慮する必要がある。上述したように、面内回転角度ψの変化による周波数変動幅Δfには、IDTの電極膜厚が大きく影響することから、その製造誤差またはばらつきを考慮しなければ、実用上角度ψの変動による温度特性のばらつきを抑制したSAW素子を実現することは困難である。   On the other hand, in the mass production of industrial SAW elements, it is a matter of course that an allowable error range, that is, tolerance, must be taken into consideration. As described above, the frequency fluctuation width Δf due to the change in the in-plane rotation angle ψ is greatly affected by the electrode film thickness of the IDT. It is difficult to realize a SAW element that suppresses variations in temperature characteristics.

そこで本発明の目的は、かかる従来技術の問題を解消することにある。そして、本願発明者らは、上述したように面内回転STカット水晶板を用いたSAW素子について様々に研究し、周波数温度特性に関連して面内回転角度ψ、IDTの電極ピッチ、膜厚及び線幅の相互の関係を十分に検討した結果、その知見に基づいて本発明を案出するに至ったものである。従って、本発明の目的は、面内回転STカット水晶板を用いたSAW素子において、特に製造上の誤差やばらつきを考慮しつつ、角度ψの変動による温度特性のばらつきを抑制し、しかも製造上の負担を少なくして量産に適した小型化を可能にするSAW素子及びSAWデバイスを提供することにある。   Accordingly, an object of the present invention is to eliminate the problems of the prior art. The inventors of the present invention have made various studies on the SAW element using the in-plane rotated ST-cut quartz plate as described above, and related to the frequency temperature characteristics, the in-plane rotation angle ψ, the IDT electrode pitch, and the film thickness. As a result of sufficiently examining the mutual relationship between the line width and the line width, the present invention has been devised based on the knowledge. Accordingly, an object of the present invention is to suppress variations in temperature characteristics due to fluctuations in the angle ψ, while taking into account manufacturing errors and variations, especially in a SAW device using an in-plane rotated ST-cut quartz plate, and in manufacturing. An object of the present invention is to provide a SAW element and a SAW device that can reduce the burden of the device and can be downsized suitable for mass production.

本発明によれば、上記目的を達成するために、面内回転STカット水晶板からなる水晶基板と、該水晶基板の主面に形成された少なくとも1組の交差指電極からなるIDTとを備え、交差指電極の膜厚Hを、IDTにより励振されるSAWの波長λに対してH/λ≦0.085に設定したSAW素子が提供される。   According to the present invention, in order to achieve the above object, a quartz substrate comprising an in-plane rotating ST-cut quartz plate and an IDT comprising at least one pair of interdigitated electrodes formed on the main surface of the quartz substrate are provided. A SAW element is provided in which the thickness H of the interdigitated electrode is set to H / λ ≦ 0.085 with respect to the wavelength λ of the SAW excited by the IDT.

本願発明者らは、このように面内回転STカット水晶板を使用し、かつSAWの波長に対するIDTの電極膜厚比H/λを設定することによって、後述するように、通常の使用温度範囲においてSAW素子の周波数温度特性、即ち周波数変動幅を小さく抑制できることを見出した。これにより、使用温度範囲においてIDTの電極膜厚の変動に対して、温度特性のばらつきを抑制することができる。   As described later, the inventors of the present application use the in-plane rotating ST-cut quartz plate and set the electrode film thickness ratio H / λ of the IDT with respect to the wavelength of the SAW. The frequency temperature characteristics of the SAW element, that is, the frequency fluctuation range can be suppressed to a small level. Thereby, the dispersion | variation in a temperature characteristic can be suppressed with respect to the fluctuation | variation of the electrode film thickness of IDT in a use temperature range.

或る実施例では、オイラー角が(0°,θ,0°<|ψ|<90°)の水晶基板を用いることにより、SAW素子をストップバンドの上限モードで励振させることが可能で、それにより電極膜厚を大きくしても周波数降下を抑制することができる。従って、優れた周波数温度特性を有しかつそのばらつきを抑制でき、高周波化及び高精度化の可能なSAW素子を実現することができる。   In one embodiment, by using a quartz substrate with Euler angles (0 °, θ, 0 ° <| ψ | <90 °), it is possible to excite the SAW element in the stopband upper limit mode, Thus, the frequency drop can be suppressed even if the electrode film thickness is increased. Therefore, it is possible to realize a SAW element that has excellent frequency temperature characteristics, can suppress variations thereof, and can achieve high frequency and high accuracy.

別の実施例では、水晶基板のオイラー角を(0°,θ,9°<|ψ|<46°)にすることにより、更に優れた周波数温度特性を発揮させ、かつ温度変化に対する周波数変動量をより小さくすることができる。更に別の実施例では、水晶基板のオイラー角を(0°,95°<θ<155°,33°<|ψ|<46°)にすることにより、更に一層優れた周波数温度特性を得ることができる。   In another embodiment, by setting the Euler angles of the quartz substrate to (0 °, θ, 9 ° <| ψ | <46 °), further excellent frequency temperature characteristics can be exhibited, and the amount of frequency fluctuation with respect to temperature change Can be made smaller. In still another embodiment, even better frequency temperature characteristics can be obtained by setting the Euler angles of the quartz substrate to (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °). Can do.

本発明の別の側面によれば、上述した本発明のSAW素子を備えることにより、優れた周波数温度特性を有し、高周波化及び高精度化が可能で小型化に適したSAWデバイスが提供される。   According to another aspect of the present invention, by providing the above-described SAW element of the present invention, a SAW device having excellent frequency temperature characteristics, capable of high frequency and high accuracy, and suitable for miniaturization is provided. The

以下に、添付図面を参照しつつ、本発明の好適な実施例について詳細に説明する。
図1(A)は、本発明を適用した1ポート型共振子用のSAW素子10を示している。SAW素子10は、図8に関連して上述した面内回転STカット水晶板からなる矩形の水晶基板11を有する。水晶基板11の主面には、その略中央に1対の交差指電極12a、12bからなるSAW励振用のIDT13が形成され、その長手方向の両側にそれぞれ格子状の反射器14、14が形成されている。前記交差指電極及び反射器は、加工性及びコストの観点からAlからなる電極膜で形成されている。別の実施例では、前記電極膜にAl/Cu膜を用いることもできる。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1A shows a SAW element 10 for a one-port resonator to which the present invention is applied. The SAW element 10 has a rectangular quartz substrate 11 made of the in-plane rotating ST-cut quartz plate described above with reference to FIG. On the main surface of the quartz substrate 11, an IDT 13 for SAW excitation comprising a pair of crossed finger electrodes 12 a and 12 b is formed at substantially the center, and lattice-like reflectors 14 and 14 are formed on both sides in the longitudinal direction. Has been. The cross finger electrode and the reflector are formed of an electrode film made of Al from the viewpoint of workability and cost. In another embodiment, an Al / Cu film can be used as the electrode film.

図1(B)は、SAWの伝搬方向に沿って交差指電極12a、12bの断面を示している。本実施例では、前記交差指電極の膜厚をH、IDT13により励振されるSAWの波長をλとしたとき、それらの比即ち膜厚比H/λが0.085となるように、好ましくは0.06〜0.07となるように、IDT13を形成する。このように膜厚比を設定することによって、所定の使用温度範囲(0〜70℃)において、膜厚Hの変動に対する周波数変動幅の変化を、25ppm程度まで小さくし、温度特性のばらつきを抑制することができる。更に、交差指電極12a、12bの反射係数を、上記特許文献1の面内回転STカット水晶板を用いた従来のSAW装置とは異なり、STカット水晶板と同程度に大きくすることができる。   FIG. 1B shows a cross section of the crossed finger electrodes 12a and 12b along the SAW propagation direction. In the present embodiment, when the thickness of the cross finger electrode is H and the wavelength of the SAW excited by the IDT 13 is λ, the ratio thereof, that is, the thickness ratio H / λ is preferably 0.085. The IDT 13 is formed so as to be 0.06 to 0.07. By setting the film thickness ratio in this way, the change in the frequency fluctuation range with respect to the fluctuation of the film thickness H is reduced to about 25 ppm in the predetermined operating temperature range (0 to 70 ° C.), thereby suppressing the variation in temperature characteristics. can do. Furthermore, unlike the conventional SAW device using the in-plane rotating ST-cut quartz plate of Patent Document 1 described above, the reflection coefficient of the interdigital electrodes 12a and 12b can be made as large as that of the ST-cut quartz plate.

また、本実施例において、IDT13の電極ピッチ即ち隣接する交差指電極間の中心距離をp、電極12a、12bのSAW伝搬方向における線幅をdとすると、それらの比η=d/pは0.8程度に設定するのが好ましい。これにより、SAW素子10自体の小型化やIDT13が狭ピッチ化した場合でも、該IDTを水晶基板11にパターニングする際に、前記交差指電極の線幅が狭小化し過ぎて加工精度が低下したり断線する虞を解消し又は軽減することができる。従って、水晶基板11即ちSAW素子10の小型化が、製造上IDTの形成に過度の負担を強いることはない。   In this embodiment, if the electrode pitch of the IDT 13, that is, the center distance between adjacent crossed finger electrodes is p and the line width in the SAW propagation direction of the electrodes 12 a and 12 b is d, the ratio η = d / p is 0 It is preferable to set to about .8. As a result, even when the SAW element 10 itself is downsized or the IDT 13 is narrowed, when the IDT is patterned on the quartz substrate 11, the line width of the crossed finger electrode is excessively narrowed, resulting in reduced processing accuracy. The possibility of disconnection can be eliminated or reduced. Therefore, the miniaturization of the quartz substrate 11, that is, the SAW element 10, does not impose an excessive burden on the formation of the IDT in manufacturing.

本発明のような面内回転STカット水晶板の場合、IDTの電極線幅と電極ピッチとの比ηを本実施例のように大きくすると、却って温度変化に対する周波数変動幅が大きくなり、温度特性を悪くする虞がある(例えば、特許文献2を参照)。しかしながら、本発明によれば、IDTの膜厚比を上述したように設定することにより、その製造上の誤差やばらつきを考慮しても、周波数変動幅のばらつきを抑制し、良好な温度特性を維持することができる。   In the case of the in-plane rotating ST-cut quartz plate as in the present invention, if the ratio η between the electrode line width and the electrode pitch of the IDT is increased as in the present embodiment, the frequency fluctuation width with respect to the temperature change is increased. (For example, refer to Patent Document 2). However, according to the present invention, by setting the film thickness ratio of the IDT as described above, it is possible to suppress the variation in the frequency fluctuation range even when the manufacturing error and variation are taken into consideration, and to obtain a favorable temperature characteristic. Can be maintained.

本実施例の水晶基板11は、オイラー角(0°,θ,0°<|ψ|<90°)の面内回転STカット水晶板であり、そのX´軸方向がSAWの伝搬方向と一致するように形成される。これにより、温度特性のばらつきを抑制することに加えて、本実施例のようなシングル型IDTにおいてストップバンドの上限モードで励振させることが可能であり、電極膜厚を大きくしても、周波数降下を抑制することができる。従って、電極ピッチをより小さくして高周波化、高精度化を図ることができる。   The quartz substrate 11 of this embodiment is an in-plane rotated ST-cut quartz plate with Euler angles (0 °, θ, 0 ° <| ψ | <90 °), and the X′-axis direction coincides with the SAW propagation direction. To be formed. As a result, in addition to suppressing variation in temperature characteristics, it is possible to excite in the upper limit mode of the stop band in the single type IDT as in this embodiment, and even if the electrode film thickness is increased, the frequency drop Can be suppressed. Therefore, the electrode pitch can be further reduced to achieve higher frequency and higher accuracy.

水晶基板11は、より好ましくはオイラー角が(0°,θ,9°<|ψ|<46°)であり、更に、従来のSTカット水晶板よりも優れた周波数温度特性を発揮し、温度変化に対する周波数変動量を小さくする効果が得られる。更に好ましくは、水晶基板11のオイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)であり、より一層優れた周波数温度特性を得ることができる。   The quartz substrate 11 more preferably has an Euler angle (0 °, θ, 9 ° <| ψ | <46 °), and further exhibits a frequency temperature characteristic superior to that of a conventional ST-cut quartz plate. An effect of reducing the amount of frequency fluctuation with respect to the change can be obtained. More preferably, the Euler angles of the quartz substrate 11 are (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °), and even better frequency temperature characteristics can be obtained.

オイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)の面内回転STカット水晶基板にIDTを形成した、図1に示す本実施例のSAW素子の周波数温度特性を、上記非特許文献1に記載の解析方法を用いてシミュレーションした。その結果を図2乃至図7に示す。   The SAW device of this embodiment shown in FIG. 1 in which an IDT is formed on an in-plane rotating ST-cut quartz substrate with Euler angles (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °). The frequency-temperature characteristic was simulated using the analysis method described in Non-Patent Document 1 above. The results are shown in FIGS.

図2は、IDTの電極線幅対電極ピッチ比η=0.8に設定した場合に、使用温度範囲(0〜70℃)における膜厚比H/λの変化に関する周波数変動幅Δfの変化を示している。同図において、実線で示すΔfは、膜厚比H/λがIDTの電極膜厚Hなどの製造誤差やばらつきを含まない理想的な最適値で製造された場合である。これに対し、破線で示すΔfは、膜厚比H/λがIDTの製造誤差やばらつきによる変動幅を2%と仮定とした場合である。従って、実線と破線間の数値の差は、製造誤差やばらつきによる膜厚比H/λの変動幅が周波数変動幅Δfに与える影響を示すことになる。また、p0は、従来のSTカット水晶板を用いた場合を示している。   FIG. 2 shows changes in the frequency fluctuation width Δf with respect to changes in the film thickness ratio H / λ in the operating temperature range (0 to 70 ° C.) when the electrode line width to electrode pitch ratio η = 0.8 of the IDT is set. Show. In the figure, Δf indicated by a solid line is a case where the film thickness ratio H / λ is manufactured at an ideal optimum value that does not include manufacturing errors and variations such as the electrode film thickness H of the IDT. On the other hand, Δf indicated by a broken line is a case where the film thickness ratio H / λ is assumed to have a variation width of 2% due to manufacturing errors and variations in IDT. Therefore, the difference in the numerical value between the solid line and the broken line indicates the influence of the fluctuation width of the film thickness ratio H / λ on the frequency fluctuation width Δf due to manufacturing errors and variations. Moreover, p0 has shown the case where the conventional ST cut quartz plate is used.

同図から、η=0.8において、膜厚比H/λの変動幅が無い理想的な場合には、H/λ=0.045〜0.105の範囲全体で、周波数変動幅Δfが10ppm以下に安定して小さく抑制されていることが分かる。これに対し、膜厚比H/λの変動幅が2%の場合には、周波数変動幅Δfが、H/λ=0.06〜0.07において安定して20ppm以下に小さく抑制されているが、H/λ>0.085では急激に上昇し始める傾向が見られる。膜厚比H/λの変動幅の大小に拘わらず、それが周波数変動幅Δfの変化に与える影響は、図2の破線と同じ傾向を示すと考えられる。従って、周波数変動幅Δfは、膜厚比H/λ≦0.085において、IDTの製造誤差やばらつきによる変動幅を考慮しても、従来のSTカット水晶板を用いた場合に比較して安定して良好に抑制されることが分かる。   From the same figure, when η = 0.8, in the ideal case where there is no fluctuation width of the film thickness ratio H / λ, the frequency fluctuation width Δf is over the entire range of H / λ = 0.045 to 0.105. It can be seen that the amount is stably suppressed to 10 ppm or less. On the other hand, when the fluctuation range of the film thickness ratio H / λ is 2%, the frequency fluctuation range Δf is stably reduced to 20 ppm or less when H / λ = 0.06 to 0.07. However, when H / λ> 0.085, there is a tendency to begin to increase rapidly. Regardless of the fluctuation range of the film thickness ratio H / λ, it is considered that the influence of this on the change of the frequency fluctuation range Δf shows the same tendency as the broken line in FIG. Therefore, the frequency fluctuation width Δf is more stable than the case of using the conventional ST-cut quartz plate in the film thickness ratio H / λ ≦ 0.085, even if the fluctuation width due to IDT manufacturing error and variation is taken into consideration. And it turns out that it suppresses favorably.

図3及び図4は、それぞれ電極線幅対ピッチ比η=0.7、0.6に設定した場合に、前記使用温度範囲における膜厚比H/λの変化に関する周波数変動幅Δfの変化を示している。図3及び図4においても、実線は、膜厚比H/λがIDTの製造誤差やばらつきを含まない理想的な最適値で製造された場合のΔfであるのに対し、破線は、膜厚比H/λがIDTの製造誤差やばらつきによる変動幅を2%と仮定とした場合のΔfである。これらの場合にも、図2と同様の結果が得られた。即ち、膜厚比H/λの変動幅が0の場合には、周波数変動幅Δfが全体として略15ppm以下に安定して小さく抑制されている。これに対し、膜厚比H/λの変動幅が2%の場合には、H/λ>0.085において、周波数変動幅Δfが急激に上昇する傾向が見られる。これらの結果から、本発明によれば、電極線幅対ピッチ比ηを比較的大きくしても、電極膜厚比H/λの変化に対して温度特性のばらつきを良好に抑制し得ることが分かる。   3 and 4 show changes in the frequency fluctuation width Δf with respect to changes in the film thickness ratio H / λ in the operating temperature range when the electrode line width to pitch ratio η = 0.7 and 0.6, respectively. Show. 3 and 4, the solid line is Δf when the film thickness ratio H / λ is manufactured with an ideal optimum value that does not include manufacturing errors and variations of IDT, whereas the broken line indicates the film thickness. The ratio H / λ is Δf when it is assumed that the fluctuation range due to IDT manufacturing error and variation is 2%. In these cases, the same results as in FIG. 2 were obtained. That is, when the fluctuation range of the film thickness ratio H / λ is 0, the frequency fluctuation range Δf as a whole is stably suppressed to about 15 ppm or less. On the other hand, when the variation width of the film thickness ratio H / λ is 2%, the frequency variation width Δf tends to increase rapidly when H / λ> 0.085. From these results, according to the present invention, even if the electrode line width to pitch ratio η is relatively large, variation in temperature characteristics can be satisfactorily suppressed with respect to changes in the electrode film thickness ratio H / λ. I understand.

図5乃至図7は、それぞれ膜厚比H/λ=0.08、0.07,0.06に設定した場合に、電極線幅対電極ピッチ比ηに関する周波数変動幅Δfの変化を示している。これらの各図においても、実線は、膜厚比H/λがIDTの製造誤差やばらつきを含まない理想的な最適値で製造された場合のΔfであり、破線は、膜厚比H/λがIDTの製造誤差やばらつきによる変動幅を2%と仮定とした場合のΔfである。また、これらの図面に示す各グラフの左端、即ちη=0.45における周波数変動幅Δfは、それぞれ従来のSTカット水晶板を用いた場合とほぼ一致している。   FIGS. 5 to 7 show changes in the frequency fluctuation width Δf with respect to the electrode line width to electrode pitch ratio η when the film thickness ratios H / λ = 0.08, 0.07, and 0.06, respectively. Yes. Also in each of these figures, the solid line is Δf when the film thickness ratio H / λ is manufactured at an ideal optimum value that does not include manufacturing errors and variations of IDT, and the broken line is the film thickness ratio H / λ. Is Δf when it is assumed that the fluctuation range due to manufacturing errors and variations of IDT is 2%. Further, the frequency fluctuation width Δf at the left end of each graph shown in these drawings, that is, η = 0.45, is almost the same as that when the conventional ST-cut quartz plate is used.

図5乃至図7のいずれにおいても、膜厚比H/λの変動幅が0の場合には、周波数変動幅Δfが全体として20ppm以下に安定して小さく抑制されている。膜厚比H/λの変動幅が2%の場合には、周波数変動幅Δfが、電極線幅対電極ピッチ比η<0.65において比較的大きく変動するのに対し、η=0.65〜0.85では略60ppm以下に安定している。これらの結果から分かるように、本発明の面内回転STカット水晶板において電極線幅対電極ピッチ比ηを大きく設定しても、IDTの膜厚比を上述したように設定することにより、温度特性のばらつきを良好に抑制し得ることが分かる。   5 to 7, when the fluctuation width of the film thickness ratio H / λ is 0, the frequency fluctuation width Δf is stably suppressed to 20 ppm or less as a whole. When the fluctuation width of the film thickness ratio H / λ is 2%, the frequency fluctuation width Δf fluctuates relatively large at the electrode line width to electrode pitch ratio η <0.65, whereas η = 0.65. It is stable at about 60 ppm or less at ˜0.85. As can be seen from these results, even when the electrode line width to electrode pitch ratio η is set large in the in-plane rotating ST cut quartz plate of the present invention, the temperature ratio of the IDT is set as described above. It can be seen that variation in characteristics can be satisfactorily suppressed.

以上、本発明の好適な実施例について説明したが、本発明は上記実施例に限定されるものではなく、これに様々な変形・変更を加えて実施し得ることは当業者に明らかである。例えば、上記実施例の1ポート型、シングル型IDT以外に、反射器を有しないものや、2ポート型、トランスバーサル型などの様々な構成を有するSAW素子についても、本発明は同様に適用することができる。また、共振器以外に発振器などの様々なSAWデバイスにも適用し得ることは言うまでもない。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it will be apparent to those skilled in the art that various modifications and changes can be made thereto. For example, in addition to the 1-port type and single-type IDT of the above-described embodiment, the present invention is similarly applied to SAW elements having various configurations such as those having no reflector, 2-port type, and transversal type. be able to. Needless to say, the present invention can be applied to various SAW devices such as an oscillator in addition to the resonator.

(A)図は本発明を適用したSAW素子を示す平面図、(B)図はそのI−I線における部分拡大断面図。(A) The figure is a top view which shows the SAW element to which this invention is applied, (B) The figure is the elements on larger scale in the II line. 図1のSAW素子について、電極線幅対ピッチ比をη=0.8とした場合の温度特性をIDTの膜厚比H/λに関する周波数変動幅Δfabで示す線図。FIG. 2 is a diagram showing the temperature characteristics when the electrode line width to pitch ratio is η = 0.8 in the SAW element of FIG. 1 as a frequency variation width Δfab with respect to the IDT film thickness ratio H / λ. 電極線幅対ピッチ比η=0.7の場合の温度特性を示す図2の同様の線図。FIG. 3 is a similar diagram of FIG. 2 showing temperature characteristics when the electrode line width to pitch ratio η = 0.7. 電極線幅対ピッチ比η=0.6の場合の温度特性を示す図2の同様の線図。FIG. 3 is a similar diagram of FIG. 2 showing the temperature characteristics when the electrode line width to pitch ratio η = 0.6. 図1のSAW素子について、IDTの膜厚比をH/λ=8%とした場合の温度特性を電極線幅対ピッチ比ηに関する周波数変動幅Δfabで示す線図。FIG. 2 is a diagram showing the temperature characteristics when the film thickness ratio of IDT is H / λ = 8% in the SAW element of FIG. 1 as a frequency variation width Δfab with respect to the electrode line width to pitch ratio η. IDT膜厚比H/λ=7%の場合の温度特性を示す図5の同様の線図。FIG. 6 is a similar diagram of FIG. 5 showing temperature characteristics when the IDT film thickness ratio H / λ = 7%. IDT膜厚比H/λ=6%の場合の温度特性を示す図5の同様の線図。FIG. 6 is a similar diagram of FIG. 5 showing temperature characteristics when the IDT film thickness ratio H / λ = 6%. 本発明に使用する面内回転STカット水晶板を示す説明図。Explanatory drawing which shows the in-plane rotation ST cut quartz plate used for this invention.

符号の説明Explanation of symbols

1…水晶Z板、2…STカット水晶板、3…面内回転STカット水晶板、10…SAW素子、11…水晶基板、12a,12b…交差指電極、13…IDT、14…反射器。 DESCRIPTION OF SYMBOLS 1 ... Crystal Z plate, 2 ... ST cut crystal plate, 3 ... In-plane rotation ST cut crystal plate, 10 ... SAW element, 11 ... Crystal substrate, 12a, 12b ... Interstitial electrode, 13 ... IDT, 14 ... Reflector.

Claims (5)

面内回転STカット水晶板からなる水晶基板と、前記水晶基板の主面に形成された少なくとも1組の交差指電極からなるIDTとを備え、
前記交差指電極の膜厚Hが、前記IDTにより励振される弾性表面波(SAW)の波長λに対してH/λ≦0.085に設定されていることを特徴とする弾性表面波素子。
A quartz substrate made of an in-plane rotating ST-cut quartz plate, and an IDT made of at least one pair of crossed finger electrodes formed on the principal surface of the quartz substrate,
The surface acoustic wave device according to claim 1, wherein the thickness H of the interdigitated electrode is set to H / λ ≦ 0.085 with respect to the wavelength λ of the surface acoustic wave (SAW) excited by the IDT.
前記水晶基板のオイラー角が(0°,θ,0°<|ψ|<90°)であることを特徴とする請求項1に記載の弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein an Euler angle of the quartz crystal substrate is (0 °, θ, 0 ° <| ψ | <90 °). 前記水晶基板のオイラー角が(0°,θ,9°<|ψ|<46°)であることを特徴とする請求項2に記載の弾性表面波素子。   3. The surface acoustic wave device according to claim 2, wherein the Euler angles of the quartz substrate are (0 °, θ, 9 ° <| ψ | <46 °). 前記水晶基板のオイラー角が(0°,95°<θ<155°,33°<|ψ|<46°)であることを特徴とする請求項3に記載の弾性表面波素子。   4. The surface acoustic wave device according to claim 3, wherein the Euler angles of the quartz substrate are (0 °, 95 ° <θ <155 °, 33 ° <| ψ | <46 °). 請求項1乃至4のいずれかに記載の弾性表面波素子を備えることを特徴とする弾性表面波デバイス。   A surface acoustic wave device comprising the surface acoustic wave element according to claim 1.
JP2006089541A 2006-03-28 2006-03-28 Surface acoustic wave element and surface acoustic wave device Withdrawn JP2007267033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089541A JP2007267033A (en) 2006-03-28 2006-03-28 Surface acoustic wave element and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089541A JP2007267033A (en) 2006-03-28 2006-03-28 Surface acoustic wave element and surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2007267033A true JP2007267033A (en) 2007-10-11

Family

ID=38639573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089541A Withdrawn JP2007267033A (en) 2006-03-28 2006-03-28 Surface acoustic wave element and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2007267033A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224591A2 (en) 2009-02-27 2010-09-01 Epson Toyocom Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
WO2010098139A1 (en) 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
JP2012049764A (en) * 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave filter, electronic apparatus
JP2012049817A (en) * 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
WO2012137027A1 (en) 2011-04-07 2012-10-11 Gvr Trade Sa Surface acoustic wave resonator
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2015084534A (en) * 2014-11-25 2015-04-30 セイコーエプソン株式会社 Two-terminal pair surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
EP2224591A2 (en) 2009-02-27 2010-09-01 Epson Toyocom Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
WO2010098139A1 (en) 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2012049817A (en) * 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2012049764A (en) * 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave filter, electronic apparatus
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
WO2012137027A1 (en) 2011-04-07 2012-10-11 Gvr Trade Sa Surface acoustic wave resonator
JP2015084534A (en) * 2014-11-25 2015-04-30 セイコーエプソン株式会社 Two-terminal pair surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP7229574B2 (en) elastic wave device
US10938371B2 (en) Acoustic wave resonator, filter, and multiplexer
JP4591800B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP4306668B2 (en) Lamb wave type high frequency resonator
JP5934464B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP4858730B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
US8476984B2 (en) Vibration device, oscillator, and electronic apparatus
JP5141856B2 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2010220164A (en) Lamb-wave resonator and oscillator
JP2008054163A (en) Lamb-wave type high-frequency resonator
JP2006186623A (en) Surface acoustic wave element, manufacturing method thereof, and surface acoustic wave device
US20090051244A1 (en) Surface Acoustic Wave (SAW) Device
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4465464B2 (en) Lamb wave type elastic wave device
JP2019149724A (en) Surface acoustic wave device
JP4613779B2 (en) Surface acoustic wave device
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2012105252A (en) Surface acoustic wave device
JP2004007846A (en) Surface acoustic wave resonator
JP2008228144A (en) Coupling type saw resonator
JP2009027671A (en) Sh type bulk wave resonator
JP2005184340A (en) Surface acoustic wave chip
JP5737490B2 (en) Transversal surface acoustic wave device, surface acoustic wave oscillator and electronic equipment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602