JP2008228144A - Coupling type saw resonator - Google Patents

Coupling type saw resonator Download PDF

Info

Publication number
JP2008228144A
JP2008228144A JP2007066344A JP2007066344A JP2008228144A JP 2008228144 A JP2008228144 A JP 2008228144A JP 2007066344 A JP2007066344 A JP 2007066344A JP 2007066344 A JP2007066344 A JP 2007066344A JP 2008228144 A JP2008228144 A JP 2008228144A
Authority
JP
Japan
Prior art keywords
resonator
mode
frequency
fundamental wave
saw resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007066344A
Other languages
Japanese (ja)
Inventor
道明 ▲高▼木
Michiaki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007066344A priority Critical patent/JP2008228144A/en
Publication of JP2008228144A publication Critical patent/JP2008228144A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly accurate and small-sized coupling type SAW resonator of a wide using temperature range and excellent frequency temperature characteristics. <P>SOLUTION: For the coupling type SAW resonator 10, on the main surface of the crystal substrate 100 of SH cut indicated by Euler angle display (ϕ, θ, ψ), a 2-port type first resonator 120 for which a main IDT electrode 121, a sub IDT electrode 122 and reflectors 123 and 124 are disposed in a specified direction and a 2-port type second resonator 130 for which a main IDT electrode 131, a sub IDT electrode 132 and reflectors 133 and 134 are disposed are provided closely and also arranged side by side in parallel with the propagation direction of SH waves. The first resonator 120 is operated in an LS0 mode in a longitudinal direction, the second resonator 130 is operated in an LA0 mode in the longitudinal direction, the line widths L1 and L2 of the IDT electrodes are made different from each other, fundamental frequencies of the LS0 mode and the LA0 mode are roughly matched, and then the LS0 mode and the LA0 mode are operated in an elastically coupled state. Thus, a temperature characteristic curve is flattened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、結合型SAW共振子に関し、2モード型SAW共振子を近接配設して弾性結合状態で動作する結合型SAW共振子に関する。   The present invention relates to a coupled SAW resonator, and more particularly to a coupled SAW resonator that operates in an elastically coupled state with two mode SAW resonators arranged close to each other.

従来、水晶基板の表面に電極としてアルミニウム,銅,チタン,タングステン等の金属を用いて、蒸着等の成膜形成手段により電極パターンを形成しSAW共振子を構成している。また、水晶基板の圧電基板方位としては、水晶結晶の基本軸において、オイラー角表示(φ,θ,ψ)で、まず光軸であるZ軸まわりに反時計方向に0°±1°の範囲であり、次に電気軸であるX軸回りに反時計方向にθが29.2°〜40.7°の範囲であり、次に新たに生成したZ’軸まわりに圧電体平板内において、電気軸を起点として反時計方向に面内回転して、ψが90°±2°範囲である方向が弾性表面波の位相伝搬方位とするSHカットがある。   Conventionally, SAW resonators are configured by forming an electrode pattern on the surface of a quartz substrate using a metal such as aluminum, copper, titanium, or tungsten as an electrode by a film forming means such as vapor deposition. Also, the piezoelectric substrate orientation of the quartz substrate is a range of 0 ° ± 1 ° in the counterclockwise direction around the optical axis Z in the Euler angle display (φ, θ, ψ) on the fundamental axis of the quartz crystal. Next, θ is in the range of 29.2 ° to 40.7 ° counterclockwise around the X axis, which is the electric axis, and then in the piezoelectric plate around the newly generated Z ′ axis, There is an SH cut that rotates in the counterclockwise direction starting from the electric axis, and the direction in which ψ is in the range of 90 ° ± 2 ° is the phase propagation azimuth of the surface acoustic wave.

前述のSHカット基板において、SAW共振子として利用する弾性表面波はSH波である。SH波は、従来からATカット水晶振動子に使用されているバルク振動モードと同一であり、電極の質量により表面波速度が低下して、水晶基板の表面付近に振動エネルギを集中させ基板の深さ方向に閉じ込めて利用するものである(例えば、特許文献1参照)。   In the above-described SH cut substrate, the surface acoustic wave used as the SAW resonator is an SH wave. The SH wave is the same as the bulk vibration mode conventionally used in AT-cut quartz resonators, and the surface wave velocity is reduced by the mass of the electrode, and the vibration energy is concentrated near the surface of the quartz substrate, and the depth of the substrate is reduced. It is confined in the vertical direction and used (for example, see Patent Document 1).

また、周波数零温度係数を有する水晶基板に二つのSAW共振子を構成し、外付けの集中素子を用いて二つのSAW共振子を結合して駆動し、平坦な周波数温度特性を実現する結合型SAW共振子というものが知られている(例えば、特許文献2参照)。   In addition, two SAW resonators are configured on a quartz substrate having a frequency zero temperature coefficient, and the two SAW resonators are coupled and driven using an external lumped element to realize a flat frequency temperature characteristic. A SAW resonator is known (for example, see Patent Document 2).

さらに、水晶基板上に二つのSAW共振子を形成して、それぞれの表面波の伝搬方位を異なるように配設して二つのSAW共振子を結合して周波数温度特性を改善するというものも知られている(例えば、非特許文献1参照)。   Further, it is also known that two SAW resonators are formed on a quartz substrate, and the propagation directions of the surface waves are arranged differently to couple the two SAW resonators to improve the frequency temperature characteristics. (See, for example, Non-Patent Document 1).

国際公開番号WO2005/099089 A1International Publication Number WO2005 / 099089 A1 米国特許第4193045号明細書U.S. Pat. No. 4,193,045 G.Martin, B. Wall:“Temperature Stable One-port SAW Resonators,”IEEE Ultrasonics 2006G. Martin, B. Wall: “Temperature Stable One-port SAW Resonators,” IEEE Ultrasonics 2006

このような特許文献1において用いられるSHカット水晶基板は、従来から用いられるSTカット水晶基板を使用して製作したSAW共振子の周波数温度特性に対して2倍の周波数精度が得られるものであるが、最近の電子機器における精度要求に対しては不十分である。特に屋外使用において要求される使用温度範囲が−35℃〜+85℃範囲において、±25ppmの精度の実現が困難である。具体的には、特許文献1によるSAW共振子が有する周波数温度特性の二次温度係数は−1.6×10-8/℃2であって、仮にその頂点温度を使用温度範囲の中央に配置すると、温度変化による周波数変動量は約58ppmとなり、他の周波数変動量を加味すると±25ppmの精度は実現できないという課題がある。 Such an SH-cut quartz substrate used in Patent Document 1 has a frequency accuracy twice as high as the frequency temperature characteristic of a SAW resonator manufactured using a conventional ST-cut quartz substrate. However, it is insufficient for the accuracy requirement in recent electronic devices. In particular, when the operating temperature range required for outdoor use is in the range of −35 ° C. to + 85 ° C., it is difficult to achieve an accuracy of ± 25 ppm. Specifically, the secondary temperature coefficient of the frequency temperature characteristic of the SAW resonator according to Patent Document 1 is −1.6 × 10 −8 / ° C. 2 and its apex temperature is arranged at the center of the operating temperature range. Then, the frequency fluctuation amount due to temperature change is about 58 ppm, and there is a problem that an accuracy of ± 25 ppm cannot be realized when other frequency fluctuation amounts are taken into account.

また、特許文献2では二つのSAW共振子の結合方法として外付けの収中素子を用いる構成であり、実装部品数が増加し小型化が難しい他、コスト増となることが考えられる。   Further, in Patent Document 2, an external concentrating element is used as a method for coupling two SAW resonators, which increases the number of mounted parts and makes it difficult to reduce the size.

また、非特許文献1によれば、それぞれの表面波の伝搬方位が異なるように二つのSAW共振子を配設して構成しているので、共振子の平面積が大きくなるという課題を有する。さらに、二つのSAW共振子の振動モード(共振周波数)が異なるため共振周波数及び周波数温度特性のばらつきが出やすいことが予測される。   Further, according to Non-Patent Document 1, since the two SAW resonators are arranged so that the propagation directions of the respective surface waves are different, there is a problem that the plane area of the resonator is increased. Furthermore, since the vibration modes (resonance frequencies) of the two SAW resonators are different, it is predicted that variations in the resonance frequency and frequency temperature characteristics are likely to occur.

本発明の目的は、使用温度範囲が広く、周波数温度特性が優れる高精度で小型の結合型SAW共振子を提供することである。   An object of the present invention is to provide a highly accurate and small coupled SAW resonator having a wide operating temperature range and excellent frequency temperature characteristics.

本発明の結合型SAW共振子は、水晶結晶の基本軸においてオイラー角表示(φ,θ,ψ)で表されるSHカットの水晶基板の主面上に、特定の方位に2個のIDT電極と前記IDT電極の前記特定の方位の両側に設けられる反射器と、を配設した2ポート型のSAW共振子を複数近接して設け、且つ前記特定の方位方向に平行に並設し、一方の前記SAW共振子を縦方向の対称基本波モードで動作させ、他方の前記SAW共振子を縦方向の斜対称基本波モードで動作させ、前記IDT電極の線幅を異ならせて前記対称基本波モードと前記斜対称基本波モードの基本周波数を略一致させたうえで、前記対称基本波モードと前記斜対称基本波モードを結合状態で動作させることを特徴とする。   The coupled SAW resonator of the present invention has two IDT electrodes in a specific orientation on the main surface of an SH-cut quartz substrate represented by Euler angles (φ, θ, ψ) on the fundamental axis of the quartz crystal. And a plurality of two-port SAW resonators provided with reflectors provided on both sides of the specific orientation of the IDT electrode, and arranged in parallel in the specific orientation direction, The SAW resonator is operated in a longitudinally symmetric fundamental wave mode, and the other SAW resonator is operated in a longitudinally symmetric fundamental wave mode, and the line widths of the IDT electrodes are varied to change the symmetric fundamental wave. The symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode are operated in a coupled state after substantially matching the fundamental frequency of the mode and the obliquely symmetric fundamental wave mode.

この発明によれば、二次温度係数が小さいSHカット水晶基板を用いて、結合振動子を構成していることから、広い使用温度範囲に対して平坦な周波数温度特性を実現する結合型SAW共振子を提供することができる。   According to the present invention, since the coupled oscillator is configured using the SH cut quartz substrate having a small secondary temperature coefficient, the coupled SAW resonance that realizes flat frequency temperature characteristics over a wide operating temperature range. Can provide a child.

また、対称基本波モード(以降、LS0モードあるいはLS0と表すことがある)と、斜対称基本波モード(以降、LA0モードあるいはLA0と表すことがある)を使用していることから、結合状態においても低インピーダンスが実現でき、数100MHz帯発振回路の構成が容易にできる。   Further, since a symmetric fundamental wave mode (hereinafter, sometimes referred to as LS0 mode or LS0) and an obliquely symmetric fundamental wave mode (hereinafter, sometimes referred to as LA0 mode or LA0) are used, In addition, low impedance can be realized, and the configuration of an oscillation circuit of several hundred MHz band can be easily made.

また、LS0モードとLA0モードの基本周波数をIDT電極の線幅を変更、調整して略一致させている。線幅はフォトリソグラフィ技術等により高精度で形成できることから、ばらつきが小さく高精度な周波数設定が可能で、周波数温度特性(温度特性カーブ)のつくり込みが容易である。   Further, the fundamental frequencies of the LS0 mode and the LA0 mode are substantially matched by changing and adjusting the line width of the IDT electrode. Since the line width can be formed with high accuracy by a photolithography technique or the like, it is possible to set the frequency with high accuracy and small frequency variation, and the frequency temperature characteristic (temperature characteristic curve) can be easily created.

さらに、2ポート型のSAW共振子を複数近接して設け、且つ特定の方位方向に平行に並設していることから、前述した非特許文献1のように、表面波の伝搬方位を異ならせたものに比べ、平面サイズを小型化することができる。なお、特定の方位方向とは、SH波の伝搬方向である。   Furthermore, since a plurality of 2-port SAW resonators are provided close to each other and are arranged in parallel in a specific azimuth direction, the propagation direction of the surface wave is made different as in Non-Patent Document 1 described above. The plane size can be reduced as compared with the above. The specific azimuth direction is the SH wave propagation direction.

また、本発明の結合型SAW共振子は、前記IDT電極の線幅を調整して、前記対称基本波モードと前記斜対称基本波モードとの頂点温度差を設けていることを要旨とする。   The coupled SAW resonator of the present invention is characterized in that the line temperature of the IDT electrode is adjusted to provide a vertex temperature difference between the symmetric fundamental wave mode and the oblique symmetric fundamental wave mode.

このようにすれば、頂点温度差の大小によって、結合状態における周波数温度特性の平坦度を調整することができ、所望の温度特性カーブをつくり込み易いという効果がある。   In this way, the flatness of the frequency temperature characteristic in the coupled state can be adjusted by the magnitude of the apex temperature difference, and there is an effect that a desired temperature characteristic curve can be easily created.

また、本発明では、前記対称基本波モードと前記斜対称基本波モードとの結合が、弾性結合であることを要旨とする。   The gist of the present invention is that the coupling between the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode is elastic coupling.

従って、特許文献2のように二つのSAW共振子の結合方法として外付けの集中素子を用いる構成に対して弾性結合であるために、外付けの集中素子が不要であり、実装部品数が少なく小型化、コスト低減が可能となる。   Therefore, since it is elastically coupled to a configuration using an external lumped element as a method of coupling two SAW resonators as in Patent Document 2, an external lumped element is not required and the number of mounted components is small. Miniaturization and cost reduction are possible.

また、前記複数のSAW共振子それぞれの前記対称基本波モードと前記斜対称基本波モードとの周波数差が略一致していることが望ましい。   Further, it is desirable that the frequency difference between the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode of each of the plurality of SAW resonators is substantially the same.

このようにすれば、複数のSAW共振子それぞれの温度特性カーブが、横軸である温度軸方向に平行移動した関係となり、結合状態における温度特性カーブを平坦にし易くなるという効果がある。   In this way, the temperature characteristic curves of each of the plurality of SAW resonators are translated in the temperature axis direction, which is the horizontal axis, and the temperature characteristic curve in the coupled state can be easily flattened.

以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の実施形態に係る水晶基板の方位角図、図2〜図8は結合型SAW共振子の構成、駆動及び特性説明図を示している。
(実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an azimuth angle diagram of a quartz crystal substrate according to an embodiment of the present invention, and FIGS. 2 to 8 are diagrams showing the configuration, driving, and characteristics of a coupled SAW resonator.
(Embodiment)

まず、図1を用いて水晶基板100について説明する。
図1は、本発明の実施形態に係る水晶基板が有する方位角を示す説明図である。図1に示すように、水晶基板100は、面内回転SHカット水晶基板でありSH型表面波(基板の主面に平行な成分を有する表面集中型すべり波)で動作するものである。
First, the quartz substrate 100 will be described with reference to FIG.
FIG. 1 is an explanatory view showing the azimuth angle of the quartz crystal substrate according to the embodiment of the present invention. As shown in FIG. 1, the quartz substrate 100 is an in-plane rotating SH-cut quartz substrate and operates with an SH-type surface wave (a surface-concentrated slip wave having a component parallel to the main surface of the substrate).

水晶基板100は、水晶結晶の基本軸において、電気軸であるX軸と機械軸であるY軸の2軸が作る面を主面とするZ板をX軸回りに反時計方向にθ°(特に、零温度係数が得られるθ=29.2°〜40.7°が好ましい)回転した基板である。そして、この水晶基板100は、主面の垂線であるZ’軸回りにX軸を起点として面内の回転角ψが90±2°である方位をSH型弾性表面波の位相伝播方位軸としたものである。SAW共振子でよく使用されるオイラー角表示(φ,θ,ψ)では、φが0±1°範囲であり、θが29.2°以上40.7°以下の範囲であり、ψが90±2°の範囲である。このような水晶基板100をSHカット水晶基板と呼称する。   The quartz substrate 100 has a Z-plate whose principal surface is a plane formed by two axes of an X axis that is an electric axis and a Y axis that is a mechanical axis in the fundamental axis of a quartz crystal. In particular, θ = 29.2 ° to 40.7 ° is preferable because a zero temperature coefficient is obtained). In this quartz substrate 100, the direction in which the in-plane rotation angle ψ is 90 ± 2 ° around the Z ′ axis, which is a perpendicular to the main surface, is defined as the phase propagation azimuth axis of the SH type surface acoustic wave. It is a thing. In the Euler angle display (φ, θ, ψ) often used in SAW resonators, φ is in the range of 0 ± 1 °, θ is in the range of 29.2 ° to 40.7 °, and ψ is 90 The range is ± 2 °. Such a quartz substrate 100 is referred to as an SH cut quartz substrate.

次に、本実施形態に係る結合型SAW共振子について図面を参照して説明する。
図2は、本実施形態に係る結合型SAW共振子の一実施例を示す平面図である。図2において、結合型SAW共振子10は、上述したSHカット水晶基板100(以降、単に水晶基板100と表す)の主面に、SH波の伝搬方向に並列配設される第1共振子120、第2共振子130と、制御電極(ゲート電極と呼称することがある)140とから構成されている。
Next, the coupled SAW resonator according to this embodiment will be described with reference to the drawings.
FIG. 2 is a plan view showing an example of the coupled SAW resonator according to the present embodiment. In FIG. 2, the coupled SAW resonator 10 is a first resonator 120 arranged in parallel in the SH wave propagation direction on the main surface of the above-described SH-cut quartz substrate 100 (hereinafter simply referred to as the quartz substrate 100). The second resonator 130 and a control electrode (sometimes referred to as a gate electrode) 140 are configured.

第1共振子120は、Al等の金属からなる主IDT電極121と副IDT電極122と、主IDT電極121と副IDT電極122の間のゲート電極140と、主IDT電極121と副IDT電極122それぞれのSH波伝搬方向の両側に設けられる反射器123,124とから構成されている。
また、主IDT電極121と副IDT電極122は、複数のすだれ状の交差指電極とから構成されており、また、反射器123,124は、格子状の電極で構成されている。
The first resonator 120 includes a main IDT electrode 121 and a sub IDT electrode 122 made of a metal such as Al, a gate electrode 140 between the main IDT electrode 121 and the sub IDT electrode 122, and the main IDT electrode 121 and the sub IDT electrode 122. The reflectors 123 and 124 are provided on both sides in the respective SH wave propagation directions.
The main IDT electrode 121 and the sub IDT electrode 122 are composed of a plurality of interdigital electrodes, and the reflectors 123 and 124 are composed of grid electrodes.

第2共振子130は、Al等の金属化からなる主IDT電極131と副IDT電極132と、主IDT電極131と副IDT電極132の間のゲート電極140と、主IDT電極131と副IDT電極132それぞれの両側に設けられる反射器133,134とから構成されている。
また、主IDT電極131と副IDT電極132は、複数のすだれ状の交差指電極とから構成されており、また、反射器133,134は、複数の格子状の電極(格子電極)で構成されている。
The second resonator 130 includes a main IDT electrode 131 and a sub IDT electrode 132 made of metal such as Al, a gate electrode 140 between the main IDT electrode 131 and the sub IDT electrode 132, a main IDT electrode 131 and a sub IDT electrode. The reflectors 133 and 134 are provided on both sides of each 132.
Further, the main IDT electrode 131 and the sub IDT electrode 132 are composed of a plurality of interdigital electrodes, and the reflectors 133 and 134 are composed of a plurality of lattice electrodes (lattice electrodes). ing.

ゲート電極140は、第1共振子120及び第2共振子130において共通に設けられている。図2に示すように、第1共振子120と第2共振子130は、Y’軸に平行な中心軸線Rに対して対称配列であり、第1共振子120と第2共振子130それぞれは、X’軸に平行な中心軸線Pに対して対称形である。なお、上述した各IDT電極及び各反射器を構成する交差指電極や格子電極の本数は図示の都合上減らして表している。同様に、ゲート電極140の電極構成数も図示の本数に限らない。   The gate electrode 140 is provided in common in the first resonator 120 and the second resonator 130. As shown in FIG. 2, the first resonator 120 and the second resonator 130 are symmetrically arranged with respect to the central axis R parallel to the Y ′ axis, and the first resonator 120 and the second resonator 130 are respectively , Symmetrical with respect to the central axis P parallel to the X ′ axis. Note that the number of crossed finger electrodes and grid electrodes constituting each IDT electrode and each reflector described above is reduced for convenience of illustration. Similarly, the number of electrode configurations of the gate electrode 140 is not limited to the number illustrated.

ここで、各電極の本発明に係る主たる寸法について説明する。主IDT電極121,131、副IDT電極122,132それぞれの電極ピッチをPT、電極長さをWとし、ゲート電極140の電極ピッチをPGとし、反射器123,124,133,134それぞれの格子電極の電極ピッチをPRとする。
また、第1共振子120の各交差指電極の線幅L1、第2共振子130の各交差指電極の線幅L2とし、それぞれの線幅をL1>L2とする。
また、第1共振子120と第2共振子130とのX’軸方向の距離(交差指電極間距離)をギャップGで表す。
Here, main dimensions according to the present invention of each electrode will be described. The electrode pitch of the main IDT electrodes 121 and 131 and the sub IDT electrodes 122 and 132 is PT, the electrode length is W, the electrode pitch of the gate electrode 140 is PG, and the grid electrodes of the reflectors 123, 124, 133, and 134, respectively. The electrode pitch of is assumed to be PR.
Further, the line width L1 of each cross finger electrode of the first resonator 120 and the line width L2 of each cross finger electrode of the second resonator 130 are set such that the respective line widths satisfy L1> L2.
In addition, the distance in the X′-axis direction (distance between the interdigitated electrodes) between the first resonator 120 and the second resonator 130 is represented by a gap G.

次に、第1共振子120及び第2共振子130の接続配線について説明する。図2に示すような配線とし、GND端子とIN/OUT端子に励振信号を印加することにより、第1共振子120と第2共振子130との同時動作状態をつくる。なお、ゲート電極140は電気的に浮き電極である。   Next, connection wiring of the first resonator 120 and the second resonator 130 will be described. A wiring as shown in FIG. 2 is used, and an excitation signal is applied to the GND terminal and the IN / OUT terminal, whereby a simultaneous operation state of the first resonator 120 and the second resonator 130 is created. The gate electrode 140 is an electrically floating electrode.

このように構成される結合型SAW共振子10は2ポート型SAW共振子であって、縦2重モード(LS0モード、LA0モードが存在する)と横2重モード(TS0モード、TA0モードが存在する)の結合状態を構成する。従って、縦2重モードと横2重モードにおける基本共振周波数は一致する。また、LS0モードとLA0モードそれぞれの共振周波数を一致させるように、線幅を変え、且つ交差指電極の線幅比L2/L1を設定する。   The coupled SAW resonator 10 configured as described above is a two-port SAW resonator, and has a vertical double mode (LS0 mode and LA0 mode exist) and a horizontal double mode (TS0 mode and TA0 mode exist). To be connected). Accordingly, the fundamental resonance frequencies in the vertical double mode and the horizontal double mode are the same. Further, the line width is changed and the line width ratio L2 / L1 of the crossing finger electrodes is set so that the resonance frequencies of the LS0 mode and the LA0 mode are matched.

また、第1共振子120と第2共振子130との共振子間の良好な結合状態をつくるために、ギャップGは表面波の1波長〜5波長とし、交差指電極の電極長さWは10波長〜20波長の範囲に設定する。   In order to create a good coupling state between the resonators of the first resonator 120 and the second resonator 130, the gap G is set to 1 to 5 wavelengths of the surface wave, and the electrode length W of the cross finger electrode is Set in the range of 10 to 20 wavelengths.

続いて、本発明に利用する振動モードについて図面を参照して説明する。
図3は、本発明に利用する振動モードの1例について模式的に図示した説明図である。下方のグラフ表示は矢印U(X)方向から視認した状態を表し、横軸は結合型SAW共振子10の振動領域、縦軸には変位振幅を示している。また右方向のグラフ表示は矢印V(Y)方向から視認した状態を表し、横軸に変位振幅、縦軸に振動領域を示している。
Next, the vibration mode used in the present invention will be described with reference to the drawings.
FIG. 3 is an explanatory diagram schematically showing an example of a vibration mode used in the present invention. The lower graph display shows a state viewed from the direction of the arrow U (X), the horizontal axis indicates the vibration region of the coupled SAW resonator 10, and the vertical axis indicates the displacement amplitude. Further, the graph display in the right direction represents a state viewed from the direction of the arrow V (Y), and the horizontal axis represents the displacement amplitude and the vertical axis represents the vibration region.

図中のLS0(縦方向の対称基本モード)は第1共振子120における共振モード振幅の包絡線変位状態を図示したものである。一方、LA0(縦方向の斜対称基本波モード)は第2共振子130における、共振モード振幅の包絡線変位状態について図示したものである。なお、第1共振子120及び第2共振子130それぞれにLS0、LA0が存在するが、第1共振子120がLS0のとき第2共振子130はLA0となり、第1共振子120がLA0のとき第2共振子130はLS0となるように、励振信号の極性に対応して交互に繰り返す。なお、領域BはSH波の基本励振領域、領域Aは、反射波領域である。   LS0 (vertical symmetrical fundamental mode) in the figure illustrates the envelope displacement state of the resonance mode amplitude in the first resonator 120. On the other hand, LA0 (longitudinal obliquely symmetric fundamental wave mode) illustrates the envelope displacement state of the resonance mode amplitude in the second resonator 130. Note that LS0 and LA0 exist in the first resonator 120 and the second resonator 130, respectively. However, when the first resonator 120 is LS0, the second resonator 130 is LA0, and when the first resonator 120 is LA0. The second resonator 130 repeats alternately corresponding to the polarity of the excitation signal so as to be LS0. The region B is an SH wave basic excitation region, and the region A is a reflected wave region.

図示した変位振幅の状態からいずれも電気的な駆動電圧により励振可能であることもわかる。従って、LS0、LA0両モードが結合動作した場合にも全体の共振子のインピーダンスは低く実現できる。なお、IDT電極の電極ピッチPTと反射器の電極ピッチPRとの比をPT/PR=0.995に設定した。両モードの周波数調整については、ゲート電極140の電極ピッチPGの設定と導体対数により行うことができる。   It can also be seen that any of the illustrated displacement amplitude states can be excited by an electrical drive voltage. Therefore, even when both the LS0 and LA0 modes are coupled and operated, the impedance of the entire resonator can be realized low. The ratio between the electrode pitch PT of the IDT electrode and the electrode pitch PR of the reflector was set to PT / PR = 0.993. The frequency adjustment in both modes can be performed by setting the electrode pitch PG of the gate electrode 140 and the number of conductor pairs.

次に、第1共振子120と第2共振子130の結合について図面を参照して説明する。
図4は、本実施形態における結合モードと周波数温度特性の関係について表す説明図である。図4において、励振信号の入力による第1共振子120及び第2共振子130の共振状態において、LS0及びLA0の2個の共振が同時に存在している。各々の共振は、その周波数温度特性が異なる。具体的には頂点温度が異なって出現する。
この状態において、第1共振子120と第2共振子130の間で弱い結合が存在すれば、図4に示すような結合状態の周波数温度特性となり、温度特性カーブは平坦に近くなり周波数温度特性は著しく改善される。
Next, the coupling between the first resonator 120 and the second resonator 130 will be described with reference to the drawings.
FIG. 4 is an explanatory diagram illustrating the relationship between the coupling mode and the frequency temperature characteristic in the present embodiment. In FIG. 4, in the resonance state of the first resonator 120 and the second resonator 130 by the input of the excitation signal, two resonances LS0 and LA0 exist simultaneously. Each resonance has a different frequency temperature characteristic. Specifically, the apex temperatures appear differently.
In this state, if weak coupling exists between the first resonator 120 and the second resonator 130, the frequency-temperature characteristic of the coupled state as shown in FIG. 4 is obtained, and the temperature characteristic curve becomes nearly flat, and the frequency-temperature characteristic. Is significantly improved.

第1共振子120と第2共振子130との結合は、両共振子間のギャップG(図2、参照)領域に生じるひずみエネルギによる弾性結合である。
図5は、弾性結合について模式的に表す等価回路図である。図5において、等価回路は、第1共振子120と第2共振子130とコンデンサ150とが並列接続されて構成されており、コンデンサ150が結合部を示している。
The coupling between the first resonator 120 and the second resonator 130 is elastic coupling due to strain energy generated in the gap G (see FIG. 2) region between the two resonators.
FIG. 5 is an equivalent circuit diagram schematically showing the elastic coupling. In FIG. 5, the equivalent circuit is configured by connecting a first resonator 120, a second resonator 130, and a capacitor 150 in parallel, and the capacitor 150 indicates a coupling portion.

また、図4にて示す第1共振子120の頂点温度は、交差指電極の線幅L1と線幅L2とがL1>L2に設定されているため低温側に出現し、第2共振子130の頂点温度は高温側に出現する。この際、結合状態における周波数温度特性は、第1共振子120と第2共振子130間の頂点温度差によって影響される。つまり、頂点温度差が大きい場合には、結合部の落ち込みが大きくなり平坦度が悪くなり、頂点温度差が小さい場合には、使用温度範囲が狭まることになる。   The apex temperature of the first resonator 120 shown in FIG. 4 appears on the low temperature side because the line width L1 and the line width L2 of the interdigitated electrode are set to L1> L2, and the second resonator 130 The apex temperature of appears on the high temperature side. At this time, the frequency-temperature characteristic in the coupled state is affected by the apex temperature difference between the first resonator 120 and the second resonator 130. That is, when the apex temperature difference is large, the drop of the joint portion becomes large and the flatness is deteriorated. When the apex temperature difference is small, the operating temperature range is narrowed.

次に、頂点温度差の設定方法について図面を参照して説明する。
図6は、本実施形態における第1共振子と第2共振子の周波数配置を示す説明図である。図6における例示は、第1共振子120の交差指電極の質量が第2共振子130の交差指電極の質量よりも相対的に大きく設定されている。つまり、第1共振子120の線幅L1と第2共振子130の線幅L2との関係をL1>L2となるように設定する。従って、第1共振子120の方が共振周波数が低めに出現し、基本波モードがLS0であり共振周波数をf10、LA0モードの共振周波数をf11とする。
Next, a method for setting the apex temperature difference will be described with reference to the drawings.
FIG. 6 is an explanatory diagram showing the frequency arrangement of the first resonator and the second resonator in the present embodiment. In the illustration in FIG. 6, the mass of the cross finger electrode of the first resonator 120 is set to be relatively larger than the mass of the cross finger electrode of the second resonator 130. That is, the relationship between the line width L1 of the first resonator 120 and the line width L2 of the second resonator 130 is set so that L1> L2. Therefore, the first resonator 120 appears with a lower resonance frequency, the fundamental mode is LS0, the resonance frequency is f10, and the resonance frequency of the LA0 mode is f11.

一方、第2共振子130は共振周波数が高めに出現し、LA0モードの共振周波数をf21、LS0モードの共振周波数をf20とする。   On the other hand, the resonance frequency of the second resonator 130 appears higher, and the resonance frequency of the LA0 mode is f21 and the resonance frequency of the LS0 mode is f20.

なお、交差指電極の質量調整には電極膜厚を調整することも可能であるが、電極パターンをフォトリソグラフィ技術等で形成する場合には、線幅調整の方がばらつきを抑制しやすい。   It is possible to adjust the electrode film thickness to adjust the mass of the interdigitated electrode. However, when the electrode pattern is formed by a photolithography technique or the like, the line width adjustment tends to suppress variation.

また、第1共振子120と第2共振子130とが、図2においてY’軸に平行な中心軸線Rに対して対称形(配置と線幅L1を含む形状が対称)の場合には、f11=f21、f10=f20となり、頂点温度差は出現しない。
従って、線幅L2と線幅L1の比L2/L1を調整して、第2共振子のLA0モードの共振周波数f21を第1共振子のLS0モードの共振周波数f10に一致させる。図6では、f10=f21=F00(基準周波数)と表している。なお、第1共振子120のLS0とLA0の周波数差Dは、第2共振子130のLS0とLA0の周波数差Dは略等しくなるように設定されている。
When the first resonator 120 and the second resonator 130 are symmetrical with respect to the central axis R parallel to the Y ′ axis in FIG. 2 (the shape including the arrangement and the line width L1 is symmetrical), f11 = f21 and f10 = f20, and no apex temperature difference appears.
Therefore, the ratio L2 / L1 of the line width L2 and the line width L1 is adjusted so that the LA0 mode resonance frequency f21 of the second resonator matches the resonance frequency f10 of the LS0 mode of the first resonator. In FIG. 6, it is expressed as f10 = f21 = F00 (reference frequency). The frequency difference D between LS0 and LA0 of the first resonator 120 is set so that the frequency difference D between LS0 and LA0 of the second resonator 130 is substantially equal.

続いて、IDT電極の線幅と頂点温度と周波数変化との関係について説明する。
図7は、本実施形態における結合型SAW共振子のIDT電極の線幅と頂点温度と周波数変化量の関係を表す説明図である。図7において、結合型SAW共振子10は、カット角子θ=33°のSHカット水晶、表面波の速度Vs=3150m/sec、共振周波数f=152MHz、L00=5.1μmとしたときの計算結果を表している。横軸には線幅を規格化した線幅比L1/L00、左縦軸には共振周波数変化量F(ppm)、右縦軸には頂点温度変化量Θを表し、図中実線表示は周波数変化、破線は頂点温度を表す。
Next, the relationship among the line width, vertex temperature, and frequency change of the IDT electrode will be described.
FIG. 7 is an explanatory diagram showing the relationship between the line width, vertex temperature, and frequency change amount of the IDT electrode of the coupled SAW resonator according to this embodiment. In FIG. 7, the coupled SAW resonator 10 has a calculation result when an SH-cut quartz with a cut angle θ = 33 °, a surface wave velocity Vs = 3150 m / sec, a resonance frequency f = 152 MHz, and L00 = 5.1 μm. Represents. The horizontal axis represents the line width ratio L1 / L00 with normalized line width, the left vertical axis represents the resonance frequency change amount F (ppm), and the right vertical axis represents the vertex temperature change amount Θ. A change and a broken line represent apex temperature.

なお、L00とは、規格化の基準となる線幅であって、L00(μm)=Vs(表面波速度(m/sec)/(使用周波数f(MHz)/4)で与えられる。   Note that L00 is a line width that serves as a standard for standardization, and is given by L00 (μm) = Vs (surface wave velocity (m / sec) / (use frequency f (MHz) / 4)).

図7において、共振周波数は、線幅比L1/L00=1をF00(基準周波数)としたときに、線幅比L1/L00=0.85でF00+2000(ppm)、線幅比L1/L00=1.15でF00−2000(ppm)となる。つまり、線幅比|L1/L00|≦0.15の範囲で±2000ppm変化することを示している。   In FIG. 7, when the line width ratio L1 / L00 = 1 is F00 (reference frequency), the resonance frequency is F00 + 2000 (ppm) when the line width ratio L1 / L00 = 0.85, and the line width ratio L1 / L00 = It becomes F00-2000 (ppm) at 1.15. That is, it shows a change of ± 2000 ppm in the range of the line width ratio | L1 / L00 | ≦ 0.15.

また、頂点温度は、線幅比L1/L00=1のときを頂点温度Θを中心頂点温度(Θ=0)としたときに、線幅比L1/L00=0.85で頂点温度Θ=+25℃、線幅比L1/L00=1.15で頂点温度Θ=−25℃となる。つまり、線幅比L|1/L00|≦0.15の範囲で50℃の頂点温度差ができることを示している。   Further, the vertex temperature is the line temperature ratio L1 / L00 = 0.85 when the line width ratio L1 / L00 = 1 and the vertex temperature Θ is the center vertex temperature (Θ = 0), and the vertex temperature Θ = + 25. The apex temperature Θ = −25 ° C. at a line temperature ratio L1 / L00 = 1.15. That is, it is shown that an apex temperature difference of 50 ° C. can be made in the range of the line width ratio L | 1 / L00 | ≦ 0.15.

次に、本実施形態のLS0モードとLA0モードの周波数配置について図面を参照して説明する。IDT電極の電極ピッチPT、ゲート電極の電極ピッチPGとを規格化したPG/PTをPTGと表し説明する。
図8は、本実施形態のPGTとLS0モード及びLA0モードとの共振周波数差の関係について示す説明図である。横軸にPGT、縦軸に周波数差δ(df/f)とする。
なお、ここではSHカット水晶においてf=152MHz、IDT電極を140対、ゲート電極を導体対数MG=20(対)として計算した。
Next, the frequency arrangement of the LS0 mode and the LA0 mode of the present embodiment will be described with reference to the drawings. PG / PT obtained by standardizing the electrode pitch PT of the IDT electrode and the electrode pitch PG of the gate electrode is referred to as PTG and will be described.
FIG. 8 is an explanatory diagram showing the relationship of the resonance frequency difference between the PGT, the LS0 mode, and the LA0 mode of the present embodiment. The horizontal axis represents PGT, and the vertical axis represents the frequency difference δ (df / f).
Here, in the SH cut quartz crystal, f = 152 MHz, 140 pairs of IDT electrodes, and the number of conductor pairs MG = 20 (pairs) are calculated.

周波数差δに対応するL1/L00を選択すれば第1共振子120と第2共振子130の共振周波数を一致させて結合状態を実現できる。
例えば、周波数変化率δ=df/f=400(ppm)である条件PTG=1.05と選択した場合は、第1共振子120と第2共振子130について、周波数差δの1/2の200ppmに対して線幅比は1/10の±1.5%となる。線幅比をL2/L1=(1−0.015)/(1+0.015)=0.970と設定すれば第1共振子120のLS0と、第2共振子130のLA0の共振周波数を一致させることができる。つまり、第1共振子120のLS0モードの周波数を降下させ、第2共振子130のLA0モードの周波数を上昇させることで、第1共振子120のLS0(f10)に第2共振子130のLA0(f21)を一致させることができる。
また、このとき、両方の共振子の頂点温度差は5℃程度となる(図7、参照)。
If L1 / L00 corresponding to the frequency difference δ is selected, the resonance state of the first resonator 120 and the second resonator 130 can be matched to realize a coupled state.
For example, when the condition PTG = 1.05, which is the frequency change rate δ = df / f = 400 (ppm), is selected, the first resonator 120 and the second resonator 130 are half the frequency difference δ. For 200 ppm, the line width ratio is ± 1.5% of 1/10. If the line width ratio is set to L2 / L1 = (1−0.015) / (1 + 0.015) = 0.970, the resonance frequency of LS0 of the first resonator 120 and the resonance frequency of LA0 of the second resonator 130 coincide. Can be made. That is, by reducing the frequency of the LS0 mode of the first resonator 120 and increasing the frequency of the LA0 mode of the second resonator 130, the LA0 of the second resonator 130 is increased to LS0 (f10) of the first resonator 120. (F21) can be matched.
At this time, the apex temperature difference between both resonators is about 5 ° C. (see FIG. 7).

さらに、頂点温度差を広げる場合には、両共振子のIDT電極の対数を少なくするか、ゲート電極(制御領域)の導体対数MGを少なくする条件を選択すれば、2倍〜4倍(δ=1600ppmの場合)の頂点温度差を確保することが可能となる。   Further, in order to widen the apex temperature difference, if the condition that the number of pairs of IDT electrodes of both resonators is reduced or the number of conductor pairs MG of the gate electrode (control region) is reduced is selected from 2 to 4 times (δ It is possible to ensure a vertex temperature difference of 1600 ppm.

従って、20℃程度の頂点温度差が確保できて、使用温度−35℃〜+85℃の範囲において、1.6×10-8×{(85+35−20)/2}2=40ppm、すなわち±20ppm程度の精度を実現できる。頂点温度差50℃(周波数差δ=4000ppmの場合)であれば、同様な計算から±10ppm程度の精度を実現できる。 Therefore, an apex temperature difference of about 20 ° C. can be secured, and 1.6 × 10 −8 × {(85 + 35-20) / 2} 2 = 40 ppm, that is, ± 20 ppm in the range of use temperature −35 ° C. to + 85 ° C. A degree of accuracy can be realized. If the apex temperature difference is 50 ° C. (frequency difference δ = 4000 ppm), an accuracy of about ± 10 ppm can be realized from the same calculation.

以上説明したように、本発明の第1の重要ポイントは、第1共振子120のLS0モードの共振周波数と、第2共振子130のLA0モードの共振周波数を一致させた場合の周波数差δのばらつきが重要になる。また、第2の重要ポイントは、共振周波数差f21−f10=0とするために、IDT電極の線幅比L2/L1を使用することである。また、第1共振子120と第2共振子130間に結合状態を形成しているために、もし線幅が一致するL1=L2の条件下であれば、両者の周波数は一致する。つまり、共振周波数f10=f20(LS0)、f11=f21(LA0)となる。   As described above, the first important point of the present invention is that the frequency difference δ when the resonance frequency of the LS0 mode of the first resonator 120 and the resonance frequency of the LA0 mode of the second resonator 130 are matched. Variation becomes important. The second important point is to use the line width ratio L2 / L1 of the IDT electrode in order to set the resonance frequency difference f21−f10 = 0. In addition, since a coupling state is formed between the first resonator 120 and the second resonator 130, if the line widths coincide with each other under the condition of L1 = L2, the frequencies of both coincide. That is, the resonance frequency f10 = f20 (LS0) and f11 = f21 (LA0).

線幅L1,L2を変化させると、第1共振子120と第2共振子130の周波数配置は相互にシフトする。また、周波数差df=f10−f11あるいは周波数差df=f20−f21を変化させる要因は電極膜厚Hと線幅Lである。この周波数差dfは、両共振子が電極幅以外の条件を同一とすれば(IDT電極の対数が同一)、1本の交差指電極の質量mに依存すると考えられる。すなわち、電極による反射係数rは質量mの関数であり、反射係数rの大小により前述の周波数差dfが決定される。   When the line widths L1 and L2 are changed, the frequency arrangement of the first resonator 120 and the second resonator 130 shifts mutually. The factors that change the frequency difference df = f10−f11 or the frequency difference df = f20−f21 are the electrode film thickness H and the line width L. This frequency difference df is considered to depend on the mass m of one cross-finger electrode if the conditions other than the electrode width are the same for both resonators (the IDT electrode has the same logarithm). That is, the reflection coefficient r by the electrode is a function of the mass m, and the above-described frequency difference df is determined by the magnitude of the reflection coefficient r.

また、第1共振子の交差指電極の線幅L1と、第2共振子の交差指電極L2の設定が重要であり、これら設定条件の考え方を数式により説明する。周波数変化量をdf、aを周波数の特性定数とする。
従って、第1共振子において、LS0とLA0の周波数差df1は、
df1(m1)=a11+a21 2+・・・≒a1・m1 (1)
またLS0モードの周波数f10は、
f10=b11 (2)
ただし、b1は図7の周波数特性の傾斜である。
第2共振子において、LS0とLA0の周波数差df2は、
df2(m2)=a12+a22 2+・・・≒a1・m2 (3)
これらの周波数変化量df1とdf2は、小さければ図7に示すように直線で近似できる。
第2共振子のLA0モードの周波数f21は、
f21=f20+df2
=b1・m2+df2=b1・m2+a1・m2 (4)
ここで、第1の共振子と第2共振子の周波数を等しくおくと、
f10=f21 (5)
であるから、式(2)と式(4)を式(5)に代入して、
11=b1・m2+a1・m2
1/m2=1+a1/b1 (6)
で表すことができる。
ここで、電極指の質量m1=ρHL1、m2=ρHL2(ρは電極の密度、Hは電極膜厚で共通)となり、電極膜厚Hの第1共振子120と第2共振子130がギャップGで近接しているため同一と考えることができる。式(6)に代入すると、
1/m2=ρHL1/ρHL2=L1/L2
従って、
L1/L2=1+a1/b1>1(なおb1<0、a1<0) (7)
このようにして線幅比L2/L1を決定することができ、L1>L2と設定すればよい。
In addition, the setting of the line width L1 of the cross finger electrode of the first resonator and the cross finger electrode L2 of the second resonator is important, and the concept of these setting conditions will be described using mathematical expressions. The amount of frequency change is df, and a is a frequency characteristic constant.
Therefore, in the first resonator, the frequency difference df 1 between LS0 and LA0 is
df 1 (m 1 ) = a 1 m 1 + a 2 m 1 2 +... ≈a 1 · m 1 (1)
The frequency f10 in the LS0 mode is
f10 = b 1 m 1 (2)
However, b1 is the inclination of the frequency characteristic of FIG.
In the second resonator, the frequency difference df 2 between LS0 and LA0 is
df 2 (m 2 ) = a 1 m 2 + a 2 m 2 2 +... ≈a 1 · m 2 (3)
If these frequency change amounts df 1 and df 2 are small, they can be approximated by a straight line as shown in FIG.
The frequency f21 of the LA0 mode of the second resonator is
f21 = f20 + df 2
= B 1 · m 2 + df 2 = b 1 · m 2 + a 1 · m 2 (4)
Here, if the frequencies of the first resonator and the second resonator are equal,
f10 = f21 (5)
Therefore, substituting equation (2) and equation (4) into equation (5),
b 1 m 1 = b 1 · m 2 + a 1 · m 2
m 1 / m 2 = 1 + a 1 / b 1 (6)
Can be expressed as
Here, the masses of the electrode fingers are m 1 = ρHL1, m 2 = ρHL2 (ρ is the electrode density, and H is the electrode film thickness), and the first resonator 120 and the second resonator 130 having the electrode film thickness H are Since they are close by the gap G, they can be considered the same. Substituting into equation (6),
m 1 / m 2 = ρHL1 / ρHL2 = L1 / L2
Therefore,
L1 / L2 = 1 + a 1 / b 1> 1 ( Note b1 <0, a1 <0) (7)
In this way, the line width ratio L2 / L1 can be determined, and L1> L2 may be set.

従って、線幅比L2/L1のみが周波数変化要因とみなせる。周波数が近接していれば第1共振子120と第2共振子130とは結合状態となって、図7に示すような1個のみの共振周波数を有する。   Accordingly, only the line width ratio L2 / L1 can be regarded as a frequency change factor. If the frequencies are close to each other, the first resonator 120 and the second resonator 130 are coupled to each other and have only one resonance frequency as shown in FIG.

従って、前述した実施形態によれば、二次温度係数が小さいSHカット水晶基板を用いて、結合振動子を構成していることから、広い使用温度範囲に対して略平坦な周波数温度特性を実現する結合型SAW共振子を提供することができる。   Therefore, according to the above-described embodiment, the coupled oscillator is configured using the SH-cut quartz substrate having a small secondary temperature coefficient, so that a substantially flat frequency temperature characteristic is realized over a wide operating temperature range. A coupled SAW resonator can be provided.

また、振動モードとしてLS0モードと、LA0モードを使用していることから、結合状態においても低インピーダンスが実現でき、数100MHz帯発振回路の構成が容易にできる。   In addition, since the LS0 mode and the LA0 mode are used as the vibration mode, a low impedance can be realized even in the coupled state, and the configuration of the several hundred MHz band oscillation circuit can be facilitated.

また、第1共振子120のIDT電極の線幅L1と第2共振子130のIDT電極の線幅L2とを変更、調整してLS0モードとLA0モードの基本周波数を略一致させている。線幅はフォトリソグラフィ技術等により高精度で形成できることから、ばらつきが小さく高精度な周波数設定が可能で、温度特性カーブのつくり込みが容易である。   Further, the line width L1 of the IDT electrode of the first resonator 120 and the line width L2 of the IDT electrode of the second resonator 130 are changed and adjusted so that the fundamental frequencies of the LS0 mode and the LA0 mode are substantially matched. Since the line width can be formed with high accuracy by a photolithography technique or the like, it is possible to set a highly accurate frequency with little variation, and it is easy to create a temperature characteristic curve.

さらに、2ポート型のSAW共振子を2個近接して設け、且つ、SH波の伝搬方向に平行に並設していることから、前述した非特許文献1のように、表面波の伝搬方位を異ならせたものに比べ、平面サイズを小型化することができる。   Furthermore, since two 2-port SAW resonators are provided close to each other and are arranged in parallel to the propagation direction of the SH wave, the propagation direction of the surface wave as in Non-Patent Document 1 described above. The plane size can be reduced as compared with the case where the difference is made.

また、本発明の結合型SAW共振子10は、第1共振子120と第2共振子130それぞれのIDT電極の線幅L1,L2を調整して、LS0モードとLA0モードとの頂点温度差を設けている。頂点温度差の大小を調整することによって、結合状態における周波数温度特性の平坦度を調整することができ、所望の温度特性カーブをつくり込み易いという効果がある。   In addition, the coupled SAW resonator 10 of the present invention adjusts the line widths L1 and L2 of the IDT electrodes of the first resonator 120 and the second resonator 130, respectively, so that the apex temperature difference between the LS0 mode and the LA0 mode is obtained. Provided. By adjusting the magnitude of the apex temperature difference, the flatness of the frequency temperature characteristic in the coupled state can be adjusted, and there is an effect that it is easy to create a desired temperature characteristic curve.

また、本発明では、LS0モードとLA0モードとの結合が、弾性結合であるため、前述した特許文献2のように二つのSAW共振子の結合方法として外付けの集中素子を用いる構成対して外付けの集中素子が不要であり、実装部品数が少なく小型化、コスト低減が可能となる。   Further, in the present invention, since the coupling between the LS0 mode and the LA0 mode is an elastic coupling, an external lumped element is used as a coupling method of two SAW resonators as described in Patent Document 2 described above. No additional concentrating element is required, and the number of mounted parts is small, enabling downsizing and cost reduction.

また、LS0モードとLA0モードの周波数差が略一致していることから、第1共振子120及び第2共振子130それぞれの温度特性カーブが、基準周波数F00に対して略対称形となり、結合状態における温度特性カーブを平坦にし易くするという効果がある。   In addition, since the frequency difference between the LS0 mode and the LA0 mode is substantially the same, the temperature characteristic curves of the first resonator 120 and the second resonator 130 are substantially symmetric with respect to the reference frequency F00, and the coupled state This has the effect of facilitating flattening of the temperature characteristic curve.

なお、本発明は前述の実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前述した実施形態では、第1共振子120と第2共振子130の2個の共振子を用いる場合を例示して説明したが、共振子数はもっと多くてもよい。仮に、3個の共振子を用いて本発明の条件を適合し、第1共振子120と第2共振子130の間に第3共振子を設けることで、なお一層、温度特性カーブの平坦性を高めることができる。
It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
For example, in the above-described embodiment, the case where two resonators of the first resonator 120 and the second resonator 130 are used has been described as an example, but the number of resonators may be larger. If the conditions of the present invention are met using three resonators and the third resonator is provided between the first resonator 120 and the second resonator 130, the flatness of the temperature characteristic curve is further increased. Can be increased.

あるいは、第1共振子120または第2共振子130の外側に第3共振子を設ければ、使用温度範囲をさらに広げることができる。   Alternatively, if the third resonator is provided outside the first resonator 120 or the second resonator 130, the operating temperature range can be further expanded.

本発明の実施形態に係る水晶基板が有する方位角を示す説明図。Explanatory drawing which shows the azimuth which the crystal substrate which concerns on embodiment of this invention has. 本発明の実施形態に係る結合型SAW共振子の一実施例を示す平面図。FIG. 3 is a plan view showing an example of a coupled SAW resonator according to an embodiment of the present invention. 本発明に利用する振動モードの1例について模式的に図示した説明図。Explanatory drawing which illustrated typically about one example of the vibration mode utilized for this invention. 本発明の実施形態における結合モードと周波数温度特性の関係について表す説明図。Explanatory drawing showing the relationship between the coupling mode and frequency temperature characteristic in embodiment of this invention. 本発明の実施形態における弾性結合について模式的に表す等価回路図。FIG. 3 is an equivalent circuit diagram schematically showing elastic coupling in the embodiment of the present invention. 本発明の実施形態における第1共振子と第2共振子の周波数配置を示す説明図。Explanatory drawing which shows the frequency arrangement | positioning of the 1st resonator and 2nd resonator in embodiment of this invention. 本発明の実施形態における結合型SAW共振子のIDT電極の線幅と頂点温度と周波数変化量の関係を表す説明図。Explanatory drawing showing the relationship between the line | wire width of the IDT electrode of the coupled SAW resonator in embodiment of this invention, vertex temperature, and the amount of frequency changes. 本発明の実施形態のPGTとLS0モード及びLA0モードとの共振周波数差の関係について示す説明図。Explanatory drawing which shows the relationship of the resonant frequency difference of PGT of embodiment of this invention, LS0 mode, and LA0 mode.

符号の説明Explanation of symbols

10…結合型SAW共振子、100…水晶基板、120…第1共振子、121,131…主IDT電極、122,132…副IDT電極、123,124,133,134…反射器、130…第2共振子。   DESCRIPTION OF SYMBOLS 10 ... Coupled SAW resonator, 100 ... Quartz substrate, 120 ... First resonator, 121, 131 ... Main IDT electrode, 122, 132 ... Sub IDT electrode, 123, 124, 133, 134 ... Reflector, 130 ... First 2 resonators.

Claims (4)

水晶結晶の基本軸においてオイラー角表示(φ,θ,ψ)で表されるSHカットの水晶基板の主面上に、特定の方位に2個のIDT電極と前記IDT電極の前記特定の方位の両側に設けられる反射器と、を配設した2ポート型のSAW共振子を複数近接して設け、且つ前記特定の方位方向に平行に並設し、
一方の前記SAW共振子を縦方向の対称基本波モードで動作させ、
他方の前記SAW共振子を縦方向の斜対称基本波モードで動作させ、
前記IDT電極の線幅を異ならせて前記対称基本波モードと前記斜対称基本波モードの基本周波数を略一致させたうえで、
前記対称基本波モードと前記斜対称基本波モードを結合状態で動作させることを特徴とする結合型SAW共振子。
On the principal surface of the SH-cut quartz substrate represented by Euler angles (φ, θ, ψ) on the fundamental axis of the crystal, two IDT electrodes in a specific direction and the specific direction of the IDT electrode A plurality of two-port SAW resonators provided with reflectors provided on both sides are provided close to each other and arranged in parallel in the specific azimuth direction,
One SAW resonator is operated in a longitudinal symmetric fundamental mode;
Operating the other SAW resonator in a longitudinally symmetric fundamental wave mode;
After making the fundamental frequency of the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode substantially the same by changing the line width of the IDT electrode,
A coupled SAW resonator, wherein the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode are operated in a coupled state.
請求項1に記載の結合型SAW共振子において、
前記IDT電極の線幅を調整して、前記対称基本波モードと前記斜対称基本波モードとの頂点温度差を設けていることを特徴とする結合型SAW共振子。
The coupled SAW resonator according to claim 1,
The coupled SAW resonator is characterized in that a vertex temperature difference between the symmetric fundamental wave mode and the oblique symmetric fundamental wave mode is provided by adjusting a line width of the IDT electrode.
請求項1または請求項2に記載の結合型SAW共振子において、
前記対称基本波モードと前記斜対称基本波モードとの結合が、弾性結合であることを特徴とする結合型SAW共振子。
In the coupled SAW resonator according to claim 1 or 2,
A coupled SAW resonator, wherein the coupling between the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode is an elastic coupling.
請求項1ないし請求項3のいずれか一項に記載の結合型SAW共振子において、
前記複数のSAW共振子それぞれの前記対称基本波モードと前記斜対称基本波モードとの周波数差が略一致していることを特徴とする結合型SAW共振子。
In the coupled SAW resonator according to any one of claims 1 to 3,
A coupled SAW resonator in which the frequency difference between the symmetric fundamental wave mode and the obliquely symmetric fundamental wave mode of each of the plurality of SAW resonators is substantially the same.
JP2007066344A 2007-03-15 2007-03-15 Coupling type saw resonator Withdrawn JP2008228144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066344A JP2008228144A (en) 2007-03-15 2007-03-15 Coupling type saw resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066344A JP2008228144A (en) 2007-03-15 2007-03-15 Coupling type saw resonator

Publications (1)

Publication Number Publication Date
JP2008228144A true JP2008228144A (en) 2008-09-25

Family

ID=39846179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066344A Withdrawn JP2008228144A (en) 2007-03-15 2007-03-15 Coupling type saw resonator

Country Status (1)

Country Link
JP (1) JP2008228144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081098A (en) * 2011-10-04 2013-05-02 Japan Radio Co Ltd Surface acoustic wave device
CN108292912A (en) * 2015-12-24 2018-07-17 株式会社村田制作所 Acoustic wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081098A (en) * 2011-10-04 2013-05-02 Japan Radio Co Ltd Surface acoustic wave device
CN108292912A (en) * 2015-12-24 2018-07-17 株式会社村田制作所 Acoustic wave device
CN108292912B (en) * 2015-12-24 2021-10-08 株式会社村田制作所 Elastic wave device

Similar Documents

Publication Publication Date Title
JP4591800B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP4757860B2 (en) Surface acoustic wave functional element
WO2010047112A1 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5648908B2 (en) Vibration device, oscillator, and electronic device
US20070182278A1 (en) Surface acoustic wave device and electronic apparatus
JP2006217566A (en) Lamb-wave high-frequency resonator
JP2012060422A (en) Surface acoustic wave device, electronic apparatus and sensor device
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP2012060421A (en) Surface acoustic wave device, electronic apparatus and sensor device
JP2012060418A (en) Surface acoustic wave device, electronic apparatus and sensor device
JP4569447B2 (en) Surface acoustic wave element and surface acoustic wave device
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
WO2014208664A1 (en) Elastic wave device
JP2012060419A (en) Surface acoustic wave device, electronic apparatus and sensor device
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP2004194275A (en) Surface acoustic wave resonator
JP2008054163A (en) Lamb-wave type high-frequency resonator
US7579932B2 (en) Resonator SAW filter having a control interdigital transducer between input and output interdigital transducers
JP2008278349A (en) Saw resonator
JP2008228144A (en) Coupling type saw resonator
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2009027671A (en) Sh type bulk wave resonator
US11258424B1 (en) Acoustic wave device
JP2011171887A (en) Lamb wave resonator and oscillator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601