JP2008054163A - Lamb-wave type high-frequency resonator - Google Patents

Lamb-wave type high-frequency resonator Download PDF

Info

Publication number
JP2008054163A
JP2008054163A JP2006230188A JP2006230188A JP2008054163A JP 2008054163 A JP2008054163 A JP 2008054163A JP 2006230188 A JP2006230188 A JP 2006230188A JP 2006230188 A JP2006230188 A JP 2006230188A JP 2008054163 A JP2008054163 A JP 2008054163A
Authority
JP
Japan
Prior art keywords
electrode
lamb wave
high frequency
wave type
type high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006230188A
Other languages
Japanese (ja)
Inventor
Satoru Tanaka
悟 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006230188A priority Critical patent/JP2008054163A/en
Publication of JP2008054163A publication Critical patent/JP2008054163A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Lamb-wave type high-frequency resonator that has a high Q value, high phase velocity and superior frequency temperature characteristics. <P>SOLUTION: The Lamb-wave type high-frequency resonator 10 has a liquid crystal substrate 20, an IDT electrode 30 constituted by interposing a first cross finger electrode 31 and a second cross finger electrode 32 into the main surface of the liquid crystal substrate 20 and reflectors 40, 50 arranged on both sides of the traveling direction of the Lamb wave of the IDT electrode 30. If the crossing width between the first cross finger electrode 31 and the second cross finger electrode 32 is W and the wavelength of the Lamb wave is λ, the crossing width W is set within a range, expressed by 21λ≤W≤54λ. In addition, the IDT electrode 30 is formed so that the segmentation angle of the liquid crystal substrate 20 and the propagating direction of the Lamb wave become (0, θ, 0) by Euler angle representation and within a range, in which the angle θ is expressed as being 35 degrees ≤θ≤47.2 degrees, normalized substrate thickness t/λ, expressed by a relation between the thickness t of the liquid crystal substrate 20 and the wavelength λ of the Lamb wave, set to be within a range of 0.176≤t/λ≤1.925. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ラム波型高周波共振子に関する。詳しくは、ラム波型高周波共振子における圧電基板とIDT電極の構成に関する。   The present invention relates to a Lamb wave type high frequency resonator. Specifically, the present invention relates to a configuration of a piezoelectric substrate and an IDT electrode in a Lamb wave type high frequency resonator.

従来、高周波共振子としては、STカット水晶と呼ばれる水晶基板の表面において、弾性表面波が伝搬するX軸方向にIDT電極が形成されたレイリー波(Rayleigh wave)型弾性表面波共振子、STカット水晶に対して弾性表面波の伝搬方向を90度ずらした横波を伝搬するSTWカット水晶を用いるSH波弾性表面波素子や、ATカット水晶を用いたラム波(Lamb wave)型共振子が代表される。   Conventionally, as a high-frequency resonator, a Rayleigh wave type surface acoustic wave resonator in which an IDT electrode is formed in the X-axis direction on which a surface acoustic wave propagates on the surface of a quartz substrate called an ST cut crystal, an ST cut Representative examples include SH wave surface acoustic wave elements using STW cut quartz crystal that propagates transverse waves whose propagation direction of surface acoustic wave is shifted by 90 degrees with respect to quartz, and Lamb wave type resonators using AT cut quartz. The

特に、ラム波型共振子は、位相速度が上述した弾性表面波を用いる共振子よりもはるかに速いこと、電気機械結合係数が大きく励信効率がよいこと、ラム波の伝搬路上の反射器からの反射係数が大きいという特徴を有しており、高周波素子として有力視されている。   In particular, Lamb wave type resonators have a much faster phase velocity than the above-described resonators using surface acoustic waves, have a large electromechanical coupling coefficient, have good excitation efficiency, and reflect on reflectors on Lamb wave propagation paths. Therefore, it is considered as a high-frequency element.

例えば、ATカット水晶基板の表面にIDT電極を形成したラム波型共振子において、この水晶基板の厚みHと、ラム波の波長λとが、0<2H/λ≦10で表されるラム波型高周波共振子が知られている(例えば、特許文献1参照)。   For example, in a Lamb wave resonator in which an IDT electrode is formed on the surface of an AT-cut quartz substrate, a Lamb wave in which the thickness H of the quartz substrate and the wavelength λ of the Lamb wave are expressed by 0 <2H / λ ≦ 10 A type high-frequency resonator is known (for example, see Patent Document 1).

また、ATカット水晶基板上にIDT電極を形成したラム波型共振子の周波数温度特性の理論解析と、その実験結果が公表されている(例えば、非特許文献1参照)。   In addition, the theoretical analysis of the frequency temperature characteristics of a Lamb wave resonator in which an IDT electrode is formed on an AT-cut quartz substrate and the experimental results thereof have been published (for example, see Non-Patent Document 1).

特開2003−258596号公報JP 2003-258596 A 電子情報通信学会誌、C Vol.J89−C No.1、34頁〜39頁、「ラム波型弾性波素子用基板の温度特性」、中川恭彦The Institute of Electronics, Information and Communication Engineers, C Vol. J89-C No. 1, pages 34-39, “Temperature characteristics of Lamb wave type elastic wave device substrate”, Akihiko Nakagawa

上述したSTカット水晶を用いたレイリー波型弾性表面波共振子は、弾性表面波素子としては優れた周波数温度特性を示すが、高精度が要求される共振子としては十分とはいえない。また、位相速度の理論値が約3100m/s程度と遅く、高周波帯域への対応は困難である。   Although the Rayleigh wave type surface acoustic wave resonator using the ST-cut quartz described above exhibits excellent frequency-temperature characteristics as a surface acoustic wave device, it cannot be said to be sufficient as a resonator that requires high accuracy. Further, the theoretical value of the phase velocity is as slow as about 3100 m / s, and it is difficult to cope with the high frequency band.

また、STWカット水晶を用いたSH波型弾性表面波素子は、周波数温度特性が前述のSTカット水晶よりも悪いということが知られている。また、電極材料としてアルミニウムに比べ密度が大きいタンタルやタングステンを用いていることから電気抵抗損が大きくなりQ値が低くなり励振効率が低下する。さらに、位相速度が低下してしまうというような課題があることが知られている。   Further, it is known that an SH wave type surface acoustic wave device using an STW cut crystal has a frequency temperature characteristic worse than that of the above-mentioned ST cut crystal. In addition, since tantalum or tungsten having a density higher than that of aluminum is used as the electrode material, the electrical resistance loss increases, the Q value decreases, and the excitation efficiency decreases. Furthermore, it is known that there is a problem that the phase velocity is lowered.

また、上述した特許文献1によるラム波型高周波共振子は、水晶基板の厚さを弾性波の波長に対し5波長以下のATカット水晶基板を用いることにより、周波数温度特性が優れ、高周波化に適するとされているが、必ずしもSTカット水晶よりも良好であるとはいえず、まだ、満足できるものではない。   In addition, the Lamb wave type high frequency resonator according to Patent Document 1 described above has an excellent frequency temperature characteristic by using an AT cut quartz substrate having a quartz substrate thickness of 5 wavelengths or less with respect to the wavelength of the elastic wave. Although it is said to be suitable, it is not necessarily better than ST cut quartz and is still not satisfactory.

また、上述した非特許文献1では、IDT電極をダブル型の交差指電極にて構成し、交差指電極の交差幅をラム波の波長λに対して50λに設定したときの理論値及び実験値により、周波数温度特性が改善されることを提示している。しかしながら、ダブル型の交差指電極を用いる場合、第1交差指電極の電極間ピッチ(波長λに相当)の中に第二交差指電極の2本の電極指が間挿される構造のために交差指電極の幅が(1/8)λとなり、高周波帯域において、交差指電極の幅が一本の電極指が間挿されるシングル型に比べ1/2と極細くなるため製造上の制約が大きくなるという課題を有している。   Further, in Non-Patent Document 1 described above, the theoretical value and the experimental value when the IDT electrode is composed of a double-type cross finger electrode and the cross width of the cross finger electrode is set to 50λ with respect to the wavelength λ of the Lamb wave. Thus, it is proposed that the frequency temperature characteristic is improved. However, when a double-type cross finger electrode is used, the crossing occurs because two electrode fingers of the second cross finger electrode are inserted in the inter-electrode pitch (corresponding to the wavelength λ) of the first cross finger electrode. The width of the finger electrode is (1/8) λ, and in the high frequency band, the width of the crossed finger electrode is ½ that of a single type in which one electrode finger is inserted. It has a problem of becoming.

本発明の目的は、上述した課題を解決することを要旨とし、高いQ値を有し、速い位相速度と優れた周波数温度特性を有するラム波型高周波共振子を提供することである。   An object of the present invention is to provide a Lamb wave type high frequency resonator having a high Q value, a high phase velocity, and excellent frequency temperature characteristics.

本発明のラム波型高周波共振子は、圧電基板と、該圧電基板の主面に第1交差指電極と第2交差指電極とが間挿されて構成されるIDT電極と、該IDT電極のラム波の進行方向両側に配設される反射器と、を備え、前記第1交差指電極と前記第2交差指電極の交差幅をWとし、ラム波の波長をλとしたとき、交差幅Wが21λ≦W≦54λで表される範囲に設定されていることを特徴とする。
ここで、交差幅とは、第1交差指電極と前記第2交差指電極とがラム波の進行方向に対して垂直方向に交差する範囲を意味する。
A Lamb wave type high frequency resonator according to the present invention includes a piezoelectric substrate, an IDT electrode configured by interposing a first cross finger electrode and a second cross finger electrode on a main surface of the piezoelectric substrate, and the IDT electrode Reflectors disposed on both sides of the traveling direction of the Lamb wave, and when the cross width of the first cross finger electrode and the second cross finger electrode is W and the wavelength of the Lamb wave is λ, the cross width W is set in a range represented by 21λ ≦ W ≦ 54λ.
Here, the intersection width means a range in which the first intersection finger electrode and the second intersection finger electrode intersect in the direction perpendicular to the traveling direction of the Lamb wave.

詳しくは後述する実施の形態にて説明するが、この発明によれば、前記第1交差指電極と前記第2交差指電極との交差幅Wを21λ≦W≦54λの範囲に設計することにより、上述したSTカット水晶を用いたレイリー波型弾性表面波共振子よりも優れた周波数温度特性を備え、高いQ値を有することから高周波帯域(位相速度が速い領域)に対応可能なラム波型高周波共振子を実現することができる。   Although details will be described in an embodiment to be described later, according to the present invention, by designing the intersection width W of the first cross finger electrode and the second cross finger electrode in a range of 21λ ≦ W ≦ 54λ. A Lamb wave type that has a frequency temperature characteristic superior to that of the Rayleigh wave type surface acoustic wave resonator using the above-described ST cut crystal and has a high Q value, so that it can cope with a high frequency band (a region where the phase velocity is high). A high frequency resonator can be realized.

また、前記第1交差指電極と前記第2交差指電極とが、それぞれ電極指が1本毎交互に間挿されて構成されていることが好ましい。
なお、このように構成されているIDT電極は、シングル型電極と呼ばれる。
Further, it is preferable that the first cross finger electrode and the second cross finger electrode are configured such that one electrode finger is alternately inserted.
The IDT electrode configured in this way is called a single-type electrode.

従って、第1交差指電極(または第2交差指電極)の電極間ピッチ(波長λに相当する)の間に第2交差指電極(または第1交差指電極)それぞれの電極指1本を間挿する構造とすることで、上述した非特許文献1のようなダブル型電極に比べ、電極指の幅を2倍にすることができることから、同じ周波数であれば、幅広の電極指でよいので格段に製造し易いという効果がある。   Accordingly, one electrode finger of each of the second cross finger electrodes (or the first cross finger electrodes) is interposed between the pitches of the first cross finger electrodes (or the second cross finger electrodes) (corresponding to the wavelength λ). By adopting the insertion structure, the width of the electrode finger can be doubled compared to the double electrode as in Non-Patent Document 1 described above, so a wide electrode finger can be used at the same frequency. There is an effect that it is much easier to manufacture.

また、前記圧電基板が水晶基板であることが好ましい。
圧電基板として水晶基板を用い、ラム波を振動モードとすることにより、前述したSTカット水晶に比べて高周波帯域への対応性が優れ、STWカット水晶に比べて優れた周波数温度特性を有する共振子を実現することができる。
The piezoelectric substrate is preferably a quartz substrate.
By using a quartz substrate as the piezoelectric substrate and using the Lamb wave as a vibration mode, the resonator has excellent compatibility with the high frequency band compared to the ST cut quartz described above, and has excellent frequency temperature characteristics compared to the STW cut quartz. Can be realized.

さらに、前記水晶基板の切り出し角度及び前記ラム波の伝搬方向が、オイラー角表示で(0、θ、0)になるように前記水晶基板と前記IDT電極とが形成され、前記角度θが、35度≦θ≦47.2度で表される範囲において、前記水晶基板の厚みtと、前記ラム波の波長λとの関係が、0.176≦t/λ≦1.925で表される範囲に設定されていることが望ましい。   Further, the crystal substrate and the IDT electrode are formed such that the cut-out angle of the crystal substrate and the propagation direction of the Lamb wave are (0, θ, 0) in Euler angle display, and the angle θ is 35 In the range represented by degrees ≦ θ ≦ 47.2 degrees, the relationship between the thickness t of the quartz substrate and the wavelength λ of the Lamb wave is represented by 0.176 ≦ t / λ ≦ 1.925 It is desirable to be set to.

詳しくは後述する実施の形態で説明するが、ラム波型高周波共振子の周波数温度特性、周波数帯域、励振の安定性は、水晶基板の切り出し角度と弾性波の伝搬方向、つまりオイラー角(0、θ、0)における角度θと、基板厚みtと波長λとの関係で表される規格化基板厚みt/λにて律せられる。それぞれを上述したような関係式とすることで、前述した従来技術のSTWカット水晶、STカット水晶に比べ優れた周波数温度特性と、高周波帯域への対応が可能となり、また、水晶基板の励振の効率を表す電気機械結合係数(K2)を高めることができるので、励振し易く、安定した周波数特性をもつラム波型高周波共振子を提供することができる。 Although details will be described in an embodiment described later, the frequency temperature characteristics, frequency band, and excitation stability of the Lamb wave type high frequency resonator are determined by the cut-out angle of the quartz substrate and the propagation direction of the elastic wave, that is, the Euler angles (0, The angle θ in θ, 0) and the normalized substrate thickness t / λ expressed by the relationship between the substrate thickness t and the wavelength λ. By making each of the relational expressions as described above, it becomes possible to cope with the frequency temperature characteristics and the high frequency band which are superior to those of the above-described prior art STW cut crystal and ST cut crystal, and also the excitation of the quartz substrate. Since the electromechanical coupling coefficient (K 2 ) representing the efficiency can be increased, it is possible to provide a Lamb wave type high frequency resonator that is easily excited and has a stable frequency characteristic.

以下、本発明の実施形態を図面に基づいて説明する。
図1〜図12は本実施形態のラム波型高周波共振子の構造及び、特性を示している。なお、以下の説明で参照するラム波型高周波共振子の構造を表す図は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 12 show the structure and characteristics of the Lamb wave type high frequency resonator of this embodiment. In addition, the figure showing the structure of the Lamb wave type | mold high frequency resonator referred in the following description is a schematic diagram from which the vertical and horizontal scale of a member thru | or a part differs from an actual thing for convenience of illustration.

図1は、本発明の実施形態に係る水晶基板20の切り出し方位が示されている。水晶基板20は、電気軸と呼ばれるX軸、機械軸と呼ばれるY軸、光学軸と呼ばれるZ軸の面で構成される薄板であるが、本実施形態における水晶基板20の切り出し方位は、厚み方向のZ軸をZ’まで角度θだけ回転させた回転Yカット水晶であり、図中、長手方向がX軸、幅方向がY’、厚み方向がZ’となるように切り出されている(図2も参照する)。そして、X軸方向にIDT電極(Interdigital Transducer)30が形成されている。従って、ラム波の進行方向はX軸方向となる。   FIG. 1 shows a cutting direction of a crystal substrate 20 according to an embodiment of the present invention. The quartz substrate 20 is a thin plate composed of the X-axis called the electrical axis, the Y-axis called the mechanical axis, and the Z-axis called the optical axis, but the cut-out orientation of the quartz substrate 20 in this embodiment is the thickness direction This is a rotated Y-cut quartz crystal in which the Z-axis is rotated by an angle θ to Z ′, and is cut out so that the longitudinal direction is the X-axis, the width direction is Y ′, and the thickness direction is Z ′ (FIG. 2). An IDT electrode (Interdigital Transducer) 30 is formed in the X-axis direction. Therefore, the traveling direction of the Lamb wave is the X axis direction.

続いて、本実施形態によるラム波型高周波共振子10の構造について説明する。
図2は、本実施形態に係るラム波型高周波共振子を示す斜視図、図3は図2のA−A切断面を表す断面図である。図2、図3において、ラム波型高周波共振子10は、圧電基板としての水晶基板20の主面に、1対の交差指電極31,32とから構成されるIDT電極30と、このIDT電極30のラム波の進行方向の両側に配設され格子状の電極指50a,50bを有する反射器50と、同様な電極指構成を有する反射器40とから構成されている。なお、以降、交差指電極31を第1交差指電極31、交差指電極32を第2交差指電極32として表す。
Next, the structure of the Lamb wave type high frequency resonator 10 according to the present embodiment will be described.
FIG. 2 is a perspective view showing a Lamb wave type high frequency resonator according to the present embodiment, and FIG. 3 is a cross-sectional view showing the AA cut plane of FIG. 2 and 3, a Lamb wave type high frequency resonator 10 includes an IDT electrode 30 composed of a pair of crossed finger electrodes 31 and 32 on the main surface of a quartz substrate 20 as a piezoelectric substrate, and the IDT electrode. The reflector 50 is disposed on both sides of the traveling direction of the 30 Lamb waves and includes the grid-like electrode fingers 50a and 50b, and the reflector 40 having a similar electrode finger configuration. Hereinafter, the cross finger electrode 31 is represented as a first cross finger electrode 31 and the cross finger electrode 32 is represented as a second cross finger electrode 32.

なお、図2,3において表すIDT電極30及び反射器40,50それぞれの電極指の構成数は1例を示したもので、図示した数には限定されない。   2 and 3, the number of electrode fingers of each of the IDT electrode 30 and the reflectors 40 and 50 is one example, and is not limited to the number shown.

IDT電極30の第1交差指電極31と第2交差指電極32とは、それぞれ相互にX軸方向に並列に間挿されて構成されている。つまり、図2に示すように、第1交差指電極31の電極指31aと電極指31bとの間に第2交差指電極32の電極指32aが間挿され、第2交差指電極32の電極指32aと電極指32bとの間に第1交差指電極31の電極指31bが間挿されている。このように各電極指が1本毎間挿されているIDT電極30をシングル型電極と呼ぶ。   The first cross finger electrode 31 and the second cross finger electrode 32 of the IDT electrode 30 are configured to be inserted in parallel with each other in the X-axis direction. That is, as shown in FIG. 2, the electrode finger 32 a of the second cross finger electrode 32 is inserted between the electrode finger 31 a and the electrode finger 31 b of the first cross finger electrode 31, and the electrode of the second cross finger electrode 32. The electrode finger 31b of the first cross finger electrode 31 is interposed between the finger 32a and the electrode finger 32b. Thus, the IDT electrode 30 in which each electrode finger is inserted is called a single-type electrode.

図3において、第1交差指電極31を構成する櫛歯形状の電極指31aの端部から電極指31bまでの間の距離は、ラム波の波長λとし、電極指31a,31bそれぞれの幅をLiとする。   In FIG. 3, the distance from the end of the comb-shaped electrode finger 31a constituting the first intersecting finger electrode 31 to the electrode finger 31b is the wavelength λ of the Lamb wave, and the width of each of the electrode fingers 31a and 31b is Li.

また、電極指31aの端部と、電極指31a,31bの間に間挿される第2交差指電極32の電極指32aと、の距離(電極間ピッチと称することがある)はPiと表す。なお、電極指32aの幅もLiである。従って、ラム波の波長λはIDT電極30の電極間ピッチPiの2倍である。   The distance between the end of the electrode finger 31a and the electrode finger 32a of the second intersecting finger electrode 32 inserted between the electrode fingers 31a and 31b (sometimes referred to as an interelectrode pitch) is expressed as Pi. The width of the electrode finger 32a is also Li. Therefore, the wavelength λ of the Lamb wave is twice the interelectrode pitch Pi of the IDT electrode 30.

また、反射器50の電極指50aの端部から電極指50bまでの距離を(電極間ピッチと称することがある)Prとし、電極指50a,50bそれぞれの幅をLrとする。   Further, the distance from the end of the electrode finger 50a of the reflector 50 to the electrode finger 50b is Pr (sometimes referred to as an inter-electrode pitch), and the width of each of the electrode fingers 50a and 50b is Lr.

また、第1交差指電極31と第2交差指電極32とが、ラム波の進行方向に対して垂直方向な方向、つまり、Y’方向に交差している範囲における交差幅をWと表している(図2、参照)。この交差幅Wの大きさによってラム波型高周波共振子10のQ値が変動する。   Further, the width of crossing in the range where the first cross finger electrode 31 and the second cross finger electrode 32 cross in the direction perpendicular to the traveling direction of the Lamb wave, that is, in the Y ′ direction is represented as W. (See FIG. 2). The Q value of the Lamb wave type high frequency resonator 10 varies depending on the size of the intersection width W.

図4は、ラム波型高周波共振子10(以降、単にラム波と表すことがある)の交差幅WとQ値との関係についての実験値を表すグラフであり、STカット水晶を用いたレイリー波型弾性表面波共振子(以降、単にレイリー波とあらわすことがある)との比較を表している。なお、交差幅Wは、ラム波の波長λの倍数で表している。   FIG. 4 is a graph showing experimental values regarding the relationship between the crossing width W and the Q value of the Lamb wave type high frequency resonator 10 (hereinafter sometimes simply referred to as a Lamb wave), and Rayleigh using an ST cut crystal. A comparison with a wave-type surface acoustic wave resonator (hereinafter, sometimes simply referred to as a Rayleigh wave) is shown. The intersection width W is represented by a multiple of the Lamb wave wavelength λ.

図4において、本実施形態のラム波型高周波共振子10は、交差幅Wが38λの近傍に極値を有する二次曲線で表される。また、レイリー波では、20λ近傍まではラム波と同様にQ値が上昇し、20λ以上の範囲では、Q値は交差幅Wに関係なくほぼ一定となる。ここで、交差幅が21λ≦W≦54λの範囲において、ラム波のQ値がレイリー波よりも高い領域である。つまり、Q値を大きくすることによりレイリー波よりも励振しやすく、安定した共振周波数が得られることになるとともに、高周波化を可能にすることを表している。   In FIG. 4, the Lamb wave type high frequency resonator 10 of the present embodiment is represented by a quadratic curve having an extreme value in the vicinity of the intersection width W of 38λ. In the Rayleigh wave, the Q value increases up to around 20λ as in the case of the Lamb wave. Here, in the range where the intersection width is 21λ ≦ W ≦ 54λ, the Q value of the Lamb wave is a region higher than that of the Rayleigh wave. That is, by increasing the Q value, it is easier to excite than the Rayleigh wave, a stable resonance frequency can be obtained, and high frequency can be achieved.

続いて、前述したラム波型高周波共振子10(図2,3、参照)における位相速度と規格化基板厚みt/λ及びオイラー角(0,θ,0)における角度θそれぞれに対する周波数温度偏差(周波数温度変動量)、位相速度、電気機械結合係数K2の関係についてシミュレーションにより算出した結果について図面を参照して説明する。 Subsequently, the phase temperature in the Lamb wave type high frequency resonator 10 (see FIGS. 2 and 3), the frequency temperature deviation with respect to each of the normalized substrate thickness t / λ and the angle θ in the Euler angles (0, θ, 0) ( The results calculated by simulation for the relationship between the frequency temperature fluctuation amount), the phase velocity, and the electromechanical coupling coefficient K 2 will be described with reference to the drawings.

図5、図6は、周波数温度変動量とオイラー角(0、θ、0)における角度θの関係、及び周波数温度変動量と水晶基板20の厚みtとラム波の波長λの関係(規格化基板厚みt/λと表す)を示すグラフである。図5,6において、STWカット水晶よりも周波数温度特性がよい角度θの範囲は35度≦θ≦47.2度であり、規格化基板厚みt/λの範囲は0.176≦t/λ≦1.925である。
さらに、角度θ及び規格化基板厚みt/λと位相速度、周波数温度変動量、電気機械結合係数K2それぞれの関係について詳しく説明する。
5 and 6 show the relationship between the frequency temperature variation and the angle θ in the Euler angles (0, θ, 0), and the relationship between the frequency temperature variation, the thickness t of the quartz substrate 20 and the wavelength λ of the Lamb wave (standardization). It is a graph which shows board | substrate thickness t / (lambda). 5 and 6, the range of the angle θ that has better frequency temperature characteristics than STW cut quartz is 35 degrees ≦ θ ≦ 47.2 degrees, and the range of the normalized substrate thickness t / λ is 0.176 ≦ t / λ. ≦ 1.925.
Further, the relationship among the angle θ, the normalized substrate thickness t / λ, the phase velocity, the frequency temperature fluctuation amount, and the electromechanical coupling coefficient K 2 will be described in detail.

図7に、オイラー角(0、θ、0)における角度θと位相速度との関係を示す。ここで、規格化基板厚みt/λを0.2〜2.0まで6段階に設定し、それぞれのt/λにおける位相速度をグラフで示している。図7から、規格化基板厚みt/λ=2.0の場合を除いた全ての場合において、角度θが30度〜50度の範囲で、5000m/s以上の位相速度を得ることができることを示している。   FIG. 7 shows the relationship between the angle θ at the Euler angles (0, θ, 0) and the phase velocity. Here, the normalized substrate thickness t / λ is set in six stages from 0.2 to 2.0, and the phase velocity at each t / λ is shown by a graph. From FIG. 7, in all cases except the case where the normalized substrate thickness t / λ = 2.0, a phase velocity of 5000 m / s or more can be obtained when the angle θ is in the range of 30 degrees to 50 degrees. Show.

また、図8に、規格化基板厚みt/λと位相速度との関係を示す。オイラー角(0、θ、0)における角度θを30度〜50度まで5段階に設定し、それぞれの角度θにおける位相速度をグラフで示している。図8から、各角度θにおいて位相速度のばらつきは小さく、t/λが0.2〜2の大部分の範囲で5000m/s以上の位相速度を得ることができることを示している。   FIG. 8 shows the relationship between the normalized substrate thickness t / λ and the phase velocity. The angle θ at the Euler angles (0, θ, 0) is set in five stages from 30 degrees to 50 degrees, and the phase velocity at each angle θ is shown by a graph. FIG. 8 shows that the variation in the phase velocity is small at each angle θ, and that a phase velocity of 5000 m / s or more can be obtained in the most range where t / λ is 0.2-2.

次に、オイラー角(0、θ、0)の角度θ、規格化基板厚みt/λと、位相速度、周波数温度変動量、電気機械結合係数K2との関係について説明する。
図9に、オイラー角(0、θ、0)における角度θと位相速度と周波数温度変動量との関係を示す。ここで、規格化基板厚みt/λを1.7としている。図9から、周波数温度変動量がSTWカット水晶よりも小さいθの範囲は、35度≦θ≦47.2度であり(図6も参照する)、この範囲において位相速度5000m/s以上が得られることを示している。
Next, the relationship between the Euler angle (0, θ, 0) angle θ, the normalized substrate thickness t / λ, the phase velocity, the frequency temperature fluctuation amount, and the electromechanical coupling coefficient K 2 will be described.
FIG. 9 shows the relationship between the angle θ at the Euler angles (0, θ, 0), the phase velocity, and the amount of frequency temperature fluctuation. Here, the normalized substrate thickness t / λ is 1.7. From FIG. 9, the range of θ in which the frequency temperature fluctuation amount is smaller than that of the STW cut crystal is 35 degrees ≦ θ ≦ 47.2 degrees (see also FIG. 6), and a phase velocity of 5000 m / s or more is obtained in this range. It is shown that.

図10にオイラー角(0、θ、0)における角度θと電気機械結合係数K2と周波数温度変動量との関係を示す。図10から、周波数温度変動量がSTWカット水晶よりも小さいオイラー角(0、θ、0)における角度θの範囲は、35度≦θ≦47.2度であり(図5も参照する)、この範囲において電気機械結合係数K2は、基準としている0.02を大きく上回っている。角度θの範囲が32.5度≦θ≦47.2度の場合は、電気機械結合係数K2が0.03以上となり、角度θの範囲が34.2度≦θ≦47.2度の場合は、電気機械結合係数K2が0.04以上となり、さらに、角度θの範囲が36度≦θ≦47.2度の場合は、電気機械結合係数K2が0.05以上となった。 FIG. 10 shows the relationship between the angle θ at the Euler angles (0, θ, 0), the electromechanical coupling coefficient K 2, and the frequency temperature fluctuation amount. From FIG. 10, the range of the angle θ at the Euler angles (0, θ, 0) in which the frequency temperature fluctuation amount is smaller than that of the STW cut quartz is 35 degrees ≦ θ ≦ 47.2 degrees (see also FIG. 5). In this range, the electromechanical coupling coefficient K 2 greatly exceeds the standard value 0.02. When the range of the angle θ is 32.5 degrees ≦ θ ≦ 47.2 degrees, the electromechanical coupling coefficient K 2 is 0.03 or more, and the range of the angle θ is 34.2 degrees ≦ θ ≦ 47.2 degrees. In this case, the electromechanical coupling coefficient K 2 is 0.04 or more, and when the range of the angle θ is 36 degrees ≦ θ ≦ 47.2 degrees, the electromechanical coupling coefficient K 2 is 0.05 or more. .

図11に規格化基板厚みt/λと位相速度と周波数温度変動量との関係を示す。図11から、周波数温度変動量がSTWカット水晶よりも小さいt/λの範囲は、0.176≦t/λ≦1.925であり(図6も参照する)、この範囲において位相速度は大部分の範囲で5000m/s以上が得られる。この規格化基板厚みt/λの範囲では、規格化基板厚みt/λが小さいほど位相速度が速くなり、高周波帯域が得られる。つまり、規格化基板厚みt/λを調整すれば位相速度を調整することが可能である。
次に、t/λと電気機械結合係数K2と周波数温度変動量との関係を説明する。
FIG. 11 shows the relationship among the normalized substrate thickness t / λ, the phase velocity, and the frequency temperature fluctuation amount. From FIG. 11, the range of t / λ in which the frequency temperature fluctuation amount is smaller than that of the STW cut quartz is 0.176 ≦ t / λ ≦ 1.925 (see also FIG. 6), and the phase velocity is large in this range. 5000 m / s or more is obtained in the range of the part. In the range of the normalized substrate thickness t / λ, the smaller the normalized substrate thickness t / λ, the faster the phase velocity and the higher frequency band can be obtained. That is, the phase velocity can be adjusted by adjusting the normalized substrate thickness t / λ.
Next, the relationship between t / λ, the electromechanical coupling coefficient K 2, and the frequency temperature fluctuation amount will be described.

図12に規格化基板厚みt/λと電気機械結合係数K2と周波数温度変動量との関係を示す。図12から、周波数温度変動量がSTWカット水晶よりも小さい規格化基板厚みt/λの範囲は、0.176≦t/λ≦1.925であり(図6,11も参照する)、この範囲において電気機械結合係数K2は大部分の範囲で0.02以上が得られる。この規格化基板厚みt/λが1に近い範囲では、電気機械結合係数K2が0.05以上の高い領域が得られる。 FIG. 12 shows the relationship among the normalized substrate thickness t / λ, the electromechanical coupling coefficient K 2, and the frequency temperature fluctuation amount. From FIG. 12, the range of the normalized substrate thickness t / λ in which the frequency temperature fluctuation amount is smaller than that of the STW cut quartz is 0.176 ≦ t / λ ≦ 1.925 (see also FIGS. 6 and 11). In the range, the electromechanical coupling coefficient K 2 is 0.02 or more in the most range. In the range where the normalized substrate thickness t / λ is close to 1, a high region where the electromechanical coupling coefficient K 2 is 0.05 or more is obtained.

上述した結果から、オイラー角(0、θ、0)における角度θを35度≦θ≦47.2度で表す範囲、規格化基板厚みt/λを0.176≦t/λ≦1.925で表す範囲に設計することにより、STWカット水晶よりも周波数温度特性が優れ、位相速度5000m/s以上の速い位相速度を得ることができる。また、電気機械結合係数K2が、実用上好ましい0.02以上を確保することができることを示している。 From the results described above, the angle θ at the Euler angles (0, θ, 0) is in a range expressed by 35 degrees ≦ θ ≦ 47.2 degrees, and the normalized substrate thickness t / λ is 0.176 ≦ t / λ ≦ 1.925. By designing in the range represented by, the frequency temperature characteristics are superior to STW cut quartz, and a high phase velocity of 5000 m / s or higher can be obtained. Further, it is shown that the electromechanical coupling coefficient K 2 can be secured to 0.02 or more which is preferable for practical use.

従って、前述した実施形態によれば、第1交差指電極31と第2交差指電極32の交差幅Wを21λ≦W≦54λの範囲に設計することにより、上述したSTカット水晶を用いたレイリー波型弾性表面波共振子よりも優れた周波数温度特性を有するラム波型高周波共振子10を実現する。また、高いQ値を有することから高周波帯域(位相速度が速い)に対応し易く、且つ、安定した共振特性を有するラム波型高周波共振子を実現することができる。   Therefore, according to the above-described embodiment, by designing the cross width W of the first cross finger electrode 31 and the second cross finger electrode 32 in the range of 21λ ≦ W ≦ 54λ, the Rayleigh using the ST cut crystal described above. A Lamb wave type high frequency resonator having a frequency temperature characteristic superior to that of a wave type surface acoustic wave resonator is realized. Further, since it has a high Q value, it is possible to realize a Lamb wave type high frequency resonator that can easily cope with a high frequency band (high phase velocity) and has stable resonance characteristics.

また、第1交差指電極31(または第2交差指電極32)の電極間ピッチ(波長λに相当する)の間に第2交差指電極32(または第1交差指電極31)それぞれの電極指の1本ずつ間挿するシングル型電極構造とすることで、上述した非特許文献1のようなダブル型電極に比べ、電極指の幅を2倍にすることができる。従って、同じ周波数であれば、幅広の電極指でよいので格段に製造し易いという効果がある。   In addition, each electrode finger of the second cross finger electrode 32 (or the first cross finger electrode 31) during the inter-electrode pitch (corresponding to the wavelength λ) of the first cross finger electrode 31 (or the second cross finger electrode 32). By adopting a single-type electrode structure in which each electrode is inserted one by one, the width of the electrode finger can be doubled compared to the double-type electrode as described in Non-Patent Document 1 described above. Therefore, if the frequency is the same, a wide electrode finger may be used, so that there is an effect that it is much easier to manufacture.

また、本実施形態では、圧電基板として水晶基板20を用い、水晶基板20の切り出し角度及び前記ラム波の伝搬方向が、オイラー角表示で(0、θ、0)における角度θを35度≦θ≦47.2度で表される範囲とし、規格化基板厚みt/λを、0.176≦t/λ≦1.925で表される範囲に設定している。このようにすることで、前述した従来技術のSTWカット水晶、STカット水晶に比べ優れた周波数温度特性と、高周波帯域への対応が可能となり、また、水晶基板20の励振効率を表す電気機械結合係数(K2)を高めることができるので、励振し易く、安定した周波数特性をもつラム波型高周波共振子10を提供することができる。 Further, in this embodiment, the quartz substrate 20 is used as the piezoelectric substrate, and the angle θ at the cut-off angle of the quartz substrate 20 and the propagation direction of the Lamb wave in the Euler angle display (0, θ, 0) is 35 degrees ≦ θ The normalized substrate thickness t / λ is set to a range represented by 0.176 ≦ t / λ ≦ 1.925. By doing so, it becomes possible to cope with the frequency temperature characteristics and the high frequency band which are superior to those of the above-described prior art STW cut crystal and ST cut crystal, and the electromechanical coupling representing the excitation efficiency of the crystal substrate 20 Since the coefficient (K 2 ) can be increased, it is possible to provide the Lamb wave type high frequency resonator 10 that is easily excited and has a stable frequency characteristic.

なお、本発明は前述の実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.

例えば、前述した実施形態では圧電基板として水晶基板を用いているが、水晶基板の他に、タンタル酸リチウム、ニオブ酸リチウム、四ほう酸リチウム、ランガサイト、ニオブ酸カリウムを採用できる。また、酸化亜鉛、窒化アルミ、五酸化タンタル等の圧電性薄膜、硫化カドミウム、硫化亜鉛、ガリウム砒素、インジウムアンチモン等の圧電半導体にも応用可能である。   For example, in the embodiment described above, a quartz substrate is used as the piezoelectric substrate, but in addition to the quartz substrate, lithium tantalate, lithium niobate, lithium tetraborate, langasite, and potassium niobate can be employed. Further, it can be applied to piezoelectric thin films such as zinc oxide, aluminum nitride, and tantalum pentoxide, and piezoelectric semiconductors such as cadmium sulfide, zinc sulfide, gallium arsenide, and indium antimony.

また、前述の実施形態では、ラム波型高周波共振子として1ポート共振子を例示して説明したが、例えば、2ポート共振子またはIDT電極と反射器とを備えたフィルタであっても構わない。   In the above-described embodiment, the 1-port resonator is exemplified as the Lamb wave type high-frequency resonator. However, for example, a 2-port resonator or a filter including an IDT electrode and a reflector may be used. .

また、前述の実施形態では、反射器40,50を備えているが、これらの反射器を備えない端面反射型の構成とすることができる。   In the above-described embodiment, the reflectors 40 and 50 are provided. However, an end face reflection type configuration without these reflectors may be employed.

従って、本実施形態によれば、規格化基板厚みt/λ、オイラー角表示で(0、θ、0)における角度θを上述した範囲に設定した水晶基板を採用し、IDT電極の交差幅Wを適正範囲に設定することにより、高いQ値を有し、速い位相速度、優れた周波数温度特性を有するラム波型高周波共振子を提供するができる。   Therefore, according to the present embodiment, a quartz substrate in which the normalized substrate thickness t / λ and the angle θ at (0, θ, 0) in the Euler angle display are set in the above-described range is adopted, and the IDT electrode intersection width W Is set to an appropriate range, it is possible to provide a Lamb wave type high frequency resonator having a high Q value, a high phase velocity, and excellent frequency temperature characteristics.

本発明の実施形態に係る水晶基板の切り出し方位を示す説明図。Explanatory drawing which shows the cutting-out direction of the crystal substrate which concerns on embodiment of this invention. 本発明の実施形態に係るラム波型高周波共振子を示す斜視図。The perspective view which shows the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention. 図2のA−A切断面を表す断面図。Sectional drawing showing the AA cut surface of FIG. 本発明の実施形態に係るラム波型高周波共振子の交差幅WとQ値との関係について表すグラフ。The graph showing about the relationship between the crossing width W of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention, and Q value. 本発明の実施形態に係るラム波型高周波共振子の周波数温度変動量とオイラー角(0、θ、0)における角度θの関係を示すグラフ。The graph which shows the relationship between the frequency temperature variation | change_quantity of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention, and angle (theta) in Euler angles (0, (theta), 0). 本発明の実施形態に係るラム波型高周波共振子の周波数温度変動量と規格化基盤厚みt/λの関係を示すグラフ。The graph which shows the relationship between the amount of frequency temperature fluctuations of the Lamb wave type high frequency resonator concerning the embodiment of the present invention, and standardized substrate thickness t / λ. 本発明の実施形態に係るラム波型高周波共振子の位相速度とオイラー角(0、θ、0)における角度θと規格化基板厚みt/λとの関係を示すグラフ。The graph which shows the relationship between the angle (theta) in Euler angles (0, (theta), 0), and normalized substrate thickness t / (lambda) of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention. 本発明の実施形態に係るラム波型高周波共振子の位相速度とオイラー角(0、θ、0)における角度θと規格化基板厚みt/λとの関係を示すグラフ。The graph which shows the relationship between the angle (theta) in Euler angles (0, (theta), 0), and normalized substrate thickness t / (lambda) of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention. 本発明の実施形態に係るラム波型高周波共振子のオイラー角(0、θ、0)における角度θと周波数温度変動量及び位相速度の関係を示すグラフ。The graph which shows the angle (theta) in Euler angles (0, (theta), 0) of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention, frequency temperature fluctuation amount, and the relationship of a phase velocity. 本発明の実施形態に係るラム波型高周波共振子のオイラー角(0、θ、0)における角度θと周波数温度変動量及び電気機械結合係数K2との関係を示すグラフ。Euler angles of the lamb wave type high frequency resonator according to an embodiment of the present invention (0, θ, 0) graph showing the relationship between the angle theta and the frequency variation with temperature and the electromechanical coupling coefficient K 2 in. 本発明の実施形態に係るラム波型高周波共振子の規格化基板厚みt/λと周波数温度変動量及び位相速度の関係を示すグラフ。The graph which shows the relationship between the normalized board | substrate thickness t / (lambda) of the Lamb wave type | mold high frequency resonator which concerns on embodiment of this invention, frequency temperature fluctuation amount, and phase velocity. 本発明の実施形態に係るラム波型高周波共振子の規格化基板厚みt/λと周波数温度変動量及び電気機械結合係数K2との関係を示すグラフ。Graph showing the relationship between the normalized substrate thickness t / lambda and the frequency variation with temperature and the electromechanical coupling coefficient K 2 of the lamb wave type high frequency resonator according to an embodiment of the present invention.

符号の説明Explanation of symbols

10…ラム波型高周波共振子、20…圧電基板としての水晶基板、30…IDT電極、31…第1交差指電極、32…第2交差指電極、40,50…反射器。   DESCRIPTION OF SYMBOLS 10 ... Lamb wave type | mold high frequency resonator, 20 ... Quartz substrate as a piezoelectric substrate, 30 ... IDT electrode, 31 ... 1st cross finger electrode, 32 ... 2nd cross finger electrode, 40, 50 ... Reflector.

Claims (4)

圧電基板と、該圧電基板の主面に第1交差指電極と第2交差指電極とが間挿されて構成されるIDT電極と、該IDT電極のラム波の進行方向両側に配設される反射器と、を備え、
前記第1交差指電極と前記第2交差指電極の交差幅をWとし、ラム波の波長をλとしたとき、交差幅Wが21λ≦W≦54λで表される範囲に設定されていることを特徴とするラム波型高周波共振子。
A piezoelectric substrate, an IDT electrode configured by interposing a first cross finger electrode and a second cross finger electrode on the main surface of the piezoelectric substrate, and a lamb wave traveling direction on both sides of the IDT electrode are disposed. A reflector, and
When the cross width of the first cross finger electrode and the second cross finger electrode is W and the wavelength of the Lamb wave is λ, the cross width W is set in a range represented by 21λ ≦ W ≦ 54λ. Lamb wave type high frequency resonator.
請求項1に記載のラム波型高周波共振子において、
前記第1交差指電極と前記第2交差指電極とが、それぞれの電極指が1本毎交互に間挿されて構成されていることを特徴とするラム波型高周波共振子。
In the lamb wave type high frequency resonator according to claim 1,
A lamb wave type high frequency resonator, wherein the first cross finger electrode and the second cross finger electrode are configured such that each electrode finger is alternately inserted one by one.
請求項1または請求項2に記載のラム波型高周波共振子において、
前記圧電基板が水晶基板であることを特徴とするラム波型高周波共振子。
In the Lamb wave type high frequency resonator according to claim 1 or 2,
A Lamb wave type high frequency resonator, wherein the piezoelectric substrate is a quartz substrate.
請求項3に記載のラム波型高周波共振子において、
前記水晶基板の切り出し角度及び前記ラム波の伝搬方向が、オイラー角表示で(0、θ、0)になるように前記水晶基板と前記IDT電極とが形成され、
前記角度θが、35度≦θ≦47.2度で表される範囲において、前記水晶基板の厚みtと、前記ラム波の波長λとの関係が、0.176≦t/λ≦1.925で表される範囲に設定されていることを特徴とするラム波型高周波共振子。
In the Lamb wave type high frequency resonator according to claim 3,
The crystal substrate and the IDT electrode are formed so that the cut-out angle of the crystal substrate and the propagation direction of the Lamb wave are (0, θ, 0) in Euler angle display,
In the range where the angle θ is expressed by 35 degrees ≦ θ ≦ 47.2 degrees, the relationship between the thickness t of the quartz substrate and the wavelength λ of the Lamb wave is 0.176 ≦ t / λ ≦ 1. A Lamb wave type high frequency resonator characterized by being set in a range represented by 925.
JP2006230188A 2006-08-28 2006-08-28 Lamb-wave type high-frequency resonator Withdrawn JP2008054163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230188A JP2008054163A (en) 2006-08-28 2006-08-28 Lamb-wave type high-frequency resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230188A JP2008054163A (en) 2006-08-28 2006-08-28 Lamb-wave type high-frequency resonator

Publications (1)

Publication Number Publication Date
JP2008054163A true JP2008054163A (en) 2008-03-06

Family

ID=39237747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230188A Withdrawn JP2008054163A (en) 2006-08-28 2006-08-28 Lamb-wave type high-frequency resonator

Country Status (1)

Country Link
JP (1) JP2008054163A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246943A (en) * 2008-03-12 2009-10-22 Seiko Epson Corp Lamb-wave resonator and oscillator
JP2010220204A (en) * 2009-02-17 2010-09-30 Ngk Insulators Ltd Lamb wave device
JP2011259348A (en) * 2010-06-11 2011-12-22 River Eletec Kk Acoustic wave element
US8115561B2 (en) 2009-03-19 2012-02-14 Seiko Epson Corporation Lamb-wave resonator and oscillator
CN105337586A (en) * 2015-12-03 2016-02-17 天津大学 Lamb wave resonator
CN110138356A (en) * 2019-06-28 2019-08-16 中国科学院上海微系统与信息技术研究所 A kind of high-frequency sound surface wave resonator and preparation method thereof
CN114280141A (en) * 2021-12-28 2022-04-05 电子科技大学 Lamb wave array device and atmospheric environment particle detection method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246943A (en) * 2008-03-12 2009-10-22 Seiko Epson Corp Lamb-wave resonator and oscillator
JP4553047B2 (en) * 2008-03-12 2010-09-29 セイコーエプソン株式会社 Lamb wave resonator and oscillator
US8035463B2 (en) 2008-03-12 2011-10-11 Seiko Epson Corporation Lamb-wave resonator and oscillator
JP2010220204A (en) * 2009-02-17 2010-09-30 Ngk Insulators Ltd Lamb wave device
US8115561B2 (en) 2009-03-19 2012-02-14 Seiko Epson Corporation Lamb-wave resonator and oscillator
JP2011259348A (en) * 2010-06-11 2011-12-22 River Eletec Kk Acoustic wave element
CN105337586A (en) * 2015-12-03 2016-02-17 天津大学 Lamb wave resonator
CN105337586B (en) * 2015-12-03 2018-04-17 天津大学 Lamb wave resonator
CN110138356A (en) * 2019-06-28 2019-08-16 中国科学院上海微系统与信息技术研究所 A kind of high-frequency sound surface wave resonator and preparation method thereof
CN114280141A (en) * 2021-12-28 2022-04-05 电子科技大学 Lamb wave array device and atmospheric environment particle detection method thereof

Similar Documents

Publication Publication Date Title
JP7229574B2 (en) elastic wave device
JP4306668B2 (en) Lamb wave type high frequency resonator
JP4553047B2 (en) Lamb wave resonator and oscillator
JP5934464B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP5648908B2 (en) Vibration device, oscillator, and electronic device
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP2007202087A (en) Lamb wave type high frequency device
JP2010220163A (en) Lamb-wave resonator and oscillator
JP2008054163A (en) Lamb-wave type high-frequency resonator
JP2020188408A (en) Surface acoustic wave device, filter circuit, and electronic component
JP2002100959A (en) Surface acoustic wave device
JP2010220164A (en) Lamb-wave resonator and oscillator
JPWO2007004661A1 (en) Surface acoustic wave device
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2019149724A (en) Surface acoustic wave device
JP2012049817A (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2011171887A (en) Lamb wave resonator and oscillator
JP2006270360A (en) Surface acoustic wave element
JP2005223721A (en) Longitudinal triple mode saw filter
JP2011171888A (en) Lamb wave resonator and oscillator
JP2009027671A (en) Sh type bulk wave resonator
WO2024004862A1 (en) Filter device and communication device
US11405015B2 (en) Surface acoustic wave device
JP2003179461A (en) Longitudinal multi-mode saw filter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110