JP2007262520A - Method for charging raw material into blast furnace - Google Patents

Method for charging raw material into blast furnace Download PDF

Info

Publication number
JP2007262520A
JP2007262520A JP2006090999A JP2006090999A JP2007262520A JP 2007262520 A JP2007262520 A JP 2007262520A JP 2006090999 A JP2006090999 A JP 2006090999A JP 2006090999 A JP2006090999 A JP 2006090999A JP 2007262520 A JP2007262520 A JP 2007262520A
Authority
JP
Japan
Prior art keywords
furnace
raw material
charging
tilt angle
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090999A
Other languages
Japanese (ja)
Other versions
JP4915119B2 (en
Inventor
Masato Nagaki
正人 永喜
Shinji Hasegawa
伸二 長谷川
Hideaki Tsukiji
秀明 築地
Akio Shimomura
昭夫 下村
Hirobumi Nishimura
博文 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006090999A priority Critical patent/JP4915119B2/en
Publication of JP2007262520A publication Critical patent/JP2007262520A/en
Application granted granted Critical
Publication of JP4915119B2 publication Critical patent/JP4915119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for charging a raw material into a blast furnace so that fine grains in the raw material may not be charged onto the central part or peripheral part of the furnace and deposit there, even when the grain sizes of the raw material discharged from a hopper at the furnace top fluctuate. <P>SOLUTION: When charging one batch of the raw material 5 into the blast furnace with the use of a slewing chute 1 in a bell-less type charging device provided at the furnace top, this charging method comprises the steps of: adjusting a tilt angle θ of the slewing chute so that the tip of the slewing chute directs at a central position (S) in a radially middle part of the blast furnace, and starting charging of the raw material; then, continually charging the raw material 5 gradually toward the furnace center while changing the tilt angle so that the tip of the slewing chute sequentially directs at the central part of the furnace; subsequently, charging the raw material 5 gradually toward the peripheral part of the furnace while changing the tilt angle so that the tip of the slewing chute directs at the periphery of the furnace; and changing the tilt angle so that the tip of the slewing chute directs at the furnace center again, and finishing the charge at a central position (F) in the middle part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉の原料装入方法に係わり、特に炉頂にベルレス式装入装置を備えた高炉において、炉内での通気性確保及びガス利用率向上の両立を図る技術に関する。   The present invention relates to a raw material charging method for a blast furnace, and more particularly to a technique for ensuring both air permeability in a furnace and improving gas utilization in a blast furnace equipped with a bell-less charging device at the top of the furnace.

溶銑を溶製する高炉には、原料としての粒状のコークスと焼結鉱を含む鉄鉱石類とが炉頂より交互に装入され、炉上部にそれらの互層が形成される。この原料の装入装置としては、大別してベル式装入装置とベルレス式装入装置とがある。このうちのベル式装入装置は、炉頂に炉中心軸を頂点とし、ベルと称するお椀を伏せた形状の部材を昇降自在に設置し、該ベルの周縁部をコーンと呼ばれる仕切りで押さえる構造になっている。そして、このベルとコーンとでベルホッパと呼ばれる空間を形成し、該空間へ上方から前記互層を形成する1バッチ分(1回の装入分)の原料を供給し、それを一時的に貯留すると共に、所定のタイミングで前記ベルを下方へ移動させて、ベルとコーンの間にできる隙間から原料が炉頂の内部へ滑り落ちる。その際、原料は、まず炉頂周辺部へ堆積し、そこから順次に炉中心部へ流れ込む。この状態のままでは、常に炉周辺の一定位置に原料を装入することになるので、炉壁にムーバブルアーマーと呼ばれる傾動自在な反発板を設置して、その傾斜角を変更して適宜原料の当たる位置を炉中心側へ変えることで、原料の落下位置を半径方向で変更させるようになっている。ただし、原料は、ベルの全周から同時に滑り落ち、その間にムーバブルアーマーの位置変更をする時間はないので、後述のベルレス式装入装置に比べると、原料の装入位置は限定されたものになる。   In the blast furnace for producing hot metal, granular coke as raw materials and iron ore containing sintered ore are alternately charged from the top of the furnace, and their alternate layers are formed in the upper part of the furnace. The raw material charging apparatus is roughly classified into a bell type charging apparatus and a bellless type charging apparatus. Of these, the bell-type charging device has a structure in which a furnace center axis is apex at the top of the furnace, and a bell-shaped member with a bowl-like shape is installed so that it can be raised and lowered, and the peripheral edge of the bell is held by a partition called a cone. It has become. Then, a space called a bell hopper is formed by the bell and the cone, and a raw material for one batch (one charge) forming the alternate layers is supplied to the space from above, and temporarily stored. At the same time, the bell is moved downward at a predetermined timing, and the raw material slides down to the inside of the furnace top through a gap formed between the bell and the cone. At that time, the raw material is first deposited on the periphery of the top of the furnace, and then sequentially flows into the center of the furnace. In this state, the raw material is always charged at a fixed position around the furnace, so a tiltable repulsion plate called a movable armor is installed on the furnace wall, and the inclination angle is changed to appropriately change the raw material. By changing the contact position to the furnace center side, the raw material dropping position is changed in the radial direction. However, since the raw material slides down from the whole circumference of the bell at the same time and there is no time to change the position of the movable armor, the raw material charging position is limited compared to the bellless type charging device described later. Become.

一方、ベルレス式装入装置は、炉頂に設置されたホッパ内に貯留されている鉄鉱石類やコークス等(混合装入する場合もある)の原料を、ホッパー下部のゲートを開いて炉頂へ落下堆積させる方式の装置であり、ゲートの開度を調整することで原料の排出時間を制御し、かつ、排出された原料は装入シュートあるいは旋回シュートと呼ばれ、炉中心の軸を中心に回転しながらシュートの傾動角を変更可能なシュートを経由して、原料を高炉内炉頂へ装入する。従って、この方式の装入装置は、装入シュートの任意の傾動角で任意の回転数分の原料装入ができるので、高炉炉頂半径方向の任意の場所へ任意の量の原料を装入できるという利点を有している。   On the other hand, the bell-less charging device opens the gate at the bottom of the hopper with raw materials such as iron ore and coke (may be mixed and charged) stored in the hopper installed at the top of the furnace. It is a device that drops and deposits on the surface, controls the discharge time of the raw material by adjusting the opening of the gate, and the discharged raw material is called a charging chute or a turning chute and is centered on the furnace center axis The raw material is charged into the top of the blast furnace through a chute that can change the tilt angle of the chute while rotating. Therefore, this type of charging device can charge the raw material for an arbitrary number of rotations at an arbitrary tilt angle of the charging chute, so that an arbitrary amount of raw material can be charged to an arbitrary location in the blast furnace top radius direction. It has the advantage of being able to.

ところで、高炉では、炉頂から装入された原料が形成する充填層の隙間を、炉下部から吹き込まれる空気がコークスを燃焼して発生する還元ガスが、炉頂へ向けて流れながら原料の昇温と鉱石の還元等を行うので、炉の円周方向には均一に、そして炉半径方向には適正なガス流を形成する必要がある。そのために、特に炉半径方向に装入する原料の粒度構成を適正に分布させることが重要になる。この点で、ベルレス式装入装置は有効な装置と考えられている。   By the way, in the blast furnace, the reducing gas generated by burning the coke by the air blown from the lower part of the packed bed formed by the raw material charged from the top of the furnace flows upward toward the top of the furnace. Since the temperature and ore are reduced, it is necessary to form an appropriate gas flow uniformly in the circumferential direction of the furnace and in the radial direction of the furnace. Therefore, it is important to appropriately distribute the particle size configuration of the raw material charged in the furnace radial direction. In this respect, the bell-less charging device is considered an effective device.

しかしながら、ベルレス式装入装置は、ホッパから順次排出される原料をそのまま装入シュートを介して炉頂へ堆積させるので、該ホッパから排出する原料の粒度が時間と共に変動すると、そのまま炉頂の堆積状態(半径方向の粒度分布)に影響を与えることになる。図3は、垂直2段ホッパから排出される原料の経時的な粒度の変化を示している。図3に例示した2つのデータは、経時的な粒度変化の極端な例を示したものであるが、特に排出の最初の時期には、原料の粒度が粗くなったり、細かくなる場合があって、大きくばらついていることが分る。また、排出の末期には、粒径の小さいものが排出される傾向にある。その結果、従来のように、最初に旋回シュート1の先端を炉壁3に向け、順次傾動角を小さくして炉中心4の方向へ先端の向きを変更しながら、1バッチ分の原料5を連続的に装入すると、図2に示すように、炉周辺部に装入された原料5の粒度は、細かくなり、粗くなったりして不安定になり、炉中心部では細かくなる。従って、炉内の半径方向におけるガス流分布は、後述するように、望ましい状態にならない傾向になる。   However, since the bellless type charging device deposits the raw material sequentially discharged from the hopper as it is on the furnace top through the charging chute, if the particle size of the raw material discharged from the hopper fluctuates with time, the deposition at the top of the furnace is performed as it is. This will affect the state (radial particle size distribution). FIG. 3 shows the change in the particle size of the raw material discharged from the vertical two-stage hopper over time. The two data illustrated in FIG. 3 show extreme examples of the change in particle size over time, but the raw material particle size may become coarser or finer, especially at the beginning of discharge. , You can see that it is widely dispersed. Also, at the end of discharge, small particles tend to be discharged. As a result, as in the prior art, first, the tip of the swivel chute 1 is directed to the furnace wall 3 and the direction of the tip is changed in the direction of the furnace center 4 by sequentially reducing the tilt angle, and one batch of the raw material 5 is added. When continuously charged, as shown in FIG. 2, the particle size of the raw material 5 charged in the periphery of the furnace becomes fine, becomes coarse and unstable, and becomes fine in the center of the furnace. Therefore, the gas flow distribution in the radial direction in the furnace tends not to be in a desirable state, as will be described later.

つまり、高炉操業を安定して効率の良い状態で継続するには、炉内ガス流分布を適正に制御することが必要である。この適正なガス流分布の形状は、高炉の操業条件等によって種々変化するが、一般的には、炉中心部に強いガス流を形成し、炉周辺部には、炉壁保護を考慮しつつ適当量のガス流が形成されるのが望ましいと言われている。従って、炉中心部や炉周辺部への原料装入に際して、装入シュートから排出される原料の粒度が小さ過ぎたり、あるいは変動し易いと、安定した原料の装入ができず、適正なガス流分布を形成することが難しくなるばかりでなく、その結果として効率的な高炉操業の継続も困難になる。
特開2005−264295号公報
That is, in order to continue the blast furnace operation stably and efficiently, it is necessary to appropriately control the gas flow distribution in the furnace. The shape of this appropriate gas flow distribution varies depending on the operating conditions of the blast furnace, etc., but in general, a strong gas flow is formed in the center of the furnace, while protecting the furnace wall in the furnace periphery. It is said that it is desirable that a suitable amount of gas flow be formed. Therefore, when the raw material discharged from the charging chute is charged to the furnace center or the peripheral part of the furnace, if the particle size of the raw material is too small or is likely to fluctuate, stable raw material charging cannot be performed and an appropriate gas is supplied. Not only is it difficult to form a flow distribution, but it also makes it difficult to continue efficient blast furnace operation.
JP 2005-264295 A

本発明は、かかる事情に鑑み、炉頂ホッパから排出される原料の粒度がばらついても、炉中心部及び炉周辺部に細粒の原料が装入、堆積されることのない高炉の原料装入方法を提供することを目的としている。   In view of such circumstances, the present invention provides a raw material charge for a blast furnace in which fine raw materials are not charged and deposited in the furnace central part and the furnace peripheral part even if the raw material discharged from the furnace top hopper varies in particle size. The purpose is to provide an entry method.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。その本発明は、炉頂に備えたベルレス式装入装置の旋回シュートを用い、1バッチ分の原料を高炉へ装入するに際して、まず、前記旋回シュートの先端が前記高炉の半径方向での中間部の中央位置に向くように、該旋回シュートの傾動角を調整してから前記原料の装入を開始し、その後、旋回シュートの先端が順次炉中心方向へ向くように前記傾動角を変更して炉中心部への装入を連続的に行い、引き続き、旋回シュートの先端が炉周辺方向に向くように傾動角を変更して炉周辺部までへの装入を行い、再度旋回シュートの先端が中間部の中央方向へ向くように傾動角を変更して、該中間部の中央位置で装入を終了することを特徴とする高炉の原料装入方法である。この場合、前記原料を、コークス、又は焼結鉱を含む鉄鉱石類とするのが好ましい。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention. The present invention uses a swirl chute of a bell-less type charging device provided at the top of the furnace, and when charging one batch of raw material into the blast furnace, first, the tip of the swirl chute is intermediate in the radial direction of the blast furnace. After the tilt angle of the swivel chute is adjusted so as to face the central position of the part, the charging of the raw material is started, and then the tilt angle is changed so that the tip of the swirl chute is sequentially directed toward the furnace center. The furnace center is continuously charged, and the tilt angle is changed so that the tip of the swivel chute is directed toward the furnace periphery, and the furnace chute is charged to the furnace periphery. Is a raw material charging method for a blast furnace, wherein the tilt angle is changed so as to be directed toward the center of the intermediate portion, and charging is terminated at the center position of the intermediate portion. In this case, the raw material is preferably iron ore containing coke or sintered ore.

本発明によれば、炉中心部、炉周辺部に装入される原料の粒径を比較的大径で安定した粒度のものとすることが可能となり、高炉操業の安定化が達成できる。   According to the present invention, it is possible to make the particle size of the raw material charged in the furnace central part and the furnace peripheral part relatively large and stable, thereby achieving stabilization of blast furnace operation.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

まず、発明者は、図3のホッパからの1バッチ分の原料切り出し時における粒度の経時変化を踏まえ、炉内の半径方向におけるガス流分布を、高炉の安定操業にとって適切な前記した形状にするには、どのような装入方法にすれば良いか検討した。その結果、ホッパから初期に切り出される粒度が不安定な原料や切り出し末期の細粒の原料を、炉の半径方向における中間部に装入し、比較的粒度が粗くなる切り出しの中間時期の原料を、炉の周辺部や中心部に装入するようにすれば良いと考えた。つまり、図1に模式的に示すように、旋回シュート1を用い、1バッチ分の原料5を高炉へ装入するに際して、まず、旋回シュート1の先端が高炉の半径方向での中間部の中央位置(記号:Sで示す)に向くように、該旋回シュート1の傾動角(水平からの角度であり、記号:θ)を調整してから原料5の装入を開始する。その後、旋回シュート1の先端が順次炉中心4方向へ向くように傾動角を変更して炉中心部への装入を連続的に行う。そして、引き続き、旋回シュート1の先端が炉周辺方向に向くように傾動角を変更して炉周辺部までへの装入を行い、炉周辺に達したら、再度旋回シュート1の先端が前記中間部の中央方向へ向くように傾動角を変更して、該中間部の中央位置(記号:Fで示す)で装入を終了するのである。   First, the inventor makes the gas flow distribution in the radial direction in the furnace appropriate for stable operation of the blast furnace based on the change with time of the particle size when cutting out one batch of raw material from the hopper of FIG. Therefore, we examined what kind of charging method should be used. As a result, the raw material with unstable particle size initially cut out from the hopper and the fine raw material at the end of cutting are charged in the middle part in the radial direction of the furnace, and the raw material at the intermediate time of cutting with relatively coarse particle size is used. I thought that it would be good to put it in the periphery or center of the furnace. That is, as schematically shown in FIG. 1, when charging the batch 5 of raw material 5 into the blast furnace using the swivel chute 1, first, the tip of the swirl chute 1 is the center of the intermediate portion in the radial direction of the blast furnace. The charging of the raw material 5 is started after adjusting the tilt angle (the angle from the horizontal, symbol: θ) of the swivel chute 1 so as to face the position (indicated by symbol: S). Thereafter, the tilt angle is changed so that the tip of the swivel chute 1 is directed toward the furnace center 4 sequentially, and charging into the furnace center is continuously performed. Then, the tilt angle is changed so that the tip of the swivel chute 1 is directed toward the furnace periphery, and charging is performed up to the furnace peripheral part. The tilt angle is changed so as to face in the center direction, and the charging is terminated at the center position of the intermediate portion (indicated by symbol F).

そして、このことを確認するため、実際の高炉で、焼結鉱、塊鉄鉱石、鉄スクラップの混合物を原料として試行を行った。その高炉の炉頂に備えたホッパは、上部と下部に2連に設けてあり、旋回シュートの傾動角は、表1に示すように、各傾動角と対応するノッチを変えることで変更させた。なお、ノッチの番号が大きいほど、旋回シュートの傾動角(θ)が小さく、炉中心寄りになる。また、表1には、ノッチ数が25示されているが、本発明では、それを全て使用する必要がなく、適宜選択すれば良い。旋回シュートの傾動角の大きさは、連続的に変化させる必要はなく、段階的に変更すれば、装入目的が達成できるからである。   And in order to confirm this, it tried using the mixture of a sintered ore, a lump iron ore, and iron scrap as a raw material with an actual blast furnace. The hopper provided at the top of the blast furnace has two upper and lower portions, and the tilt angle of the turning chute is changed by changing the notch corresponding to each tilt angle as shown in Table 1. . The larger the notch number, the smaller the tilt angle (θ) of the turning chute and the closer to the furnace center. In Table 1, the number of notches is shown as 25. In the present invention, it is not necessary to use all of them, and they may be selected as appropriate. This is because it is not necessary to continuously change the magnitude of the tilt angle of the turning chute, and if it is changed step by step, the charging purpose can be achieved.

Figure 2007262520
Figure 2007262520

まず、従来の装入(図2参照)では、旋回シュートを19旋回させる間に1バッチ分の原料を、炉周辺部(記号:G)から炉中心部(記号:C)まで装入していた。その間に旋回シュートの傾動角の変更を行っているが、その変更は、表2に示すように、7〜20ノッチまでを段階的に利用している。   First, in the conventional charging (see FIG. 2), one batch of raw material is charged from the furnace periphery (symbol: G) to the furnace center (symbol: C) while the swiveling chute is rotated 19 times. It was. In the meantime, the tilt angle of the turning chute is changed. As shown in Table 2, the change uses 7 to 20 notches step by step.

この従来の方法に対して、同じく表2に、上記試行に採用したノッチの変更を示す。表2より、前記した考えの実行可能であることが明らかである。実際に試行した結果、その高炉は、炉況が安定し、円滑な操業が行えた。また、炉頂に設けたセンサでガスのCO濃度を測定し、ガス流の半径方向分布を推定したところ、所望の分布形状になっていることが確認された。そこで、発明者は、上記した装入方法を本発明としたのである。 In contrast to this conventional method, Table 2 also shows notch changes adopted in the trial. From Table 2, it is clear that the above idea is feasible. As a result of actual trials, the blast furnace was able to operate smoothly with stable furnace conditions. Further, the CO 2 concentration of the gas measured by the sensor provided in the furnace top, was estimated radial distribution of the gas flow, it was confirmed that becomes a desired distribution profile. Therefore, the inventor made the above-described charging method the present invention.

Figure 2007262520
Figure 2007262520

なお、本発明では、原料としては鉄鉱石類又はコークスの利用が好ましい。これらを混合した所謂「混合装入」も実施できるが、原料の形状やサイズが類似している方が装入の実施が容易だからである。なお、鉄鉱石類とは、所謂「鉄源」となる物資を意味し、塊状の鉄鉱石、焼結鉱又は鉄スクラップ、及びこれらの二種以上の混合物を言う。また、ベルレス式装入装置に付帯するホッパとしては、上記の上下に2連のもの(垂直2段式という)とか、複数のホッパを一段で併設するものがあるが、本発明はいずれの形態のホッパであってもいっこうに構わない。   In the present invention, it is preferable to use iron ore or coke as a raw material. The so-called “mixed charging” in which these are mixed can be carried out, but the charging is easier if the shape and size of the raw materials are similar. The iron ore means a material that becomes a so-called “iron source”, and refers to a massive iron ore, sintered ore or iron scrap, and a mixture of two or more thereof. Further, as a hopper incidental to the bell-less type charging device, there are two types of upper and lower ones (referred to as a vertical two-stage type) or a plurality of hoppers arranged in one stage. It doesn't matter if it is a hopper.

炉頂に垂直2段式ホッパ及び旋回シュートを有するベルレス式装入装置を備えた内容積4000m級高炉の操業を行った。高炉の主な操業条件は、出銑比が2.3、コークス比が420kg/tである。その操業に際し、原料は、上記鉄鉱石類及びコークスを1バッチづつ交互に装入するようにした。 The operation of a 4000 m 2 class blast furnace with an internal volume of 4000 m equipped with a bellless type charging device having a vertical two-stage hopper and a turning chute at the top of the furnace was performed. The main operating conditions of the blast furnace are an output ratio of 2.3 and a coke ratio of 420 kg / t. During the operation, the raw materials were alternately charged with the above iron ore and coke batch by batch.

まず、前記表2に示した従来の方法で原料装入を行い、2週間の操業を行い、これを比較例とする。本発明に係る装入方法は、表2に同時に示した方法で行い、2週間の操業を行った。この操業を実施例とする。   First, the raw materials are charged by the conventional method shown in Table 2 above, and the operation is performed for 2 weeks, which is used as a comparative example. The charging method according to the present invention was carried out by the method shown in Table 2 at the same time and operated for 2 weeks. This operation is taken as an example.

これらの操業の結果は、炉内の半径方向でのガス流分布で評価した。つまり、高炉のシャフト部の炉頂寄りに、炉壁からガスサンプラを水平に押し込み、炉半径方向の所定位置で炉内ガスのサンプリングを行い、得られた試料をガスクロマトグラフで分析し、それら試料のCO濃度及びCO濃度を測定した。そして、この測定値に基づき、下記式でガス利用率を計算し、そのガス利用率の炉内分布で評価する。ガス利用率が大きいほど、炉内でのガス流速度は小さく、ガスと原料(鉄鉱石、コークス等)との化学反応が進んでいることを意味するからである。また、ガスの利用率が小さいことは、ガス流速度が大きく、通気の良いことを意味している。 The results of these operations were evaluated by the gas flow distribution in the radial direction in the furnace. In other words, the gas sampler is pushed horizontally from the furnace wall near the top of the blast furnace shaft, the gas in the furnace is sampled at a predetermined position in the radial direction of the furnace, and the obtained samples are analyzed by a gas chromatograph. The CO concentration and CO 2 concentration were measured. And based on this measured value, a gas usage rate is calculated by the following formula, and the distribution of the gas usage rate in the furnace is evaluated. This is because the larger the gas utilization rate, the smaller the gas flow rate in the furnace, which means that the chemical reaction between the gas and the raw material (iron ore, coke, etc.) proceeds. In addition, a low gas utilization rate means a high gas flow rate and good ventilation.

ガス利用率(ηCO)=100×[(COvo%)/((COvol%)+(COvol%))
上記した比較例及び実施例での炉内半径方向におけるガス利用率分布を図4に示す。図4より、本発明に係る実施例では、炉中心部(横軸の0近傍)の近傍でガス利用率が小さく、十分に強い中心ガス流の形成されていること明らかである。また、炉周辺部(横軸の1近傍)においても、炉中間部に比べると、やや強いガス流が見られる。つまり、本発明の実施で、高炉は前記した望ましいガス流分布で操業が行われている。
Gas utilization factor (η CO) = 100 × [ (CO 2 vo%) / ((COvol%) + (CO 2 vol%))
FIG. 4 shows the gas utilization rate distribution in the radial direction of the furnace in the comparative example and the example described above. FIG. 4 clearly shows that in the embodiment according to the present invention, a sufficiently strong central gas flow is formed in the vicinity of the furnace center (near 0 on the horizontal axis) with a small gas utilization factor. In addition, a slightly stronger gas flow is also seen in the furnace peripheral part (near 1 on the horizontal axis) compared to the furnace intermediate part. That is, in the practice of the present invention, the blast furnace is operated with the desired gas flow distribution as described above.

一方、比較例の結果は、炉中心部のガス利用率が比較的大きく、炉中心部の通気性が実施例に比べて不良であることを示している。また、炉周辺部では、通気性が良過ぎる状態にあると判断でき、全体的に実施例と比較して通気性の不安定な操業になっていた。   On the other hand, the result of the comparative example shows that the gas utilization rate in the furnace center is relatively large, and the air permeability in the furnace center is poor compared to the example. Moreover, it was judged that the air permeability was too good in the furnace peripheral portion, and the operation was unstable in air permeability as compared with the examples as a whole.

本発明に係る高炉の原料装入方法を模式的に説明する炉の縦断面図である。It is a longitudinal cross-sectional view of the furnace which illustrates typically the raw material charging method of the blast furnace which concerns on this invention. 従来の高炉の原料装入方法を模式的に説明する炉の縦断面図である。It is a longitudinal cross-sectional view of the furnace which illustrates the raw material charging method of the conventional blast furnace typically. 炉頂ホッパから原料を切り出した際に示す原料粒度の経時変化を示す図である。It is a figure which shows the time-dependent change of the raw material particle size shown when a raw material is cut out from a furnace top hopper. 高炉の半径方向におけるガス利用率分布を、本発明を適用した場合と従来の装入方法を適用した場合とで比較した図である。It is the figure which compared the gas utilization factor distribution in the radial direction of a blast furnace with the case where this invention is applied, and the case where the conventional charging method is applied.

符号の説明Explanation of symbols

1 旋回シュート
2 旋回シュートの移動方向を示す矢印
3 炉壁
4 炉中心軸
5 原料層
DESCRIPTION OF SYMBOLS 1 Turning chute 2 Arrow which shows moving direction of turning chute 3 Furnace wall 4 Furnace center axis 5 Raw material layer

Claims (2)

炉頂に備えたベルレス式装入装置の旋回シュートを用い、1バッチ分の原料を高炉へ装入するに際して、
まず、前記旋回シュートの先端が前記高炉の半径方向での中間部の中央位置に向くように、該旋回シュートの傾動角を調整してから前記原料の装入を開始し、その後、旋回シュートの先端が順次炉中心方向へ向くように前記傾動角を変更して炉中心部への装入を連続的に行い、引き続き、旋回シュートの先端が炉周辺方向に向くように傾動角を変更して炉周辺部までへの装入を行い、再度旋回シュートの先端が中間部の中央方向へ向くように傾動角を変更して、該中間部の中央位置で装入を終了することを特徴とする高炉の原料装入方法。
When charging a batch of raw material into a blast furnace using a swivel chute of a bell-less charging device provided at the top of the furnace,
First, the raw material charging is started after adjusting the tilt angle of the swivel chute so that the tip of the swivel chute is directed to the center position of the intermediate portion in the radial direction of the blast furnace. The tilt angle was changed so that the tip was sequentially directed toward the furnace center, and the charging was continuously performed in the furnace center. Subsequently, the tilt angle was changed so that the tip of the swivel chute was directed toward the furnace periphery. The charging is performed up to the furnace periphery, the tilt angle is changed so that the tip of the turning chute is directed toward the center of the intermediate portion, and the charging is terminated at the center position of the intermediate portion. Raw material charging method for blast furnace.
前記原料を、コークス、又は焼結鉱を含む鉄鉱石類とすることを特徴とする請求項1記載の高炉の原料装入方法。   The blast furnace raw material charging method according to claim 1, wherein the raw material is iron ore containing coke or sintered ore.
JP2006090999A 2006-03-29 2006-03-29 Raw material charging method for blast furnace Active JP4915119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090999A JP4915119B2 (en) 2006-03-29 2006-03-29 Raw material charging method for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090999A JP4915119B2 (en) 2006-03-29 2006-03-29 Raw material charging method for blast furnace

Publications (2)

Publication Number Publication Date
JP2007262520A true JP2007262520A (en) 2007-10-11
JP4915119B2 JP4915119B2 (en) 2012-04-11

Family

ID=38635778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090999A Active JP4915119B2 (en) 2006-03-29 2006-03-29 Raw material charging method for blast furnace

Country Status (1)

Country Link
JP (1) JP4915119B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060813A (en) * 2000-08-23 2002-02-28 Kawasaki Steel Corp Method for charging raw material in bell-less blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060813A (en) * 2000-08-23 2002-02-28 Kawasaki Steel Corp Method for charging raw material in bell-less blast furnace

Also Published As

Publication number Publication date
JP4915119B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP2004107794A (en) Method for charging raw material into bell-less blast furnace
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
JP6405877B2 (en) Raw material charging method for bell-less blast furnace
JP2006336094A (en) Apparatus and method for charging raw material into blast furnace
JP4915119B2 (en) Raw material charging method for blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP6303685B2 (en) How to charge the bellless blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP2009299154A (en) Apparatus and method for charging raw material to bell-less blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP2012132056A (en) Top bunker of blast furnace
JPH08120311A (en) Method for charging raw material of blast furnace
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JP3995380B2 (en) Raw material charging method to blast furnace
JP4617689B2 (en) Raw material charging method in a blast furnace equipped with a bellless raw material charging device
JP2003138304A (en) Method for operating blast furnace
JP2002302706A (en) Method for charging raw material into blast furnace
JP2005248271A (en) Method for granulating sintering raw material
JP4622278B2 (en) Raw material charging method to blast furnace
JP2005232545A (en) Method for charging raw material into bell-less blast furnace
JP2008095206A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250