JP2002060813A - Method for charging raw material in bell-less blast furnace - Google Patents

Method for charging raw material in bell-less blast furnace

Info

Publication number
JP2002060813A
JP2002060813A JP2000251935A JP2000251935A JP2002060813A JP 2002060813 A JP2002060813 A JP 2002060813A JP 2000251935 A JP2000251935 A JP 2000251935A JP 2000251935 A JP2000251935 A JP 2000251935A JP 2002060813 A JP2002060813 A JP 2002060813A
Authority
JP
Japan
Prior art keywords
furnace
charging
raw material
coke
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000251935A
Other languages
Japanese (ja)
Other versions
JP3608485B2 (en
Inventor
Yasuhei Nouchi
泰平 野内
Takeshi Sato
健 佐藤
Shiro Watakabe
史郎 渡壁
Kanji Takeda
幹治 武田
Hideyuki Kamano
秀行 鎌野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000251935A priority Critical patent/JP3608485B2/en
Publication of JP2002060813A publication Critical patent/JP2002060813A/en
Application granted granted Critical
Publication of JP3608485B2 publication Critical patent/JP3608485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve the stable operation by stably forming the gas flow distribution in a furnace in a method for charging raw material in a bell-less blast furnace, particularly in the raw material charging method applying the mixed charge for mixing raw materials different in grain diameter or specific gravity and charging them into the furnace. SOLUTION: The direction of tilting angle of a pivoted chute in the bell-less blast furnace is changed reversedly on the way of charging the raw materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベルレス高炉にお
ける原料装入方法に関し、特に炉内の安定したガス流分
布を形成し、安定操業を達成することのできる原料装入
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a raw material in a bellless blast furnace, and more particularly to a method for charging a raw material capable of forming a stable gas flow distribution in the furnace and achieving a stable operation.

【0002】[0002]

【従来の技術】従来、高炉では、原料である鉱石および
コークスが炉の上方から交互に装入されて炉内に層状に
充填される交互装入が一般的に行われている。高炉で
は、炉の下方から吹き込まれる熱風が層状に充填された
コークスを燃焼して発生する高温還元性ガスが、炉内に
充填された原料の間隙を上昇しながら、原料の昇温や、
鉱石の還元を行うことで、銑鉄が製造されている。
2. Description of the Related Art Conventionally, in a blast furnace, ore and coke, which are raw materials, are alternately charged from above the furnace and charged into the furnace in layers. In a blast furnace, hot air blown from the bottom of the furnace burns coke filled in layers to generate a high-temperature reducing gas, which raises the temperature of the raw material while raising the gap between the raw materials charged in the furnace,
Pig iron is produced by reducing ore.

【0003】炉内に充填された原料は、コークスの燃焼
や鉱石の還元、溶融によって消費されていくため、炉頂
の装入物表面は下方へ徐々に降下していく。その分、炉
頂から新たに鉱石とコークスを交互に装入することで、
炉内の原料を常時ほぼ一定の高さに維持し、連続的に銑
鉄を生産する。このような鉱石あるいはコークスの装入
をチャージと呼ぶ。各チャージにおいて装入する鉱石、
コークスの量は、それぞれ所定の量となるように制御す
るが、鉱石とコークスの量比を変更することで鉱石を還
元溶融するのに費やすコークス量を変更することがで
き、銑鉄生産量に対する消費熱量を可変とすることがで
きる。
[0003] Since the raw material charged into the furnace is consumed by the combustion of coke and the reduction and melting of ore, the surface of the charge at the top of the furnace is gradually lowered. By that, ore and coke are charged alternately from the furnace top,
The raw material in the furnace is constantly maintained at a substantially constant height, and pig iron is produced continuously. Such charging of ore or coke is called charging. Ore to be charged at each charge,
The amount of coke is controlled so as to be a predetermined amount.However, by changing the ratio of ore and coke, the amount of coke used for reducing and melting the ore can be changed. The amount of heat can be variable.

【0004】高炉の生産性を上げるためには、上述のよ
うに炉内の上昇ガス流量を適切な状態に維持し、炉内の
原料の消費を炉内の半径方向および円周方向で適切な状
態に保ち、原料の降下を連続的にすることが必要であ
る。高炉は軸対称形状であるので、一般的に炉内の上昇
ガス流量分布も軸対称となる。半径方向で見て、炉中心
部で上昇ガス流量を多くし、炉壁側へ行くほどガス流を
少なくするような炉内ガス流量分布を形成することで、
安定な原料の降下が実現される。
[0004] In order to increase the productivity of the blast furnace, as described above, the rising gas flow rate in the furnace is maintained in an appropriate state, and the consumption of the raw material in the furnace is appropriately controlled in the radial and circumferential directions in the furnace. It is necessary to maintain the condition and to make the raw material fall continuously. Since the blast furnace has an axially symmetric shape, generally, the rising gas flow distribution in the furnace is also axially symmetric. When viewed in the radial direction, increasing the gas flow rate in the center of the furnace and forming a gas flow distribution in the furnace that reduces the gas flow toward the furnace wall,
A stable raw material drop is realized.

【0005】ここで、ベルレス高炉では、図1に示すよ
うに旋回シュート3を介して鉱石、コークス等の原料5
を高炉1の炉内へ装入する。旋回シュート3には、炉頂
バンカ4から原料5が供給され、旋回シュート3が旋回
しながら傾動して1チャージ分の原料装入が行われる。
ここで、2は高炉1の炉壁である。旋回シュートは、図
2において示すように高炉の中心軸に対してθで示す傾
動角を逐次同一方向へ変更させながら旋回し、原料を炉
頂堆積面上へ装入していく。
[0005] Here, in the bellless blast furnace, as shown in FIG.
Is charged into the furnace of the blast furnace 1. The turning chute 3 is supplied with a raw material 5 from a furnace top bunker 4, and the turning chute 3 is tilted while turning, so that one charge of the raw material is charged.
Here, reference numeral 2 denotes a furnace wall of the blast furnace 1. As shown in FIG. 2, the turning chute turns while changing the tilt angle indicated by θ with respect to the central axis of the blast furnace sequentially in the same direction, and charges the raw material onto the furnace top deposition surface.

【0006】傾動角は、例えば表1に示すように離散的
な数値をノッチNo. として対応させ、各ノッチNo. にお
いて何回旋回させるかをあらかじめ決めておくことで、
毎回同じ傾動パターンでの原料装入を可能としている。
For example, as shown in Table 1, the tilt angle is made to correspond to a discrete numerical value as a notch No., and a predetermined number of turns at each notch No. is determined.
Raw material can be charged in the same tilt pattern every time.

【0007】[0007]

【表1】 [Table 1]

【0008】このようなベルレス装入装置の利点は、1
チャージの原料を何旋回で装入するかを制御すること
で、1旋回での原料の装入量をほぼ一定に制御できる点
にある。そして、前記の一連のノッチNo. のノッチ順を
傾動角パターンとして設定し、各ノッチNo. での旋回数
を調整することで、炉半径方向での原料の堆積量を調整
することができ、高炉の炉半径方向のガス流分布をきめ
細かく調整することが可能である。
The advantages of such a bellless charging device are as follows.
By controlling how many turns of the charge material are charged, the amount of material charged in one turn can be controlled to be substantially constant. Then, the notch order of the series of notches No. is set as a tilt angle pattern, and by adjusting the number of turns at each notch No., it is possible to adjust the deposition amount of the raw material in the furnace radial direction, It is possible to finely adjust the gas flow distribution in the furnace radial direction of the blast furnace.

【0009】つまり、図2に示すように高炉半径方向の
任意の場所での鉱石層5aとコークス層5bの各層厚から決
まる層厚比を自由に調整することができるのである。一
般に、鉱石の粒径はコークスの粒径に比べると比較的小
さい。そのため、この層厚比が大きいほど鉱石層が厚
く、全体として粒径の小さい領域の割合が大きくなるた
め、ガス流が抑制されることになる。
That is, as shown in FIG. 2, it is possible to freely adjust the thickness ratio determined by the thicknesses of the ore layer 5a and the coke layer 5b at an arbitrary location in the blast furnace radial direction. Generally, the ore particle size is relatively small compared to the coke particle size. Therefore, as this layer thickness ratio is larger, the ore layer is thicker, and the ratio of the region having a smaller particle diameter as a whole is larger, so that the gas flow is suppressed.

【0010】ところで、高炉内の装入物分布に基づくガ
ス流の分布制御を行う場合であっても、炉壁部と炉中心
部におけるガス流の制御は、他の領域におけるガス流の
制御とは異なった目的を有している。高炉の、炉壁部を
除く他の領域においては、鉱石原料の間接還元率や通気
性といった観点から制御がなされるのに対し、炉壁部近
傍のガス流は、炉壁に付着している付着物の厚みの制御
にとって非常に重要となる。また、炉中心部は、強い中
心ガス流を導くことで炉内の通気変動のバッファとなっ
ている。
[0010] Even when controlling the gas flow distribution based on the charge distribution in the blast furnace, the control of the gas flow in the furnace wall and the central part of the furnace is the same as the control of the gas flow in other regions. Has a different purpose. In other areas of the blast furnace except for the furnace wall, control is performed from the viewpoint of the indirect reduction rate of the ore raw material and the permeability, whereas the gas flow near the furnace wall adheres to the furnace wall. This is very important for controlling the thickness of the deposit. In addition, the central portion of the furnace serves as a buffer for ventilation fluctuation in the furnace by guiding a strong center gas flow.

【0011】一方、近年、溶銑コストの低減を目的とし
て、安価な細粒原料や焼結していない鉱石(いわゆる、
生鉱)などとコークスを混合して炉に装入する混合装入
が行われるようになってきている。混合装入では、コー
クスと鉱石を混合して装入するため、上記の交互装入の
ような鉱石層とコークス層の区別はなく、層厚や層厚比
の概念は存在しない。しかしながら、炉内のガス流、特
に、炉壁部と炉中心部におけるガス流の挙動は、交互装
入、混合装入の別なく、ほぼ同様である。
On the other hand, in recent years, in order to reduce the hot metal cost, inexpensive fine-grained raw materials or unsintered ores (so-called
Mixed charging, in which raw coke and the like are mixed and charged into a furnace, has been performed. In the mixed charging, coke and ore are mixed and charged. Therefore, there is no distinction between the ore layer and the coke layer as in the above-described alternate charging, and there is no concept of the layer thickness or the layer thickness ratio. However, the behavior of the gas flow in the furnace, particularly the gas flow in the furnace wall and the furnace center, is almost the same regardless of whether the charging is performed alternately or mixedly.

【0012】また、特開昭59-96203号公報に開示されて
いるように、鉄源とコークスを交互に層となるように装
入する交互装入に比べ、鉄源とコークスを混合して装入
する混合装入の方が燃料比を低減できることが知られて
いる。
Further, as disclosed in Japanese Patent Application Laid-Open No. 59-96203, the iron source and the coke are mixed more than the alternate charging in which the iron source and the coke are alternately charged in layers. It is known that mixed charging can reduce the fuel ratio.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うに粒径や比重が異なる原料(コークスと鉱石)を混合
して炉内に装入した場合、その通気抵抗は混合原料の比
率によって大きく変化することになる。そのため、炉中
心部に混合原料を装入するに際しては、チャージ毎の混
合原料の比率の変動を極力小さくすることが好ましい。
However, when raw materials (coke and ore) having different particle diameters and specific gravities are mixed and charged into the furnace, the airflow resistance greatly changes depending on the ratio of the mixed raw materials. Will be. Therefore, when charging the mixed raw material into the furnace center, it is preferable to minimize the variation in the ratio of the mixed raw material for each charge.

【0014】また、炉壁近傍の炉周辺部に装入するに際
しても、チャージ毎の混合原料の比率の変動を極力小さ
くすることが必要とされ、また、炉壁近傍への装入の場
合には、円周方向にも混合原料の比率の均一性が要求さ
れる。ところが、混合原料は、その粒度や比重の差から
輸送中の振動等によって分離しやすい性質を有してい
る。この分離は、粒径差の大きいコークスと焼結鉱を混
合した場合に特に顕著である。
Further, when charging the mixture in the vicinity of the furnace wall, it is necessary to minimize the variation in the ratio of the mixed raw material for each charge. Requires uniformity of the ratio of the mixed raw materials also in the circumferential direction. However, the mixed raw material has a property of being easily separated by vibration during transportation or the like due to differences in particle size and specific gravity. This separation is particularly remarkable when coke having a large particle size difference and sinter are mixed.

【0015】一例として、図3に、内容積5150m3 のベ
ルレス高炉に、焼結鉱石中に質量比5%のコークスを混
合した混合原料をベルトコンベアを介して炉頂バンカへ
投入した後に炉頂バンカ下部から旋回シュートを用いて
装入した場合のサンプリング結果を示す。図3は、横軸
に旋回シュートの旋回数をとっており、縦軸に各旋回時
のサンプリングにおける混合原料中のコークス比のコー
クス比平均値に対する比を示している。
As an example, FIG. 3 shows that a mixed material obtained by mixing 5% by mass of coke in a sintered ore is charged into a furnace bunker through a belt conveyor in a bellless blast furnace having an inner volume of 5150 m 3 , The sampling result at the time of loading using the turning chute from the lower part of a bunker is shown. In FIG. 3, the horizontal axis indicates the number of turns of the turning chute, and the vertical axis indicates the ratio of the coke ratio in the mixed raw material to the average coke ratio in the sampling at each turn.

【0016】図3からも明らかなように、炉頂バンカ投
入前にはコークスが均一に混合されていた混合原料が、
炉頂バンカ排出時にはその排出中に経時的にコークス比
が大きく変動している。この炉頂バンカ排出原料のコー
クス比の経時的変動は、炉頂バンカへの原料の投入時に
炉頂バンカ内で生じる粒度偏折現象と、炉頂バンカから
の原料の排出にあたり炉頂バンカの排出口直上の原料が
最初に排出されるという原料の排出挙動に起因すること
か知られている。
As is apparent from FIG. 3, the mixed raw material in which coke was uniformly mixed before the furnace bunker was introduced,
When discharging the furnace top bunker, the coke ratio fluctuates greatly over time during the discharge. The temporal variation in the coke ratio of the raw material discharged from the top bunker is caused by the grain size deviation phenomenon that occurs in the top bunker when the raw material is charged into the top bunker, and the discharge of the top bunker when the raw material is discharged from the top bunker. It is known that this is due to the discharge behavior of the raw material, in which the raw material immediately above the outlet is discharged first.

【0017】図3の場合、特に原料排出初期の旋回数1
〜2のとき、および末期の旋回数9〜10のときに炉頂バ
ンカから排出される混合原料のコークス比は平均に対し
て大きく変動することが判る。この粒度偏析傾向を改善
するために、炉頂バンカに補助シュート等の構造物を設
置し、原料排出のフローパターンを変化させること等で
ある程度は可能である。
In the case of FIG. 3, the number of rotations is 1 especially at the initial stage of material discharge.
It can be seen that the coke ratio of the mixed raw material discharged from the furnace top bunker at times of ~ 2 and at the last stage of the swirling number of 9 ~ 10 greatly fluctuates with respect to the average. In order to improve this tendency of particle size segregation, it is possible to some extent by installing a structure such as an auxiliary chute on the furnace top bunker and changing the flow pattern of raw material discharge.

【0018】しかしながら、炉頂バンカからの原料排出
の初期と末期における混合比の変動までを抑制すること
は困難である。そのため、原料装入の初期と末期のそれ
ぞれでの装入位置となる炉中心と炉壁部近傍において装
入される原料の混合比が大きく変動することになる。つ
まり、最も原料混合比の均一性が要求される炉中心と炉
壁部近傍が最も均一性が悪くなる結果となる。
However, it is difficult to suppress the fluctuation of the mixing ratio between the initial stage and the final stage of the raw material discharge from the furnace top bunker. Therefore, the mixing ratio of the raw materials charged near the furnace center and the vicinity of the furnace wall, which are the charging positions at the initial stage and the final stage of the raw material charging, greatly fluctuates. In other words, the result is that the uniformity is the worst in the vicinity of the furnace center and the furnace wall where the uniformity of the raw material mixing ratio is most required.

【0019】本発明は、上記のような問題を解決し、粒
径や比重の異なる原料を混合して炉内に装入する混合装
入を行う場合においても、好適な炉内ガス分布を可能と
したベルレス高炉における原料装入方法を提供し、高炉
の安定操業を実現することを目的とするものである。
The present invention solves the above-mentioned problems, and enables a suitable gas distribution in the furnace even in the case of mixing and charging in which raw materials having different particle diameters and specific gravities are mixed and charged into the furnace. It is an object of the present invention to provide a method for charging raw materials in a bellless blast furnace, and to realize a stable operation of the blast furnace.

【0020】[0020]

【課題を解決するための手段】炉内に装入する混合原料
の混合比率は、炉頂バンカからの排出初期と末期を除け
ば、比較的安定している。そのため、本発明者らは、比
較的安定している中間期に炉頂バンカから排出される混
合原料を炉壁位置と炉中心位置に装入するようにし、初
期と末期に排出される混合比率の不安定な原料を炉壁位
置と炉中心位置以外の中間位置に装入すればよいことに
想到したのである。
The mixing ratio of the mixed raw materials charged into the furnace is relatively stable except for the initial stage and the final stage of discharge from the furnace top bunker. Therefore, the present inventors set the mixed raw material discharged from the furnace top bunker in the relatively stable intermediate period into the furnace wall position and the furnace center position, and set the mixing ratio discharged in the initial and final stages. It is conceived that the unstable raw material may be charged at an intermediate position other than the furnace wall position and the furnace center position.

【0021】このようにして装入を行うことで、高炉の
操業安定上最も重要な位置である炉中心部と炉壁部にお
ける混合原料比を安定化することが可能となる。すなわ
ち、本発明は、粒径や比重の異なる原料を混合して炉内
に装入する混合装入を行うとともに、混合した原料を装
入する旋回シュートの傾動角の変更方向を、原料装入の
途中で逆にすることを特徴とするベルレス高炉における
原料装入方法によって上記課題を解決した。
By performing charging in this way, it is possible to stabilize the mixed raw material ratio at the furnace center and the furnace wall, which are the most important positions for the stable operation of the blast furnace. That is, the present invention performs mixed charging in which raw materials having different particle diameters and specific gravities are mixed and charged into a furnace, and changes the tilt direction of a swiveling chute for charging the mixed raw materials by changing the tilting direction of the raw material charging. The above problem was solved by a method of charging raw materials in a bellless blast furnace, characterized in that the method was reversed halfway through the process.

【0022】ここで、前記旋回シュートの傾動角の変更
方向を、旋回の最初の1〜4旋回のいずれかの旋回およ
び/または最後の1〜4旋回のいずれかの旋回において
逆にすることを好適とすることを見いだした。
Here, the changing direction of the tilt angle of the turning chute is reversed in one of the first to fourth turns and / or in the last one of the four turns. It has been found to be suitable.

【0023】[0023]

【発明の実施の形態】本発明は、粒径や比重が異なる原
料(コークスと鉱石)を混合し、その混合原料を、旋回
シュートを傾動させて炉内に装入する傾動装入におい
て、旋回シュートの傾動角の変更方向を原料装入の途中
で逆にすることで、装入時にコークス比が時系列的に変
動する影響を回避し、炉内コークス比の均一性を確保す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tilting charging method in which raw materials (coke and ore) having different particle diameters and specific gravities are mixed, and the mixed raw materials are charged into a furnace by tilting a swiveling chute. By changing the direction of change of the tilt angle of the chute in the course of charging the raw material, the influence of the coke ratio fluctuating in time during charging is avoided, and the uniformity of the coke ratio in the furnace is secured. .

【0024】すなわち、図3において説明したコークス
比の変動を、旋回シュートの傾動角の変更方向を原料装
入の途中で逆にすることで回避し、コークス比を平均的
にならすことができるようにしたものである。ここで、
旋回シュートの傾動角の変更方向を逆にするのは、装入
開始時の旋回1回目および/または装入終了時の旋回最
終回目だけとしてもよいが、装入を更に安定させるため
には、旋回の最初の1〜4旋回のいずれかの旋回および
/または最後の1〜4旋回のいずれかの旋回において旋
回シュートの傾動角の変更方向を逆とすることを好適と
する。
That is, the fluctuation of the coke ratio described with reference to FIG. 3 can be avoided by reversing the changing direction of the tilt angle of the turning chute during the charging of the raw material, so that the coke ratio can be averaged. It was made. here,
The reversing direction of the tilt angle of the turning chute may be reversed only at the first turning at the start of charging and / or at the last turning at the end of charging, but in order to further stabilize the charging, It is preferable that the direction of change in the tilt angle of the turning chute is reversed in any one of the first to fourth turns and / or the last one to fourth turns.

【0025】[0025]

【実施例】本発明の効果を明らかにするため、容積5150
3 のベルレス高炉の改修にあたり、火入れ前に、従来
例と本発明例での原料装入をそれぞれ行い、炉内堆積原
料の調査を実施した。ここで、炉内に装入する混合原料
は、焼結鉱鉱石にコークスを5%配合したものとした。
EXAMPLE In order to clarify the effect of the present invention, a volume of 5150 was used.
Upon repair of the bell-less blast furnace m 3, before burning, performs conventional example the raw material charging in the present invention embodiment respectively, was conducted to investigate the furnace deposition material. Here, the mixed raw material to be charged into the furnace was one obtained by mixing 5% of coke with sintered ore.

【0026】なお、従来例では、旋回シュートの傾動パ
ターンを、表1に示したノッチNo.で1から12まで順次
傾動させる12旋回での装入を行った。一方、本発明例で
は、ノッチNo. を、3、2、1、4、5、6、7、8、
9、12、11、10の順とし、同じく12旋回での装入を実施
した。以上の装入を行った結果を図4に示す。図4は、
炉内でサンプル採取した焼結鉱中のコークス比の半径方
向分布を示したグラフであり、△で示す従来例に較べ、
○で示す本発明例の方が安定的に分布していることがわ
かる。特に、炉中心位置と炉壁位置において、従来例で
はコークス比が大きく変動しているが、本発明を適用し
た本発明例では、十分平均化されていることを確認でき
た。すなわち、本発明例では、従来例に較べて炉内コー
クス比の均一性を大幅に向上させることができた。
In the conventional example, charging was performed in 12 turns in which the tilt pattern of the turning chute was sequentially tilted from 1 to 12 at the notch numbers shown in Table 1. On the other hand, in the example of the present invention, the notch numbers are 3, 2, 1, 4, 5, 6, 7, 8,
Charges were made in the order of 9, 12, 11, and 10, and the same 12 rounds were charged. FIG. 4 shows the result of the above charging. FIG.
It is a graph showing the radial distribution of the coke ratio in the sintered ore sampled in the furnace, compared with the conventional example shown by △
It can be seen that the examples of the present invention indicated by ○ are more stably distributed. In particular, although the coke ratio greatly fluctuated in the conventional example between the furnace center position and the furnace wall position, it was confirmed that the average was sufficiently averaged in the present invention example to which the present invention was applied. That is, in the example of the present invention, the uniformity of the coke ratio in the furnace was significantly improved as compared with the conventional example.

【0027】また、実操業における本発明の効果を検証
するため、従来例での混合原料投入を1〜15チャージま
で実施し、その後、16〜30チャージまでを本発明例での
投入を行う操業を実施し、本発明適用の改善効果を検証
した。改善効果の検証には、炉内炉頂部に半径方向に設
置した固定ゾンデによる炉内ガス温度の測定を行った。
各チャージ完了直後の炉内中心部ガス温度(以下炉中心
温度という)と炉壁部ガス温度(以下炉壁温度という)
を計測し、この変動が大きい場合はそれぞれ炉中心部、
炉壁部へ装入された原料のコークス比の変動が大きいと
判断できる。
Further, in order to verify the effect of the present invention in actual operation, the mixed raw material in the conventional example is charged up to 1 to 15 charges, and thereafter, the mixed raw material is charged up to 16 to 30 charges in the present example. Was carried out, and the improvement effect of the application of the present invention was verified. In order to verify the improvement effect, the gas temperature in the furnace was measured by a fixed sonde installed radially at the top of the furnace.
Immediately after completion of each charge, the gas temperature in the central part of the furnace (hereinafter referred to as furnace central temperature) and the gas temperature in the furnace wall (hereinafter referred to as furnace wall temperature)
Is measured, and when this fluctuation is large,
It can be determined that the fluctuation of the coke ratio of the raw material charged into the furnace wall is large.

【0028】図5は、上記操業における炉中心温度の推
移を示すグラフであり、図6は、炉壁温度の推移を示す
グラフである。図5、図6から明らかなように、炉中心
温度、炉壁温度の双方とも、本発明の適用によって従来
例よりも安定し、温度ばらつきが小さくなっている。こ
れは、本発明の適用によって、炉中心部、炉壁部の双方
で、それぞれ混合原料中のコークス比が安定し、ばらつ
かなくなったことによるものである。
FIG. 5 is a graph showing a change in the furnace center temperature in the above operation, and FIG. 6 is a graph showing a change in the furnace wall temperature. As is clear from FIGS. 5 and 6, both the furnace center temperature and the furnace wall temperature are more stable and the temperature variation is smaller than in the conventional example by applying the present invention. This is due to the fact that the coke ratio in the mixed raw material became stable and did not vary at both the furnace center and the furnace wall by applying the present invention.

【0029】本実施例では炉頂バンカからの混合原料の
装入にあたり、旋回シュートの傾動パターンで装入初期
と末期の双方でノッチNo. を逆とすることでそれぞれ炉
壁部および炉中心部のコークス比が安定しているが、炉
壁部への原料装入に関係するノッチNo. において傾動角
の変更方向を逆にすることで炉壁部のコークス比が安定
し、炉中心部への原料装入に関係するノッチNo. におい
て傾動角の変更方向を逆にすることで炉中心部のコーク
ス比が安定しているのであるため、炉壁部、炉中心部そ
れぞれ独立に操作することが可能である。
In this embodiment, when charging the mixed raw material from the furnace top bunker, the notch numbers are reversed at both the initial stage and the final stage in the tilting pattern of the swirling chute, thereby respectively setting the furnace wall portion and the furnace center portion. The coke ratio of the furnace wall is stable, but the coke ratio of the furnace wall is stabilized by reversing the direction of tilt angle change at the notch No. related to the charging of the raw material into the furnace wall, Since the coke ratio at the center of the furnace is stable by reversing the direction of change of the tilt angle at the notch No. related to the charging of the raw material, the furnace wall and the furnace center must be operated independently. Is possible.

【0030】[0030]

【発明の効果】本発明によって、炉中心部と炉壁部双方
でのそれぞれのガス流変動を抑制することができるよう
になった。これによって、混合装入における高炉の操業
の安定と燃料比の低減を実現することができた。
According to the present invention, it is possible to suppress the respective gas flow fluctuations at both the furnace center and the furnace wall. As a result, it was possible to realize a stable operation of the blast furnace and a reduction in the fuel ratio in the mixed charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉の要部断面図である。FIG. 1 is a sectional view of a main part of a blast furnace.

【図2】旋回シュートでの従来の交互原料装入を説明す
る要部断面図である。
FIG. 2 is a cross-sectional view of a main part illustrating a conventional method of alternately charging raw materials with a turning chute.

【図3】混合原料装入における旋回毎のコークス量の変
化を示すグラフである。
FIG. 3 is a graph showing a change in coke amount for each turn in charging a mixed raw material.

【図4】混合原料装入における炉半径位置におけるコー
クス量の変化を、従来例と本発明例で比較したグラフで
ある。
FIG. 4 is a graph comparing a change in coke amount at a furnace radius position in charging a mixed raw material between a conventional example and an example of the present invention.

【図5】混合原料装入におけるチャージ毎の炉中心温度
の変動を、従来例と本発明例で比較したグラフである。
FIG. 5 is a graph comparing the variation of the furnace center temperature for each charge during charging of the mixed raw material between the conventional example and the present invention example.

【図6】混合原料装入におけるチャージ毎の炉壁温度の
変動を、従来例と本発明例で比較したグラフである。
FIG. 6 is a graph comparing the variation of the furnace wall temperature for each charge in charging the mixed raw material between the conventional example and the present invention example.

【符号の説明】[Explanation of symbols]

1 高炉 2 炉壁 3 旋回シュート 4 炉頂バンカ 5 高炉原料 5a コークス 5b 鉄鉱石 θ 旋回シュート角度 1 Blast furnace 2 Furnace wall 3 Rotating chute 4 Furnace top bunker 5 Blast furnace raw material 5a Coke 5b Iron ore θ Rotating chute angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡壁 史郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 武田 幹治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 鎌野 秀行 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K012 BC02 4K015 GB05 GB10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shiro Watanabe 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Chiba Works of Kawasaki Steel Corp. Kawasaki Steel Corporation Chiba Works (72) Inventor Hideyuki Kamano 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works F-term (reference) 4K012 BC02 4K015 GB05 GB10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径や比重の異なる原料を混合して炉内
に装入する混合装入を行うとともに、混合した原料を装
入する旋回シュートの傾動角の変更方向を、原料装入の
途中で逆にすることを特徴とするベルレス高炉における
原料装入方法。
1. A method of mixing and charging raw materials having different particle diameters and specific gravities and charging the mixed raw materials into a furnace, and changing a tilt direction of a swiveling chute for charging the mixed raw materials by changing a tilt direction of the raw material charging. A method for charging raw materials in a bellless blast furnace, wherein the method is reversed halfway.
【請求項2】 前記旋回シュートの傾動角の変更方向
を、旋回の最初の1〜4旋回のいずれかの旋回および/
または最後の1〜4旋回のいずれかの旋回において逆に
することを特徴とする請求項1に記載のベルレス高炉に
おける原料装入方法。
2. The method according to claim 1, wherein the change direction of the tilt angle of the turning chute is one of the first to fourth turns and / or
The method for charging a raw material in a bellless blast furnace according to claim 1, wherein the reverse is performed in any one of the last one to four rotations.
JP2000251935A 2000-08-23 2000-08-23 Raw material charging method in bell-less blast furnace Expired - Fee Related JP3608485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000251935A JP3608485B2 (en) 2000-08-23 2000-08-23 Raw material charging method in bell-less blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000251935A JP3608485B2 (en) 2000-08-23 2000-08-23 Raw material charging method in bell-less blast furnace

Publications (2)

Publication Number Publication Date
JP2002060813A true JP2002060813A (en) 2002-02-28
JP3608485B2 JP3608485B2 (en) 2005-01-12

Family

ID=18741269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000251935A Expired - Fee Related JP3608485B2 (en) 2000-08-23 2000-08-23 Raw material charging method in bell-less blast furnace

Country Status (1)

Country Link
JP (1) JP3608485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027097A1 (en) * 2002-08-29 2004-04-01 Jfe Steel Corporation Raw material charging method for bell-less blast furnace
JP2007262520A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Method for charging raw material into blast furnace
CN112258473A (en) * 2020-10-22 2021-01-22 中冶南方工程技术有限公司 Blast furnace top center airflow detection method, system and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027097A1 (en) * 2002-08-29 2004-04-01 Jfe Steel Corporation Raw material charging method for bell-less blast furnace
KR100704691B1 (en) * 2002-08-29 2007-04-10 제이에프이 스틸 가부시키가이샤 Raw material charging method for bell-less blast furnace
JP2007262520A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Method for charging raw material into blast furnace
CN112258473A (en) * 2020-10-22 2021-01-22 中冶南方工程技术有限公司 Blast furnace top center airflow detection method, system and storage medium
CN112258473B (en) * 2020-10-22 2023-08-25 中冶南方工程技术有限公司 Method, system and storage medium for detecting central air flow of blast furnace top

Also Published As

Publication number Publication date
JP3608485B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP5440077B2 (en) Raw material charging method for bell-less blast furnace
JP4269847B2 (en) Raw material charging method for bell-less blast furnace
KR20040058021A (en) Raw material charging method for bell-less blast furnace
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
JP2002060813A (en) Method for charging raw material in bell-less blast furnace
JP5481891B2 (en) Raw material charging method for bell-less blast furnace
JP5375028B2 (en) Raw material charging method for bell-less blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP3995380B2 (en) Raw material charging method to blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
EP3751010B1 (en) Method for charging raw materials into blast furnace
JP3835041B2 (en) Blast furnace raw material charging method
JP4622278B2 (en) Raw material charging method to blast furnace
JP2000282110A (en) Operation of blast furnace
JP4052047B2 (en) Raw material charging method to blast furnace
JP4915119B2 (en) Raw material charging method for blast furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
KR20030055531A (en) A Charging Method for the Mixed Layer Partially Formed on the Wall of Blast Furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees