JP4622278B2 - Raw material charging method to blast furnace - Google Patents

Raw material charging method to blast furnace Download PDF

Info

Publication number
JP4622278B2
JP4622278B2 JP2004082470A JP2004082470A JP4622278B2 JP 4622278 B2 JP4622278 B2 JP 4622278B2 JP 2004082470 A JP2004082470 A JP 2004082470A JP 2004082470 A JP2004082470 A JP 2004082470A JP 4622278 B2 JP4622278 B2 JP 4622278B2
Authority
JP
Japan
Prior art keywords
charged
furnace
raw material
blast furnace
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004082470A
Other languages
Japanese (ja)
Other versions
JP2005264295A (en
Inventor
勝意 長田
秀明 築地
芳典 渡辺
史朗 渡壁
明紀 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004082470A priority Critical patent/JP4622278B2/en
Publication of JP2005264295A publication Critical patent/JP2005264295A/en
Application granted granted Critical
Publication of JP4622278B2 publication Critical patent/JP4622278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、高炉に装入するコークスや鉱石等の装入原料の装入方法に関するものである。   The present invention relates to a charging method of charging raw materials such as coke and ore charged into a blast furnace.

高炉を安定にしかも効率良く操業するには、炉内を上昇するガス流分布を適正に制御し、還元ガスの有効利用を図りつつ炉内の通気性を低下させることが重要であるとされている。炉内のガス流分布を適正に制御するためには、炉内の原料の分布が重要で、高炉への原料の装入方法が種々検討されている。   In order to operate the blast furnace stably and efficiently, it is important to properly control the gas flow distribution rising in the furnace and to reduce the air permeability in the furnace while effectively using the reducing gas. Yes. In order to appropriately control the gas flow distribution in the furnace, the distribution of the raw material in the furnace is important, and various methods for charging the raw material into the blast furnace have been studied.

一般に、高炉へ原料を装入する際には、炉内のガス流分布を適正に制御するために、鉱石とコークスの交互装入を行っている。高炉に装入する装入原料の粒度は、高炉炉況に影響を与える重要な要因であり、高炉炉況の安定を図るためには装入原料の粒度分布を制御して、一定の粒度分布を有する装入原料を装入することが重要であると考えられている。なお、鉱石またはコークスの1回の高炉への装入はバッチ、鉱石(1バッチまたは複数バッチ)とコークス(1バッチまたは複数バッチ)の1サイクルの装入は1チャージと呼ばれ、通常の操業では1日に100チャージ以上の原料が高炉内に装入される。   Generally, when raw materials are charged into a blast furnace, ore and coke are alternately charged in order to appropriately control the gas flow distribution in the furnace. The particle size of the raw material charged into the blast furnace is an important factor affecting the blast furnace condition. To stabilize the blast furnace condition, the particle size distribution of the charged raw material is controlled to maintain a constant particle size distribution. It is considered important to charge a charging material having One charge of ore or coke into a blast furnace is called batch, and one charge of ore (1 batch or multiple batch) and coke (1 batch or multiple batch) is called 1 charge. Then, a raw material of 100 charges or more is charged into the blast furnace per day.

装入原料を所定の範囲の粒径の原料の混合状態に調整した、装入原料が一定の粒度分布を有する場合でも、粒度偏析が発生する問題がある。粒度偏析は装入原料の搬送過程で発生するからである。装入原料は、一旦、装入原料の備蓄ヤードに備蓄され、その後、高炉装入原料槽に搬送される場合と、高炉装入原料槽に直接搬送される場合とがあるが、備蓄ヤードに備蓄される場合は、備蓄ヤードに備蓄される装入原料が山に積まれる際に転がりが発生して偏析するため、備蓄ヤード内で場所による平均粒度の差が発生することにより、高炉に装入する際に1バッチ内でその平均粒度が時間的に大幅に変動する。また、装入原料が直接搬送される場合でも、高炉装入原料槽内で備蓄ヤードと同様に偏析が発生するため、ヤード備蓄ほどではないが、やはり高炉に装入中に、1バッチ内でその平均粒度が時間的に変動する。   There is a problem that particle size segregation occurs even when the charged raw material has a certain particle size distribution, in which the charged raw material is adjusted to a mixed state of raw materials having a particle size in a predetermined range. This is because particle size segregation occurs in the conveying process of the charged raw material. The charging raw material is once stored in the storage yard of the charging raw material and then transferred to the blast furnace charging raw material tank or directly transferred to the blast furnace charging raw material tank. In the case of stockpiling, since the raw material stocked in the stockpiling yard rolls and segregates when it is piled up in the mountain, the difference in average grain size depending on the location in the stockpiling yard causes a difference in the blast furnace. When entering, the average particle size greatly varies in time within one batch. In addition, even when the charged raw material is directly transported, segregation occurs in the blast furnace charged raw material tank in the same manner as the stockpiled yard. The average particle size varies with time.

ベルレス装置を有する高炉(以下ベルレス高炉と記載する。)では、上記のような高炉装入原料槽内での原料の偏析に起因して、粗粒が初期に排出される傾向にあり、装入コークスの粒径制御は非常に困難である。特に、垂直2段型のベルレス高炉ではこの傾向が顕著である。このベルレス高炉における装入原料の粒度偏析に対しては、原料の排出速度を調整してこのような粒度分布の偏析を減少させる粒度分布改善方法が知られている(例えば、特許文献1参照。)。   In a blast furnace having a bellless device (hereinafter referred to as a bellless blast furnace), coarse particles tend to be discharged at an early stage due to the segregation of raw materials in the blast furnace charging raw material tank as described above. It is very difficult to control the particle size of coke. This tendency is particularly remarkable in a vertical two-stage bell-less blast furnace. With respect to the particle size segregation of the charged raw material in the bell-less blast furnace, there is known a particle size distribution improving method for adjusting the discharge rate of the raw material to reduce such particle size distribution segregation (see, for example, Patent Document 1). ).

また、ベルレス高炉では、回転シュートを旋回させて、回転シュートの傾斜角度を変化させつつ原料を高炉内に装入している。回転シュートの旋回半径を縮径しながら、炉周辺部から炉中心方向に向かって原料を装入しているため、装入された原料の転がり距離が長く、流れこみが多いため、粒度偏析が発生しやすい。この回転シュートによる粒度偏析に対して、装入原料を炉中心から炉壁に向かって装入する粒度偏析の改善方法が知られている(例えば、特許文献2参照。)。
特開平3−188206号公報 特開平2−285009号公報
In the bell-less blast furnace, the rotating chute is turned to change the inclination angle of the rotating chute and the raw material is charged into the blast furnace. Since the raw material is charged from the periphery of the furnace toward the furnace center while reducing the turning radius of the rotating chute, the rolling distance of the charged raw material is long and there is a lot of flow, so particle size segregation occurs. Likely to happen. A method for improving particle size segregation in which charged raw materials are charged from the center of the furnace toward the furnace wall against the particle size segregation due to the rotating chute is known (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 3-188206 Japanese Patent Laid-Open No. 2-285209

しかし、特許文献1の方法では、高炉装入原料槽からの原料の排出速度を小さくする必要があり、装入速度が遅くなり生産効率が低下するため、実操業上は望ましくない。   However, in the method of Patent Document 1, it is necessary to reduce the discharge rate of the raw material from the blast furnace charging raw material tank, which slows the charging speed and decreases the production efficiency, which is not desirable in actual operation.

また、特許文献2の方法を用いた場合、高炉に原料を装入した後に発生する粒度の偏析を防止する効果はあるが、1バッチの装入の初期に粗粒が排出されるという、装入される原料自体が有する粒度分布の偏析の問題を解消するものではない。   Further, when the method of Patent Document 2 is used, there is an effect of preventing the segregation of the particle size generated after charging the raw material into the blast furnace, but the coarse particles are discharged at the initial stage of charging of one batch. This does not solve the problem of segregation of the particle size distribution of the raw material itself.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉への装入原料が粒度分布に一定以上の偏析を有する場合にも、高炉を安定に、効率良く操業することを可能とする高炉の原料装入方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, and to operate the blast furnace stably and efficiently even when the raw material charged to the blast furnace has a segregation of a certain level or more in the particle size distribution. To provide a raw material charging method for a blast furnace.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)上部と下部に二連のホッパを備え、回転シュートを有するベルレス装入装置を用いた高炉の原料装入方法であって、複数の装入バッチからなる1チャージの原料の装入バッチのうち、少なくとも1バッチは前記回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に原料を装入し、少なくとも1バッチは前記回転シュートを炉周辺側から炉中心方向に傾動させながら高炉内に原料を装入することを特徴とする高炉の原料装入方法。
(2)高炉に装入される原料がコークスおよび鉱石であって、装入バッチのうちの少なくとも1バッチは、回転シュートを炉中心側から炉周辺方向に向かって傾動させながらコークスを高炉内に装入することを特徴とする(1)に記載の高炉の原料装入方法。
(3)高炉に装入される原料がコークスおよび鉱石であって、装入バッチのうちの少なくとも1バッチは、回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に鉱石を装入することを特徴とする(1)または(2)に記載の高炉の原料装入方法。
The features of the present invention for solving such problems are as follows.
(1) A raw material charging method for a blast furnace using a bellless charging device having two hoppers at the upper part and the lower part and having a rotating chute, which is a charging batch of one charge raw material consisting of a plurality of charging batches. Among them, at least one batch is charged with the raw material into the blast furnace while tilting the rotary chute from the furnace center side toward the furnace periphery, and at least one batch is tilted from the furnace peripheral side toward the furnace center. A raw material charging method for a blast furnace, wherein the raw material is charged into the blast furnace.
(2) The raw materials charged into the blast furnace are coke and ore, and at least one of the charged batches is disposed in the blast furnace while tilting the rotating chute from the furnace center side toward the furnace periphery. The raw material charging method for a blast furnace according to (1), wherein charging is performed.
(3) The raw materials charged into the blast furnace are coke and ore, and at least one of the charged batches is charged with ore into the blast furnace while tilting the rotating chute from the furnace center side toward the furnace periphery. The raw material charging method for a blast furnace according to (1) or (2), wherein:

本発明によれば、高炉への装入原料が粒度分布に一定以上の偏析を有する場合にも、高炉を安定に、効率良く操業することができる。これにより、高出銑比操業、低還元材比操業が可能となる。   According to the present invention, the blast furnace can be stably and efficiently operated even when the raw material charged into the blast furnace has a segregation of a certain level or more in the particle size distribution. As a result, it is possible to operate at a high output ratio and at a low reduced material ratio.

ベルレス高炉において従来以上の高出銑比、低還元材比操業を行うために、ガス利用率の向上について検討した。ベルレス高炉において、装入原料を回転シュートを用いて、炉周辺部から炉中心方向に向かって(以下「周辺→中心」と記載する)回転シュートを傾動させながら高炉内に装入する場合、高炉装入前に発生する原料の偏析により粗粒が初期に排出される傾向にあるため、炉周辺部に粗粒が多く装入されて、周辺流が多くなり、ガス利用率が向上しないと考えて、装入原料の装入方向について検討を重ねた。その結果、以下の(a)〜(e)の知見を得て本発明を完成した。   In order to operate the bell-less blast furnace at a higher output ratio and lower reducing material ratio than before, the improvement of gas utilization rate was examined. In a bell-less blast furnace, when charging the raw material into the blast furnace using the rotating chute, tilting the rotating chute from the furnace periphery toward the furnace center (hereinafter referred to as “periphery → center”), Since coarse particles tend to be discharged early due to segregation of raw materials generated before charging, it is thought that a large amount of coarse particles are charged in the periphery of the furnace, the peripheral flow increases, and the gas utilization rate does not improve. Thus, the charging direction of the charging raw materials was studied repeatedly. As a result, the following findings (a) to (e) were obtained and the present invention was completed.

(a)、装入原料を回転シュートを用いて炉中心部から炉周辺方向に向かって(以下「中心→周辺」と記載する)高炉内に装入する場合、粗粒が初期に排出されるため、炉中心部に粗粒が多く装入されて、炉周辺部は細粒の割合が多くなり、炉内ガスの周辺流の発生が抑制される。この際には、炉中心部に別途装入するコークス量の減少も期待できる。   (A) When charging the raw material into the blast furnace from the center of the furnace toward the periphery of the furnace using a rotating chute (hereinafter referred to as “center → periphery”), coarse particles are discharged at the initial stage. Therefore, a large amount of coarse particles is charged in the center of the furnace, the proportion of fine particles increases in the periphery of the furnace, and the generation of the peripheral flow of the in-furnace gas is suppressed. In this case, a reduction in the amount of coke separately charged into the furnace center can be expected.

(b)、1チャージ中のすべてのバッチについて「中心→周辺」の装入を行った場合、炉内ガスの中心流が過多となり、ガス利用率は低下して、還元材比が上昇する。   (B) If charging is performed from “center to periphery” for all batches in one charge, the center flow of the furnace gas becomes excessive, the gas utilization rate decreases, and the reducing material ratio increases.

(c)、1チャージにおけるコークスの装入を2バッチとして、最初のコークス装入バッチを「周辺→中心」装入し、次のコークス装入バッチを「中心→周辺」装入として、次に鉱石を「周辺→中心」装入したところ、中心部のガス流を確保しつつ周辺部のガス流が抑制されて、全体としてガス利用率が向上して、還元材比が低下する。   (C) The charge of coke in one charge is set to 2 batches, the first coke charge batch is charged as “peripheral → center”, the next coke charge batch is set as “center → peripheral”, and then When the ore is charged “peripheral → center”, the gas flow in the peripheral part is suppressed while securing the gas flow in the central part, the gas utilization rate is improved as a whole, and the reducing material ratio is reduced.

(d)、(c)において、最初のコークス装入バッチを「中心→周辺」装入し、次のコークス装入バッチを「周辺→中心」装入に変更した場合も、同様の効果がある。   In (d) and (c), the same effect is obtained when the first coke charging batch is changed to “center → periphery” and the next coke charging batch is changed to “peripheral → center”. .

(e)、(d)において、さらに鉱石の装入についても「中心→周辺」装入とすると、一層効果的である。すなわち、1チャージにおけるコークスの装入を2バッチ、鉱石の装入を1バッチとして、最初のコークス装入バッチを「中心→周辺」装入し、次のコークス装入バッチを「周辺→中心」装入として、次に鉱石を「中心→周辺」装入したところ、ガス利用率が非常に向上して、還元材比も大いに低下する。   In (e) and (d), it is more effective if the charging of the ore is made “center → periphery”. That is, 2 batches of coke in one charge and 1 batch of ore are charged, the first coke charging batch is charged “center → peripheral”, and the next coke charging batch is set “peripheral → central”. As charging, when the ore is charged “center → periphery”, the gas utilization rate is greatly improved and the ratio of reducing material is greatly reduced.

以上の知見より得られた本発明は、回転シュートを有するベルレス装入装置を用いた高炉の原料装入方法であって、複数の装入バッチからなる1チャージの原料の装入バッチのうち、少なくとも1バッチは回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に原料を装入し(「中心→周辺」装入)、少なくとも1バッチは前記回転シュートを炉周辺側から炉中心方向に傾動させながら高炉内に原料を装入する(「周辺→中心」装入)ことを特徴とする高炉の原料装入方法である。   The present invention obtained from the above knowledge is a raw material charging method of a blast furnace using a bellless charging device having a rotating chute, and among the charging batches of one charge raw material consisting of a plurality of charging batches, At least one batch is charged with the raw material into the blast furnace while tilting the rotating chute from the furnace center side toward the furnace periphery ("center-to-periphery" charging), and at least one batch is loaded with the rotating chute from the furnace periphery side to the furnace center. A raw material charging method for a blast furnace characterized in that the raw material is charged into the blast furnace while being tilted in the direction (“peripheral → center” charging).

高炉に装入される原料がコークスおよび鉱石である場合、コークスの装入バッチのうちの少なくとも1バッチを、回転シュートを炉中心側から炉周辺方向に向かって傾動させながらコークスを高炉内に装入する場合も、鉱石の装入バッチのうちの少なくとも1バッチを、回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に鉱石を装入する場合も、どちらも効果があり、コークスと鉱石の両方のバッチにおいて「中心→周辺」装入を行うと、特に効果的である。   When the raw materials charged in the blast furnace are coke and ore, at least one batch of the coke charging batches is charged into the blast furnace while the rotary chute is tilted from the furnace center side toward the furnace periphery. Both when charging or at least one of the charging batches of ore and charging ore into the blast furnace while tilting the rotating chute from the furnace center to the periphery of the furnace. It is particularly effective to perform "center-to-peripheral" charging in both batches of ore and ore.

高炉に装入された原料の表面は、原料の崩れの発生や、次に装入される原料が崩れる原因となるので平坦にすることが望ましく、回転シュートを傾動させる速度や回転シュートの回転数を調整して、装入後の原料の表面をできるだけ平坦化することが望ましい。   The surface of the raw material charged in the blast furnace is preferably flat because it causes the collapse of the raw material and the next charged raw material, and the rotation speed of the rotation chute and the rotation speed of the rotation chute are desirable. It is desirable to make the surface of the raw material after charging as flat as possible.

本発明は、装入原料の粒度分布がある程度の偏析を有する場合に効果があり、1バッチの装入の初期に主として粗粒が装入され、後半部分で細粒が装入される装入方法を用いる場合に効果がある。例えば、図1に示すように平均粒径が推移して高炉に装入されるような原料の装入の場合に非常に効果的である。図1は、垂直2段型のベルレス装入装置を用いて「周辺→中心」装入した場合に高炉に装入される鉱石およびコークスの1バッチ中の粒径の高炉内の半径位置による粒度変化を示すグラフであり、横軸左側が装入の初期、横軸の右側が装入の後期に相当する。縦軸は鉱石およびコークス全体の平均粒径(Dp)を1とした場合に、その半径位置に装入された原料の平均粒径(dp)を示す。装入の初期に主に粒径の大きな原料が装入されて、装入の最終段階で粒径の細かいものが装入される様子が観察される。図1ほど粒度偏析が顕著でない場合でも、粗粒が特に装入の初期に、細粒が特に装入の最後に多く装入される場合には効果がある。   The present invention is effective when the particle size distribution of the charged raw material has a certain degree of segregation, and is charged mainly with coarse particles in the initial stage of charging of one batch and charged with fine particles in the latter half. This is effective when using the method. For example, as shown in FIG. 1, it is very effective when the raw material is charged such that the average particle diameter changes and the blast furnace is charged. FIG. 1 shows the particle size of one ore and coke batches charged into the blast furnace when the “peripheral → center” charging is performed using a vertical two-stage bell-less charging device, depending on the radial position in the blast furnace. It is a graph which shows a change, the horizontal axis left side corresponds to the initial stage of charging, and the right side of the horizontal axis corresponds to the late stage of charging. The vertical axis represents the average particle diameter (dp) of the raw material charged at the radial position where the average particle diameter (Dp) of the ore and coke as a whole is 1. It is observed that a raw material having a large particle size is charged mainly at the initial stage of charging, and that a fine particle size is charged at the final stage of charging. Even when the particle size segregation is not as remarkable as in FIG. 1, it is effective when coarse particles are charged in a large amount particularly at the beginning of charging and particularly fine particles are charged at the end of charging.

本発明は、上記で説明したように装入原料の粒度分布が偏析を有する場合に効果があり、上部と下部に二連のホッパを備えた原料装入装置である、垂直2段型のベルレス装入装置を有する高炉に用いることが望ましい。垂直2段型のベルレス装入装置は、上部のホッパから下部のホッパにポート等を経由して材料を供給することで、下部ホッパの材料切れを防止して、高炉への材料の安定供給を可能にするものである。また、ホッパの中心が炉心上にあることで、炉内の径方向での装入原料の偏心が防止される。上部のホッパ内に供給された材料は、細粒は転がりにくく、粗粒は転がりやすいため、粒度分布に局所的な偏析が発生する。上部のホッパ内に偏析が生じると、材料がポートを経由して下部のホッパに落下する際、同様に粗粒ほど転がりやすいため、さらに偏析が助長される。したがって、下部ポート内の材料が下部に粗粒が多く、上部に細粒が多い状態でシュート等を用いて、高炉の炉壁側から中心側へと材料を装入すると、原料の偏析により粗粒が初期に排出される傾向が顕著であり、炉周辺部に粗粒が多く装入されて、周辺流が多くなる。このような垂直2段型のベルレス装入装置に本発明を適用すれば、ガス利用率の向上効果が大きいので、非常に好ましい。   The present invention is effective when the particle size distribution of the charged raw material has segregation as described above, and is a vertical two-stage bellless, which is a raw material charging device having two hoppers at the top and bottom. It is desirable to use it for a blast furnace having a charging device. The vertical two-stage bell-less charging device supplies the material from the upper hopper to the lower hopper via a port, etc., thereby preventing the lower hopper from running out of material and providing a stable supply of material to the blast furnace. It is what makes it possible. Further, since the center of the hopper is on the core, eccentricity of the charged raw material in the radial direction in the furnace is prevented. In the material supplied into the upper hopper, fine grains are difficult to roll, and coarse grains are easy to roll, so local segregation occurs in the particle size distribution. When segregation occurs in the upper hopper, when the material falls to the lower hopper via the port, the coarser particles are also likely to roll, so that segregation is further promoted. Therefore, if the material in the lower port has a large amount of coarse grains in the lower part and a large amount of fine grains in the upper part, and the material is charged from the furnace wall side to the center side of the blast furnace, the raw material segregates. The tendency of the grains to be discharged at the initial stage is remarkable, and a large amount of coarse grains are charged in the periphery of the furnace, resulting in an increase in the peripheral flow. If the present invention is applied to such a vertical two-stage bell-less charging device, the effect of improving the gas utilization rate is great, which is very preferable.

垂直2段型のベルレス装入装置を有する高炉において、操業試験を行った。装入装置の旋回シュートの傾斜角度を変化させながら炉周辺部から炉中心方向に向かって(「周辺→中心」)、または炉中心部から炉周辺方向に向かって(「中心→周辺」)高炉にコークスと鉱石を装入した。図2〜4は高炉の縦断面の概略図であり、下記の実施例における装入原料の炉内投入位置を示すものである。なお、原料のコークスおよび鉱石は、原料備蓄ヤードに備蓄された後、ベルトコンベアを用いて装入装置の上部ホッパに投入した。原料が高炉に装入される際の粒度分布は、図1に示すものと同様の傾向の偏析を示した。また、炉中心にはコークスを別途装入し、各原料装入後は、装入表面ができるだけ平坦になるように装入条件を設定した。   An operation test was conducted in a blast furnace having a vertical two-stage bell-less charging device. Blast furnace from the furnace periphery toward the furnace center ("peripheral → center") or from the furnace center toward the furnace periphery ("center → periphery") while changing the tilt angle of the turning chute of the charging device Was charged with coke and ore. FIGS. 2-4 is the schematic of the longitudinal cross-section of a blast furnace, and shows the charging position in the furnace of the charging raw material in the following Example. The raw material coke and ore were stored in the raw material storage yard, and then charged into the upper hopper of the charging device using a belt conveyor. The particle size distribution when the raw material was charged into the blast furnace showed segregation with the same tendency as shown in FIG. In addition, coke was charged separately at the center of the furnace, and the charging conditions were set so that the charging surface was as flat as possible after charging each raw material.

(比較例)1チャージの装入を、コークス1バッチ、鉱石2バッチで行った。各バッチははすべて「周辺→中心」装入として、図2に示すような位置への装入チャージを繰り返した。   (Comparative Example) One charge was charged in one batch of coke and two batches of ore. All the batches were charged as “periphery → center”, and the charging at the positions shown in FIG. 2 was repeated.

(本発明例1)1チャージの装入を、コークス2バッチ、鉱石1バッチで行った。コークスの1バッチ目は「中心→周辺」装入、コークスの2バッチ目は「周辺→中心」装入、鉱石は「周辺→中心」装入として、図3に示すような位置への装入チャージを繰り返した。   (Invention Example 1) 1 charge was charged in 2 batches of coke and 1 batch of ore. The first batch of coke is charged as “Center → Perimeter”, the second batch of coke is charged as “Peripheral → Center”, and the ore is charged as “Peripheral → Center”. Repeated charging.

(本発明例2)1チャージの装入を、コークス2バッチ、鉱石1バッチで行った。コークスの1バッチ目は「中心→周辺」装入、コークスの2バッチ目は「周辺→中心」装入、鉱石の1バッチは「中心→周辺」装入として、図4に示すような位置への装入チャージを繰り返した。   (Invention Example 2) One charge was charged in 2 batches of coke and 1 batch of ore. The first batch of coke is charged as “Center → Perimeter”, the second batch of coke is charged as “Peripheral → Center”, and the first batch of ore is charged as “Center → Perimeter”. The charging charge was repeated.

以上の場合について、ガス利用率(ηco)、通気性(K値)、還元材比、出銑量を測定した。ガス利用率を図5に、通気性を図6に、還元材比を図7に、出銑量を図8に示す。なお、ガス利用率(ηco)とは排ガス中のCOとCO2の割合で、CO2/(CO+CO2)をパーセントで示す。通気性(K値)はエルガン(Ergun)の式に基づいて羽口から送風するガス流量とガス圧力等から求めた値を示す。還元材比は所定期間中の還元材の使用量と溶銑の出銑量との比を示す。 About the above case, the gas utilization factor ((eta) co), the air permeability (K value), the reducing material ratio, and the amount of slag were measured. FIG. 5 shows the gas utilization rate, FIG. 6 shows the air permeability, FIG. 7 shows the reducing material ratio, and FIG. The gas utilization rate (ηco) is the ratio of CO and CO 2 in the exhaust gas, and represents CO 2 / (CO + CO 2 ) as a percentage. The air permeability (K value) indicates a value obtained from the flow rate of gas blown from the tuyere and the gas pressure based on the Ergun equation. The reducing material ratio indicates the ratio between the amount of reducing material used and the amount of hot metal discharged during a predetermined period.

本発明例1においては、通気性が良好となり、送風量が増加して、出銑量が大幅に増加した。   In Example 1 of the present invention, the air permeability was good, the amount of air blown was increased, and the amount of brewing was greatly increased.

本発明例2においては、還元材比が低下して、ガス利用率が向上して、出銑量が大幅に増加した。   In Invention Example 2, the reducing material ratio was reduced, the gas utilization rate was improved, and the amount of brewing was greatly increased.

ガス利用率(ηco)の炉内分布を調べたところ、炉の中心部ではほとんど変化しないが、本発明例1、2では炉の周辺部で低下して、周辺部と中心部との中間部分で増加しており、COガスが本発明例1、2では比較例よりも効率的に利用されていることが分かった。   When the distribution of the gas utilization rate (ηco) in the furnace was examined, it hardly changed in the center of the furnace, but in Examples 1 and 2 of the present invention, it decreased in the periphery of the furnace, and an intermediate part between the periphery and the center It was found that CO gas was used more efficiently in the inventive examples 1 and 2 than in the comparative example.

また、本発明例1、2では、比較例に比べて高炉の中心に装入するコークスの割合を減少させることができた。   Further, in Examples 1 and 2 of the present invention, the proportion of coke charged into the center of the blast furnace could be reduced as compared with the comparative example.

中心ガス流を確保しつつ、周辺部のガス流を抑制することで、炉内全体としての平均ガス利用率が向上して、還元材比が低下し、出銑量が増加したと考えられる。   By suppressing the gas flow in the peripheral part while securing the central gas flow, it is considered that the average gas utilization rate as a whole in the furnace is improved, the reducing material ratio is lowered, and the amount of tapping is increased.

垂直2段型のベルレス装入装置を用いた場合に高炉に装入される鉱石の1バッチ中の粒径の経時変化を示すグラフ。The graph which shows the time-dependent change of the particle size in 1 batch of the ore charged to a blast furnace when a vertical two-stage type bell-less charging apparatus is used. 比較例の1チャージの装入方法を示す説明図。Explanatory drawing which shows the charging method of 1 charge of a comparative example. 本発明例1の1チャージの装入方法を示す説明図。Explanatory drawing which shows the charging method of 1 charge of the example 1 of this invention. 本発明例2の1チャージの装入方法を示す説明図。Explanatory drawing which shows the charging method of 1 charge of the example 2 of this invention. ガス利用率の変化を示すグラフ。The graph which shows the change of a gas utilization factor. 通気性の変化を示すグラフ。The graph which shows the change of air permeability. 還元材比の変化を示すグラフ。The graph which shows the change of a reducing material ratio. 出銑量の変化を示すグラフ。The graph which shows the change of the amount of output.

Claims (3)

上部と下部に二連のホッパを備え、回転シュートを有するベルレス装入装置を用いた高炉の原料装入方法であって、複数の装入バッチからなる1チャージの原料の装入バッチのうち、少なくとも1バッチは前記回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に原料を装入し、少なくとも1バッチは前記回転シュートを炉周辺側から炉中心方向に傾動させながら高炉内に原料を装入することを特徴とする高炉の原料装入方法。 A blast furnace raw material charging method using a bellless charging device having two hoppers at the upper part and the lower part and having a rotating chute, and among the charging batches of one charge raw material consisting of a plurality of charging batches, At least one batch is charged with the raw material into the blast furnace while tilting the rotary chute from the furnace center side toward the furnace periphery, and at least one batch is loaded into the blast furnace while tilting the rotary chute from the furnace periphery side toward the furnace center. A raw material charging method for a blast furnace, characterized by charging raw materials. 高炉に装入される原料がコークスおよび鉱石であって、装入バッチのうちの少なくとも1バッチは、回転シュートを炉中心側から炉周辺方向に向かって傾動させながらコークスを高炉内に装入することを特徴とする請求項1に記載の高炉の原料装入方法。   The raw materials charged in the blast furnace are coke and ore, and at least one of the charged batches charges coke into the blast furnace while tilting the rotating chute from the furnace center side toward the furnace periphery. The blast furnace raw material charging method according to claim 1. 高炉に装入される原料がコークスおよび鉱石であって、装入バッチのうちの少なくとも1バッチは、回転シュートを炉中心側から炉周辺方向に傾動させながら高炉内に鉱石を装入することを特徴とする請求項1または請求項2に記載の高炉の原料装入方法。   The raw materials charged in the blast furnace are coke and ore, and at least one of the charged batches is charged with ore into the blast furnace while tilting the rotary chute from the furnace center side toward the furnace periphery. 3. The raw material charging method for a blast furnace according to claim 1, wherein the raw material is charged.
JP2004082470A 2004-03-22 2004-03-22 Raw material charging method to blast furnace Expired - Lifetime JP4622278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082470A JP4622278B2 (en) 2004-03-22 2004-03-22 Raw material charging method to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082470A JP4622278B2 (en) 2004-03-22 2004-03-22 Raw material charging method to blast furnace

Publications (2)

Publication Number Publication Date
JP2005264295A JP2005264295A (en) 2005-09-29
JP4622278B2 true JP4622278B2 (en) 2011-02-02

Family

ID=35089146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082470A Expired - Lifetime JP4622278B2 (en) 2004-03-22 2004-03-22 Raw material charging method to blast furnace

Country Status (1)

Country Link
JP (1) JP4622278B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304305A (en) * 1991-04-01 1992-10-27 Nkk Corp Method for charging raw material in blase furnace
JP2001140009A (en) * 1999-09-02 2001-05-22 Kawasaki Steel Corp Method of charging raw material into blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304305A (en) * 1991-04-01 1992-10-27 Nkk Corp Method for charging raw material in blase furnace
JP2001140009A (en) * 1999-09-02 2001-05-22 Kawasaki Steel Corp Method of charging raw material into blast furnace

Also Published As

Publication number Publication date
JP2005264295A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4269847B2 (en) Raw material charging method for bell-less blast furnace
EP1445334A1 (en) Raw material charging method for bell-less blast furnace
JP2015134941A (en) Method for charging raw material in bell-less blast furnace
JP4622278B2 (en) Raw material charging method to blast furnace
JP4296912B2 (en) Raw material charging method for vertical furnace
JP2010150646A (en) Method for charging raw material into blast furnace
WO2013172043A1 (en) Method for loading raw material into blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP2000178616A (en) Method for charging iron ore having high blending ratio pellet into blast furnace
CN111989411B (en) Method for charging raw material into blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP6627718B2 (en) Raw material charging method for blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP6558519B1 (en) Raw material charging method for blast furnace
JP2001064705A (en) Method for charging raw material into blast furnace
JP7363751B2 (en) Blast furnace raw material charging method
JP7372600B2 (en) Blast furnace raw material charging method
JP5217650B2 (en) Raw material charging method to blast furnace
JP5842738B2 (en) Blast furnace operation method
EP4083235A1 (en) Method for charging raw material into blast furnace
JP6627717B2 (en) Raw material charging method for blast furnace
JP4617689B2 (en) Raw material charging method in a blast furnace equipped with a bellless raw material charging device
JP3700458B2 (en) Low Si hot metal manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250