JP2007260192A - 光照射プローブ及び光照射プローブを用いた眼底観察装置、眼底手術装置、内視鏡 - Google Patents

光照射プローブ及び光照射プローブを用いた眼底観察装置、眼底手術装置、内視鏡 Download PDF

Info

Publication number
JP2007260192A
JP2007260192A JP2006089828A JP2006089828A JP2007260192A JP 2007260192 A JP2007260192 A JP 2007260192A JP 2006089828 A JP2006089828 A JP 2006089828A JP 2006089828 A JP2006089828 A JP 2006089828A JP 2007260192 A JP2007260192 A JP 2007260192A
Authority
JP
Japan
Prior art keywords
light
refractive index
optical fiber
irradiation probe
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089828A
Other languages
English (en)
Other versions
JP4997364B2 (ja
Inventor
Satoshi Konishi
頴 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2006089828A priority Critical patent/JP4997364B2/ja
Publication of JP2007260192A publication Critical patent/JP2007260192A/ja
Application granted granted Critical
Publication of JP4997364B2 publication Critical patent/JP4997364B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】外部照射光の空間広がりを拡大した光照射プローブの提供と、その光照射プローブを使用した眼底観察装置、眼底手術装置、内視鏡の提供。
【解決手段】光照射プローブ1に光伝搬部2と光放射部5aとを具備し、前記光放射部の屈折率空間分布を前記光伝搬部の屈折率空間分布と異ならせる。一例として、光伝搬部2を、コア2a及び前記コアの屈折率より低い屈折率を有するクラッド2bが前記コアの周囲を囲む構成を有する光ファイバ2とすると共に、前記光放射部を前記コアの屈折率と同一で且つ一様な屈折率分布を有する構造にすると共に、前記光放射部5aを前記光ファイバ2の端部側に具備することで光照射プローブ1を構成する。
【選択図】 図1

Description

本発明は、特定細胞、罹患細胞、腫瘍、患部の検査等に用いられる光照射プローブと、この光照射プローブを使用した眼底観察装置、眼底手術装置、及び内視鏡に関するものである。
医療分野におけるガンや病変組織の診断法として、蛍光診断法が良く知られている。蛍光診断法とは、特定の細胞や罹患細胞に蛍光薬でマーキングし、外部からこれら細胞に蛍光薬の吸収スペクトルに合った光を照射し、蛍光薬から出る蛍光を検出することにより特定細胞や罹患細胞を検出する診断方法である。
前記診断方法の検出能力を高めるためには、外部から蛍光薬に照射する光(以下、外部照射光又は照射光と云う)の強度を高くする必要がある。強度を高く設定することによって蛍光が強くなりマーキングされた特定細胞や罹患細胞の検出が容易となるからである。
又、外部照射光を利用した手術方法として、光アシストという光照射手術の方法が良く知られている。この手術方法は、例えば光吸収性のナノシェル粒子を腫瘍患部細胞に注入し、外部から光を照射して、ナノシェル粒子の光熱変換により腫瘍の熱破壊を行う方法である。更に、光反応薬物技術を用いた局所的患部薬理治療(光反応薬物の励起法)も良く知られている。
これらの手術方法においても、熱破壊の効果及び光誘導体反応薬の生成効率を高めるためには、外部照射光の強度を高く設定する必要がある。外部照射光の強度を高めるにあたって考慮しなければならない点は、以下の2つの要件がある。
第1に、特定細胞、罹患細胞、腫瘍、患部に光照射装置を接近させて外部照射光を照射しても、照射状態の監視・観察の視野が妨げられないことである。第2として、監視・観察の視野が妨げられないように、外部照射光の照射範囲が適切であることである。
第1の要件の理由は、外部照射光は、体液やリンゲル液を通して患部を照らすが、その光路中において、体液やリンゲル液中の微細な粒体により散乱が生じ、これがフレヤーとして現れ、検出や監視・観察がしにくくなるためである。
第2の要件の理由は、外部照射光の照射範囲が狭いと、蛍光薬でマーキングされた細胞のうち、外部照射光が実際に照射された細胞のみで蛍光を発することとなり、マーキングを施した全ての特定細胞や罹患細胞、腫瘍、患部を検出するという目的が達成できなくなるためである。
これら問題点を解決する手段として、光照射装置に光ファイバを用い、特定細胞や罹患細胞、腫瘍、患部にその光ファイバを接近させて光を照射する方法がある。このようにすれば、光学監視・観察装置よりも前面で光を照射しても光ファイバが小さく、監視視野では障害とはなりにくい。更に、光ファイバは照射対象に接近して光を照射するのでその間にある媒体における光散乱が少ない。これにより前記第1の要件に記載した、光照射装置を接近させても監視・観察の視野が妨げられないという要求は満たすこととなる。
しかし、前記光ファイバのコアの内部で波面が伝搬光軸に垂直で平面に保持された伝搬光は、光ファイバの外部では自由空間中での伝搬となるため光が広がり、その波面は平面ではなくなる。この広がり角が光ファイバでは高々5度程度であり、光ファイバの端部からの照射光の照射範囲は数度程度と狭いため、監視・観察範囲が小さくなってしまう。照射光を広げるために光ファイバの端部を監視・観察装置の位置よりも後ろに遠ざけると、散乱の発生や、監視・観察装置により照射光の一部が遮蔽されることとなる。従って、監視・観察の範囲が妨げられる。この解決には、光ファイバ端面からの外部照射光の空間広がりを大きくする必要がある。
これに対して、従来では、光ファイバの端部を、放物線状の断面を有するように加工して弾丸(バレット:bullet)形状に成形することにより、外部照射光の空間広がりを大きくするという端部構造が考案されている(例えば、特許文献1参照)。
特開2003−111789号公報(第6−7頁、第2図)
図50(a)に、このような端部構造を含む光ファイバを備える光照射プローブの部分側断面図を示すと共に、これに対応する端部からの正面図を図50(b)に示す。光照射プローブ100の端部が弾丸形状を有していると、光ファイバの端部101から出射される外部照射光は散乱され、広い範囲に照射される。
光ファイバの端部101の形状は特に限定されるものではなく、本体部102の端部において、その長手方向に沿った方向の断面が放物線状となっていれば良い。
しかしながら、光ファイバの端部101における散乱だけで外部照射光の照射範囲を広げることは、図51に示すように光の後方散乱103も発生させてしまう。この後方散乱103により、光ファイバの端部101の後方に位置する体液やリンゲル液中の微細な粒体に後方散乱光が当たり、光ファイバの端部の後方に位置する監視・観察装置の視野にフレヤーが生じる。これにより、監視・観察視野が、いわゆる「抜け」の良い画像でなくなり、蛍光の確認が困難となる。
更に、図50の光照射プローブ100では、光ファイバの端部101を丸め加工しているため、光ファイバの端部101で伝搬光の波面が曲がり、丸め加工の集光作用により伝搬光は自由空間に出射後に逆に集光してしまい、所望の空間広がりが得られないと云う課題もあった。
本発明は上記各課題に鑑みてなされたものであり、その目的は、外部照射光の空間広がりを拡大した光照射プローブの提供と、その光照射プローブを使用した眼底観察装置、眼底手術装置、内視鏡を提供することである。
本発明の請求項1に記載の発明は、光伝搬部と光放射部とを具備し、前記光放射部の屈折率空間分布が前記光伝搬部の屈折率空間分布と異なることを特徴とする光照射プローブである。
更に本発明の請求項2に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記コアの屈折率と同一で且つ一様な屈折率分布を有する構造であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項3に記載の発明は、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記コアの屈折率と同一で且つ一様な屈折率分布を有すると共に、先端部が前記コアの屈折率よりも高い屈折率を有する構造であり、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項4に記載の発明は、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記クラッドの屈折率と同一で且つ一様な屈折率分布を有する構造であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項5に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、先端部の屈折率が前記クラッドの屈折率よりも高く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項6に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、先端部の屈折率が前記クラッドの屈折率よりも高く、且つ、前記先端部の屈折率が前記先端部表面に近づくにつれて漸次高くなり、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項7に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記コア及び/又は前記クラッドの屈折率と異なる屈折率を有し、且つ透光性のある光学部材であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
更に、請求項8に記載の発明は、請求項7記載の光照射プローブにおいて、前記光放射部が、前記コア及び/又は前記クラッドの屈折率と異なる一様な屈折率を有することを特徴とする光照射プローブである。
更に、請求項9に記載の発明は、請求項7記載の光照射プローブにおいて、
前記光放射部の硬度が、前記光ファイバの硬度よりも高いことを特徴とする光照射プローブである。
更に、請求項10に記載の発明は、請求項8記載の光照射プローブにおいて、
前記光放射部の硬度が、前記光ファイバの硬度よりも高いことを特徴とする光照射プローブである。
更に、請求項11に記載の発明は、請求項7又は9の何れかに記載の光照射プローブにおいて、
前記光放射部の、先端部側の屈折率と前記光ファイバの端部側の屈折率とが異なることを特徴とする光照射プローブである。
又、請求項12に記載の発明は、請求項11記載の光照射プローブにおいて、
前記光ファイバの端部側の屈折率が、前記先端部側の屈折率よりも高く設定されることを特徴とする光照射プローブである。
又、請求項13に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記コアと、一部において前記コアの屈折率よりも高い屈折率を有するクラッドが前記コアの周囲を囲むことで構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項14に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が、透過拡散板と、前記光ファイバと同一の屈折率分布を有する先端部分とにより構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項15に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が、内部に空孔が形成された拡散部と、前記光ファイバと同一の屈折率分布を有する先端部分とにより構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項16に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、内部に中空箇所が設けられ、前記中空箇所の内部の屈折率が前記クラッドの屈折率よりも低く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
又、請求項17に記載の発明は、請求項1記載の光照射プローブにおいて、前記光伝搬部が光を閉じ込めて伝搬する中心部と、前記中心部の周囲に配置形成された複数の細孔から構成されると共に前記細孔の屈折率が前記中心部の屈折率よりも低く設定されてなる周辺部とから構成される光ファイバであり、
前記光放射部が前記中心部の屈折率と同一の屈折率分布を有すると共に、内部に中空箇所が設けられ、且つ、前記中空箇所の内部の屈折率が前記中心部の屈折率よりも低く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブである。
更に、請求項18に記載の発明は、前記請求項1乃至17の何れかに記載の光照射プローブにおいて、
前記光伝搬部と前記光放射部の間か、又は、前記光伝搬部中に、透過拡散板が設けられていることを特徴とする光照射プローブである。
更に、請求項19に記載の発明は、前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
前記光放射部の先端に、1つ又は複数の平面が、前記光伝搬部の軸方向に対して非平行に且つ90度未満の角度をなして形成されていることを特徴とする光照射プローブである。
更に、請求項20に記載の発明は、前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
前記光放射部の先端が、円錐形状に成形されていることを特徴とする光照射プローブである。
更に、請求項21に記載の発明は、前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
前記光放射部の先端に、複数の段差が設けられていることを特徴とする光照射プローブである。
更に、請求項22に記載の発明は、前記請求項21記載の光照射プローブにおいて、
前記段差が同心円状に設けられていることを特徴とする光照射プローブである。
更に、請求項23に記載の発明は、前記請求項1乃至20の何れかに記載の光照射プローブにおいて、
前記光放射部の先端表面が、凹凸形状に形成されていることを特徴とする光照射プローブである。
更に、請求項24に記載の発明は、前記請求項2乃至23の何れかに記載の光照射プローブにおいて、
少なくとも前記光ファイバの外周面にカニューレが装着されることを特徴とする光照射プローブである。
更に、請求項25に記載の発明は、前記請求項24に記載の光照射プローブにおいて、
前記光ファイバの外周面又は前記光放射部の外周面の何れかと、前記カニューレの内周面との間が、ハーメチックシールにより結合されることを特徴とする光照射プローブである。
更に、請求項26に記載の発明は、前記請求項24又は25の何れかに記載の光照射プローブと、前記光照射プローブに光を入力するために接続されている光源部とを備えたことを特徴とする眼底観察装置又は眼底手術装置である。
更に、請求項27に記載の発明は、前記請求項24又は25の何れかに記載の光照射プローブと、前記光照射プローブに光を入力するために接続されている光源部と、被検眼からの光を受光して眼内を観察する眼内観察装置とを備えたことを特徴とする眼底観察装置又は眼底手術装置である。
更に、請求項28に記載の発明は、前記請求項24又は25の何れかに記載の光照射プローブを備えたことを特徴とする内視鏡である。
更に、請求項29に記載の発明は、前記請求項26乃至28の何れかに記載の、眼底観察,眼底手術装置又は内視鏡において、前記カニューレの外周面から外側に、前記カニューレの外周面に円環部が設けられることを特徴とする眼底観察装置,眼底手術装置又は内視鏡である。
本発明の光照射プローブに依れば、放物線状の断面を有する先端部であるレンズ部に伝搬光が到達する前に伝搬光の広がり角を大きくして外部照射光の照射範囲を広げるため、光の後方散乱を抑止することが可能となる。従って、この光照射プローブを適用した装置では、光ファイバの端部の後方に位置する体液やリンゲル液中の微細な粒体によるフレヤーの発生を防止することが出来る。これにより、いわゆる「抜け」の良い画像が得られる装置を提供することが可能となる。
更に、本発明の光照射プローブに依れば、外部照射光の照射範囲を広く確保することが出来るので、蛍光剤でマーキングを施した細胞・腫瘍・患部の発見が容易となる。
又、本発明の請求項9又は10記載の光照射プローブに依れば、前記各効果に加えて光照射プローブの主な用途である手術用に適した硬度の材料を、光ファイバの端部に備えることが出来る。
又、本発明の請求項19又は20記載の光照射プローブに依れば、前記各効果に加えて、プローブ先端である光放射部の先端部が鋭利な形状に成形されているので、眼球に光照射プローブを刺し入れたとき眼球表面に単純裂傷が与えられ、光照射プローブの抜き去り後の眼球の治癒を早めることが可能となる。
<第1の実施の形態>
以下、本発明の第1の実施の形態を図1〜3を参照して説明する。図1に、本発明に係る光照射プローブ1の第1の実施形態を模式的に表す。図2は図1のA−A面で切断した断面図であり、図3は本実施の形態の光照射プローブ1における光の伝搬と放射経路を表す。
図1より、光照射プローブ1は、光伝搬部である光ファイバ2と、この光ファイバ2の外周面に装着されるカニューレ4とを含み、更に光ファイバ2の端部側に、光放射部5aを光ファイバ2と一体化して具備する。更に、光放射部5aの先端には、放物線状の断面を有する先端部が研削、研磨加工により形成されている。この放物線状の断面を有する先端部をレンズ部3とする。図1又は図2の光ファイバの内部に図示の破線及び実線は、コア2aとクラッド2bの屈折率の境界を表す。
光ファイバ2は、コア2a、及び、コア2aの屈折率より低い屈折率を有するクラッド2bが前記コア2aの周囲を囲むことで構成された屈折率空間分布を有する。一方の光放射部5aは、コア2aの屈折率と同一で、且つ一様な屈折率分布(屈折率空間分布)を有する。コア2aの領域は、光ファイバ2の端部に近づくに伴い光ファイバ2の外周面に向かって漸次拡大形成されていき、レンズ部3に到達する前にクラッド2bの全径に亘って形成される。これにより、光放射部5aの一様な屈折率分布が形成される。
次に、光照射プローブ1における光の伝搬と放射を、図3を参照して説明する。図3に示すように、光は光ファイバ2の図示しない他端側から入射され、光ファイバ2の内部をレンズ部3側に向かって伝搬してくる。光ファイバ2の内部を伝搬する伝搬光は、伝搬モードに保持されており、その波面はコア2a軸に対し垂直に且つ平行に保持される。
次に、光ファイバ2から光放射部5aへと光が伝搬すると、屈折率分布の変化によりコア2aの屈折率が漸次広がり、光放射部5aではほぼ同一な屈折率となるため、伝搬光の全反射が解消されて前記波面は平面から徐々に曲面状へと変換される。又、伝搬光のモードは伝搬モードから放射モードへと変換される。更に、レンズ部3に入射した伝搬光は、外部放射光としてレンズ部3からプローブ1の外部へと出射される。光放射部5aの内部で伝搬光のモードは放射モードに変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
光ファイバ2外周面と前記カニューレ4内周面との間は、ハーメチックシール6により結合される。ハーメチックシール6は、光ファイバ2表面に、例えばNi、Pd、Cu、Al、Auの何れか、又は複数をメッキ若しくは蒸着させた後、カニューレ4を光ファイバ2外周面に圧入し、その後、加熱することによって行う。又、他には接着剤によってハーメチックシール6を行っても良い。これにより、カニューレ4内周面と光ファイバ2外周面との間への雑菌の侵入や、残置を防止することが可能となる。なお、カニューレ4を光放射部5aの外周面まで延長して装着し、光ファイバ2外周面か光放射部5a外周面の何れかと、カニューレ4内周面との間にハーメチックシール6を施すように変更しても良い。
光放射部5aの製造方法は、光ファイバ2の軸方向での前記光放射部5a長に相当する光ファイバ先端部分を溶融安息香酸に浸け、プロトン交換により光放射部5aの図示しないクラッドの屈折率をコア2aの屈折率にまで引き上げることによって行う。
又、その他の製造方法として、MgOを前記光ファイバの端部にドープし、プロトン交換を行う方法でも良い。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、ドープ材の蒸気,若しくはこの蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、Er、Nd、Ho、Tm、Pr、Sm、Dy、Yb、Ti等のドープ材を溶融した低温溶融ガラスプールに光ファイバ2の先端部分を浸漬する方法がある。
以上のような製造方法を経て、光ファイバ2の端部に光放射部5aが、光ファイバ2の軸方向に対して平行に一体形成される。
<第2の実施の形態>
次に、本発明の第2の実施の形態を図4〜6を参照して説明する。図4に、本発明に係る光照射プローブ7の第2の実施形態を模式的に表す。図5は図4のB−B面で切断した断面図であり、図6は本実施の形態の光照射プローブ7における光の伝搬と放射経路を表す。なお、第1の実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第2の実施の形態が第1の実施の形態と異なる点は、光放射部5a’の屈折率分布(屈折率空間分布)を、コア2aの屈折率と同一で且つ一様に形成した上で、光放射部5a’の内部のレンズ部3側の先端部3aの屈折率が、コア2aの屈折率よりも高く設定されている点である。
このような光放射部5a’の製造方法を説明する。光放射部5a’の屈折率分布を、図5に示すコア2aの屈折率と同一で且つ一様に形成する段階までは、前記第1の実施の形態と同一な製造方法なので、省略する。コア2aの屈折率と同一で一様な屈折率分布を有する光放射部5a’が形成されたら、次に先端部3aに、ドープ材としてEr、Nd、Ho、Tm、Pr、Sm、Dy、Yb、Ti等をドープして、先端部3aの屈折率のみをコア2aの屈折率よりも高い屈折率とする。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、ドープ材の蒸気,若しくはこの蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、前記ドープ材を溶融した低温溶融ガラスプールに光ファイバ2の先端部分を浸漬する方法がある。
次に、光照射プローブ7における光の伝搬と放射を、図6を参照して説明する。図6に示すように、光ファイバ2から光放射部5a’へと伝搬した光は、屈折率分布の変化により波面は平面から徐々に曲面状へと変換され、そのモードは伝搬モードから放射モードへと変換される。更に、先端部3aの屈折率により前記波面は更に曲面状に変換されて、伝搬光はレンズ部3に入射し、外部照射光としてレンズ部3からプローブ7の外部へと出射される。従って、光放射部5a’の内部での伝搬光の発散が、第1の実施の形態と比べて更に広げられるため、第1の実施の形態に比べて、外部照射光の照射範囲を更に拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第3の実施の形態>
次に、本発明の第3の実施の形態を図7〜9を参照して説明する。図7に、本発明に係る光照射プローブ8の第3の実施形態を模式的に表す。図8は図7のC−C面で切断した断面図であり、図9は本実施の形態の光照射プローブ8における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第3の実施の形態が前記各実施の形態と異なる点は、光ファイバ2の軸方向におけるコア2aの領域が光ファイバ2の内部で終端されて、光ファイバ2の端部に光放射部5bが、光ファイバ2の軸方向と平行に一体形成されており、その光放射部5bの屈折率分布(屈折率空間分布)が、前記クラッド2bの屈折率と同一で且つ一様に形成される点である。
この様な光ファイバ2の製造方法を図10を参照しながら説明する。まず、光ファイバの端部を加熱により溶融させ表面張力により水滴状にする。これにより、光ファイバの端部はクラッド2bの屈折率と同一で一様な屈折率分布となる。次に、水滴状となっている光ファイバの端部を、図中の一点鎖線まで研削・研磨加工することにより、レンズ部3を形成して、光放射部5bを光ファイバ2の端部側に有するように形成する。
次に、光照射プローブ8における光の伝搬と放射を、図9を参照して説明する。図9に示すように、光ファイバ2から光放射部5bへと伝搬した光は、コア2aの領域の終端によりそのモードが伝搬モードから放射モードへと変換されて行き、波面が平面から徐々に曲面状に変換される。更に、レンズ部3に入射した伝搬光は、外部放射光としてレンズ部3からプローブ8の外部へと出射される。光放射部5bの内部で伝搬光のモードは放射モードに変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第4の実施の形態>
次に、本発明の第4の実施の形態を図11〜13を参照して説明する。図11に、本発明に係る光照射プローブ9の第4の実施形態を模式的に表す。図12は図11のD−D面で切断した断面図であり、図13は本実施の形態の光照射プローブ9における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第4の実施の形態が前記各実施の形態、特に第3の実施の形態と異なる点は、光放射部5b’の屈折率(屈折率空間分布)を、クラッド2bの屈折率と同一で且つ一様に形成した上で、光放射部5b’の内部のレンズ部3側の先端部3bの屈折率が、クラッド2bの屈折率よりも高く設定されている点である。
このような光放射部5b’の製造方法を説明する。光放射部5b’の屈折率分布を、図12に示すクラッド2bの屈折率と同一で且つ一様に形成する段階までは、前記第3の実施の形態と同一な製造方法なので、省略する。クラッド2bの屈折率と同一で一様な屈折率分布を有する光放射部5b’が形成されたら、次に先端部3bに、ドープ材としてEr、Nd、Ho、Tm、Pr、Sm、Dy、Yb、Ti等をドープして、先端部3bの屈折率のみをクラッド2bの屈折率よりも高い屈折率とする。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、ドープ材の蒸気,若しくはこの蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、前記ドープ材を溶融した低温溶融ガラスプールに光ファイバの端部を浸漬する方法がある。
次に、光照射プローブ9における光の伝搬と放射を、図13を参照して説明する。図13に示すように、光ファイバ2から光放射部5b’へと伝搬した光は、屈折率分布の変化により波面は平面から徐々に曲面状へと変換され、そのモードは伝搬モードから放射モードへと変換される。更に、先端部3bの屈折率により前記波面は更に曲面状に変換されて、伝搬光はレンズ部3に入射し、外部放射光としてレンズ部3からプローブ9の外部へと出射される。従って、光放射部5b’の内部での伝搬光の発散が、第3の実施の形態と比べて更に広げられるため、第3の実施の形態に比べて、外部照射光の照射範囲を更に拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第5の実施の形態>
次に、本発明の第5の実施の形態を図14〜16を参照して説明する。図14に、本発明に係る光照射プローブ10の第5の実施形態を模式的に表す。図15は図14のE−E面で切断した断面図であり、図16は本実施の形態の光照射プローブ10における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第5の実施の形態が前記各実施の形態(特に、第4の実施の形態)と異なる点は、光放射部5b”の屈折率(屈折率空間分布)を、クラッド2bの屈折率と同一で且つ一様に形成した上で、光放射部5b”のレンズ部側の先端部3b’の屈折率がクラッド2bの屈折率よりも高く設定され、なおかつ先端部3b’の表面(即ち、レンズ部3)に近づくにつれて漸次、屈折率が高く設定される点である。
このような光放射部5b”の製造方法を説明する。光放射部5b”の屈折率分布を、図15に示すクラッド2bの屈折率と同一で且つ一様に形成する段階までは、前記第3の実施の形態と同一な製造方法なので、省略する。クラッド2bの屈折率と同一で一様な屈折率分布を有する光放射部5b”が形成されたら、次に先端部3b’に、ドープ材としてEr、Nd、Ho、Tm、Pr、Sm、Dy、Yb、Ti等をドープすると共にその濃度を調節する。これにより、先端部3b’の屈折率のみをクラッド2bの屈折率よりも高く、且つ、漸次先端部3b’の表面に近づくに伴い段階的に高くなる屈折率とする。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、ドープ材の蒸気,若しくはこの蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、前記ドープ材を溶融した低温溶融ガラスプールに先端部3b’を浸漬する方法がある。
次に、光照射プローブ10における光の伝搬と放射を、図16を参照して説明する。図16に示すように、光ファイバ2から光放射部5b”へと伝搬した光は、屈折率分布の変化により波面は平面から徐々に曲面状へと変換され、そのモードは伝搬モードから放射モードへと変換される。更に、先端部3b’の屈折率により前記波面は更に曲面状に変換される。第5の実施の形態では、先端部3b’表面に近づくに従い、その屈折率が漸次高くなるように形成されているため、第4の実施の形態に比べて、レンズ部3からの外部へと出射される照射光の波面における曲面は更にきつくなって、外部照射光の照射範囲が更に拡大される。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第6の実施の形態>
次に、本発明の第6の実施の形態を図17〜19を参照して説明する。図17に、本発明に係る光照射プローブ11の第6の実施形態を模式的に表す。図18は図17のF−F面で切断した断面図であり、図19は本実施の形態の光照射プローブ11における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第6の実施の形態が前記各実施の形態と異なる点は、光ファイバ2の端部側に、コア2a及び/又は、クラッド2bの屈折率とは異なる屈折率(屈折率空間分布)を有する透光性のある光学部材12を、光放射部5cとして光照射プローブ11が具備する点である。光学部材12の屈折率は一様に設定される。光学部材12の外形は、光ファイバ2のクラッド2b外径と同一な外径を有する円周状に形成され、更にその端部には、レンズ部3が形成される。光学部材12の外周面は、光ファイバ2と同様にカニューレ4の内部に挿入され、ハーメチックシール6により気密封止される。
次に、光照射プローブ11における光の伝搬と放射を、図19を参照して説明する。図19に示すように、光ファイバ2から光放射部5cへと伝搬した光は、光ファイバ2と光放射部5cとの屈折率の変化により、光学部材12への入射時に伝搬モードが放射モードに変わり波面が平面から曲面状に変換され、光学部材12の内部で発散される。そして伝搬光はレンズ部3に入射し、外部放射光としてレンズ部3からプローブ11の外部へと出射される。
光学部材12の内部で伝搬光が放射モードへと変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、光学部材12はその硬度(例えばモース硬度等)が、光ファイバ2の硬度よりも高く、摩耗の生じにくい材料が望ましい。このように光ファイバ2よりも硬い材料を光ファイバ2先端に備えることにより、光照射プローブ11の主な用途である手術用に適した硬度の材料を用いることが出来るからである。
更に、光放射部であるレンズ部3に伝搬光が到達する前に、光学部材12の内部で伝搬光を放射させて外部照射光の照射範囲を広げているため、光の後方散乱を抑止することが可能となる。
<第7の実施の形態>
次に、本発明の第7の実施の形態を図20〜22を参照して説明する。図20に、本発明に係る光照射プローブ13の第7の実施形態を模式的に表す。図21は図20のG−G面で切断した断面図であり、図22は本実施の形態の光照射プローブ13における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第7の実施の形態が前記各実施の形態、特に第6の実施の形態と異なる点は、光ファイバ2の端部に、光学部材12を光放射部5c’として光照射プローブ13が有すると共に、光学部材12の先端部側12aの屈折率と、光ファイバの端部側12bの屈折率とが、互いに異なった屈折率空間分布とした点である。前記第6の実施の形態と同様、光学部材12を光ファイバ2の端部に設け、更に、光学部材12の先端部側12a(即ち、レンズ部3側)に、ドープ材としてMgO,Er,Nd,Ho,Tm,Pr,Sm,Dy,Yb,Ti等をドープすることにより、先端部側12aの屈折率を光ファイバの端部側12bの屈折率よりも高く設定する。又は、ドープ後の先端部側12a部分を加熱することにより、前記各ドープ材を放出することにより、光ファイバの端部側12bの屈折率を、先端部側12aの屈折率よりも高く設定することで光学部材12の内部の屈折率を変化させる。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、ドープ材の蒸気,若しくはこの蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、前記ドープ材を溶融した低温溶融ガラスプールに光ファイバ2の先端部分を浸漬する方法がある。
次に、光照射プローブ13における光の伝搬と放射を、図22を参照して説明する。図22に示すように、光ファイバ2から光放射部5c’へと伝搬した光は、光ファイバ2と光放射部5c’との屈折率の変化により、光学部材12への入射時に伝搬モードが放射モードに変わり波面が平面から曲面状に変換され、光学部材12の内部で発散される。
更に、光学部材12の内部の屈折率変化により前記波面はレンズ部3に伝搬するに従って更に曲面状に変換された状態で伝搬光がレンズ部3に入射し、外部放射光としてレンズ部3からプローブ13の外部へと出射される。従って、光放射部5c’の内部での伝搬光の発散が、第6の実施の形態と比べて更に広げられるため、第6の実施の形態に比べて、外部照射光の照射範囲を更に拡大することが可能となる。
第6の実施の形態同様、光学部材は、その硬度(例えばモース硬度等)が、光ファイバ2の硬度よりも高く、摩耗の生じにくい材料が望ましい。
更に、光放射部であるレンズ部3に伝搬光が到達する前に、光学部材12の内部で伝搬光を放射させて外部照射光の照射範囲を広げているため、光の後方散乱を抑止することが可能となる。
<第8の実施の形態>
次に、本発明の第8の実施の形態を図23〜25を参照して説明する。図23に、本発明に係る光照射プローブ14の第8の実施形態を模式的に表す。図24は図23のH−H面で切断した断面図であり、図24は本実施の形態の光照射プローブ14における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第8の実施の形態が前記各実施の形態と異なる点は、本実施形態が、クラッド2bの一部2b’を前記コア2aの屈折率よりも高く設定した屈折率空間分布を有する光放射部5dを形成し、光ファイバ2の端部側に光放射部5dを光照射プローブ14が具備する点である。クラッド2b’部分の屈折率引き上げ方法としては、溶融安息香酸かMgOをクラッド2b’部分にドープし、プロトン交換により屈折率を上げるか、ドープ材としてEr、Nd、Ho、Tm、Pr、Sm、Dy、Yb、Ti等をドープして屈折率を上げる手段が挙げられる。ドープ法としては、イオン注入後に光ファイバの端部をアニール処理するか、前記端部をドープ材の蒸気,もしくはその蒸気をプラズマ化したプラズマ雰囲気中に暴露するか、前記ドープ材を溶融した低温溶融ガラスプールに光ファイバ2の先端部分を浸漬する方法がある。
クラッド2b’部分の形成後、光ファイバの端部を所定寸法だけ平面カットし、カットした端部からの放射光の広がり角が一定の範囲に収まるように、クラッド2b’部分から前記カット面位置を、放射線状に研削・研磨して光放射部5dの先端部を丸め加工し、レンズ部3を形成する。以上により、屈折率が変更されたクラッド2b’部分からレンズ部3までが光放射部5dとして形成され、それ以外のクラッド2bとコア2aとから光ファイバ2が一体形成される。放射光の広がり角が一定の範囲に収まるように、カット面位置を放射線状に研削・研磨するので、外部照射光のばらつきを解消することが可能となる。
次に、光照射プローブ14における光の伝搬と放射を、図25を参照して説明する。
図25に示すように、光ファイバ2からクラッド2b’に伝搬した光は、クラッド2b’の屈折率変化により全反射が解消されて、モードが伝搬モードから放射モードへと変換されると共に、波面が平面から曲面状に変換されて、光放射部5dの内部で拡散する。光がレンズ部3に伝搬するに従い、クラッドの屈折率は再度、元の屈折率(クラッド2bの屈折率)に戻るが、既に光はクラッド2b’に伝搬した時点で拡散されているため、光放射部5dのクラッド2b部分での伝搬モード変換機能は殆ど光に作用しない。レンズ部3に入射した伝搬光は、外部放射光としてプローブ14の外部へと出射されるが、光放射部5dの内部で光のモードは放射モードに変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第9の実施の形態>
次に、本発明の第9の実施の形態を図26〜28を参照して説明する。図26に、本発明に係る光照射プローブ15の第9の実施形態を模式的に表す。図27は図26のI−I面で切断した断面図であり、図28は本実施の形態の光照射プローブ15における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第9の実施の形態が前記各実施の形態と異なる点は、コア2a、及び、コア2aの屈折率より低い屈折率を有するクラッド2bが前記コア2aの周囲を囲むことで構成される光ファイバ2を切断し、透過拡散板16が挿入,配置された点である。透過拡散板16を配置したことに伴い、光放射部5fは、前記透過拡散板16と、光ファイバ2から切断されレンズ部3が形成された先端部分5eとで構成される。先端部分5eは光ファイバ2と同一な屈折率分布を有し、その先端部にレンズ部3が形成される。このような光ファイバ2と光放射部5fとに区別される屈折率空間分布を光照射プローブ15は有する。
透過拡散板16の材料としては 乳白色ガラス板が好適である。透過拡散板16の外形は光ファイバ2外形と同一に成形され、その外径はクラッド2b外径と同一寸法に設定される。透過拡散板16を光ファイバ2と先端部分5eとの間に挿入することにより、光照射プローブ15は光導波路間に拡散領域が設けられる構成となる。
次に、光照射プローブ15における光の伝搬と放射を、図28を参照して説明する。図28に示すように、光ファイバ2から光放射部5fへと伝搬した光は、透過拡散板16に入射するとその作用により拡散され、そのモードが伝搬モードから放射モードへと変換され、波面が平面から徐々に曲面状に変換される。更に、レンズ部3に入射した伝搬光は、外部放射光としてレンズ部3からプローブ15の外部へと出射される。光放射部5fの内部で伝搬光のモードは放射モードに変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、光放射部であるレンズ部3に伝搬光が到達する前に、透過拡散板16で伝搬光は拡散されてその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第10の実施の形態>
次に、本発明の第10の実施の形態を図29〜31を参照して説明する。図29に、本発明に係る光照射プローブ15’の第10の実施形態を模式的に表す。図30は図29のN−N面で切断した断面図であり、図31は本実施の形態の光照射プローブ15’における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第10の実施の形態が前記各実施の形態、特に第9の実施の形態と異なる点は、コア2a、及び、コア2aの屈折率より低い屈折率を有するクラッド2bが前記コア2aの周囲を囲むことで構成される光ファイバ2の間に、前記透過拡散板16にかえて、クラッド2b及びコア2aに亘って多数の空孔65aが形成された拡散部65を光照射プローブ15’が備える点である。拡散部65を含むことに伴い、光放射部5f’は前記拡散部65と先端部分5e’とで構成される。先端部分5e’は光ファイバ2と同一な屈折率分布を有し、その先端部にレンズ部3が形成される。このような光ファイバ2と光放射部5f’とに区別される屈折率空間分布を光照射プローブ15’は有する。
空孔65aは、光ファイバ2の軸方向に亘っても形成されており、それぞれの空孔65aは、何れもほぼ同じ直径を有する円形断面状に形成される。空孔65aの内部は空気が充填されるか、真空状態に保持されるため、空孔65aの内部の屈折率はクラッド2bの屈折率よりも低く設定される。
このような空孔65aは、フェムト秒レーザ等の超短パルス光を出射して光ファイバ2の内部に集光し、光ファイバ2の内部の集光領域の光ファイバ材が蒸発し空孔箇所が形成されることで、形成される。
次に、光照射プローブ15’における光の伝搬と放射を、図31を参照して説明する。図31に示すように、光ファイバ2から光放射部5f’へと伝搬した光は、拡散部65に入射すると空孔65aの存在により拡散される。空孔65aの屈折率は、クラッド2bよりも低いため、空孔65aで光は広い放射角で放射され、伝搬光のモードは伝搬モードから放射モードへと変換され、波面が平面から徐々に曲面状に変換される。更に、レンズ部3に入射した伝搬光は、外部放射光としてレンズ部3からプローブ15’の外部へと出射される。光放射部5f’内で伝搬光のモードは放射モードに変換されるため、レンズ部3での集光作用は低減され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。
更に、光放射部であるレンズ部3に伝搬光が到達する前に、拡散部65で伝搬光は拡散されてその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第11の実施の形態>
次に、本発明の第11の実施の形態を図32〜35を参照して説明する。図32に、本発明に係る光照射プローブ17の第11の実施形態を模式的に表す。図33は図32のJ−J面で切断した断面図であり、図34は本実施の形態の光照射プローブ17における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第11の実施の形態が前記各実施の形態、特に第3の実施の形態と異なる点は、光放射部5gの屈折率分布(屈折率空間分布)を、クラッド2bの屈折率と同一で且つ一様に形成した上で、光放射部5gの内部に中空箇所5g’が設けられたことである。中空箇所5g’の内部は空気が充填されるか、真空状態に保持する。従って、中空箇所5g’の内部の屈折率はクラッド2bの屈折率よりも低く設定される。
このような光放射部5gの製造方法を説明する。最初に、光ファイバの端部の中心部(コア2a)にフェムト秒レーザを照射して集光し、その集光領域の光ファイバ材が蒸発し中空箇所が形成され、その後、前記光ファイバの端部を加熱により溶融させ、表面張力により水滴状にする(図35参照)。これにより中空箇所5g’を除く光ファイバの端部は、クラッド2bの屈折率と同一で一様な屈折率分布となる。次に、水滴状となっている光ファイバの端部を、図中の一点鎖線まで研削・研磨加工することにより、レンズ部3を形成して、光放射部5gを形成する。
次に、光照射プローブ17における光の伝搬と放射を、図34を参照して説明する。図34に示すように、光ファイバ2から光放射部5gへと伝搬した光は、コア2aの領域の終端によりそのモードが伝搬モードから放射モードへと変換されて行き、波面が平面から徐々に曲面状に変換される。更に、光放射部5gの内部に形成された中空箇所5g’の屈折率は、クラッド2bよりも低いため、中空箇所5g’で光は更に広がって放散され、レンズ部3からプローブ17の外部へと出射される。従って、第3の実施の形態の光照射プローブ8と比べて、外部照射光の照射範囲を更に拡大することが可能となる。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第12の実施の形態>
次に、本発明の第12の実施の形態を図36〜39を参照して説明する。図36に、本発明に係る光照射プローブ18の第12の実施形態を模式的に表す。図37は図36のK−K面で切断した断面図であり、図38は本実施の形態の光照射プローブ18における光の伝搬と放射経路を表す。更に、図39に図36のL−L面で切断した断面図を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第12の実施の形態が前記各実施の形態、特に第11の実施の形態と異なる点は、図39より、光伝搬部として、コアの作用をする中心部2cと、クラッドの作用をする周辺部2d、とから構成された屈折率空間分布を有する光ファイバ2’を用いる点である。光ファイバ2’は石英等から構成され、中心部2cは前記石英等を中実とした構造である。
一方の周辺部2dは、光ファイバ2’の軸方向に延びる複数の中空状の細孔2d’が、中心部2cの周囲を囲むように配置形成されており、その屈折率は中心部2cの屈折率よりも低く設定されるので、光ファイバ2’の内部で光は中心部2cに閉じ込められて伝搬される。
次に、光放射部5gの製造方法を説明する。最初に、光ファイバの端部の中心部2cにフェムト秒レーザを照射する。照射の際、フェムト秒レーザの集光点を中心部2cに合わせ、前記集光点を前記細孔2d’から外すことによって、細孔2d’の部分を中空状態とせず溶融閉塞する。こうして光ファイバの端部の細孔2d’が閉塞されたら、次に光ファイバの端部の中心に、フェムト秒レーザを再度照射して集光し、その集光領域の光ファイバ材が蒸発し中空箇所が形成され中空箇所5g’を形成する。その後、前記光ファイバ2’の端部を加熱により溶融させ、表面張力により水滴状にする(図40参照)。これにより中空箇所5g’を除く光放射部5gが、光ファイバ2’即ち中心部2cの屈折率と同一で一様な屈折率分布となる。次に、水滴状となっている光ファイバの端部を、図中の一点鎖線まで研削・研磨加工することにより、レンズ部3を形成して、光放射部5gを形成する。
次に、光照射プローブ18における光の伝搬と放射を、図38を参照して説明する。図38に示すように、光は光ファイバ2’の図示しない他端側から入射され、中心部2cに閉じ込められて、光ファイバ2’の内部をレンズ部3側に向かって伝搬してくる。光ファイバ2’の内部を伝搬する伝搬光は、伝搬モードに保持されており、その波面は光ファイバ2’の軸方向に対し垂直に且つ平行に保持される。
光ファイバ2’から光放射部5gへと伝搬した光は、屈折率分布の変化によりそのモードが伝搬モードから放射モードへと変換されて、波面が平面から徐々に曲面状に変換される。更に、中空箇所5g’で光は更に広い放射角で放射され、レンズ部3からプローブ18の外部へと出射される。
更に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
<第13の実施の形態>
次に、本発明の第13の実施の形態を図41を参照して説明する。図41は、本発明に係る光照射プローブ25,26,及び27の第13の実施形態を模式的に表す左部分側断面図である。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第13の実施の形態は幾つかの形態が考えられ、図41(a)に示すように光伝搬部である光ファイバ2中に透過拡散板16を設ける形態、同図(c)に示すような光ファイバ2と光放射部5dとの間に透過拡散板16を設ける形態、若しくは、同図(b)に示すような光ファイバ2と光学部材12との間に透過拡散板16を設ける形態がそれぞれ挙げられる。
光照射プローブ25〜27の光の伝搬と放射は、基本的には前記第9の実施形態と同様である。光ファイバ2から光放射部5b,5c,5dへと伝搬した光は、透過拡散板16により拡散されて外部放射光としてレンズ部3からプローブ25,26,27の外部へと出射される。又、光照射プローブ25〜27では、透過拡散板16に加えて、各々光放射部5b,5c,5dも併設されているため、透過拡散板16で拡散された伝搬光が光放射部5b,5c,5dで更に放射されてレンズ部3から出射される。従って、第9の実施の形態の光照射プローブ15と比べて、外部照射光の照射範囲を更に拡大することが可能となる。
更に、光放射部であるレンズ部3に伝搬光が到達する前に、透過拡散板16で伝搬光を放射させて外部照射光の照射範囲を広げているため、光の後方散乱を抑止することが可能となる。
なお、図41(b)の構成を同図(a)の様に、光ファイバ2中に透過拡散板16を設置する構成に変更することは勿論可能である。
図41では、前記第3,第6,及び第8の各実施の形態の光照射プローブに透過拡散板16を設けた形態を示したが、無論、その他の前記各実施の形態(第9の実施の形態除く)の光照射プローブの、光ファイバ中を切断したり、光ファイバと光放射部間を切断して、透過拡散板16を挿入、配置して新たな光照射プローブとしても良い。
<第14の実施の形態>
次に、本発明の第14の実施の形態を図42〜44を参照して説明する。図42に、本発明に係る光照射プローブ19の第14の実施形態を模式的に表し、(a)は平面図,(b)は左部分側断面図,(c)は底面図,(d)は正面図をそれぞれ示している。更に、図43は図42のM−M面で切断した断面図であり、図44は本実施の形態の光照射プローブ19における光の伝搬と放射経路を表す。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
第14の実施の形態が前記各実施の形態、特に第1の実施の形態と異なる点は、光放射部5aの先端部に、レンズ部3にかわって一つの平面20が形成され、前記先端部が鋭利な形状に成形されているという点である。平面20は光伝搬部である光ファイバ2の軸方向に対して非平行に、且つ、90度未満の角度をなして斜めに形成される。従って、光ファイバ2からの光の放射は図44のようになる。
図44に示すように、光ファイバ2の図示しない他端側から入射された光は、光ファイバ2の内部を光放射部5aに向かって伝搬してくる。光ファイバ2の内部を伝搬する伝搬光は、伝搬モードに保持されており、その波面はコア2a軸に対し垂直に且つ平行に保持される。
次に、光ファイバ2から光放射部5aへと光が伝搬すると、屈折率分布の変化によりコア2aの屈折率が漸次広がり、光放射部5aではほぼ同一な屈折率となるため、伝搬光の全反射が解消されて前記波面は平面から徐々に曲面状へと変換される。又、伝搬光のモードは伝搬モードから放射モードへと変換される。更に、光放射部5aの先端部に伝搬した光は、外部放射光としてプローブ19の外部へと出射される。その出射の際、斜めに形成された平面20の面上で外部照射光は屈折し、図44に示すように屈折方向である右斜め下方に向かって照射される。
伝搬光は光放射部5aの内部でそのモードが放射モードに変換され、自由空間での光の伝搬は、なお放射モードに保持される。従って、従来の光照射プローブと比べて、外部照射光の照射範囲を拡大することが可能となる。更に、光放射部先端部に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がるため、光の後方散乱を抑止することが可能となる。
更に、先端部が鋭利な形状に成形されているので、眼底の観察/手術のため眼球に光照射プローブ19を刺し入れると、眼球表面に単純裂傷が与えられる。従って、眼球表面に複雑裂傷を与えることが無く、光照射プローブ19を抜き去った後の眼球の治癒を早めることが可能となる。
平面20の形成は、公知一般的な研削・研磨加工により行う。なお、平面20は前記各実施の形態記載の光照射プローブの光放射部先端部又は光学部材の先端部に、図42と同様な形態で施しても良い。例として、前記第2,第6,第8の各実施の形態の光放射部先端部又は光学部材の先端部に、レンズ部3にかわって平面20を施した光照射プローブの左部分側断面図を図45にそれぞれ示す。
又、光照射プローブ19では1つの平面20を施した光照射プローブを示したが、複数の平面20を光放射部端部又は光学部材の端部に施すように変更しても良い。又、鋭利な形状の別形態として、光放射部の先端を円錐形状に成形しても良い。
<第15の実施の形態>
次に、本発明の第15の実施の形態を図46を参照して説明する。なお、前記各実施形態と同一箇所には同一番号を付し、重複する説明は省略若しくは簡略化して説明する。
図46に示す光照射プローブ21,22が前記各実施の形態と異なる点は、光放射部5aの先端に複数の段差23,24が設けられていることである。本実施の形態で云う段差とは階段状の形状のことを指し、それぞれの段の高低の差分を指している言葉ではないとする。図46(a)が同心円状に円環状の複数の段差23が設けられた光照射プローブ21であり、図46(b)が円弧と平面とで外形が組み合わせられた複数の段差24が設けられた光照射プローブ22である。図46(c)は、同図(b)の側断面図である。
又、光放射面として段差23,24形成部分が光放射部5aの先端に設けられることにより、前記各実施の形態同様、外部照射光の照射範囲の拡大化が可能になると共に、レンズ部3に伝搬光が到達する前に伝搬光はその広がり角が大きくなり外部照射光は照射範囲が広がることで、光の後方散乱を抑止することも出来る。なお段差23,24を、前記各実施の形態記載の光照射プローブの光放射部の先端に、図46と同様な形態で施しても良い。
なお段差23,24にかえて、前記各実施の形態の光照射プローブの光放射部の先端表面を、微細な多数の凹凸形状を有する荒ずり面から成る磨きガラス状に形成し、伝搬光を拡散照射させるように変更しても良い。
<第16の実施の形態>
次に、本発明の第16の実施の形態を、図47を参照しながら説明する。図47は、前記第1〜14の各実施の形態の何れかに記載の光照射プローブを用いた、眼底観察装置又は眼底手術装置28(以下、装置28)の構成を示す説明図である。図中のプローブ29及び30に、前記第1〜15の何れかの実施の形態に記載の光照射プローブを用いることが出来る。この装置28は、特に加齢黄斑変性の治療に用いられる。
装置28は、眼底手術用装置と眼底観察用装置をまとめているので、眼底手術中に眼底観察が実施できる。具体的には装置28は、眼内照明用プローブ29、光凝固用プローブ30、光源部(光源手段)31、眼内観察装置32、眼内モニター部(眼内画像顕像化手段)33を備えている。
眼内照明用プローブ29は、照明用導光ケーブルにより光源部31と接続されている。前記各実施の形態に記載の通り、光ファイバ2又は2’はカニューレ4で覆われており、更にカニューレ4の一部を覆うように図48に示すようにハンドピース34が設けられている。加えて、カニューレ4の先端部、即ち、ハンドピース34から突出している前記カニューレ4の外周面に、リング状に、且つカニューレ4外周面から外側に向かって突き出すように円環部35が設けられる。
光源部31から入力される照明光は、照明用導光ケーブルによりプローブ29に導かれ、プローブ29先端部から出射するようになっている。光照射プローブ29は、前記の通り、レンズ部に伝搬する前の放射や光学部材の内部の放射、光放射部の先端部での放射、又は透過拡散板の拡散により外部照射光の照射範囲が広げられるため、被検眼の内部の広い領域に光を照射することができる。従って、蛍光剤でマーキングを施した細胞・腫瘍・患部の発見が容易となり、蛍光眼底造影による眼底観察を効率的かつ確実に行うことが可能となる。
上記光凝固用プローブ30は、凝固用導光ケーブルにより光源部31と接続されており、眼内照明用プローブ29と同様、ファイバ形状を有している。光源部31から入力される光凝固用の光が、光凝固用プローブ30に導かれ、他方の端部から出射するようになっている。
上記光源部31は、光源制御部(光源制御手段)36、フィルター動作同期部37、光出力安全制御部(光出力安全制御手段)38、アルゴンレーザ光源39、ガイド光用レーザダイオード40、第1レーザダイオード41、光学系42、照明光出力スイッチ、凝固光出力スイッチ、照明・凝固切換スイッチ、レーザ出力検出部43を備えている。
光源制御部36は、手術中に眼底観察できるように、各光源の発光を制御する。フィルター動作同期部37は、眼内観察装置32のフィルター切換部を稼動させてレーザ光濾過フィルター44を光路に挿入させたり外したりする切り換えを行う。この切換制御は、光源部31から出射される光の種類に基づいて実施される。
光出力安全制御部38は、眼内照明用に用いられる各種レーザ光の出力を、安全レベルを越えることがないよう制御している。
上記アルゴンレーザ光源39は、被検眼の内部の眼底の目的部位(手術対象部位)に光凝固用プローブ30の先端部から照射する凝固レーザ光を発する手術用光源であり、クリプトン・レッド、アルゴン・ダイレクト・クリプトン・イエローレーザ等を用いることができる。
第1レーザダイオード41は、照明用光源(可視レーザ光源)であり、フルオレセインを励起して蛍光させる緑色から青色の波長域の可視レーザ光、すなわち眼内を照明するための照明レーザ光を発する。フルオレセインの励起光としては、波長域465nm〜490nmの範囲内のレーザ光を好適に用いることができるため、本実施の形態における可視レーザ光の波長は、約480nmに設定する。
前記照明光出力スイッチおよび凝固光出力スイッチは、何れも光源部31から照明レーザ光または凝固レーザ光を入力するための起動スイッチである。照明・凝固切換スイッチは、光源部31から出射されるレーザ光の種類を切り換えるものであり、眼底手術装置28の各種動作モードを切り換えるモード切換手段ともなっている。
上記眼内観察装置32は、対物レンズ45、変倍レンズ46、フィルター部47、観察光分離部48、接眼レンズ49、撮像鏡50、側視鏡51を備えている。観察光分離部48には、少なくともビームスプリッターが設けられており、対物レンズ45・変倍レンズ46・フィルター部47を介して受光した被検眼からの観察光を接眼レンズ49側、撮像鏡50側、側視鏡51側に分離するようになっている。
眼内観察装置32の光学系は、術者の両目に対応するため2つの光路を形成するように設けられており、各種レンズ等の光学部品については、対物レンズ45を除いてほとんど全て2つの光路に1つずつ設けられている。
眼内モニター部33は、CCDカメラ(撮像手段)52、録画部(画像記録手段)53、表示部(表示手段)54、モニター制御部、を備えている。
以下に、装置28による手術手順を示す。最初に、蛍光検出によるin-situ観測を行う。被験者の肘の静脈から蛍光剤の一種であるフルオレセインを注射後、眼内照明用プローブ29を眼球に刺し入れ、手術用顕微鏡で眼底を観察する。挿入する眼内照明用プローブ29の先端部の位置は、ほぼ眼球挿入孔の直下となっているが、眼内照明用プローブ29には前記のように円環部35が設けられているので、術者が無意識に眼内照明用プローブ29を眼球の内部に過剰に押し込むような事態の発生を回避することができる。円環部35はカニューレ4と一体化した構成となっていても良いし、カニューレ4と別体でも良い。その材質も特に限定されるものではなく、眼内照明用プローブ29の過剰押し込みのストッパーとして機能できるような強度を有し、また被検眼に対して悪影響を与えないような材質であれば良い。
眼内照明用プローブ29には480nmの光を入射する。フルオレセインの蛍光は515nmの波長をピークとして出るので、網膜血管組織が蛍光として現れると同時に脈動も見られる。そこで、公知の眼底造影診断法に従って患部の病変の原因を判断する。眼底造影診断法としては、フルオレセイン蛍光造影による診断や、インドシアニングリーン蛍光造影による診断、又は、光干渉断層による診断が挙げられる。
病変原因を究明後、術者は、照明・凝固切換スイッチを操作して手術単独モードを選択する。これによって、アルゴンレーザ光源39から凝固レーザ光が出力可能な状態となる。術者は眼内照明用プローブ29を眼内より抜出し、光凝固用プローブ30を眼内に挿入する。挿入後、術者はアルゴンレーザ光源39から凝固レーザ光としてクリプトン・レッド、アルゴン・ダイレクト・クリプトン・イエローレーザ等を光凝固用プローブ30を介して、蛍光剤でマーキングを施した細胞・腫瘍・患部に照射して手術を行う。手術方法としては、公知の中心窩外光凝固法や,中心窩光凝固法,光線力学療法,経瞳孔温熱療法等が好適である。
なお、蛍光剤としては、フルオレセイン以外に、蛍光共鳴エネルギー移動を応用した蛍光剤,オレゴングリーン,インドシアニングリーンを用いても良い。
本発明の光照射プローブは、レンズ部に伝搬する前の放射や光学部材の内部の放射、光
放射部の先端部での放射、又は透過拡散板の拡散により外部照射光の照射範囲を広げているため、光の後方散乱を抑止することが可能となる。従って、この光照射プローブを適用した装置28では、光ファイバの端部の後方に位置する体液やリンゲル液中の微細な粒体によるフレヤーの発生を防止することが出来る。これにより、いわゆる「抜け」の良い画像が得られる装置を提供することが可能となる。
<第17の実施の形態>
次に、本発明の第17の実施の形態を、図49を参照しながら説明する。図49は、前記第1〜15の各実施の形態の何れかに記載の光照射プローブを用いた内視鏡55の構成を模式的に示す部分断面図である。図中のプローブ56に、前記第1〜14の何れかの実施の形態に記載の光照射プローブを用いる。
図49より、内視鏡55の光学系は光学シールケース57に収納されている。内視鏡55の先端部では、金属ケース58の内部に、前記光学系、プローブ56、ファイバガイド66、プローブ56を構成する光ファイバ59先端、前記円環部35(図48参照)が具備されている。後部は弾性シース60で作られ、光ファイバ収納パイプ61、リンゲル液注入口62が設けられている。光ファイバ59は光ファイバ収納パイプ61の内部を出し入れされ、それによって光ファイバ59の先端は患部に近づいたり金属ケース58に収納されたりする。光ファイバ59の出し入れは外部からの押し込みと引っ張りにより行う。光ファイバ59の出し入れに伴い、リンゲル液は追加注入されたり、溢出廃棄されたりする。光学系には、レンズ63とカメラ64が含まれ、カメラ64はCCDやCMOSによる電気信号出力の出来る物が、その場観察のためには好ましい。
本発明の光照射プローブは、光ファイバの内部や光学部材の内部の放射、又は透過拡散
板の放射により外部照射光の照射範囲を広げているため、光の後方散乱を抑止することが可能となる。従って、この光照射プローブを適用した装置(内視鏡55)では、光ファイバ59の端部の後方に位置する体液やリンゲル液中の微細な粒体によるフレヤーの発生を防止することが出来る。これにより、いわゆる「抜け」の良い画像が得られる装置を提供することが可能となる。
更に、本発明の光照射プローブに依れば、外部照射光の照射範囲を広く確保することが出来るので、蛍光剤でマーキングを施した細胞・腫瘍・患部の発見が容易となる。
本発明の光照射プローブを、被検者の眼球観察や眼科手術用の装置、又は内視鏡等に用いることにより、広い照射範囲で光を特定細胞や罹患細胞、腫瘍、患部を照らすことが可能となるので、蛍光剤でマーキングを施した細胞や腫瘍、患部等の検出が容易となる。
(a) 本発明に係る光照射プローブの第1の実施形態を模式的に表す平面図。 (b) 同第1の実施形態を模式的に表す左部分側断面図。 (c) 同第1の実施形態を模式的に表す正面図。 図1(a)をA−A面で切断した断面図。 図1の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第2の実施形態を模式的に表す平面図。 (b) 同第2の実施形態を模式的に表す左部分側断面図。 (c) 同第2の実施形態を模式的に表す正面図。 図4(a)をB−B面で切断した断面図。 図4の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第3の実施形態を模式的に表す平面図。 (b) 同第3の実施形態を模式的に表す左部分側断面図。 (c) 同第3の実施形態を模式的に表す正面図。 図7(a)をC−C面で切断した断面図。 図7の光照射プローブにおける光の伝搬と放射経路を表す模式図。 図7の光照射プローブに係る光ファイバの屈折率構造の製造方法を示す 説明図。 (a) 本発明に係る光照射プローブの第4の実施形態を模式的に表す平面図。 (b) 同第4の実施形態を模式的に表す左部分側断面図。 (c) 同第4の実施形態を模式的に表す正面図。 図11(a)をD−D面で切断した断面図。 図11の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第5の実施形態を模式的に表す平面図。 (b) 同第5の実施形態を模式的に表す左部分側断面図。 (c) 同第5の実施形態を模式的に表す正面図。 図14(a)をE−E面で切断した断面図。 図14の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第6の実施形態を模式的に表す平面図。 (b) 同第6の実施形態を模式的に表す左部分側断面図。 (c) 同第6の実施形態を模式的に表す正面図。 図17(a)をF−F面で切断した断面図。 図17の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第7の実施形態を模式的に表す平面図。 (b) 同第7の実施形態を模式的に表す左部分側断面図。 (c) 同第7の実施形態を模式的に表す正面図。 図20(a)をG−G面で切断した断面図。 図20の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第8の実施形態を模式的に表す平面図。 (b) 同第8の実施形態を模式的に表す左部分側断面図。 (c) 同第8の実施形態を模式的に表す正面図。 図23(a)をH−H面で切断した断面図。 図23の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第9の実施形態を模式的に表す平面図。 (b) 同第9の実施形態を模式的に表す左部分側断面図。 (c) 同第9の実施形態を模式的に表す正面図。 図26(a)をI−I面で切断した断面図。 図26の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第10の実施形態を模式的に表す平面図。 (b) 同第10の実施形態を模式的に表す左部分側断面図。 (c) 同第10の実施形態を模式的に表す正面図。 図29(a)をN−N面で切断した断面図。 図29の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 本発明に係る光照射プローブの第11の実施形態を模式的に表す平面図。 (b) 同第11の実施形態を模式的に表す左部分側断面図。 (c) 同第11の実施形態を模式的に表す正面図。 図32(a)をJ−J面で切断した断面図。 図32の光照射プローブにおける光の伝搬と放射経路を表す模式図。 図32の光照射プローブに係る光放射部の屈折率構造の製造方法を示 す説明図。 (a) 本発明に係る光照射プローブの第12の実施形態を模式的に表す平面図。 (b) 同第12の実施形態を模式的に表す左部分側断面図。 (c) 同第12の実施形態を模式的に表す正面図。 図36(a)をK−K面で切断した断面図。 図36の光照射プローブにおける光の伝搬と放射経路を表す模式図。 図36(a)をL−L面で切断した断面図。 図36の光照射プローブに係る光ファイバの屈折率構造の製造方法を示 す説明図。 本発明に係る光照射プローブの第13の実施形態を模式的に表す左側面 図。 (a) 本発明に係る光照射プローブの第14の実施形態を模式的に表す平面図。 (b) 同第14の実施形態を模式的に表す左部分側断面図。 (c) 同第14の実施形態を模式的に表す底面図。 (d) 同第14の実施形態を模式的に表す正面図。 図42(a)をM−M面で切断した断面図。 図42の光照射プローブにおける光の伝搬と放射経路を表す模式図。 (a) 第2の実施の形態の光放射部の端部に平面を施した光照射プローブの左部分側断面図。 (b) 第6の実施の形態の光学部材の端部に平面を施した光照射プローブの左部分側断面図。 (c) 第8の実施の形態の光放射部の端部に平面を施した光照射プローブの左部分側断面図。 (a) 本発明に係る光照射プローブの第15の実施形態を模式的に表す左部分側断面図。 (b) 前記第15の実施形態の別形態を模式的に表す左部分側断面図。 (c) 同図(b)の側断面図。 前記各実施の形態の何れかに記載の光照射プローブを用いた、眼底観察 又は眼底手術装置の構成を示す説明図。 カニューレにハンドピースと円環部が設けられた本発明の光照射プロー ブを模式的に表す左部分側断面図。 前記各実施の形態の何れかに記載の光照射プローブを用いた内視鏡の構 成を模式的に示す部分断面図。 (a) 従来の光照射プローブの部分側断面図。 (b) 同図(a)に対応する正面図。 図50の光照射プローブにおける後方散乱光の発生を表す説明図。
符号の説明
1,7,8,9,10,11,13,14,15,15’,17,18,19,21,22,25,26,27 光照射プローブ
2,2’,59 光ファイバ
2a コア
2b,2b’ クラッド
2c 中心部
2d 周辺部
2d’ 細孔
3 レンズ部
3a,3b,3b’ 先端部
4 カニューレ
5a,5a’,5b,5b’,5b”,5c,5c’,5d,5f,5f’,5g 光放射部
5e 先端部分
5g’ 中空箇所
6 ハーメチックシール
12 光学部材
12a 先端部側
12b 光ファイバの端部側
16 透過拡散板
20 平面
23,24 段差
28 眼底観察装置又は眼底手術装置
29 眼内照明用プローブ
30 光凝固用プローブ
31 光源部
32 眼内観察装置
33 眼内モニター部
34 ハンドピース
35 円環部
36 光源制御部
37 フィルター動作同期部
38 光出力安全制御部(光出力安全制御手段)
39 アルゴンレーザ光源
40 ガイド光用レーザダイオード
41 第1レーザダイオード
42 光学系
43 レーザ出力検出部
44 レーザ光濾過フィルター
45 対物レンズ
46 変倍レンズ
47 フィルター部
48 観察光分離部
49 接眼レンズ
50 撮像鏡
51 側視鏡
52 CCDカメラ(撮像手段)
53 録画部(画像記録手段)
54 表示部(表示手段)
55 内視鏡
56 プローブ
57 光学シールケース
58 金属ケース
60 弾性シース
61 光ファイバ収納パイプ
62 リンゲル液注入口
63 レンズ
64 カメラ
65 拡散部
65a 空孔
66 ファイバガイド

Claims (29)

  1. 光伝搬部と光放射部とを具備し、前記光放射部の屈折率空間分布が前記光伝搬部の屈折率空間分布と異なることを特徴とする光照射プローブ。
  2. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記コアの屈折率と同一で且つ一様な屈折率分布を有する構造であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  3. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記コアの屈折率と同一で且つ一様な屈折率分布を有すると共に、先端部が前記コアの屈折率よりも高い屈折率を有する構造であり、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  4. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記クラッドの屈折率と同一で且つ一様な屈折率分布を有する構造であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  5. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、先端部の屈折率が前記クラッドの屈折率よりも高く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  6. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、先端部の屈折率が前記クラッドの屈折率よりも高く、且つ、前記先端部の屈折率が前記先端部表面に近づくにつれて漸次高くなり、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  7. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記コア及び/又は前記クラッドの屈折率と異なる屈折率を有し、且つ透光性のある光学部材であると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  8. 請求項7記載の光照射プローブにおいて、前記光放射部が、前記コア及び/又は前記クラッドの屈折率と異なる一様な屈折率を有することを特徴とする光照射プローブ。
  9. 請求項7記載の光照射プローブにおいて、
    前記光放射部の硬度が、前記光ファイバの硬度よりも高いことを特徴とする光照射プローブ。
  10. 請求項8記載の光照射プローブにおいて、
    前記光放射部の硬度が、前記光ファイバの硬度よりも高いことを特徴とする光照射プローブ。
  11. 請求項7又は9の何れかに記載の光照射プローブにおいて、
    前記光放射部の、先端部側の屈折率と前記光ファイバの端部側の屈折率とが異なることを特徴とする光照射プローブ。
  12. 請求項11記載の光照射プローブにおいて、
    前記光ファイバの端部側の屈折率が、前記先端部側の屈折率よりも高く設定されることを特徴とする光照射プローブ。
  13. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記コアと、一部において前記コアの屈折率よりも高い屈折率を有するクラッドが前記コアの周囲を囲むことで構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  14. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が、透過拡散板と、前記光ファイバと同一の屈折率分布を有する先端部分とにより構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  15. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が、内部に空孔が形成された拡散部と、前記光ファイバと同一の屈折率分布を有する先端部分とにより構成されると共に、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  16. 請求項1記載の光照射プローブにおいて、前記光伝搬部がコア及び前記コアの屈折率より低い屈折率を有するクラッドが前記コアの周囲を囲む構成を有する光ファイバであり、
    前記光放射部が前記クラッドの屈折率と同一の屈折率を有すると共に、内部に中空箇所が設けられ、前記中空箇所の内部の屈折率が前記クラッドの屈折率よりも低く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  17. 請求項1記載の光照射プローブにおいて、前記光伝搬部が光を閉じ込めて伝搬する中心部と、前記中心部の周囲に配置形成された複数の細孔から構成されると共に前記細孔の屈折率が前記中心部の屈折率よりも低く設定されてなる周辺部とから構成される光ファイバであり、
    前記光放射部が前記中心部の屈折率と同一の屈折率分布を有すると共に、内部に中空箇所が設けられ、且つ、前記中空箇所の内部の屈折率が前記中心部の屈折率よりも低く、更に前記光放射部が前記光ファイバの端部側に具備されることを特徴とする光照射プローブ。
  18. 前記請求項1乃至17の何れかに記載の光照射プローブにおいて、
    前記光伝搬部と前記光放射部の間か、又は、前記光伝搬部中に、透過拡散板が設けられていることを特徴とする光照射プローブ。
  19. 前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
    前記光放射部の先端に、1つ又は複数の平面が、前記光伝搬部の軸方向に対して非平行に且つ90度未満の角度をなして形成されていることを特徴とする光照射プローブ。
  20. 前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
    前記光放射部の先端が、円錐形状に成形されていることを特徴とする光照射プローブ。
  21. 前記請求項1乃至18の何れかに記載の光照射プローブにおいて、
    前記光放射部の先端に、複数の段差が設けられていることを特徴とする光照射プローブ。
  22. 前記請求項21記載の光照射プローブにおいて、
    前記段差が同心円状に設けられていることを特徴とする光照射プローブ。
  23. 前記請求項1乃至20の何れかに記載の光照射プローブにおいて、
    前記光放射部の先端表面が、凹凸形状に形成されていることを特徴とする光照射プローブ。
  24. 前記請求項2乃至23の何れかに記載の光照射プローブにおいて、
    少なくとも前記光ファイバの外周面にカニューレが装着されることを特徴とする光照射プローブ。
  25. 前記請求項24に記載の光照射プローブにおいて、
    前記光ファイバの外周面又は前記光放射部の外周面の何れかと、前記カニューレの内周面との間が、ハーメチックシールにより結合されることを特徴とする光照射プローブ。
  26. 前記請求項24又は25の何れかに記載の光照射プローブと、前記光照射プローブに光を入力するために接続されている光源部とを備えたことを特徴とする眼底観察装置又は眼底手術装置。
  27. 前記請求項24又は25の何れかに記載の光照射プローブと、前記光照射プローブに光を入力するために接続されている光源部と、被検眼からの光を受光して眼内を観察する眼内観察装置とを備えたことを特徴とする眼底観察装置又は眼底手術装置。
  28. 前記請求項24又は25の何れかに記載の光照射プローブを備えたことを特徴とする内視鏡。
  29. 前記請求項26乃至28の何れかに記載の、眼底観察,眼底手術装置又は内視鏡において、前記カニューレの外周面から外側に、前記カニューレの外周面に円環部が設けられることを特徴とする眼底観察装置,眼底手術装置又は内視鏡。
JP2006089828A 2006-03-29 2006-03-29 光照射プローブ Expired - Fee Related JP4997364B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089828A JP4997364B2 (ja) 2006-03-29 2006-03-29 光照射プローブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089828A JP4997364B2 (ja) 2006-03-29 2006-03-29 光照射プローブ

Publications (2)

Publication Number Publication Date
JP2007260192A true JP2007260192A (ja) 2007-10-11
JP4997364B2 JP4997364B2 (ja) 2012-08-08

Family

ID=38633764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089828A Expired - Fee Related JP4997364B2 (ja) 2006-03-29 2006-03-29 光照射プローブ

Country Status (1)

Country Link
JP (1) JP4997364B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226156A (ja) * 2008-03-25 2009-10-08 Oita Univ 眼内照明用プローブ
WO2011125972A1 (ja) * 2010-04-06 2011-10-13 株式会社Cadenz 観察装置及び観察方法
KR20140027369A (ko) * 2011-05-06 2014-03-06 알콘 리서치, 리미티드 경사진 단부면을 지닌 광섬유를 포함하는 조명 미세수술용 기구
JP2014531257A (ja) * 2011-09-23 2014-11-27 アルコン リサーチ, リミテッド 方向付けられた光を有する眼内照明器
JP2015097569A (ja) * 2013-11-18 2015-05-28 住友電気工業株式会社 光干渉断層撮像用光プローブ及びその製造方法
US10120115B2 (en) 2016-10-14 2018-11-06 Nichia Corporation Illumination device
US10307290B2 (en) 2015-07-13 2019-06-04 Novartis Ag Vitreous cutter with integrated illumination system
WO2019229840A1 (ja) * 2018-05-29 2019-12-05 株式会社ニューロシューティカルズ 眼内照明装置
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210607A (ja) * 1985-07-08 1987-01-19 Sumitomo Electric Ind Ltd 光フアイバの出射端構造
JPS6262306A (ja) * 1985-09-13 1987-03-19 Alps Electric Co Ltd プラスチツク光フアイバおよびその端面加工方法
JPH02213804A (ja) * 1989-02-15 1990-08-24 Norio Daikuzono レーザ光出射装置
JPH03289607A (ja) * 1989-12-29 1991-12-19 Mochida Pharmaceut Co Ltd レーザプローブおよびその製造方法
JPH07148108A (ja) * 1993-09-13 1995-06-13 United States Surgical Corp 光学トロカール
JPH09236707A (ja) * 1995-10-31 1997-09-09 Indigo Medical Inc 光ファイバ用の光拡散装置,光ファイバの製造と使用方法,および光ファイバから光を拡散するための装置
JP2003111789A (ja) * 2001-10-03 2003-04-15 Japan Science & Technology Corp 眼内照明用プローブおよび眼科手術用装置
JP2006014776A (ja) * 2004-06-30 2006-01-19 Manii Kk 光ファイバーの加工方法及びレーザ光照射装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210607A (ja) * 1985-07-08 1987-01-19 Sumitomo Electric Ind Ltd 光フアイバの出射端構造
JPS6262306A (ja) * 1985-09-13 1987-03-19 Alps Electric Co Ltd プラスチツク光フアイバおよびその端面加工方法
JPH02213804A (ja) * 1989-02-15 1990-08-24 Norio Daikuzono レーザ光出射装置
JPH03289607A (ja) * 1989-12-29 1991-12-19 Mochida Pharmaceut Co Ltd レーザプローブおよびその製造方法
JPH07148108A (ja) * 1993-09-13 1995-06-13 United States Surgical Corp 光学トロカール
JPH09236707A (ja) * 1995-10-31 1997-09-09 Indigo Medical Inc 光ファイバ用の光拡散装置,光ファイバの製造と使用方法,および光ファイバから光を拡散するための装置
JP2003111789A (ja) * 2001-10-03 2003-04-15 Japan Science & Technology Corp 眼内照明用プローブおよび眼科手術用装置
JP2006014776A (ja) * 2004-06-30 2006-01-19 Manii Kk 光ファイバーの加工方法及びレーザ光照射装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226156A (ja) * 2008-03-25 2009-10-08 Oita Univ 眼内照明用プローブ
WO2011125972A1 (ja) * 2010-04-06 2011-10-13 株式会社Cadenz 観察装置及び観察方法
JP4852173B1 (ja) * 2010-04-06 2012-01-11 株式会社Cadenz 観察装置及び観察方法
US9080974B2 (en) 2010-04-06 2015-07-14 Seventh Dimension Design, Inc. Observation device and method of observing
KR101631654B1 (ko) * 2011-05-06 2016-06-17 알콘 리서치, 리미티드 경사진 단부면을 지닌 광섬유를 포함하는 조명 미세수술용 기구
KR20140027369A (ko) * 2011-05-06 2014-03-06 알콘 리서치, 리미티드 경사진 단부면을 지닌 광섬유를 포함하는 조명 미세수술용 기구
JP2014519869A (ja) * 2011-05-06 2014-08-21 アルコン リサーチ, リミテッド 斜めの端面を有する光ファイバを含む照明顕微手術器具
US9561085B2 (en) 2011-05-06 2017-02-07 Alcon Research Ltd. Illuminated microsurgical instrument including optical fiber with beveled end face
JP2016073685A (ja) * 2011-05-06 2016-05-12 アルコン リサーチ, リミテッド 斜めの端面を有する光ファイバを含む照明顕微手術器具
JP2014531257A (ja) * 2011-09-23 2014-11-27 アルコン リサーチ, リミテッド 方向付けられた光を有する眼内照明器
JP2015097569A (ja) * 2013-11-18 2015-05-28 住友電気工業株式会社 光干渉断層撮像用光プローブ及びその製造方法
US10307290B2 (en) 2015-07-13 2019-06-04 Novartis Ag Vitreous cutter with integrated illumination system
US10120115B2 (en) 2016-10-14 2018-11-06 Nichia Corporation Illumination device
WO2019229840A1 (ja) * 2018-05-29 2019-12-05 株式会社ニューロシューティカルズ 眼内照明装置
JPWO2019229840A1 (ja) * 2018-05-29 2021-04-30 株式会社ニューロシューティカルズ 眼内照明装置
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11931296B2 (en) 2019-04-05 2024-03-19 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing

Also Published As

Publication number Publication date
JP4997364B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4997364B2 (ja) 光照射プローブ
US8139911B2 (en) Light-illuminating probe and fundus observing apparatus, fundus surgery apparatus, endoscope, and catheter using the light-illuminating probe
KR101862809B1 (ko) 외과수술 조명용 나노 섬유로 발진되는 백색 일관성 레이저 광
US7582057B2 (en) Endoscopic system using an extremely fine composite optical fiber
KR101610840B1 (ko) 안과 조명기용 단섬유 다초점 레이저 탐침
EP0634947B1 (en) Apparatus for performing eye surgery
JP4616269B2 (ja) レーザ治療器具をオブジェクトに接続するアダプター
Hutchens et al. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery
JP6122142B2 (ja) 角膜組織を監視するための装置、接合ユニット、吸引リング、および方法
JP5520540B2 (ja) 内視鏡システム
JPH05502180A (ja) 光学繊維プローブとレーザを用いた強膜切開処置方法
US20160135891A1 (en) Systems and methods for imaging and manipulating tissue
JPH09117407A (ja) 光ファイバ分光カテーテル
EA026793B1 (ru) Лазерный видеоэндоскоп
JPH0376940B2 (ja)
JP3929735B2 (ja) 眼内照明用プローブおよび眼科手術用装置
JP4521528B2 (ja) 極細径複合型光ファイバを用いた内視鏡システム
WO2017137350A1 (en) Wavelength tuneable led light source
KR101808675B1 (ko) 카테터 모듈 및 이를 포함하는 카테터 시스템
WO2015177750A1 (en) Catheter for sub-surface ablation in biological tissue
US20050267450A1 (en) Ophthalmic treatment apparatus
RU2741236C1 (ru) Световодный инструмент с микрофокусировкой
Verdaasdonk et al. Optics of fibers and fiber probes
JP2008017899A (ja) 蛍光診断方法
JP2009226156A (ja) 眼内照明用プローブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees