JP2007249099A - Method of manufacturing optical module - Google Patents

Method of manufacturing optical module Download PDF

Info

Publication number
JP2007249099A
JP2007249099A JP2006075927A JP2006075927A JP2007249099A JP 2007249099 A JP2007249099 A JP 2007249099A JP 2006075927 A JP2006075927 A JP 2006075927A JP 2006075927 A JP2006075927 A JP 2006075927A JP 2007249099 A JP2007249099 A JP 2007249099A
Authority
JP
Japan
Prior art keywords
optical
core
wavelength
light
selective mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006075927A
Other languages
Japanese (ja)
Other versions
JP4736880B2 (en
Inventor
Masatoshi Yonemura
正寿 米村
Shuri Kawasaki
朱里 河崎
Manabu Kagami
学 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006075927A priority Critical patent/JP4736880B2/en
Publication of JP2007249099A publication Critical patent/JP2007249099A/en
Application granted granted Critical
Publication of JP4736880B2 publication Critical patent/JP4736880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a core end of a self-forming optical waveguide having a branch, at a position as designed. <P>SOLUTION: A wavelength selective mirror 30 is erected inside a transparent housing 10, with an optical fiber 20 inserted and filled with photo setting resin liquid 40 (4.A). The photo setting resin liquid 40 is irradiated with a laser beam λ<SB>w</SB>through the optical fiber 20 and hardened self-convergently to form a core 41. The core 41 grows to reach the wavelength selective mirror 30, with a part continued to grow along the reflected light downward as a core 41rf, and with a part along the transmitted light to the right as a core 41th (4.B). Before the core 41th reaching an optical port P3, the laser beam λ<SB>w</SB>is also introduced from the optical port P3 to an optical port P1, making the core start to grow also from the optical port P3, and making it integrated with the core 41th that passed through the wavelength selective mirror 30. Optical loss is found ≤0.3 dB at the junction between the core grown from the optical port P3 and the core 41th passed through the wavelength selective mirror 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の波長の光を用い、発光素子と受光素子とから合計2個以上用いる、分岐を有する光導波路(光モジュール)に関する。   The present invention relates to a branched optical waveguide (optical module) that uses light of a plurality of wavelengths and uses a total of two or more light emitting elements and light receiving elements.

光通信による構内LAN等においては、1本の光ファイバで複数の信号を波長多重で伝送するために、分波合波デバイスが用いられる。例えば、2つの通信波長λ1及びλ2に対し、中央装置(サーバ)側から各端末(クライアント)側への送信を波長λ1、各端末(クライアント)から中央装置(サーバ)への送信を波長λ2で行うことを想定する。この場合、中央装置(サーバ)側及び各端末(クライアント)側のそれぞれで、分波合波デバイスを用いると、1本の光ファイバで接続し、且つ通信波長λ1及びλ2を分離して送受信することが可能となる。このような分波合波デバイスとしては、光ファイバを接続する光ポートと、波長λ1の光ポートと、波長λ2の光ポートの3ポートを有し、波長λ1と、波長λ2とで反射/透過率の異なる波長選択性ミラー(光干渉フィルタ)を用いることが想定される。尚、波長選択性ミラー(光干渉フィルタ)は誘電体多層膜より構成でき、その波長透過率特性(波長反射率特性)の設定の自由度は高い。このような、波長λ1と、波長λ2とで反射/透過率の異なる波長選択性ミラー(光干渉フィルタ)を用い、光ファイバと、発光素子と受光素子とを有する光モジュールを、本発明者らは下記の特許文献1の通り提案している。 In a local area LAN or the like by optical communication, a demultiplexing / multiplexing device is used to transmit a plurality of signals by wavelength multiplexing using a single optical fiber. For example, for the two communication wavelengths λ 1 and λ 2 , transmission from the central device (server) side to each terminal (client) side is performed at wavelength λ 1 and transmission from each terminal (client) to the central device (server) is performed. Assume that the operation is performed at a wavelength λ 2 . In this case, in each of the central unit (server) side and the terminal (client), the use of demultiplexing and multiplexing device, one connected by optical fiber, and to separate the communication wavelength lambda 1 and lambda 2 It is possible to send and receive. Such a demultiplexing / multiplexing device has three ports: an optical port for connecting an optical fiber, an optical port with a wavelength λ 1, and an optical port with a wavelength λ 2 , a wavelength λ 1 , a wavelength λ 2 , Therefore, it is assumed that wavelength selective mirrors (light interference filters) having different reflection / transmittance are used. The wavelength selective mirror (light interference filter) can be composed of a dielectric multilayer film, and the degree of freedom in setting the wavelength transmittance characteristic (wavelength reflectance characteristic) is high. An optical module including an optical fiber, a light emitting element, and a light receiving element using such a wavelength selective mirror (optical interference filter) having different reflection / transmittance at the wavelength λ 1 and the wavelength λ 2 is provided. They have proposed as the following patent document 1.

また、本発明者らは、例えば上記光モジュールの作製に適した、自己形成光導波路及びその製造方法を多数提案し、下記特許文献2乃至4の通り特許出願している。
特開平11−326660号公報 特開2002−365459号公報 特開2004−1499579号公報 特開2004−151160号公報 特開平8−320422号公報
In addition, the present inventors have proposed a number of self-forming optical waveguides and their manufacturing methods suitable for, for example, the production of the optical module, and have filed patent applications as shown in Patent Documents 2 to 4 below.
JP-A-11-326660 JP 2002-365594 A JP 2004-1499579 A JP 2004-151160 A JP-A-8-320422

上記のような光モジュールを製造する際に、自己集光的に光硬化性樹脂を硬化させるため、上記波長選択性ミラー(光干渉フィルタ)は、硬化波長λwでは例えば50%の透過率と50%の反射率として、各分岐を自己形成的に光硬化によりコアを形成する。即ち、1個の分岐点により3個の光ポートを結んだ光導波路を形成する際は、1個の光ポートから硬化波長の光を導入し、分岐点である波長選択性ミラーまでコアを成長させ、当該分岐点から透過した光により、一方の分岐を、反射した光により他方の分岐をコアを成長させて、残る2個の光ポートまで成長させるものである。 When the optical module as described above is manufactured, the wavelength-selective mirror (optical interference filter) has a transmittance of, for example, 50% at the curing wavelength λ w in order to cure the photocurable resin in a self-collecting manner. The core is formed by photocuring each branch in a self-forming manner with a reflectance of 50%. In other words, when forming an optical waveguide connecting three optical ports by one branch point, light of curing wavelength is introduced from one optical port, and the core is grown to the wavelength selective mirror that is the branch point. The core is grown on one branch by the light transmitted from the branch point and the other branch is grown on the other branch by the reflected light, and the remaining two optical ports are grown.

しかし、「自己形成的」な光硬化によるコアの成長終了点は、設計通りの位置に到達せず、設計と光軸がズレる場合がある。この場合、例えば受発光素子を当該光ポートに組み付ける際に光軸合わせをしないと、結合損失が非常に大きくなる場合があった。当該光軸合わせは作業時間を取り、組み付ける素子によっては光軸合わせ自体が困難である。   However, the end point of the core growth by “self-forming” photocuring does not reach the position as designed, and the design and the optical axis may deviate. In this case, for example, if the optical axis is not aligned when the light emitting / receiving element is assembled to the optical port, the coupling loss may become very large. The optical axis alignment takes work time, and depending on the element to be assembled, the optical axis alignment itself is difficult.

一方、特許文献5のように、双方向照射により、光導波路のコアを接合させる技術がある。しかし、特許文献5の記載からは、分岐を導波路に適用できるとの明示が無い。また、具体的樹脂や波長選択性ミラーについての言及も無い。更に、下記に示すような、「コアの無駄な部分」が光損失をどの程度生じるかについても記載が無い。   On the other hand, as in Patent Document 5, there is a technique for joining the cores of an optical waveguide by bidirectional irradiation. However, the description in Patent Document 5 does not clearly indicate that the branch can be applied to the waveguide. Further, there is no mention of specific resins or wavelength selective mirrors. Furthermore, there is no description as to how much light loss is caused by the “waste part of the core” as described below.

本発明の目的は、自己集光的に光硬化性樹脂を硬化させて光モジュールを製造する方法において、受発光素子等の形成位置に精度良く自己形成光導波路コアを形成することである。   An object of the present invention is to form a self-forming optical waveguide core with high accuracy at a formation position of a light emitting / receiving element or the like in a method of manufacturing an optical module by curing a photocurable resin in a self-collecting manner.

請求項1に係る発明は、光硬化性樹脂を自己集光的に硬化させた光導波路と、波長選択性ミラーを少なくとも1個用いた分岐を有する光モジュールの製造方法であって、波長選択性ミラーは、少なくとも1つの通信用波長に対し反射率が90%以上、他の少なくとも1つのの通信用波長に対し透過率が90%以上であり、光導波路を形成するための光硬化性樹脂の硬化波長に対しては、透過率と反射率が各々20%以上であって、光モジュールが有すべき3つ以上の光ポートのうち、2つ以上の光ポートの形成予定位置から、光硬化性樹脂に、硬化波長の光を入射させて、自己集光的に成長する光硬化性樹脂硬化物が波長選択性ミラー近傍において一体化するように形成することを特徴とする光モジュールの製造方法である。尚、本明細書においては、波長選択性ミラーと光干渉フィルタは同義であり、それを透過する際の光損失を無視し、任意の波長に対し、透過率と反射率を加えたものは1(100%)であるものとする。   The invention according to claim 1 is a method of manufacturing an optical module having an optical waveguide obtained by self-condensing a photocurable resin and a branch using at least one wavelength-selective mirror. The mirror has a reflectance of 90% or more with respect to at least one communication wavelength and a transmittance of 90% or more with respect to at least one other communication wavelength, and is a photocurable resin for forming an optical waveguide. For the curing wavelength, the transmittance and the reflectance are each 20% or more, and the photocuring is performed from the position where two or more optical ports are to be formed among the three or more optical ports that the optical module should have. A method for producing an optical module, wherein a cured photocured resin that grows in a self-condensing manner is made to be integrated in the vicinity of a wavelength-selective mirror by allowing light of a curing wavelength to enter the photosensitive resin It is. In this specification, the wavelength-selective mirror and the optical interference filter are synonymous, ignoring the optical loss when passing through it, and adding the transmittance and reflectance to any wavelength is 1 (100%).

請求項2に係る発明は、光モジュールが有すべき光ポートのうち少なくとも1つは、光ファイバのコア端を光硬化性樹脂に接触させることで実現されることを特徴とする。コアを形成する際に光ファイバのコア端に接触させることを意味し、当該光ファイバのコア端と光硬化性樹脂硬化物であるコアとが直接接続されているものである。   The invention according to claim 2 is characterized in that at least one of the optical ports that the optical module should have is realized by bringing the core end of the optical fiber into contact with the photocurable resin. This means that the core end of the optical fiber is brought into contact with the core of the optical fiber when the core is formed, and the core end of the optical fiber is directly connected to the core that is a cured photocurable resin.

光硬化性樹脂液を硬化させる波長の光を導入した光ポートからコアが成長を始めるので、硬化波長光を導入した光ポートにおいて、形成されたコアの光軸と、その光ポートの光軸は必ず一致する。よって、分岐を有し、3つ以上の光ポートを有する光モジュールを製造する際、硬化波長光を複数の光ポートから導入すればコアが複数箇所から成長を始める。硬化波長光を導入した複数個の光ポートにおいて、形成されたコアの光軸は設計通りに製造され、受発光素子を組み付けた際に、光軸は必ず一致する。   Since the core begins to grow from the optical port introduced with light having a wavelength for curing the photocurable resin liquid, the optical axis of the formed core and the optical axis of the optical port in the optical port introduced with the curing wavelength light are Must match. Therefore, when manufacturing an optical module having a branch and having three or more optical ports, if the curing wavelength light is introduced from a plurality of optical ports, the core starts to grow from a plurality of locations. In the plurality of optical ports into which the curing wavelength light is introduced, the optical axis of the formed core is manufactured as designed, and when the light receiving and emitting elements are assembled, the optical axes always coincide.

本発明に用いる波長選択性ミラー(光干渉フィルタ)は、少なくとも1つの通信用波長に対し反射率が90%以上、他の少なくとも1つの通信用波長に対し透過率が90%以上であることが望ましい。より望ましくは、少なくとも1つの通信用波長に対し反射率が95%以上、他の少なくとも1つの通信用波長に対し透過率が95%以上であることであり、更に望ましくは、少なくとも1つの通信用波長に対し反射率が97%以上、他の少なくとも1つの通信用波長に対し透過率が97%以上であることである。   The wavelength selective mirror (optical interference filter) used in the present invention has a reflectance of 90% or more for at least one communication wavelength and a transmittance of 90% or more for at least one other communication wavelength. desirable. More preferably, the reflectivity is 95% or more for at least one communication wavelength, and the transmittance is 95% or more for at least one other communication wavelength, and more preferably, for at least one communication wavelength. The reflectance is 97% or more with respect to the wavelength, and the transmittance is 97% or more with respect to at least one other communication wavelength.

また、波長選択性ミラー(光干渉フィルタ)は、本質的には、光導波路のコアを形成するための光硬化性樹脂の硬化波長に対して、透過率が0%でなければ良いのであるが、実際問題、透過率が20%未満であると、波長選択性ミラー(光干渉フィルタ)を透過する光量が少ないために光導波路が十分に成長せず、これにより硬化するコアも一体化できず、光軸がズレたままと成る。そこで、実質的には、光導波路を形成するための光硬化性樹脂の硬化波長に対しては、透過率と反射率が各々20%以上であることが望ましい。より望ましくは、透過率と反射率が各々30%以上であることであり、更に望ましくは、透過率と反射率が各々40%以上であることである。   In addition, the wavelength selective mirror (light interference filter) is essentially not required to have a transmittance of 0% with respect to the curing wavelength of the photocurable resin for forming the core of the optical waveguide. Actually, if the transmittance is less than 20%, the amount of light transmitted through the wavelength selective mirror (optical interference filter) is small, so that the optical waveguide does not grow sufficiently, and the cured core cannot be integrated. The optical axis remains misaligned. Therefore, it is substantially desirable that the transmittance and the reflectance are each 20% or more with respect to the curing wavelength of the photocurable resin for forming the optical waveguide. More desirably, the transmittance and the reflectance are each 30% or more, and further desirably, the transmittance and the reflectance are each 40% or more.

光硬化性樹脂は光源の波長の選択と、波長選択性ミラー(光干渉フィルタ)の設計により、任意の材料、任意の重合機構(硬化機構)及び光重合開始剤を用いることができる。当然、混合物でも良い。好ましくは硬化前(光重合前)においては、液状であることが好ましい。コアを形成した後、未硬化の光硬化性樹脂を除去してからクラッド材を充填し、硬化させる場合は、当該クラッド材の硬化機構は、光硬化に限定されない。例えば熱硬化性の樹脂を用いても構わない。   As the photocurable resin, any material, any polymerization mechanism (curing mechanism), and photopolymerization initiator can be used depending on the selection of the wavelength of the light source and the design of the wavelength selective mirror (light interference filter). Of course, a mixture may be used. Preferably, it is liquid before curing (before photopolymerization). When the core material is formed and then the uncured photocurable resin is removed and then the clad material is filled and cured, the curing mechanism of the clad material is not limited to photocuring. For example, a thermosetting resin may be used.

まず、図1及び図2を用いて、本発明の本質を説明する。図1.Aは、光硬化性樹脂液に、2つの光ファイバOF1及びOF2の一端を挿入し、各々他端から当該光硬化性樹脂液を硬化させうる波長の光を導入して、当該光硬化性樹脂液を自己集光的に硬化させてコアC1及びC2を成長させている図である。図1.Aにおいては、2つの光ファイバOF1及びOF2はそれらの光軸ax1及びax2がx軸方向に平行であって、距離dだけズレていることを示している。また、2つの光ファイバOF1及びOF2の間には全反射ミラーM1又は半透過半反射ミラーM2が平面y=−xに平行に配置されているとする。半透過半反射ミラーM2により、光ファイバOF1からの光の進行方向はx軸の正の方向から一部y軸の負の方向に曲げられ、光ファイバOF2の光の進行方向はx軸の負の方向から一部y軸の正の方向に曲げられる。これを各々ax1、ax2として示している。 First, the essence of the present invention will be described with reference to FIGS. FIG. A is a method of inserting one end of two optical fibers OF1 and OF2 into a photocurable resin liquid, and introducing light having a wavelength capable of curing the photocurable resin liquid from the other end, FIG. 3 is a diagram in which cores C1 and C2 are grown by self-condensing the liquid. FIG. In A, the two optical fibers OF1 and OF2 indicate that their optical axes ax1 and ax2 are parallel to the x-axis direction and are shifted by a distance d. Further, it is assumed that a total reflection mirror M 1 or a semi-transmission semi-reflection mirror M 2 is arranged in parallel with the plane y = −x between the two optical fibers OF 1 and OF 2 . By the transflective mirror M 2 , the traveling direction of the light from the optical fiber OF1 is partially bent from the positive direction of the x axis to the negative direction of the y axis, and the traveling direction of the light of the optical fiber OF2 is the x axis. It is bent from the negative direction partially in the positive direction of the y-axis. These are shown as ax1 and ax2, respectively.

2つの光ファイバOF1及びOF2の間が全反射ミラーM1であると、全反射ミラーM1を介して、光ファイバOF1からの硬化波長光が右側に透過することは無く、光ファイバOF2からの硬化波長光が左側に透過することは無い。すると、各々の硬化波長光により形成されるコアC1及びC2は、各々の光の到達範囲でのみ形成されるので、全反射ミラーM1の左下領域では光ファイバOF1からの硬化波長光の光軸ax1に沿って形成され(C1rf)、全反射ミラーM1の右上領域では光ファイバOF2からの硬化波長光の光軸ax2に沿って形成される(C2rf)。即ち、全反射ミラーM1の左下領域では光ファイバOF2からのコアC2との連続性が無く、光軸はズレたままと成り、全反射ミラーM1の右上領域では光ファイバOF1からのコアC1との連続性が無く、光軸はズレたままと成る(図1.B)。すると、形成された光導波路に対し、例えばミラーM1を透過するような波長の光を用いて、光ファイバOF1と光ファイバOF2とをコアC1とC2を介して接続しようとしても、光損失が大きくなる。 When the total reflection mirror M 1 is between the two optical fibers OF 1 and OF 2, the curing wavelength light from the optical fiber OF 1 is not transmitted to the right side through the total reflection mirror M 1 , and the light from the optical fiber OF 2 is not transmitted. The curing wavelength light is not transmitted to the left side. Then, the core C1 and C2 is formed by each of the curing wavelength light, because it is formed only by the reach of the respective optical, optical axes of the curing wavelength light from the optical fiber OF1 in the lower left area of the total reflection mirror M 1 is formed along the ax1 (C1rf), it is formed along the optical axis ax2 of the curing wavelength light from the optical fiber OF2 in the upper right area of the total reflection mirror M 1 (C2rf). That is, total reflection at the lower left area of the mirror M 1 has no continuity with the core C2 from the optical fiber OF2, remains the optical axis was shifted, core C1 from the optical fiber OF1 in top right area of the total reflection mirror M 1 And the optical axis remains misaligned (FIG. 1.B). Then, with respect to the formed optical waveguide, for example by using light of a wavelength that is transmitted through the mirror M 1, also the optical fiber OF1 and the optical fiber OF2 as trying to connect through the core C1 and C2, optical loss growing.

これと異なり、2つの光ファイバOF1及びOF2の間が半透過半反射ミラーM2であると、光ファイバOF1からの硬化波長光が右側に一部透過し(C1th)、光ファイバOF2からの硬化波長光が左側に一部透過する(C2th)。これにより、各々の光の到達範囲が図1.CのC1とC2th、C2とC1thの如く重なり合うとともに、半透過半反射ミラーM2の左右で、硬化範囲が広がることとなる(一部太いコアが形成される)。即ち、光硬化性樹脂液が硬化した光導波路OWGは、図1.Dの如く、半透過半反射ミラーM2の左側で太い部分L1が、右側で太い部分L2が形成され、半透過半反射ミラーM2の左右のコアが連続性を持つこととなる。こうして、ミラーM2を全透過する波長光を用いて、光ファイバOF1と光ファイバOF2とをコアC1とC2を介して接続するとき、光損失は小さくなる。こうして、4方向のコアは連続性が高いものとすることができる。 Unlike this, when the optical fiber OF1 and OF2 are between the semi-transmissive and semi-reflective mirror M 2 , the curing wavelength light from the optical fiber OF1 is partially transmitted to the right side (C1th) and cured from the optical fiber OF2. The wavelength light is partially transmitted to the left side (C2th). Thereby, the reach of each light is shown in FIG. C overlaps as C1 and C2th, C2 and C1th, and the curing range widens on the left and right of the transflective mirror M 2 (partly thick core is formed). That is, the optical waveguide OWG in which the photocurable resin liquid is cured is shown in FIG. As shown in D, a thick portion L 1 is formed on the left side of the transflective mirror M 2 and a thick portion L 2 is formed on the right side, and the left and right cores of the transflective mirror M 2 have continuity. Thus, the mirror M 2 by using the total transmission wavelength light, when connecting the optical fiber OF1 and the optical fiber OF2 through the core C1 and C2, the optical loss is reduced. Thus, the four-way core can be highly continuous.

以上は、半透過半反射ミラーM2の左側と下側に2つの光ファイバOF1及びOF2を配置した場合も同様である。図2.Aのように、光ファイバOFの光軸ax1がx軸方向に平行であって、x軸の正の方向に硬化光が照射され、光ファイバOF2の光軸ax2がy軸方向に平行であって、y軸の正の方向に硬化光が照射されているとする。半透過半反射ミラーM2により光ファイバOF1からの光はy軸の負方向に一部曲げられ、光ファイバOF2からの光はx軸の負方向に一部曲げられる。この図においても光ファイバOFの光軸ax1と光ファイバOF2の光軸ax2は距離dだけズレている。 Above are the same when arranging the two optical fibers OF1 and OF2 the left and lower side of the transflective mirror M 2. FIG. As in A, the optical axis ax1 of the optical fiber OF is parallel to the x-axis direction, the curing light is irradiated in the positive direction of the x-axis, and the optical axis ax2 of the optical fiber OF2 is parallel to the y-axis direction. Then, it is assumed that the curing light is irradiated in the positive direction of the y-axis. Light from the optical fiber OF1 by transflective mirror M 2 is partially bent in the negative direction of the y-axis, light from the optical fiber OF2 is bent portion in the negative direction of the x-axis. Also in this figure, the optical axis ax1 of the optical fiber OF and the optical axis ax2 of the optical fiber OF2 are shifted by a distance d.

こうして硬化物であるコアC1及びC2が成長していくと、各々の硬化範囲は、図2.BのC1とC2rf、C2とC1rfの如く重なり合うと共に、硬化範囲が広がる。こうして、図2.Cのように、光導波路OWGは半透過半反射ミラーM2の左側で太い部分L1が、下側で太い部分L2が形成され、半透過半反射ミラーM2の左と下のコアが連続性を持つこととなる。こうして、ミラーM2を全反射する波長光を用いて、光ファイバOF1と光ファイバOF2とをコアC1とC2を介して接続するとき、光損失は小さくなる。こうして、4方向のコアは連続性が高いものとすることができる。 As the cured cores C1 and C2 grow in this way, the respective curing ranges are shown in FIG. B overlaps like C1 and C2rf, C2 and C1rf, and the curing range is expanded. Thus, FIG. As in C, the optical waveguide OWG has a thick portion L 1 on the left side of the transflective mirror M 2 and a thick portion L 2 on the lower side, and the left and lower cores of the transflective mirror M 2 are It will have continuity. Thus, the mirror M 2 by using the total reflection wavelength light, when connecting the optical fiber OF1 and the optical fiber OF2 through the core C1 and C2, the optical loss is reduced. Thus, the four-way core can be highly continuous.

以下の通り分岐光導波路を作成し、本願発明の効果を確認した。まず、図3に示す波長選択性ミラー30を用意した。尚、波長選択性ミラーに対して45度方向からFFP半値全幅32度の光線群が入射したときのもので、S波P波それぞれに対する透過率の平均値である。波長選択性ミラー30は、波長480nm以上660nm以下の可視部で透過率が10%以下であり、波長750nm以上の近赤外部で透過率が90%以上である。また、下記に示す2つの光硬化性樹脂液の各々の硬化波長のうち、457nmでは透過率が44%(即ち、反射率が56%)、488nmでは透過率が3%(即ち、反射率が97%)となるものである。   A branched optical waveguide was created as follows, and the effect of the present invention was confirmed. First, a wavelength selective mirror 30 shown in FIG. 3 was prepared. Incidentally, this is when a light beam having a full width at half maximum of FFP of 32 degrees is incident on the wavelength selective mirror from the direction of 45 degrees, and is an average value of transmittance for each of S waves and P waves. The wavelength-selective mirror 30 has a transmittance of 10% or less at a visible portion having a wavelength of 480 nm or more and 660 nm or less, and a transmittance of 90% or more at a near infrared portion having a wavelength of 750 nm or more. Further, of the respective curing wavelengths of the two photocurable resin liquids shown below, the transmittance at 457 nm is 44% (that is, the reflectance is 56%), and the transmittance at 488 nm is 3% (that is, the reflectance is). 97%).

まず、図4.Aのように、透明アクリル製の筐体10の内部に波長選択性ミラー30を立設し、波長選択性ミラー30面に対して45度の方向から光を照射するべく、コア径1mmのプラスチック製光ファイバ20を筐体10側壁に挿入した。この光ファイバ20のコア端を光ポートP1とする。光ファイバ20としては三菱レイヨン製のEska−MEGAを用いた。次に筐体10に光硬化性樹脂液40を充填した。光硬化性樹脂液40としては、東亞合成製アクリルモノマーM−210を100部に、光重合開始剤としてチバ・スペシャリティケミカルズ製IRGACURE819を0.5部配合したものを用いた。次に図4.Bのように、光ファイバ20を通して中心波長457nmのレーザ光λwを光硬化性樹脂液40に照射し、自己集光的に硬化させてコア41を形成した。コア41は成長して波長選択性ミラー30に達し、一部は反射された光に沿ってコア41rfとして紙面内下方向に、一部は透過した光に沿ってコア41thとして紙面内右方向に成長を続けた。ここで、図4.Bで光ポートP2及びP3と示した位置が、コア41rf及び41thが達すべき設計上の成長終了点である。 First, FIG. As shown in A, a plastic with a core diameter of 1 mm is provided so that a wavelength-selective mirror 30 is erected inside a transparent acrylic casing 10 and light is irradiated from a direction of 45 degrees to the surface of the wavelength-selective mirror 30. The optical fiber 20 was inserted into the side wall of the housing 10. The core end of the optical fiber 20 is defined as an optical port P1. As the optical fiber 20, Eska-MEGA manufactured by Mitsubishi Rayon was used. Next, the case 10 was filled with a photocurable resin liquid 40. As the photocurable resin liquid 40, 100 parts of Toagosei acrylic monomer M-210 and 0.5 part of Ciba Specialty Chemicals IRGACURE819 as a photopolymerization initiator were used. Next, FIG. As in B, the core 41 was formed by irradiating the photocurable resin liquid 40 with laser light λ w having a central wavelength of 457 nm through the optical fiber 20 and curing it in a self-condensing manner. The core 41 grows and reaches the wavelength selective mirror 30, partly along the reflected light as the core 41 rf in the lower direction in the drawing, and partly along the transmitted light as the core 41 th in the right direction on the drawing. Continued to grow. Here, FIG. The positions indicated by B as optical ports P2 and P3 are the design growth end points that the cores 41rf and 41th should reach.

ここでコア41thが光ポートP3に達する前に、光ポートP3から光ポートP1方向へも、波長457nmのレーザ光λwを導入した。こうして、光ポートP3からもコアの成長を開始させて、波長選択性ミラー30を透過したコア41thと合体させた。こうして、光ポートP2にコア41rfが達したところでレーザの照射を停止した。光硬化性樹脂の硬化物は、光ポートP1から波長選択性ミラー30に達するコア41、波長選択性ミラー30から光ポートP2に達したコア42、波長選択性ミラー30と光ポートP3を結ぶコア43と、光ポートP3から波長選択性ミラー30で一部反射された光に沿って、波長選択性ミラー30から紙面内上方向に延びたコア43rfとが形成された。これらの4つのコアは連続性良く形成されていた。このような光モジュールを3個作成し、光ポートP3から波長選択性ミラー30を90%以上透過する波長780nmのレーザを照射し、光ポートP1に接続された光ファイバ20の他端で光強度を測定したところ、光損失は0.6dBm〜0.9dBm、平均0.7dBmと良好であった。尚、光ポートP3から成長したコアと波長選択性ミラー30を透過したコア41thとの接続点における光損失は0.3dB以下であった。 Here, before the core 41th reaches the optical port P3, the laser light λ w having a wavelength of 457 nm was also introduced from the optical port P3 toward the optical port P1. In this way, the growth of the core was started also from the optical port P3, and was combined with the core 41th that passed through the wavelength selective mirror 30. Thus, the laser irradiation was stopped when the core 41rf reached the optical port P2. The cured product of the photocurable resin includes a core 41 reaching the wavelength selective mirror 30 from the optical port P1, a core 42 reaching the optical port P2 from the wavelength selective mirror 30, and a core connecting the wavelength selective mirror 30 and the optical port P3. 43 and a core 43rf extending from the wavelength selective mirror 30 in the upward direction in the drawing along the light partially reflected by the wavelength selective mirror 30 from the optical port P3. These four cores were formed with good continuity. Three such optical modules are prepared, and a laser having a wavelength of 780 nm that is transmitted through the wavelength selective mirror 30 by 90% or more is irradiated from the optical port P3, and the optical intensity at the other end of the optical fiber 20 connected to the optical port P1. The optical loss was as good as 0.6 dBm to 0.9 dBm and an average of 0.7 dBm. The optical loss at the connection point between the core grown from the optical port P3 and the core 41th transmitted through the wavelength selective mirror 30 was 0.3 dB or less.

〔比較例〕
実施例において、硬化波長を488nm、20mWとして同様に光モジュールを作成した。波長488nmにおいては波長選択性ミラー30の透過率は3%であるため、コア41thは形成されず、光ポートP3からの硬化光のみによってコア43が形成された。このような比較例に係る光モジュールを3個作成し、光ポートP3から波長選択性ミラー30を90%以上透過する波長780nmのレーザを照射し、光ポートP1に接続された光ファイバ20の他端で光強度を測定したところ、光損失は1.7dBm〜2.9dBm、平均2.5dBmであった。即ち、硬化光に対して半透明半反射となる波長選択性ミラーを用いてコアを形成した実施例と比較して、比較例においては、コアの連続性が悪いため、波長選択性ミラー30の前後で光損失が生じることがわかった。
[Comparative example]
In the examples, optical modules were similarly prepared with a curing wavelength of 488 nm and 20 mW. Since the transmittance of the wavelength selective mirror 30 is 3% at the wavelength of 488 nm, the core 41th is not formed, and the core 43 is formed only by the curing light from the optical port P3. Three optical modules according to such a comparative example are prepared, and a laser having a wavelength of 780 nm that transmits 90% or more of the wavelength selective mirror 30 is irradiated from the optical port P3, and the other optical fiber 20 connected to the optical port P1. When the light intensity was measured at the end, the optical loss was 1.7 dBm to 2.9 dBm, and the average was 2.5 dBm. That is, compared to the example in which the core is formed by using the wavelength selective mirror that is semitransparent and semi-reflective with respect to the curing light, in the comparative example, the continuity of the core is poor. It was found that optical loss occurred before and after.

〔変形例〕
上記実施例では、3つの光ポートが断面正方形の筐体10に対して各面(断面図で辺)に垂直となる構成を示したが、図5.Aのように、斜め方向となるものでも良い。また、上記実施例では光ポートP1及びP3から硬化光を照射したが、光ポートP1及びP2から照射しても良く、光ポートP1、P2及びP3から硬化光を照射しても良い(図5.B)。以上は1分岐3ポートを有する光モジュールであったが、任意の光ポート数、分岐数、或いは入出力とする光モジュールに本願は適用できる。例えば図5.Cのように、2個の分岐点(波長選択性ミラー31及び32)と4ポート(P1、P2、P3、P4)を有する光モジュールの、2ポート以上から硬化光を照射する構成として良い。4ポート全てから光を照射すると、42th、43thのように光ポートP2及びP3から波長選択性ミラー31及び32を透過した光により硬化したコアが形成されるが、上記に示された通り、当該無駄なコア部分による光損失は非常に小さい。
[Modification]
In the above embodiment, a configuration in which three optical ports are perpendicular to each surface (side in the sectional view) with respect to the casing 10 having a square section is shown in FIG. It may be an oblique direction such as A. In the above embodiment, the curing light is irradiated from the optical ports P1 and P3. However, the curing light may be irradiated from the optical ports P1 and P2, or the curing light may be irradiated from the optical ports P1, P2, and P3 (FIG. 5). B). The above is an optical module having one branch and three ports, but the present application can be applied to an optical module having an arbitrary number of optical ports, number of branches, or input / output. For example, FIG. Like C, it is good also as a structure which irradiates hardening light from 2 ports or more of the optical module which has two branch points (wavelength selective mirrors 31 and 32) and 4 ports (P1, P2, P3, P4). When light is irradiated from all four ports, a hardened core is formed by the light transmitted through the wavelength selective mirrors 31 and 32 from the optical ports P2 and P3, such as 42th and 43th, but as shown above, The optical loss due to the useless core part is very small.

本発明の効果を示す概念図。The conceptual diagram which shows the effect of this invention. 本発明の効果を示す別の概念図。The another conceptual diagram which shows the effect of this invention. 実施例に用いた波長選択性ミラーの波長透過率特性を示すグラフ図。The graph which shows the wavelength transmittance characteristic of the wavelength selective mirror used for the Example. 実施例の工程を示す断面図。Sectional drawing which shows the process of an Example. 変形例を示す断面図。Sectional drawing which shows a modification.

符号の説明Explanation of symbols

10:筐体
20:光ファイバ
30、31、32、M、M:波長選択性ミラー
40:未硬化の光硬化性樹脂液
41、41rf、41th、42、43:光硬化性樹脂硬化物であるコア
P1、P2、P3:光ポート
10: Housing 20: Optical fiber 30, 31, 32, M, M 2 : Wavelength selective mirror 40: Uncured photocurable resin liquid 41, 41rf, 41th, 42, 43: Photocured resin cured product Core P1, P2, P3: Optical port

Claims (2)

光硬化性樹脂を自己集光的に硬化させた光導波路と、波長選択性ミラーを少なくとも1個用いた分岐を有する光モジュールの製造方法であって、
前記波長選択性ミラーは、
少なくとも1つの通信用波長に対し反射率が90%以上、
他の少なくとも1つのの通信用波長に対し透過率が90%以上であり、
光導波路を形成するための前記光硬化性樹脂の硬化波長に対しては、透過率と反射率が各々20%以上であって、
前記光モジュールが有すべき3つ以上の光ポートのうち、
2つ以上の光ポートの形成予定位置から、
前記光硬化性樹脂に、前記硬化波長の光を入射させて、
自己集光的に成長する前記光硬化性樹脂硬化物が前記波長選択性ミラー近傍において一体化するように形成する
ことを特徴とする光モジュールの製造方法。
An optical waveguide having a photocuring resin cured in a self-collecting manner, and a method of manufacturing an optical module having a branch using at least one wavelength selective mirror,
The wavelength selective mirror is:
90% or more reflectivity for at least one communication wavelength,
The transmittance is 90% or more with respect to at least one other communication wavelength,
For the curing wavelength of the photocurable resin for forming the optical waveguide, the transmittance and the reflectance are each 20% or more,
Of the three or more optical ports that the optical module should have,
From the planned formation position of two or more optical ports,
The light having the curing wavelength is incident on the photocurable resin,
A method for producing an optical module, wherein the cured photocurable resin that grows in a self-collecting manner is formed so as to be integrated in the vicinity of the wavelength selective mirror.
前記光モジュールが有すべき光ポートのうち少なくとも1つは、光ファイバのコア端を前記光硬化性樹脂に接触させることで実現されることを特徴とする請求項1に記載の光モジュールの製造方法。 The optical module manufacturing method according to claim 1, wherein at least one of the optical ports that the optical module should have is realized by bringing a core end of an optical fiber into contact with the photocurable resin. Method.
JP2006075927A 2006-03-20 2006-03-20 Manufacturing method of optical module Expired - Fee Related JP4736880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075927A JP4736880B2 (en) 2006-03-20 2006-03-20 Manufacturing method of optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075927A JP4736880B2 (en) 2006-03-20 2006-03-20 Manufacturing method of optical module

Publications (2)

Publication Number Publication Date
JP2007249099A true JP2007249099A (en) 2007-09-27
JP4736880B2 JP4736880B2 (en) 2011-07-27

Family

ID=38593422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075927A Expired - Fee Related JP4736880B2 (en) 2006-03-20 2006-03-20 Manufacturing method of optical module

Country Status (1)

Country Link
JP (1) JP4736880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008665A (en) * 2008-06-26 2010-01-14 Toyoda Gosei Co Ltd Light coupler and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057476A (en) * 2001-08-13 2003-02-26 Toyota Central Res & Dev Lab Inc Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
JP2005043760A (en) * 2003-07-24 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057476A (en) * 2001-08-13 2003-02-26 Toyota Central Res & Dev Lab Inc Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
JP2005043760A (en) * 2003-07-24 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008665A (en) * 2008-06-26 2010-01-14 Toyoda Gosei Co Ltd Light coupler and manufacturing method thereof

Also Published As

Publication number Publication date
JP4736880B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1284426B1 (en) Method of manufacturing optical waveguide device by use of a jig
JP3543121B2 (en) Optical waveguide connection structure
US6904220B2 (en) Optical waveguide, optical module, and method for producing same module
CN112987183A (en) Interlayer coupler
CN107942442A (en) A kind of coupler and optical module
Mohammed Integration of self-standing X-and Y-shaped polymer coupler and splitter with single mode optical fibers
JP4736880B2 (en) Manufacturing method of optical module
JP2008275653A (en) Optical reflector and optical system
JP4351130B2 (en) Manufacturing method of optical connection device and optical connection device
JP2009003338A (en) Method of splicing optical fibre
JP2003232932A (en) Optical delay line and method of manufacturing the same
US7296934B2 (en) Optical transmission module and manufacturing method thereof
JP4288604B2 (en) Optical coupling device
Li et al. Cost-effective side-coupling polymer fiber optics for optical interconnections
JP4692424B2 (en) Waveguide array for multicore bidirectional communication, method for manufacturing the same, and bidirectional communication module
JP4134481B2 (en) Manufacturing method of optical transmission module
JP2013045028A (en) Method for manufacturing branch optical waveguide and optical device
JP4390270B2 (en) Optical fiber connection method and optical filter manufacturing method
JP2005345708A (en) Optical waveguide film, its manufacturing method and splicing method
Wang et al. Photolithographically manufactured acrylate polymer multimode optical waveguide loss design rules
JP2010122456A (en) Optical waveguide and optical module
Mikami Self-written waveguide technology with light-curable resin enabling easy optical interconnection
Soeda et al. Self-written waveguide technology with light-curable resin enabling easy optical interconnection
CN106170724A (en) Fiber waveguide and manufacture method thereof, use the optical assembly of this fiber waveguide
Kagami et al. Light-induced self-written optical waveguides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees