JP4390270B2 - Optical fiber connection method and optical filter manufacturing method - Google Patents

Optical fiber connection method and optical filter manufacturing method Download PDF

Info

Publication number
JP4390270B2
JP4390270B2 JP2004294734A JP2004294734A JP4390270B2 JP 4390270 B2 JP4390270 B2 JP 4390270B2 JP 2004294734 A JP2004294734 A JP 2004294734A JP 2004294734 A JP2004294734 A JP 2004294734A JP 4390270 B2 JP4390270 B2 JP 4390270B2
Authority
JP
Japan
Prior art keywords
optical fiber
curing
forming
light source
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004294734A
Other languages
Japanese (ja)
Other versions
JP2006106472A (en
Inventor
正樹 和氣
和男 保苅
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004294734A priority Critical patent/JP4390270B2/en
Publication of JP2006106472A publication Critical patent/JP2006106472A/en
Application granted granted Critical
Publication of JP4390270B2 publication Critical patent/JP4390270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、光ファイバ伝送路を構築する際に有用な、光ファイバの接続方法及び光フィルタの製造方法に関するものである。 The present invention is useful in constructing an optical fiber transmission path, a method of manufacturing a connection side Ho及 beauty optical filter of the optical fiber.

近年、情報・通信分野において、高速インターネットに代表されるような高速な通信を行うため、光ファイバ伝送路の需要が高まってきており、特にアクセス系システムにおける光ファイバ伝送路の需要が高くなっている。図1に光ファイバ伝送路を含むアクセス系システム(光アクセス系システム)の一例を示す。   In recent years, in the field of information and communication, the demand for optical fiber transmission lines has been increasing in order to perform high-speed communication represented by the high-speed Internet, and in particular, the demand for optical fiber transmission lines in access systems has increased. Yes. FIG. 1 shows an example of an access system (optical access system) including an optical fiber transmission line.

光アクセス系システムにおいて、光ファイバ伝送路1は通信事業者の局舎2とユーザ宅3との間、詳細には通信事業者の局舎2内に設置された光加入者線終端装置(Optical Line Terminal:OLT)4と、ユーザ宅3内に設置された光加入者線ネットワーク装置(Optical Network Unit:ONU)5との間に配置・接続され、これらの装置間で通信用の光信号(通信光)を伝送し、通信を行う如くなっている。   In the optical access system, the optical fiber transmission line 1 is an optical subscriber line terminator (Optical) installed between the telecommunications carrier's office 2 and the user's premises 3, more specifically, in the telecommunications carrier's office 2. Line Terminal (OLT) 4 and an optical subscriber line network device (ONU) 5 installed in the user's home 3 are arranged and connected, and optical signals (communication signals) between these devices ( Communication light) is transmitted and communication is performed.

また、光アクセス系システムは、光ファイバ伝送路1の保守や各種の試験を行う光ファイバ伝送路試験システムを備えている。これは局舎2内に設置されたOTDR(光パルス試験機)6等により、通信光の波長とは別の波長の光信号(試験光)を用いて、遠隔操作で光ファイバ伝送路1の損失や破断時における破断位置の検出等を行うシステムである。   The optical access system includes an optical fiber transmission line test system that performs maintenance and various tests on the optical fiber transmission line 1. This is because the optical fiber transmission line 1 is remotely controlled by using an optical signal (test light) having a wavelength different from that of the communication light by an OTDR (optical pulse tester) 6 installed in the station 2. This is a system for detecting the position of breakage at the time of loss or breakage.

具体的には、OTDR6からの試験光は光カプラ7(特許文献1参照)と呼ばれる光部品を介して光ファイバ伝送路1に入射され、ユーザ宅3側へ伝搬していく。伝搬中の試験光の一部は後方散乱光となって光ファイバ伝送路1を逆方向に伝搬し、再度、光カプラ7を介してOTDR6に入射され、光ファイバ伝送路1の損失が検出される。また、光ファイバ伝送路1が破断している場合、試験光は破断箇所で反射されてOTDR6に戻ってくるため、その位置を検出することができる。   Specifically, the test light from the OTDR 6 enters the optical fiber transmission line 1 through an optical component called an optical coupler 7 (see Patent Document 1) and propagates to the user home 3 side. Part of the test light that is being propagated becomes backscattered light, propagates in the reverse direction through the optical fiber transmission line 1, enters the OTDR 6 again via the optical coupler 7, and the loss of the optical fiber transmission line 1 is detected. The Further, when the optical fiber transmission line 1 is broken, the test light is reflected at the broken portion and returns to the OTDR 6, so that the position can be detected.

通信光とともにユーザ宅3まで伝搬した試験光は、図2に示すようにユーザ宅3内のONU5の近傍に設けられた、光ファイバブラッググレーティング(特許文献2参照)に代表される光フィルタ8によって反射されて通信光と分けられ、通信光のみONU5へ入射する。なお、上述した後方散乱光や、破断箇所や光フィルタ8で反射され、光ファイバ伝送路1を逆方向に伝搬する試験光は、光カプラ7を介してOTDR6とともにOLT4側へも伝搬するが、OLT4の近傍に設けられた光学フィルタ9により遮断されるため、OLT4へは入射しない。   The test light propagated to the user home 3 together with the communication light is provided by an optical filter 8 represented by an optical fiber Bragg grating (see Patent Document 2) provided in the vicinity of the ONU 5 in the user home 3 as shown in FIG. The reflected light is separated from the communication light, and only the communication light is incident on the ONU 5. Note that the above-described backscattered light and the test light that is reflected by the broken portion or the optical filter 8 and propagates in the reverse direction through the optical fiber transmission line 1 propagates to the OLT 4 side together with the OTDR 6 through the optical coupler 7. Since it is blocked by the optical filter 9 provided in the vicinity of the OLT 4, it does not enter the OLT 4.

このように、試験光やその反射光がONU5やOLT4に入射しないため、通信中であっても光ファイバ伝送路1の保守や試験が可能になる。
特開平5−127028号公報 特開平9−5544号公報
As described above, since the test light and its reflected light do not enter the ONU 5 and the OLT 4, it is possible to maintain and test the optical fiber transmission line 1 even during communication.
Japanese Patent Laid-Open No. 5-127028 Japanese Patent Laid-Open No. 9-5544

しかしながら、従来、前述した光ファイバ伝送路を構築するには、予め工場等で光部品として製造した光カプラや光フィルタが必要であるとともに、融着等による接続作業もしくはコネクタ等を用いた接続作業を、OLTやONUと光ファイバとの間という光ファイバ伝送路の構築に伴う本来の接続箇所の他、前記光カプラや光フィルタと光ファイバとの間でも行わなければならず、コストが高くつくとともに、作業に手間と時間がかかり、ユーザからの要求に即応できないという問題があった。   However, conventionally, in order to construct the above-described optical fiber transmission line, an optical coupler or an optical filter manufactured in advance as an optical component at a factory or the like is necessary, and a connection work using a fusion or the like or a connection work using a connector or the like Must be performed between the optical coupler, the optical filter, and the optical fiber in addition to the original connection point associated with the construction of the optical fiber transmission path between the OLT or ONU and the optical fiber, which increases the cost. At the same time, there is a problem that it takes time and effort to work, and it is impossible to immediately respond to the request from the user.

今後、急増するアクセス系システムの光化、特に前述した光ファイバ伝送路試験システムを備えた光アクセス系システムの構築に対応するため、光ファイバ伝送路の構築に際し、より一層のコストダウンや作業の簡易化、並びにユーザからの要求に対する即応化が切望されている。   In the future, in order to respond to the rapid increase in the number of optical access systems, especially the construction of optical access systems equipped with the optical fiber transmission line test system described above, the construction of optical fiber transmission lines will further reduce costs and work. Simplification and prompt response to user requests are eagerly desired.

本発明の目的は、任意に光信号の結合や分岐あるいは反射が可能な光ファイバ伝送路を、従来に比べて簡易かつ経済的で、しかもユーザからの要求に対して迅速に構築可能とする光ファイバの接続方法及び光フィルタの製造方法を提供することにある。 An object of the present invention is to provide an optical fiber transmission line capable of arbitrarily combining, branching or reflecting optical signals, which is simpler and more economical than conventional ones, and can be quickly constructed in response to user demands. It is to provide a method of manufacturing a connection side Ho及 beauty optical filter fiber.

本発明では、前述した課題を解決するため、少なくとも2本の光ファイバを、それぞれの一端が間隙を隔てて略対向するように配置し、硬化後の屈折率及び硬化開始波長がそれぞれ異なる少なくとも2種類の光硬化性樹脂を含む混合溶液を、前記各光ファイバの一端同士の間に介在させ、少なくとも2種類の光源を用いて前記混合溶液中の光硬化性樹脂を硬化させてコア部及びクラッド部これに加えてグレーティング部を形成することを特徴とする。 In the present invention, in order to solve the above-described problem, at least two optical fibers are arranged so that their one ends are substantially opposed to each other with a gap therebetween, and the refractive index after curing and the curing start wavelength are different from each other. A mixed solution containing different types of photocurable resins is interposed between one end of each of the optical fibers, and at least two types of light sources are used to cure the photocurable resin in the mixed solution to provide a core portion and a cladding. parts, and forming a grating portion in addition to this.

本発明によれば、光ファイバ同士の接続と同時に光フィルタをその接続部分に作成できるため、任意に光信号の結合や分岐あるいは反射が可能な光ファイバ伝送路を簡易かつ経済的に構築することができる。また、光フィルタ等の光部品を調達するための時間が不要となり、ユーザから光ファイバ伝送路の構築の要求がある場合に即応することができる。 According to the present invention, since the connection and simultaneous optical fibers can create an optical filter to the connection portion, to build arbitrarily optical signal coupling or branch or reflection through the optical fiber transmission line capable easily and economically be able to. In addition , time for procuring optical components such as an optical filter is not necessary, and it is possible to respond immediately when there is a request for construction of an optical fiber transmission line from a user.

<実施の形態1>
図3乃至図6は本発明の実施の形態1、ここでは4本の光ファイバを接続するとともに接続部分に2×2カプラを作成する場合の例(但し、特許請求の範囲には含まれない。)を示すもので、図中、11は光硬化性樹脂の混合溶液、12は混合溶液11を溜めるための容器、13−1,13−2,13−3,13−4は光ファイバ、14−1,14−2,14−3,14−4はコア部形成用の光源e、15はクラッド部形成用の光源fである。
<Embodiment 1>
FIGS. 3 to 6 show an embodiment of the present invention, where four optical fibers are connected and a 2 × 2 coupler is formed at the connecting portion (however, not included in the scope of claims) In the figure, 11 is a mixed solution of a photocurable resin, 12 is a container for storing the mixed solution 11, 13-1, 13-2, 13-3, 13-4 are optical fibers, Reference numerals 14-1, 14-2, 14-3, and 14-4 denote a light source e for forming a core portion, and 15 denotes a light source f for forming a cladding portion.

光硬化性樹脂の混合溶液11は、硬化後の屈折率及び硬化開始波長を調整した2種類の光硬化性樹脂、ここでは硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのコアの屈折率及びコア部形成用の光源eの波長に調整した第1の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのクラッドの屈折率及びクラッド部形成用の光源fの波長に調整した第2の光硬化性樹脂との混合溶液であり、予め用意しておくものとする。   The photo-curable resin mixed solution 11 is composed of two types of photo-curing resins in which the refractive index after curing and the curing start wavelength are adjusted, here the core of the optical fiber connecting the refractive index after curing and the curing start wavelength, respectively. The refractive index of the clad of the optical fiber that connects the first photocurable resin adjusted to the refractive index and the wavelength of the light source e for forming the core part, and the refractive index and the curing start wavelength after curing, respectively, for forming the clad part It is a mixed solution with the second photocurable resin adjusted to the wavelength of the light source f, and is prepared in advance.

まず、各光ファイバ13−1〜13−4を、それぞれの接続すべき一端が容器12内において、図3に示すような所定の位置関係となるように配置する。   First, the optical fibers 13-1 to 13-4 are arranged in such a manner that one end to be connected has a predetermined positional relationship as shown in FIG.

具体的には、光ファイバ13−1及び13−2を、それぞれの一端が間隙を隔てて略対向するとともにそれぞれの中心軸が平行で且つ一致しないように配置し、また、光ファイバ13−3を、その一端が光ファイバ13−1に対して間隙を隔てて略対向するとともにその中心軸が光ファイバ13−1の中心軸に対して平行でなく且つその中心軸の延長線が光ファイバ13−1の中心軸の延長線と交差するように配置し、さらに、光ファイバ13−4を、その一端が光ファイバ13−2に対して間隙を隔てて略対向するとともにその中心軸が光ファイバ13−2の中心軸に対して平行でなく且つその中心軸の延長線が光ファイバ13−2の中心軸の延長線と交差するように配置する。   Specifically, the optical fibers 13-1 and 13-2 are arranged so that the respective one ends thereof are substantially opposed to each other with a gap and the respective central axes are parallel and do not coincide with each other, and the optical fibers 13-3 are arranged. One end of the optical fiber 13-1 is substantially opposed to the optical fiber 13-1 with a gap therebetween, and the central axis is not parallel to the central axis of the optical fiber 13-1, and the extension of the central axis is the optical fiber 13. The optical fiber 13-4 is arranged so as to intersect with the extension line of the central axis of -1, and one end of the optical fiber 13-4 is substantially opposed to the optical fiber 13-2 with a gap therebetween, and the central axis is the optical fiber. It is arranged so that it is not parallel to the central axis of 13-2 and the extension of the central axis intersects the extension of the central axis of the optical fiber 13-2.

ここで、図面上、光ファイバ13−3と13−4は略平行に描いているが、特に平行である必要はない。   Here, although the optical fibers 13-3 and 13-4 are drawn substantially parallel in the drawing, they are not necessarily parallel.

なお、各光ファイバ13−1〜13−4は図示しない保持手段により保持され、前述した配置関係は接続作業の終了時まで維持されるものとする。また、前述した各光ファイバ間の中心軸の関係は、接続すべき一端付近において保たれていれば良く、各光ファイバの全長の全てにおいてそのような関係にあることを必要とするものでないことは言うまでもない(この点は本発明の全ての実施の形態において共通する。)。   Each optical fiber 13-1 to 13-4 is held by holding means (not shown), and the above-described arrangement relationship is maintained until the end of the connection work. Moreover, the relationship of the central axis between each optical fiber mentioned above should just be maintained in the vicinity of one end which should be connected, and it does not need to be in such a relationship in the whole length of each optical fiber. Needless to say, this point is common to all embodiments of the present invention.

次に、容器12内に前記光硬化性樹脂の混合溶液11を注入し、これを各光ファイバ13−1〜13−4の一端同士の間に介在させる。   Next, the mixed solution 11 of the photocurable resin is injected into the container 12, and this is interposed between one ends of the optical fibers 13-1 to 13-4.

次に、光ファイバ13−1及び13−2の他端に接続された光源(e)14−1及び14−2のみを動作させ、該他端からコア部形成用の波長の光を入射する。すると、光ファイバ13−1及び13−2の一端(のコア部分)からコア部形成用の波長の光が混合溶液11中に出射され、これによって混合溶液11中の第1の光硬化性樹脂のみが反応して硬化し、図4に示すように、各光ファイバ13−1及び13−2の一端からそれぞれのコアの延長線上に沿って導波路(コア部)16−1及び16−2が形成される。その後、各導波路16−1及び16−2が所定の位置(交差位置)に達したところで光源14−1及び14−2の動作を停止する。   Next, only the light sources (e) 14-1 and 14-2 connected to the other ends of the optical fibers 13-1 and 13-2 are operated, and light having a wavelength for forming the core portion is incident from the other ends. . Then, the light of the wavelength for core part formation is radiate | emitted in the mixed solution 11 from the end (core part) of the optical fibers 13-1 and 13-2, and, thereby, the 1st photocurable resin in the mixed solution 11 As shown in FIG. 4, the waveguides (core portions) 16-1 and 16-2 extend from the ends of the optical fibers 13-1 and 13-2 along the extension lines of the respective cores. Is formed. Thereafter, when the waveguides 16-1 and 16-2 reach predetermined positions (intersection positions), the operations of the light sources 14-1 and 14-2 are stopped.

次に、光ファイバ13−3及び13−4の他端に接続された光源(e)光源14−3,14−4のみを動作させ、該他端からコア部形成用の波長の光を入射する。すると、前記同様に、光ファイバ13−3及び13−4の一端(のコア部分)からコア部形成用の波長の光が混合溶液11中に出射され、これによって混合溶液11中の第1の光硬化性樹脂のみが反応して硬化し、図5に示すように、各光ファイバ13−3及び13−4の一端からそれぞれのコアの延長線上に沿って導波路(コア部)16−3及び16−4が形成される。その後、各導波路16−3及び16−4がそれぞれ、先に形成された光ファイバ13−1及び13−2からの導波路16−1及び16−2の先端に到達したところで光源14−3及び14−4の動作を停止すると、導波路16−1と16−3とが接続され、導波路16−2と16−4とが接続される。   Next, only the light source (e) light sources 14-3 and 14-4 connected to the other ends of the optical fibers 13-3 and 13-4 are operated, and light having a wavelength for forming the core portion is incident from the other ends. To do. Then, similarly to the above, light having a wavelength for forming the core part is emitted into the mixed solution 11 from one end (the core part) of the optical fibers 13-3 and 13-4, whereby the first light in the mixed solution 11 is emitted. Only the photocurable resin reacts and cures, and as shown in FIG. 5, the waveguide (core part) 16-3 extends from one end of each of the optical fibers 13-3 and 13-4 along the extension line of each core. And 16-4 are formed. Thereafter, when the waveguides 16-3 and 16-4 reach the tips of the waveguides 16-1 and 16-2 from the previously formed optical fibers 13-1 and 13-2, respectively, the light source 14-3 And 14-4 are stopped, the waveguides 16-1 and 16-3 are connected, and the waveguides 16-2 and 16-4 are connected.

最後に、光源(f)15を動作させ、各光ファイバの一端同士の間にクラッド部形成用の波長の光を照射すると、混合溶液11中の第2の光硬化性樹脂のみが反応して硬化(特に導波路16−1〜16−4の周囲の第2の光硬化性樹脂がより早く反応して硬化)し、図6に示すようなクラッド部17が形成される。   Finally, when the light source (f) 15 is operated and light having a wavelength for forming a clad portion is irradiated between one end of each optical fiber, only the second photocurable resin in the mixed solution 11 reacts. Curing (especially the second photo-curing resin around the waveguides 16-1 to 16-4 reacts and cures earlier) forms a clad portion 17 as shown in FIG.

ここで、互いに平行な2本の導波路16−1及び16−2の隣接する部分の長さlが光カプラの分岐比を決定する結合長となる。従って、必要な分岐比に応じて結合長lを設計し、各光ファイバを配置することにより所望の分岐比を得ることができる。   Here, the length l of the adjacent portions of the two waveguides 16-1 and 16-2 parallel to each other is a coupling length that determines the branching ratio of the optical coupler. Therefore, a desired branching ratio can be obtained by designing the coupling length l according to the required branching ratio and arranging each optical fiber.

また、本実施の形態では2×2カプラについて説明したが、用途によって接続する光ファイバの本数を調節して1×2、3×3、4×4等の様々な形状の光カプラを作成することができる。   In this embodiment, the 2 × 2 coupler has been described. However, optical couplers having various shapes such as 1 × 2, 3 × 3, and 4 × 4 are created by adjusting the number of optical fibers to be connected depending on applications. be able to.

図7は本発明の実施の形態1の変形例、ここでは3本の光ファイバを接続するとともに接続部分に1×2カプラを作成する場合の例を示すものである。図中、図3乃至図6と同一構成部分は同一符号をもって表しており、11は光硬化性樹脂の混合溶液、13−1〜13−3は光ファイバ、14−1〜14−3はコア部形成用の光源e、15はクラッド部形成用の光源f、16−1〜16−3は導波路(コア部)である。   FIG. 7 shows a modification of the first embodiment of the present invention, in which an example in which three optical fibers are connected and a 1 × 2 coupler is formed at the connection portion is shown. In the figure, the same components as in FIGS. 3 to 6 are denoted by the same reference numerals, 11 is a mixed solution of a photocurable resin, 13-1 to 13-3 are optical fibers, and 14-1 to 14-3 are cores. The light source e for forming the part, 15 is the light source f for forming the clad part, and 16-1 to 16-3 are the waveguides (core part).

ここでは導波路(コア部)の形成が完了した状態、即ち前述した図5と同様な状態を示しているが、第4の光ファイバと、その一端から形成される導波路(コア部)とが無く、これに対応する光源(e)が不要である点を除き、製造工程も含めて実施の形態1の場合と同様である。   Here, the state where the formation of the waveguide (core portion) is completed, that is, the same state as in FIG. 5 described above, is shown, but the fourth optical fiber and the waveguide (core portion) formed from one end thereof are shown. This is the same as in the first embodiment, including the manufacturing process, except that the corresponding light source (e) is not necessary.

図8は本発明の実施の形態1の他の変形例、ここでは8本の光ファイバを接続するとともに接続部分に4×4カプラを作成する場合の例を示すものである。図中、図3乃至図6と同一構成部分は同一符号をもって表しており、11は光硬化性樹脂の混合溶液、13−1〜13−8は光ファイバ、14−1〜14−8はコア部形成用の光源e、15はクラッド部形成用の光源f、16−1〜16−8は導波路(コア部)である。   FIG. 8 shows another modification of the first embodiment of the present invention, here, an example in which 8 optical fibers are connected and a 4 × 4 coupler is formed at the connection portion. In the figure, the same components as those in FIGS. 3 to 6 are denoted by the same reference numerals, 11 is a mixed solution of a photocurable resin, 13-1 to 13-8 are optical fibers, and 14-1 to 14-8 are cores. The light source e for forming the part, 15 is the light source f for forming the cladding part, and 16-1 to 16-8 are the waveguides (core part).

ここでは導波路(コア部)の形成が完了した状態、即ち前述した図5と同様な状態を示しているが、光ファイバ13−1と平行な光ファイバ13−5、光ファイバ13−2と平行な光ファイバ13−6、その中心軸の延長線が光ファイバ13−5の中心軸の延長線と交差する光ファイバ13−7及びその中心軸の延長線が光ファイバ13−6の中心軸の延長線と交差する光ファイバ13−8と、それらの一端から形成される導波路(コア部)16−5〜16−8とが追加され、これらに対応する光源(e)14−5〜14−8が必要である点を除き、製造工程も含めて実施の形態1の場合と同様である。   Here, the state where the formation of the waveguide (core portion) is completed, that is, the same state as in FIG. 5 described above is shown, but the optical fiber 13-5 parallel to the optical fiber 13-1, the optical fiber 13-2, The parallel optical fiber 13-6, the optical fiber 13-7 whose extension of the central axis intersects the extension of the central axis of the optical fiber 13-5, and the extension of the central axis is the central axis of the optical fiber 13-6 And an optical fiber 13-8 intersecting with the extended line of the optical waveguide 13 and waveguides (core portions) 16-5 to 16-8 formed from one end thereof, and light sources (e) 14-5 corresponding to these are added. Except for the point that 14-8 is necessary, it is the same as the case of the first embodiment including the manufacturing process.

なお、ここでは互いに平行な導波路16−1,16−2,16−5,16−6が立体的に配置されるように各光ファイバ13−1〜13−8を配置したが、これは各導波路16−1,16−2,16−5,16−6同士の結合状態(相互の間隔)をなるべく等しくするためである。   Here, the optical fibers 13-1 to 13-8 are arranged so that the waveguides 16-1, 16-2, 16-5, and 16-6 parallel to each other are arranged three-dimensionally. This is because the coupling states (intervals) between the waveguides 16-1, 16-2, 16-5, and 16-6 are made as equal as possible.

<実施の形態2>
図9乃至図11は本発明の実施の形態2、ここでは2本の光ファイバを接続するとともに接続部分に光フィルタ(ここでは光ファイバブラッググレーティング)を作成する場合の例(但し、特許請求の範囲には含まれない。)を示すもので、図中、21は光硬化性樹脂の混合溶液、22は混合溶液21を溜めるための容器、23−1,23−2は光ファイバ、24はコア部形成用の光源e、25はクラッド部形成用の光源f、26はグレーティング部形成用の光源g、27はマスクである。
<Embodiment 2>
FIG. 9 to FIG. 11 show an embodiment of the present invention, in which two optical fibers are connected and an optical filter (here, an optical fiber Bragg grating) is formed in the connecting portion (however, the claims In the figure, 21 is a mixed solution of a photocurable resin, 22 is a container for storing the mixed solution 21, 23-1, 23-2 are optical fibers, 24 is The light source e for forming the core part, 25 is the light source f for forming the clad part, 26 is the light source g for forming the grating part, and 27 is a mask.

光硬化性樹脂の混合溶液21は、硬化後の屈折率及び硬化開始波長を調整した3種類の光硬化性樹脂、ここでは硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのコアの屈折率及びコア部形成用の光源eの波長に調整した第1の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのクラッドの屈折率及びクラッド部形成用の光源fの波長に調整した第2の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのコアよりも高い(特定の波長の光が反射されるような)屈折率及びグレーティング部形成用の光源gの波長に調整した第3の光硬化性樹脂との混合溶液であり、予め用意しておくものとする。   The mixed solution 21 of the photocurable resin includes three types of photocurable resins in which the refractive index after curing and the curing start wavelength are adjusted, here, the core of the optical fiber connecting the refractive index after curing and the curing start wavelength, respectively. The refractive index of the clad of the optical fiber that connects the first photocurable resin adjusted to the refractive index and the wavelength of the light source e for forming the core part, and the refractive index and the curing start wavelength after curing, respectively, for forming the clad part Refraction higher than the core of the optical fiber connecting the second photo-curing resin adjusted to the wavelength of the light source f and the refractive index after curing and the curing start wavelength (so that light of a specific wavelength is reflected) It is a mixed solution with the third photo-curing resin adjusted to the wavelength and the wavelength of the light source g for forming the grating part, and is prepared in advance.

まず、光ファイバ23−1,23−2を、それぞれの接続すべき一端が容器22内において、図9に示すように、間隙を隔てて対向するとともにそれぞれの中心軸が一致するように配置する。   First, the optical fibers 23-1 and 23-2 are arranged so that the ends to be connected are opposed to each other with a gap and the respective central axes coincide with each other in the container 22 as shown in FIG. 9. .

次に、容器22内に前記光硬化性樹脂の混合溶液21を注入し、これを各光ファイバ23−1,23−2の一端同士の間に介在させる。   Next, the mixed solution 21 of the photocurable resin is injected into the container 22 and interposed between the one ends of the optical fibers 23-1 and 23-2.

次に、光ファイバ23−1,23−2のいずれか一方、ここでは23−1の他端に接続された光源(e)24を動作させ、該他端からコア部形成用の波長の光を入射する。すると、光ファイバ23−1の一端(のコア部分)からコア部形成用の波長の光が混合溶液21中に出射され、これによって混合溶液21中の第1の光硬化性樹脂のみが反応して硬化し、図10に示すように、光ファイバ23−1の一端からコアの延長線上に沿って光ファイバ23−2の一端まで導波路(コア部)28が形成される。   Next, the light source (e) 24 connected to one of the optical fibers 23-1 and 23-2, here, the other end of the optical fiber 23-1, is operated, and light having a wavelength for forming the core portion is formed from the other end. Is incident. Then, the light of the wavelength for core part formation is radiate | emitted in the mixed solution 21 from the end (core part) of the optical fiber 23-1, and only 1st photocurable resin in the mixed solution 21 reacts by this. As shown in FIG. 10, a waveguide (core portion) 28 is formed from one end of the optical fiber 23-1 to one end of the optical fiber 23-2 along the extension line of the core.

この時、導波路28が完全に硬化する前に光源(g)26を動作させ、光ファイバ23−1,23−2の一端同士の間にグレーティング部形成用の波長の光を所定のパターン(グレーティングパターン)を備えたマスク27を介して照射すると、(導波路28内の)混合溶液21中の第3の光硬化性樹脂のみが反応して硬化し、図10に示すように、導波路28中に該導波路28よりも屈折率の高い部分28aが形成される。   At this time, the light source (g) 26 is operated before the waveguide 28 is completely cured, and light having a wavelength for forming the grating portion is formed between the one ends of the optical fibers 23-1 and 23-2 in a predetermined pattern ( When irradiated through a mask 27 having a grating pattern), only the third photocurable resin in the mixed solution 21 (in the waveguide 28) reacts and cures, and as shown in FIG. A portion 28 a having a higher refractive index than that of the waveguide 28 is formed in 28.

最後に、光源(f)25を動作させ、光ファイバ23−1,23−2の一端同士の間にクラッド部形成用の波長の光を照射すると、混合溶液21中の第2の光硬化性樹脂のみが反応して硬化(特に導波路28の周囲の第2の光硬化性樹脂がより早く反応して硬化)し、図11に示すようなクラッド部29が形成される。   Finally, when the light source (f) 25 is operated to irradiate light having a wavelength for forming the cladding portion between the one ends of the optical fibers 23-1 and 23-2, the second photocurability in the mixed solution 21 is obtained. Only the resin reacts and cures (in particular, the second photo-curing resin around the waveguide 28 reacts and cures earlier), and a clad portion 29 as shown in FIG. 11 is formed.

ここで、光源(g)26によって照射する導波路28の長さやマスク27におけるパターンの間隔を変化させることにより、作成されるファイバブラッググレーティングの特性を自由に設定することができる。   Here, the characteristics of the produced fiber Bragg grating can be freely set by changing the length of the waveguide 28 irradiated by the light source (g) 26 or the pattern interval on the mask 27.

<実施の形態3>
図12乃至図14は本発明の実施の形態3、ここでは2本の光ファイバを接続するとともに接続部分に光フィルタ(ここでは光ファイバブラッググレーティング)を作成する場合の他の例を示すもので、図中、31は光硬化性樹脂の混合溶液、32は混合溶液31を溜めるための容器、33−1,33−2は光ファイバ、34はコア部形成用の光源e、35はクラッド部形成用の光源f、36はグレーティング部形成用の光源h、37は光カプラである。
<Embodiment 3>
FIGS. 12 to 14 show another example of Embodiment 3 of the present invention, in which two optical fibers are connected and an optical filter (here, an optical fiber Bragg grating) is formed at the connection portion. In the figure, 31 is a mixed solution of a photocurable resin, 32 is a container for storing the mixed solution 31, 33-1, 33-2 are optical fibers, 34 is a light source e for forming a core part, and 35 is a cladding part. The light sources f and 36 for forming are light sources h and 37 for forming a grating part, and are optical couplers.

光硬化性樹脂の混合溶液31は、硬化後の屈折率及び硬化開始波長を調整した3種類の光硬化性樹脂、ここでは硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのコアの屈折率及びコア部形成用の光源eの波長に調整した第1の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのクラッドの屈折率及びクラッド部形成用の光源fの波長に調整した第2の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ接続する光ファイバのコアよりも高い(特定の波長の光が反射されるような)屈折率及びグレーティング部形成用の光源hの波長に調整した第3の光硬化性樹脂との混合溶液であり、予め用意しておくものとする。   The mixed solution 31 of the photocurable resin includes three types of photocurable resins in which the refractive index after curing and the curing start wavelength are adjusted, here, the core of the optical fiber that connects the refractive index after curing and the curing start wavelength, respectively. The refractive index of the clad of the optical fiber that connects the first photocurable resin adjusted to the refractive index and the wavelength of the light source e for forming the core part, and the refractive index and the curing start wavelength after curing, respectively, for forming the clad part Refraction higher than the core of the optical fiber connecting the second photo-curing resin adjusted to the wavelength of the light source f and the refractive index after curing and the curing start wavelength (so that light of a specific wavelength is reflected) It is a mixed solution with a third photo-curing resin adjusted to the rate and the wavelength of the light source h for forming the grating portion, and is prepared in advance.

まず、光ファイバ33−1,33−2を、それぞれの接続すべき一端が容器32内において、図12に示すように、間隙を隔てて対向するとともにそれぞれの中心軸が一致するように配置する。   First, the optical fibers 33-1 and 33-2 are arranged such that one end to be connected in the container 32 is opposed to each other with a gap and the respective central axes coincide with each other as shown in FIG. .

次に、容器32内に前記光硬化性樹脂の混合溶液31を注入し、これを各光ファイバ33−1,33−2の一端同士の間に介在させる。   Next, the mixed solution 31 of the photo-curable resin is injected into the container 32, and this is interposed between one ends of the optical fibers 33-1 and 33-2.

次に、光ファイバ33−1,33−2のいずれか一方、ここでは33−1の他端に光カプラ37を用いて接続された光源(e)34及び光源(h)36を動作させ、該他端からコア部形成用の波長λ1の光及びグレーティング部形成用の波長λ2の光を交互に、即ち互いに逆位相のパルス光となるように入射する。すると、光ファイバ33−1の一端(のコア部分)からコア部形成用の波長λ1の光及びグレーティング部形成用の波長λ2の光が混合溶液31中に交互に出射され、これによって混合溶液31中の第1の光硬化性樹脂及び第3の光硬化性樹脂のみが交互に反応して硬化し、図13に示すように、光ファイバ33−1の一端からコアの延長線上に沿って光ファイバ33−2の一端まで導波路(コア部)38及び導波路38中に該導波路38よりも屈折率の高い部分38aが形成される。   Next, the light source (e) 34 and the light source (h) 36 connected to either one of the optical fibers 33-1 and 33-2, here the other end of the 33-1, using the optical coupler 37 are operated, From the other end, light having a wavelength λ1 for forming a core portion and light having a wavelength λ2 for forming a grating portion are incident alternately, that is, so as to be pulsed light having phases opposite to each other. Then, the light having the wavelength λ1 for forming the core part and the light having the wavelength λ2 for forming the grating part are alternately emitted from one end (the core part) of the optical fiber 33-1 into the mixed solution 31. Only the first photocurable resin and the third photocurable resin in the reaction react and cure alternately, and light is transmitted from one end of the optical fiber 33-1 along the extension line of the core as shown in FIG. A waveguide (core portion) 38 and a portion 38 a having a higher refractive index than the waveguide 38 are formed in the waveguide 38 and the waveguide 38 up to one end of the fiber 33-2.

最後に、光源(f)35を動作させ、光ファイバ33−1,33−2の一端同士の間にクラッド部形成用の波長の光を照射すると、混合溶液31中の第2の光硬化性樹脂のみが反応して硬化(特に導波路38の周囲の第2の光硬化性樹脂がより早く反応して硬化)し、図14に示すようなクラッド部39が形成される。   Finally, when the light source (f) 35 is operated to irradiate light having a wavelength for forming the cladding portion between the one ends of the optical fibers 33-1 and 33-2, the second photocurability in the mixed solution 31 is obtained. Only the resin reacts and cures (in particular, the second photo-curing resin around the waveguide 38 reacts and cures earlier), and a clad portion 39 as shown in FIG. 14 is formed.

ここで、光源(e)34及び光源(h)36による波長λ1の光及び波長λ2の光の配分(パルス光の繰り返し間隔やデューティ比)を調整することにより、作成されるファイバブラッググレーティングの特性を自由に設定することができる。   Here, the characteristics of the fiber Bragg grating produced by adjusting the distribution of light of wavelength λ1 and light of wavelength λ2 (repetition interval and duty ratio of pulsed light) by the light source (e) 34 and light source (h) 36. Can be set freely.

光ファイバ伝送路を含むアクセス系システムの一例を示す構成図Configuration diagram showing an example of an access system including an optical fiber transmission line ONU近傍の光フィルタにより試験光が反射されて戻るようすを示す説明図Explanatory drawing showing test light reflected and returned by an optical filter near the ONU 本発明の実施の形態1を示す構成図The block diagram which shows Embodiment 1 of this invention 本発明の実施の形態1を示す製造工程図Manufacturing process diagram showing Embodiment 1 of the present invention 本発明の実施の形態1を示す製造工程図Manufacturing process diagram showing Embodiment 1 of the present invention 本発明の実施の形態1を示す製造工程図Manufacturing process diagram showing Embodiment 1 of the present invention 本発明の実施の形態1の変形例を示す構成図The block diagram which shows the modification of Embodiment 1 of this invention 本発明の実施の形態1の他の変形例を示す構成図The block diagram which shows the other modification of Embodiment 1 of this invention 本発明の実施の形態2を示す構成図The block diagram which shows Embodiment 2 of this invention 本発明の実施の形態2を示す製造工程図Manufacturing process diagram showing Embodiment 2 of the present invention 本発明の実施の形態2を示す製造工程図Manufacturing process diagram showing Embodiment 2 of the present invention 本発明の実施の形態3を示す構成図The block diagram which shows Embodiment 3 of this invention 本発明の実施の形態3を示す製造工程図Manufacturing process diagram showing Embodiment 3 of the present invention 本発明の実施の形態3を示す製造工程図Manufacturing process diagram showing Embodiment 3 of the present invention

符号の説明Explanation of symbols

1:光ファイバ伝送路、2:通信事業者の局舎、3:ユーザ宅、4:光加入者線終端装置(OLT)、5:光加入者線ネットワーク装置(ONU)、6:光パルス試験機(OTDR)、7:光カプラ、8:光フィルタ(光ファイバブラッググレーティング)、9:光学フィルタ、11,21,31:光硬化性樹脂の混合溶液、12,22,32:容器、13−1〜13−8,23−1,23−2,33−1,33−2:光ファイバ、14−1〜14−8,24,34:コア部形成用の光源e、15,25,35:クラッド部形成用の光源f、16−1〜16−8,28,38:導波路(コア部)、28a,38a:導波路よりも屈折率の高い部分、17,29,39:クラッド部、26:グレーティング部形成用の光源g、27:マスク、36:グレーティング部形成用の光源h、37:光カプラ。   1: optical fiber transmission line, 2: carrier's office, 3: user's house, 4: optical subscriber line termination unit (OLT), 5: optical subscriber line network unit (ONU), 6: optical pulse test Machine (OTDR), 7: optical coupler, 8: optical filter (optical fiber Bragg grating), 9: optical filter, 11, 21, 31: mixed solution of photocurable resin, 12, 22, 32: container, 13- 1-13-8, 23-1, 23-2, 33-1, 33-2: optical fiber, 14-1 to 14-8, 24, 34: light source e, 15, 25, 35 for forming the core part : Light source f for forming clad part, 16-1 to 16-8, 28, 38: Waveguide (core part), 28a, 38a: Parts having higher refractive index than waveguide, 17, 29, 39: Cladding part , 26: light source g for forming a grating part, 27: mask, 3 : Light source h of grating portion formation, 37: optical coupler.

Claims (2)

2本の光ファイバ同士を接続する方法であって、
2本の光ファイバを、それぞれの一端が間隙を隔てて対向するとともにそれぞれの中心軸が一致するように配置し、
硬化後の屈折率及び硬化開始波長をそれぞれ光ファイバのコアの屈折率及びコア部形成用の光源の波長に調整した第1の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ光ファイバのクラッドの屈折率及びクラッド部形成用の光源の波長に調整した第2の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ光ファイバのコアよりも高い屈折率及びグレーティング部形成用の光源の波長に調整した第3の光硬化性樹脂との混合溶液を、前記各光ファイバの一端同士の間に介在させ、
いずれか一方の光ファイバの他端にコア部形成用の光源及びグレーティング部形成用の光源からの光を交互に入射して前記混合溶液中の第1の光硬化性樹脂及び第3の光硬化性樹脂を交互に硬化させて2本の光ファイバ間にコア部及び当該コア部よりも屈折率の高い部分を同時に形成し、
各光ファイバの一端同士の間にクラッド部形成用の光源からの光を照射して前記混合溶液中の第2の光硬化性樹脂を硬化させてクラッド部を形成する
ことを特徴とする光ファイバの接続方法。
A method of connecting two optical fibers,
Two optical fibers are arranged so that each one end faces each other with a gap and the respective central axes coincide with each other.
A first photo-curable resin in which the refractive index after curing and the curing start wavelength are adjusted to the refractive index of the core of the optical fiber and the wavelength of the light source for forming the core part, respectively, and the refractive index and curing start wavelength after curing, respectively. The second photo-curing resin adjusted to the refractive index of the clad of the optical fiber and the wavelength of the light source for forming the clad portion, and the refractive index and the grating after the curing are higher than the core of the optical fiber, respectively. Interposing a mixed solution with the third photocurable resin adjusted to the wavelength of the light source for forming the part between one end of each optical fiber,
The light from the light source for forming the core part and the light source for forming the grating part are alternately incident on the other end of any one of the optical fibers, and the first photocurable resin and the third photocured resin in the mixed solution. The core portion and the portion having a higher refractive index than the core portion are simultaneously formed between the two optical fibers by alternately curing the resin.
An optical fiber characterized in that a clad part is formed by irradiating light from a light source for forming a clad part between one end of each optical fiber to cure the second photocurable resin in the mixed solution. Connection method.
2本の光ファイバ同士の接続部位に光フィルタを製造する方法であって、
2本の光ファイバを、それぞれの一端が間隙を隔てて対向するとともにそれぞれの中心軸が一致するように配置し、
化後の屈折率及び硬化開始波長をそれぞれ光ファイバのコアの屈折率及びコア部形成用の光源の波長に調整した第1の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ光ファイバのクラッドの屈折率及びクラッド部形成用の光源の波長に調整した第2の光硬化性樹脂と、硬化後の屈折率及び硬化開始波長をそれぞれ光ファイバのコアよりも高い屈折率及びグレーティング部形成用の光源の波長に調整した第3の光硬化性樹脂との混合溶液を、前記各光ファイバの一端同士の間に介在させ、
いずれか一方の光ファイバの他端にコア部形成用の光源及びグレーティング部形成用の光源からの光を交互に入射して前記混合溶液中の第1の光硬化性樹脂及び第3の光硬化性樹脂を交互に硬化させて2本の光ファイバ間にコア部及び当該コア部よりも屈折率の高い部分を同時に形成し、
各光ファイバの一端同士の間にクラッド部形成用の光源からの光を照射して前記混合溶液中の第2の光硬化性樹脂を硬化させてクラッド部を形成する
ことを特徴とする光フィルタの製造方法
A method of manufacturing an optical filter at a connection site between two optical fibers,
Two optical fibers are arranged so that each one end faces each other with a gap and the respective central axes coincide with each other .
First photocurable resin adjusted refractive index after hardening and curing start wavelength to the wavelength of the refractive index and the light source for forming a core part of the core of each optical fiber, the refractive index and curing initiation wavelength after curing A second photo-curing resin adjusted to the refractive index of the cladding of the optical fiber and the wavelength of the light source for forming the cladding, respectively, and the refractive index after curing and the curing start wavelength are higher than the refractive index of the core of the optical fiber and A mixed solution with a third photocurable resin adjusted to the wavelength of the light source for forming the grating part is interposed between one end of each optical fiber,
The light from the light source for forming the core part and the light source for forming the grating part are alternately incident on the other end of any one of the optical fibers, and the first photocurable resin and the third photocured resin in the mixed solution. than core portion and the core portion between the sexual resin cured alternately two optical fibers to form a high refractive index portion at the same time,
Light and forming a second clad portion by curing the photocurable resin in the mixed solution was irradiated with light from a light source for the clad portion formed between the one ends of the optical fibers A method for manufacturing a filter.
JP2004294734A 2004-10-07 2004-10-07 Optical fiber connection method and optical filter manufacturing method Expired - Fee Related JP4390270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294734A JP4390270B2 (en) 2004-10-07 2004-10-07 Optical fiber connection method and optical filter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294734A JP4390270B2 (en) 2004-10-07 2004-10-07 Optical fiber connection method and optical filter manufacturing method

Publications (2)

Publication Number Publication Date
JP2006106472A JP2006106472A (en) 2006-04-20
JP4390270B2 true JP4390270B2 (en) 2009-12-24

Family

ID=36376272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294734A Expired - Fee Related JP4390270B2 (en) 2004-10-07 2004-10-07 Optical fiber connection method and optical filter manufacturing method

Country Status (1)

Country Link
JP (1) JP4390270B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046178A (en) * 2006-08-11 2008-02-28 Nippon Telegr & Teleph Corp <Ntt> Holder for connecting optical fiber and connecting method using the same
JP5096252B2 (en) * 2008-07-25 2012-12-12 株式会社豊田中央研究所 Optical waveguide, optical module, and manufacturing method thereof
JP5571855B2 (en) * 2011-10-05 2014-08-13 湖北工業株式会社 MULTI-CORE FIBER CONNECTOR, METHOD FOR MANUFACTURING SQUARE GLASS MOLDING USED FOR THE SAME, AND SILVER GLASS MOLD FOR USE IN THE METHOD
JP6538067B2 (en) 2014-02-21 2019-07-03 ダウ シリコーンズ コーポレーション Method of manufacturing optical connector, and optical device including optical connector manufactured by the method
JP2017161689A (en) * 2016-03-09 2017-09-14 アダマンド株式会社 Optical branch coupler and method for manufacturing the optical branch coupler, light source device using the optical branch coupler, and light-emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
JP2001255425A (en) * 2000-03-13 2001-09-21 Oki Electric Ind Co Ltd Optical waveguide
JP4011283B2 (en) * 2000-11-30 2007-11-21 株式会社豊田中央研究所 Manufacturing method of optical transmission line
JP4446618B2 (en) * 2001-02-27 2010-04-07 イビデン株式会社 Method for forming optical waveguide
JP4219137B2 (en) * 2002-09-05 2009-02-04 イビデン株式会社 Optical wiring connector
JP4087207B2 (en) * 2002-10-02 2008-05-21 京セラケミカル株式会社 Optical transmission line forming material, optical transmission line and optical transmission line manufacturing method
JP2004177802A (en) * 2002-11-28 2004-06-24 Ibiden Co Ltd Optical waveguide forming/inspecting apparatus and method of forming optical waveguide
JP4368142B2 (en) * 2003-05-22 2009-11-18 イビデン株式会社 Optical waveguide parts

Also Published As

Publication number Publication date
JP2006106472A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US11428868B2 (en) Optical fiber and waveguide devices having expanded beam coupling
US8417077B2 (en) Optical branching device and optical communication system including the same
JP3269505B2 (en) Polymer optical waveguide type optical star coupler
US20010046352A1 (en) Fiber-type optical coupler, manufacturing method thereof and optical parts and apparatuses using the same
JP2003057476A (en) Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
Vanmol et al. Mode-field matching down-tapers on single-mode optical fibers for edge coupling towards generic photonic integrated circuit platforms
JP2014178628A (en) Fan-in/fan-out device for multiple core fiber connection, optical connection device, and optical connection method
JP4390270B2 (en) Optical fiber connection method and optical filter manufacturing method
WO2006051981A1 (en) Light reflector, optical coupler/branching filter, and optical system
WO2020235576A1 (en) Optical coupling device and method for manufacturing optical coupling device
Wlodawski et al. A new generation of ultra-dense optical I/O for silicon photonics
JP2009003338A (en) Method of splicing optical fibre
WO2001084207A1 (en) Cladding-assisted single-mode fiber coupler
WO2017155007A1 (en) Optical branching/coupling instrument and optical transmission/reception module
JP2012194362A (en) Mode multi/demultiplexing coupler and manufacturing method thereof
Li et al. Cost-effective side-coupling polymer fiber optics for optical interconnections
JP4134481B2 (en) Manufacturing method of optical transmission module
GB2220765A (en) Wavelength-independent fused fibre power divider
JP4528970B2 (en) Waveguide connection structure and optical branching coupling element
JP2007206149A (en) Optical fiber connecting method and photocurable resin
JPH10153719A (en) Multiplex-mode optical coupler and its manufacture
CN215067405U (en) Oxyhydrogen flame-based mode matching optical fiber manufacturing device
JP4736880B2 (en) Manufacturing method of optical module
CN220858113U (en) Low latency free space optical data communication channel
CN111999815B (en) Tunable optical fiber filter based on few-mode-multimode-few-mode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees