JP2003057476A - Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device - Google Patents

Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device

Info

Publication number
JP2003057476A
JP2003057476A JP2001245705A JP2001245705A JP2003057476A JP 2003057476 A JP2003057476 A JP 2003057476A JP 2001245705 A JP2001245705 A JP 2001245705A JP 2001245705 A JP2001245705 A JP 2001245705A JP 2003057476 A JP2003057476 A JP 2003057476A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide device
light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001245705A
Other languages
Japanese (ja)
Other versions
JP3984009B2 (en
Inventor
Manabu Kagami
学 各務
Tatsuya Yamashita
達弥 山下
Shuri Kawasaki
朱里 河崎
Hiroshi Ito
伊藤  博
Yukitoshi Inui
幸利 伊縫
Kuniyoshi Kondo
国芳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2001245705A priority Critical patent/JP3984009B2/en
Priority to DE60230369T priority patent/DE60230369D1/en
Priority to EP02017929A priority patent/EP1284426B1/en
Priority to US10/216,224 priority patent/US6823116B2/en
Publication of JP2003057476A publication Critical patent/JP2003057476A/en
Priority to US10/920,233 priority patent/US6925233B2/en
Application granted granted Critical
Publication of JP3984009B2 publication Critical patent/JP3984009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tool for easily manufacturing an optical waveguide device and a method for manufacturing the device. SOLUTION: An interference filter 25 as optical parts is preliminarily disposed in the optical path in a transparent container 20 and the container is filled with a photosetting resin solution 23. A tool for the manufacture of an optical waveguide device is prepared by forming a hole 11 and a plurality of holes 12 in a chassis 10. The position of the holes is determined in such a manner that the light entering the hole 11 passes through the interference filter 25 to reach the holes 12. Optical fibers 21, 22 are fitted to the holes 11, 12 of the chassis 10, and the chassis 10 is attached to the transparent container 20 (Process (a)). Then light at specified wavelength is introduced into the optical fibers 11, 12 to grow an optical waveguide 24 in the photosetting resin solution 23. (process (b) and (c)). Then the solution is replaced by a low refractive index photosetting resin solution 26 and the whole body is solidified by UV rays (process (d)). At last, the body is provided with, for example, an optical fiber 31, a light accepting element 29a or the like (process (e)).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高精度に光導波路
デバイスを製造する光導波路デバイス製造用治具、及び
その治具を用いた光導波路デバイスの製造方法、並びに
その光導波路デバイスに関する。特に、容器内に光学部
品を内挿してその容器内に光硬化性樹脂溶液を満たし、
治具に設定された所定位置から所定波長光を導入して、
容易に精度よく光導波路デバイスを製造する治具及びそ
の治具を用いた光導波路デバイスの製造方法、並びにそ
の光導波路デバイスに関する。本発明は、光ファイバ通
信における安価で低損失な光送受信器、光インタ−コネ
クション、光分波器あるいは合波器の製造に適用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device manufacturing jig for manufacturing an optical waveguide device with high precision, an optical waveguide device manufacturing method using the jig, and an optical waveguide device therefor. In particular, the optical components are inserted into the container and the container is filled with the photocurable resin solution,
Introduce a predetermined wavelength light from a predetermined position set in the jig,
The present invention relates to a jig for easily and accurately manufacturing an optical waveguide device, a method for manufacturing an optical waveguide device using the jig, and the optical waveguide device. INDUSTRIAL APPLICABILITY The present invention can be applied to manufacture of an inexpensive and low-loss optical transceiver, optical interconnection, optical demultiplexer or multiplexer in optical fiber communication.

【0002】[0002]

【従来の技術】近年、光硬化性樹脂溶液にビーム状の所
定波長光を導入し、自己集光現象(セルフフォーカシン
グ現象)を利用して、光導波路デバイスを形成する技術
が注目されている。自己集光現象とは、光硬化性樹脂が
光照射により液相から固相へ相変化する際、固相での屈
折率上昇により発散性の照射光が固相領域に閉じこめら
れる現象のことである。そして、この現象を利用して形
成する光導波路を自己形成光導波路という。以下、簡略
化して光導波路と云う。具体例として、特開平8−32
0422号公報に開示された光導波路系の作成方法およ
びそれを用いた光デバイスがある。これは、光硬化性樹
脂溶液内に受光素子、レンズ、プリズム、ミラー等の光
部品を設置し、単数又は複数個所から単数又は複数の所
定波長光を導入し、セルフフォーカシング効果を利用し
て各光部品間を光導波路で結ぶ方法である。これによ
り、様々な光部品が光導波路で結合された光デバイスを
形成することを特徴としている。例えば、様々な干渉フ
ィルタを光軸にそって立設すれば、光導波路型の分波フ
ィルタが形成される。又、例えばハーフミラーを光硬化
性樹脂溶液中に設置して、入射口、出射口を光導波路で
接続すれば、光導波路型の分岐器又は光導波路型の合波
器が形成される。特に、上記例ではその製造方法におい
て、双方向から光を導入し中間点で両側からの光導波路
を互いに引き込んで結合させる、所謂セルフアライメン
ト効果によって結合させ、結合点での損失を低減するこ
とを特徴としている。
2. Description of the Related Art In recent years, a technique for forming an optical waveguide device by introducing a light beam having a predetermined wavelength into a photocurable resin solution and utilizing a self-focusing phenomenon (self-focusing phenomenon) has attracted attention. The self-focusing phenomenon is a phenomenon in which the divergent irradiation light is confined in the solid phase region due to the increase in the refractive index in the solid phase when the photocurable resin undergoes a phase change from the liquid phase to the solid phase by light irradiation. is there. An optical waveguide formed by utilizing this phenomenon is called a self-forming optical waveguide. Hereinafter, it is simply referred to as an optical waveguide. As a specific example, Japanese Patent Laid-Open No. 8-32
There is a method for producing an optical waveguide system and an optical device using the method disclosed in Japanese Patent No. 0422. This is to install light components such as a light receiving element, a lens, a prism, and a mirror in a photocurable resin solution, introduce light of a single or a plurality of predetermined wavelengths from a single or a plurality of locations, and use each self-focusing effect. This is a method of connecting optical components with an optical waveguide. This is characterized by forming an optical device in which various optical components are coupled by an optical waveguide. For example, if various interference filters are erected along the optical axis, an optical waveguide type demultiplexing filter is formed. If, for example, a half mirror is installed in a photocurable resin solution and the entrance and the exit are connected by an optical waveguide, an optical waveguide type branching device or an optical waveguide type multiplexer is formed. In particular, in the manufacturing method in the above example, it is possible to reduce the loss at the coupling point by introducing light from both directions and pulling and coupling the optical waveguides from both sides at the intermediate point to each other, that is, the so-called self-alignment effect. It has a feature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例においては光硬化性樹脂溶液は1種類である。1種
類の光硬化性樹脂溶液を硬化させた場合、光導波路のク
ラッド形成は困難となる。即ち、光導波路表面の僅かな
傷、埃等で伝送損失が発生するという問題がある。又、
その光導波路は入射口、出射口、又は光部品で支持され
るのみであり、機械振動等に頑強な光導波路デバイスと
はならないという問題がある。又、従来例では例えば光
部品として半導体レーザを組み込む例がある。即ち、光
導波路形成に使用する波長と、実使用時(例えば光通
信)に使用する波長を同一としている。この場合は、所
定波長と吸収率の関係から得られた光導波路は伝送損失
が大きくなるという問題がある。
However, in the above conventional example, there is only one type of photocurable resin solution. When one type of photocurable resin solution is cured, it becomes difficult to form a clad for the optical waveguide. That is, there is a problem in that transmission loss occurs due to slight scratches and dust on the surface of the optical waveguide. or,
The optical waveguide is only supported by the entrance, the exit, or the optical component, and there is a problem that the optical waveguide device is not robust against mechanical vibration or the like. In the conventional example, there is an example in which a semiconductor laser is incorporated as an optical component. That is, the wavelength used for forming the optical waveguide is the same as the wavelength used for actual use (for example, optical communication). In this case, the optical waveguide obtained from the relationship between the predetermined wavelength and the absorptance has a problem that the transmission loss becomes large.

【0004】更に、従来例の特徴は、異なる方向から光
を導入し異なる方向から光導波路を成長させて、中間点
でセルフアライメント効果で軸合わせを行うことであ
る。そして、低損失な光導波路デバイスを作製すること
である。しかしながら、光導波路径が百数十μmでセル
フアライメント効果を奏するには、中間点で例えば数十
ミクロン程度の位置合わせが必要である。光部品を光硬
化性樹脂溶液中に設置する場合は、その光部品の位置ず
れ、角度ずれがセルフアライメント効果を低減させる大
きな因子となり、必ずしも効率よく製造されるものでは
ない。
Further, the feature of the conventional example is that light is introduced from different directions to grow an optical waveguide from different directions, and axis alignment is performed by a self-alignment effect at an intermediate point. Then, a low-loss optical waveguide device is manufactured. However, in order to achieve the self-alignment effect when the optical waveguide diameter is one hundred and several tens of μm, it is necessary to perform alignment of about several tens of microns at the midpoint. When the optical component is installed in the photocurable resin solution, the positional deviation and the angular deviation of the optical component are major factors that reduce the self-alignment effect, and are not always manufactured efficiently.

【0005】本発明は、上記の課題を解決するためにな
されたものであり、その目的は光導波路デバイス作成用
治具の筐体の所定位置に光部品に対応したN個の光導入
部を形成し、その位置決めされたN個の光導入部から所
定波長光を導入することによって、容易に高精度光導波
路デバイスを製造することである。又、上記N個の光導
入部に孔を形成して、その孔に光ファイバを嵌合し、そ
の光ファイバから所定波長光を出射させるだけで作業性
よく光導波路デバイスを製造する治具及びその製造方法
を提供することである。又、その光導波路の周囲を低屈
折率樹脂溶液で包埋することで、ステップインデックス
型の光導波路とし、伝送損失の少ない光導波路デバイス
の製造方法を提供することである。更に、他の目的は、
光部品の調整可能な治具を提供し、作業効率を向上させ
るとともに、さらに高精度な光導波路デバイスの製造方
法を提供することである。 又、その光導波路デバイス
を提供することである。尚、上記目的は、個々の発明が
個々に達成する目的であって、個々の発明が全ての上記
の目的を達成するものと解釈されるべきではない。
The present invention has been made to solve the above problems, and its purpose is to provide N light introducing portions corresponding to optical components at predetermined positions in the housing of a jig for producing an optical waveguide device. A high-precision optical waveguide device is easily manufactured by forming and introducing light of a predetermined wavelength from the N light introducing portions that are positioned. Further, a jig for manufacturing an optical waveguide device with good workability by forming holes in the N light introducing portions, fitting an optical fiber into the holes, and emitting light of a predetermined wavelength from the optical fibers, It is to provide the manufacturing method. Another object of the present invention is to provide a method of manufacturing an optical waveguide device in which a step index type optical waveguide is formed by embedding the periphery of the optical waveguide in a low refractive index resin solution, and the transmission loss is small. Yet another purpose is
An object of the present invention is to provide a jig capable of adjusting optical components, improve work efficiency, and provide a method of manufacturing an optical waveguide device with higher accuracy. Another object is to provide the optical waveguide device. It should be noted that the above object is an object that each invention individually achieves, and should not be construed as an individual invention that achieves all the above objects.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載の光導波路デバイス製造用治
具は、単数又は複数の光部品を内挿しN個の入出力端を
有する光導波路デバイスを製造する治具であって、光硬
化性樹脂溶液が注入された透明容器に単数又は複数の光
部品を内挿し、その透明容器に装着して用いる光導波路
デバイス製造用治具であって、筐体と、その筐体に所定
の位置関係で設けられたN個の光導入部からなり、その
N個の光導入部の任意の光導入部から所定波長光を導入
して光硬化性樹脂溶液を硬化させ、それらの光軸方向、
又は光硬化性樹脂溶液内に設置された単数又は複数の光
部品によって変換された光軸方向に光導波路を成長させ
て、N個の光導入部と単数又は複数の光部品とを光導波
路で接続させて、N個の入出力端を有する光導波路デバ
イスを製造することを特徴とする。
In order to achieve this object, an optical waveguide device manufacturing jig according to a first aspect of the present invention has a single or a plurality of optical components inserted therein and has N input / output ends. A jig for manufacturing an optical waveguide device having the optical waveguide device manufacturing jig, wherein a single or a plurality of optical components are inserted into a transparent container in which a photocurable resin solution is injected, and the optical component is mounted in the transparent container. In addition, it is composed of a housing and N light introducing portions provided in the housing in a predetermined positional relationship. Light of a predetermined wavelength is introduced from any light introducing portion of the N light introducing portions. Curing the photocurable resin solution, their optical axis direction,
Alternatively, an optical waveguide is grown in the optical axis direction converted by one or a plurality of optical components installed in a photocurable resin solution, and N light introducing portions and one or a plurality of optical components are formed by the optical waveguide. The optical waveguide device having N input / output terminals is manufactured by connecting the optical waveguide devices.

【0007】又、本発明の請求項2に記載の光導波路デ
バイス製造用治具は請求項1に記載の光導波路デバイス
製造用治具であって、任意の光導入部には孔が形成され
ており、その孔に光ファイバが嵌合されることを特徴と
する。又、本発明の請求項3に記載の光導波路デバイス
製造用治具は請求項1又は請求項2に記載の光導波路デ
バイス製造用治具であって、所定波長光が導入される光
導入部には集光光学系が付与されることを特徴とする。
又、本発明の請求項4に記載の光導波路デバイス製造用
治具は請求項1乃至請求項3の何れか1項に記載の光導
波路デバイス製造用治具であって、導入光の光軸に対す
る光部品の位置及び/又は角度を調整する調整手段を有
することを特徴とする。又、本発明の請求項5に記載の
光導波路デバイス製造用治具は請求項1乃至請求項4の
何れか1項に記載の光導波路デバイス製造用治具であっ
て、N個の光導入部を有する筐体は複数に分離可能であ
ることを特徴とする。
The jig for manufacturing an optical waveguide device according to a second aspect of the present invention is the jig for manufacturing an optical waveguide device according to the first aspect, in which a hole is formed in an arbitrary light introducing portion. The optical fiber is fitted into the hole. The jig for manufacturing an optical waveguide device according to claim 3 of the present invention is the jig for manufacturing an optical waveguide device according to claim 1 or 2, which is a light introducing part for introducing light of a predetermined wavelength. Is provided with a condensing optical system.
An optical waveguide device manufacturing jig according to claim 4 of the present invention is the optical waveguide device manufacturing jig according to any one of claims 1 to 3, wherein the optical axis of the introduced light is It has an adjusting means for adjusting the position and / or the angle of the optical component with respect to. The jig for manufacturing an optical waveguide device according to claim 5 of the present invention is the jig for manufacturing an optical waveguide device according to any one of claims 1 to 4, wherein N optical guides are provided. A case having a part can be separated into a plurality of parts.

【0008】又、本発明の請求項6に記載の光導波路デ
バイスの製造方法は、請求項1乃至請求項5の何れか1
項の光導波路デバイス製造用治具を用いて形成する光導
波路デバイスの製造方法であって、透明容器に単数又は
複数の光部品を所定位置に内挿し、その透明容器に光硬
化性樹脂溶液を充填し、請求項1乃至請求項5の何れか
1項の光導波路デバイス製造用治具を透明容器に装着し
てその任意の光導入部から所定波長光を導入し、内部の
光硬化性樹脂溶液を硬化させて光導波路を形成し、N個
の光導入部と単数又は複数の光部品とを光導波路で接続
させてN個の入出力端を有する光導波路デバイスを形成
することを特徴とする。
A method for manufacturing an optical waveguide device according to a sixth aspect of the present invention is any one of the first to fifth aspects.
A method for manufacturing an optical waveguide device formed by using the optical waveguide device manufacturing jig of item 1, wherein a single or a plurality of optical components are inserted into a transparent container at a predetermined position, and the photocurable resin solution is placed in the transparent container. Filling, mounting the optical waveguide device manufacturing jig according to any one of claims 1 to 5 in a transparent container, introducing light of a predetermined wavelength from an arbitrary light introducing part, and a photocurable resin inside An optical waveguide is formed by curing a solution, and N light introducing portions and one or a plurality of optical components are connected by the optical waveguide to form an optical waveguide device having N input / output ends. To do.

【0009】又、本発明の請求項7に記載の光導波路デ
バイスの製造方法は請求項6に記載の光導波路デバイス
の製造方法であって、任意の光導入部には孔が形成され
ており、その孔には所定波長光を出射する光ファイバが
嵌合されることを特徴とする。又、本発明の請求項8に
記載の光導波路デバイスの製造方法は請求項6又は請求
項7に記載の光導波路デバイスの製造方法であって、光
導波路は少なくともその両端が透明容器に固定されるこ
とを特徴とする。
A method for manufacturing an optical waveguide device according to a seventh aspect of the present invention is the method for manufacturing an optical waveguide device according to the sixth aspect, wherein a hole is formed in an arbitrary light introducing portion. An optical fiber that emits light of a predetermined wavelength is fitted in the hole. The method for manufacturing an optical waveguide device according to claim 8 of the present invention is the method for manufacturing an optical waveguide device according to claim 6 or 7, wherein at least both ends of the optical waveguide are fixed to a transparent container. It is characterized by

【0010】又、本発明の請求項9に記載の光導波路デ
バイスの製造方法は請求項6乃至請求項8の何れか1項
に記載の光導波路デバイスの製造方法であって、透明容
器内に配置された光部品は透明容器の外部から位置調整
及び/又は角度調整が可能であり、光硬化性樹脂溶液の
注入後に光硬化性樹脂溶液が硬化しない波長で一つの光
導入部から入射された光が他の光導入部から出射される
ように光部品の位置調整及び/又は角度調整が行われる
ことを特徴とする。
A method for manufacturing an optical waveguide device according to a ninth aspect of the present invention is the method for manufacturing an optical waveguide device according to any one of the sixth to eighth aspects, wherein The arranged optical components can be position-adjusted and / or angle-adjusted from the outside of the transparent container, and the light-curable resin solution is injected from one light introduction part at a wavelength at which the photo-curable resin solution does not cure after injection. It is characterized in that the position adjustment and / or the angle adjustment of the optical component are performed so that the light is emitted from another light introducing portion.

【0011】又、本発明の請求項10に記載の光導波路
デバイスの製造方法は請求項6乃至請求項9の何れか1
項に記載の光導波路デバイスの製造方法であって、光導
波路の形成後は光導波路周囲の未硬化の光硬化性樹脂溶
液を除去し、続いて光導波路の屈折率より屈折率の低い
低屈折率樹脂溶液で光導波路を包埋し固化することを特
徴とする。
A method of manufacturing an optical waveguide device according to a tenth aspect of the present invention is any one of the sixth to ninth aspects.
The method for manufacturing an optical waveguide device according to the item 1, wherein after the formation of the optical waveguide, the uncured photocurable resin solution around the optical waveguide is removed, and then the low refractive index lower than the refractive index of the optical waveguide. It is characterized in that the optical waveguide is embedded and solidified with a resin solution.

【0012】又、本発明の請求項11に記載の光導波路
デバイスの製造方法は請求項10に光導波路デバイスの
製造方法であって、低屈折率樹脂溶液は光導波路形成に
使用した光硬化性樹脂溶液と相溶性の高い光硬化性樹脂
溶液又は熱硬化性樹脂溶液であることを特徴とする。
The method of manufacturing an optical waveguide device according to claim 11 of the present invention is the method of manufacturing an optical waveguide device according to claim 10, wherein the low refractive index resin solution is a photocurable resin used for forming an optical waveguide. It is characterized by being a photocurable resin solution or a thermosetting resin solution having high compatibility with the resin solution.

【0013】又、本発明の請求項12に記載の光導波路
デバイスの製造方法は請求項6乃至請求項9の何れか1
項に記載の光導波路デバイスの製造方法であって、光硬
化性樹脂溶液は硬化開始波長が異なる高屈折率光硬化性
樹脂溶液と低屈折率光硬化性樹脂溶液の混合溶液であ
り、光導波路の形成時には高屈折率光硬化性樹脂溶液の
みが硬化する第1の所定波長光を任意の光導入部から導
入し、光導波路の形成後は高屈折率光硬化性樹脂溶液と
低屈折率光硬化性樹脂溶液の両方が硬化する第2の所定
波長光を光導波路周囲の未硬化の混合溶液全体に照射し
固化させることを特徴とする。
A method of manufacturing an optical waveguide device according to a twelfth aspect of the present invention is any one of the sixth to ninth aspects.
The method for producing an optical waveguide device according to the item, wherein the photocurable resin solution is a mixed solution of a high-refractive-index photocurable resin solution and a low-refractive-index photocurable resin solution having different curing initiation wavelengths. When the optical waveguide is formed, the first predetermined wavelength light that cures only the high refractive index photocurable resin solution is introduced from an arbitrary light introducing portion, and after the optical waveguide is formed, the high refractive index photocurable resin solution and the low refractive index light are introduced. It is characterized in that the entire uncured mixed solution around the optical waveguide is irradiated with the second predetermined wavelength light that cures both of the curable resin solutions to solidify.

【0014】又、本発明の請求項13に記載の光導波路
デバイスの製造方法は請求項6乃至請求項12の何れか
1項に記載の光導波路デバイスの製造方法であって、光
導波路形成に使用する所定波長光は、光導波路デバイス
が形成された後に使用される光信号とは波長が異なるこ
とを特徴とする。
A method for manufacturing an optical waveguide device according to a thirteenth aspect of the present invention is the method for manufacturing an optical waveguide device according to any one of the sixth to twelfth aspects, which is used for forming an optical waveguide. The predetermined wavelength light to be used is characterized by having a wavelength different from that of the optical signal used after the optical waveguide device is formed.

【0015】又、本発明の請求項14に記載の光導波路
デバイスは、請求項1乃至請求項5の何れか1項に記載
の光導波路デバイス製造用治具、及び請求項6乃至請求
項13の何れか1項に記載の光導波路デバイスの製造方
法を用いて製造される光導波路デバイスであって、その
光導波路デバイスの入出力端には、光学素子及び/又は
光電変換素子が結合されることを特徴とする。
An optical waveguide device according to a fourteenth aspect of the present invention is the optical waveguide device manufacturing jig according to any one of the first to fifth aspects, and the sixth to thirteenth aspects. An optical waveguide device manufactured by using the method for manufacturing an optical waveguide device according to any one of 1., wherein an optical element and / or a photoelectric conversion element is coupled to an input / output end of the optical waveguide device. It is characterized by

【0016】[0016]

【作用および効果】本発明の請求項1に記載の光導波路
デバイス製造用治具は、筐体とその筐体に所定の位置関
係で設けられたN個の光導入部からなる治具である。所
定の位置関係とは、単数又は複数の光部品の位置関係に
高精度に対応した位置関係の意味である。光導波路デバ
イス製造時には、先ず単数又は複数の光部品が内挿され
た透明容器に光硬化性樹脂溶液を充填する。そして、こ
の治具を透明容器に装着し治具の筐体の所定位置に設け
られたN個の光導入部の任意の光導入部から所定波長光
を導入する。任意の光導入部とは、N個より少ない数の
光導入部でもよいし、全ての光導入部でもよい。両者を
含む。尚、全ての光導入部から所定波長光を導入するこ
とは、双方向から光硬化性樹脂溶液を硬化させることを
意味する。即ち、片方向又は双方向から光硬化性樹脂溶
液を硬化させ、それらの光軸方向、及び光硬化性樹脂溶
液内に設置された単数又は複数の光部品によって変換さ
れた光軸方向に光導波路を成長させる。特に、双方向か
ら所定波長光を導入した場合は光導波路を中間の所定点
で連結させる。これにより、N個の光導入部と単数又は
複数の光部品とが光導波路で接続された光導波路デバイ
スを得る。このように、光導入部と光部品の位置関係が
予め設定された治具を用いて光導波路デバイスを製造す
れば、作業者はいちいち軸合わせをする必要がない。即
ち、効率よく光導波路デバイスを製造することができ
る。又、光導入部の位置関係が保たれた治具を用いて光
導波路デバイスを製造するので、製造された光導波路デ
バイスの品質にはバラツキが少ない。即ち、品質の安定
した光導波路デバイスを製造することができる。
FUNCTION AND EFFECT The optical waveguide device manufacturing jig according to claim 1 of the present invention is a jig comprising a housing and N light introducing portions provided in the housing in a predetermined positional relationship. . The predetermined positional relationship means a positional relationship that corresponds to the positional relationship between a single optical component or a plurality of optical components with high accuracy. When manufacturing an optical waveguide device, first, a transparent container in which one or more optical components are inserted is filled with a photocurable resin solution. Then, this jig is attached to a transparent container, and light of a predetermined wavelength is introduced from an arbitrary light introducing portion of the N light introducing portions provided at a predetermined position of the housing of the jig. The arbitrary light introducing unit may be a light introducing unit having a number smaller than N or all the light introducing units. Including both. Introducing light of a predetermined wavelength from all the light introducing portions means curing the photocurable resin solution in both directions. That is, the photocurable resin solution is cured in one direction or in both directions, and the optical waveguide is formed in the optical axis direction thereof and in the optical axis direction converted by one or a plurality of optical components installed in the photocurable resin solution. Grow. In particular, when light of a predetermined wavelength is introduced from both directions, the optical waveguides are connected at a predetermined intermediate point. As a result, an optical waveguide device in which N light introducing portions and one or a plurality of optical components are connected by an optical waveguide is obtained. As described above, if the optical waveguide device is manufactured by using the jig in which the positional relationship between the light introducing portion and the optical component is preset, the worker does not need to perform axis alignment one by one. That is, the optical waveguide device can be efficiently manufactured. Further, since the optical waveguide device is manufactured by using the jig in which the positional relationship of the light introducing portion is maintained, the quality of the manufactured optical waveguide device has little variation. That is, an optical waveguide device with stable quality can be manufactured.

【0017】本発明の請求項2に記載の光導波路デバイ
ス製造用治具は、請求項1に記載の光導波路デバイス製
造用治具であって、任意の光導入部には孔が形成されて
おり、その孔には光ファイバが嵌合される。即ち、この
光導入部の孔に光ファイバを嵌合し所定波長光を導入す
るので、容易に、正確に光導波路を形成することができ
る。又、光ファイバは柔軟性に優れているので、その製
造工程での作業性を向上させることができる。
A jig for manufacturing an optical waveguide device according to a second aspect of the present invention is the jig for manufacturing an optical waveguide device according to the first aspect, wherein a hole is formed in an arbitrary light introducing portion. And an optical fiber is fitted into the hole. That is, since the optical fiber is fitted into the hole of the light introducing portion to introduce the light of the predetermined wavelength, the optical waveguide can be formed easily and accurately. Further, since the optical fiber is excellent in flexibility, workability in the manufacturing process can be improved.

【0018】本発明の請求項3に記載の光導波路デバイ
ス製造用治具は、請求項1又は請求項2に記載の光導波
路デバイス製造用治具であって、所定波長光が導入され
る光導入部には集光光学系が付与されている。この集光
光学系は透明容器側に設けられていても、光源側に設け
られていても良い。筐体の光導入部に所定波長光を導入
すると、たとえば、透明容器側の集光光学系(例えば凸
レンズ)によって、透明容器を透過して透明容器壁近傍
に光が集光される。光が集光されると単位面積当たりの
光強度が増大し、透明容器内の光硬化性樹脂溶液がより
速く、より強固に透明容器の内壁に固定される。よっ
て、振動等の外乱に頑強な光導波路デバイスを製造する
ことができる。尚、この集光光学系は治具の光導入部が
透明であれば、光源側に設置しても構わない。
The jig for manufacturing an optical waveguide device according to claim 3 of the present invention is the jig for manufacturing an optical waveguide device according to claim 1 or 2, in which light having a predetermined wavelength is introduced. A condenser optical system is attached to the introduction part. This condensing optical system may be provided on the transparent container side or the light source side. When light of a predetermined wavelength is introduced into the light introduction part of the housing, for example, the light is condensed through the transparent container and near the transparent container wall by the condensing optical system (for example, a convex lens) on the transparent container side. When the light is collected, the light intensity per unit area increases, and the photocurable resin solution in the transparent container is fixed to the inner wall of the transparent container more quickly and firmly. Therefore, it is possible to manufacture an optical waveguide device that is robust against disturbance such as vibration. Incidentally, this condensing optical system may be installed on the light source side as long as the light introduction part of the jig is transparent.

【0019】本発明の請求項4に記載の光導波路デバイ
ス製造用治具は、請求項1乃至請求項3の何れか1項に
記載の光導波路デバイス製造用治具であって、導入光の
光軸に対する光部品の位置及び/又は角度を調整する調
整手段を有している。調整手段とは、例えば光部品底部
に取り付けられた軟磁性材料と筐体底部の外側に取り付
けられた磁石である。両者は例えば透明容器底部と筐体
底部を挟んで磁力で調整可能に固定される。光部品の調
整時には、例えば、光硬化性樹脂溶液が硬化しない波長
の光を導入する。光部品が光軸に対して位置ずれを有し
ておれば、磁石を平行移動することにより外部から調整
する。又、光部品の角度が光軸に対して角度ずれを有し
ておれば、その磁石を回動することにより調整する。即
ち、光硬化性樹脂溶液を満たしたままで、光部品を調整
することができる。よって、より高精度に光導波路デバ
イスを製造することができる。
An optical waveguide device manufacturing jig according to a fourth aspect of the present invention is the optical waveguide device manufacturing jig according to any one of the first to third aspects, It has adjusting means for adjusting the position and / or angle of the optical component with respect to the optical axis. The adjusting means is, for example, a soft magnetic material attached to the bottom of the optical component and a magnet attached to the outside of the bottom of the housing. Both of them are fixed, for example, by magnetic force so that the bottom of the transparent container and the bottom of the housing are sandwiched. At the time of adjusting the optical component, for example, light having a wavelength that does not cure the photocurable resin solution is introduced. If the optical component has a position shift with respect to the optical axis, the magnet is translated from the outside by moving the magnet in parallel. Further, if the angle of the optical component has an angular deviation with respect to the optical axis, the magnet is rotated to adjust. That is, the optical component can be adjusted while the photocurable resin solution is being filled. Therefore, the optical waveguide device can be manufactured with higher accuracy.

【0020】又、本発明の請求項5に記載の光導波路デ
バイス製造用治具は請求項1乃至請求項3の何れか1項
に記載の光導波路デバイス製造用治具であって、N個の
光導入部を有する筐体は複数に分離可能となっている。
筐体が分離可能となっているので、様々な形状の透明容
器に対応することができる。例えば、分離された一方の
筐体の光導入部から所定波長光を導入し、その導入光が
他方の筐体の光導入部から出射するように互いの位置を
設定すればよい。様々な形状の透明容器に使用可能とな
る。即ち、様々な形状の光導波路デバイスを製造するこ
とができる光導波路デバイス製造用治具となる。
A jig for manufacturing an optical waveguide device according to a fifth aspect of the present invention is the jig for manufacturing an optical waveguide device according to any one of the first to third aspects, wherein N jigs are provided. The housing having the light introduction part can be separated into a plurality of parts.
Since the case is separable, it is possible to support various shapes of transparent containers. For example, light having a predetermined wavelength may be introduced from the light introduction section of one of the separated housings, and their positions may be set so that the introduced light is emitted from the light introduction section of the other housing. It can be used for transparent containers of various shapes. That is, the optical waveguide device manufacturing jig can manufacture optical waveguide devices of various shapes.

【0021】又、本発明の請求項6に記載の光導波路デ
バイスの製造方法は、請求項1乃至請求項5の何れか1
項の光導波路デバイス製造用治具を用いて形成する光導
波路デバイスの製造方法である。先ず、透明容器に単数
又は複数の光部品を所定位置に内挿し、光硬化性樹脂溶
液を満たす。そして、その容器に請求項1乃至請求項5
の何れか1項に記載の光導波路デバイス製造用治具を装
着する。次に、光導波路デバイス製造用治具の任意の光
導入部から所定波長光の光を導入する。所定波長光と
は、例えば短波長のレーザ光である。所定波長光は、順
次、光軸方向に光硬化性樹脂溶液に対して光重合反応を
起こさせる。これにより、N個の光導入部と単数又は複
数の光部品とが光導波路で結ばれた光導波路デバイスが
形成される。ここで、N個の光導入部は完成した光導波
路デバイスにおいては入射口及び/又は出射口を意味す
る。本発明の治具を用いれば、光導入部、即ち入射口と
出射口が予め正確に位置決めされているので、精度のよ
い光導波路デバイスを形成することができる。又、それ
を容易に形成することができる。
A method for manufacturing an optical waveguide device according to a sixth aspect of the present invention is any one of the first to fifth aspects.
Is a method for manufacturing an optical waveguide device, which is formed by using the jig for manufacturing an optical waveguide device of the above item. First, a single or a plurality of optical components are inserted in a predetermined position in a transparent container and filled with a photocurable resin solution. Then, the container is provided with any one of claims 1 to 5.
The jig for manufacturing an optical waveguide device according to any one of 1. Next, light of a predetermined wavelength is introduced from an arbitrary light introducing part of the jig for manufacturing an optical waveguide device. The predetermined wavelength light is, for example, a short wavelength laser light. The predetermined wavelength light sequentially causes a photopolymerization reaction with respect to the photocurable resin solution in the optical axis direction. As a result, an optical waveguide device is formed in which N light introducing portions and one or a plurality of optical components are connected by an optical waveguide. Here, the N light introducing portions mean an entrance and / or an exit in the completed optical waveguide device. By using the jig of the present invention, since the light introducing portion, that is, the entrance and the exit are accurately positioned in advance, it is possible to form an optical waveguide device with high accuracy. Also, it can be easily formed.

【0022】又、請求項7に記載の光導波路の製造方法
は請求項6に記載の光導波路デバイスの製造方法であっ
て、透明容器の外側に装着される光導波路デバイス製造
用治具の光導入部には孔が形成されており、この孔に所
定波長光を出射する光ファイバが嵌合される。即ち、こ
の光導入部に光ファイバを挿入し、光を導入すれば容易
に正確に光導波路デバイスが形成される。又、光ファイ
バは柔軟性に優れている。よって、その製造工程での作
業性を高める方法となる。
The optical waveguide manufacturing method according to claim 7 is the optical waveguide device manufacturing method according to claim 6, wherein the optical waveguide device manufacturing jig mounted on the outer side of the transparent container is used. A hole is formed in the introduction portion, and an optical fiber that emits light of a predetermined wavelength is fitted into this hole. That is, by inserting an optical fiber into this light introducing portion and introducing light, an optical waveguide device can be easily and accurately formed. Further, the optical fiber has excellent flexibility. Therefore, it is a method of improving workability in the manufacturing process.

【0023】又、請求項8に記載の光導波路の製造方法
は請求項6又は請求項7に記載の光導波路デバイスの製
造方法であって、光導波路は少なくともその両端が透明
容器に固定される。一般に、光硬化性樹脂溶液は硬化時
には接着性を有して固化する。即ち、光導波路は光硬化
性樹脂溶液に当接する媒体に固定される。本発明では、
透明容器に光硬化性樹脂溶液を注入し、光導波路デバイ
ス製造用治具に設置されたN個の全ての光導入部から所
定波長光が入出力する。よって、形成される光導波路は
少なくとも透明容器に固定される。光導波路の両端は透
明容器に固定されるので、振動等に頑強な光導波路デバ
イスとなる。即ち、頑強な光導波路デバイスを製造する
製造方法となる。
An optical waveguide manufacturing method according to claim 8 is the optical waveguide device manufacturing method according to claim 6 or 7, wherein at least both ends of the optical waveguide are fixed to a transparent container. . Generally, the photocurable resin solution has adhesiveness and solidifies when cured. That is, the optical waveguide is fixed to the medium in contact with the photocurable resin solution. In the present invention,
A photocurable resin solution is injected into a transparent container, and light of a predetermined wavelength is input and output from all N light introducing parts installed in a jig for manufacturing an optical waveguide device. Therefore, the formed optical waveguide is fixed to at least the transparent container. Since both ends of the optical waveguide are fixed to the transparent container, the optical waveguide device is robust against vibration and the like. That is, it is a manufacturing method for manufacturing a robust optical waveguide device.

【0024】又、請求項9に記載の光導波路の製造方法
は請求項6乃至請求項8の何れか1項に記載の光導波路
デバイスの製造方法であって、透明容器内に内挿された
光部品は透明容器の外部から位置調整及び/又は角度調
整が可能となっている。調整手段とは、例えば光部品底
部に取り付けられた軟磁性材料と筐体底面の外側に取り
付けられた磁石である。両者は磁力で透明容器と筐体を
挟んで調整可能に固定される。そして、光硬化性樹脂溶
液の注入後に、光硬化性樹脂溶液が硬化しない波長で一
つの光導入部から入射された光が他の光導入部から出射
されるように調整手段により光部品の位置調整及び/又
は角度調整を行なう。例えば、出射位置の位置ずれが光
部品の光軸に対する位置ずれであれば、その磁石を平行
移動して調整する。又、その位置ずれが光部品の光軸に
対する角度ずれであれば、その磁石を回動することによ
り調整する。即ち、光硬化性樹脂溶液を充填したまま
で、光部品を調整することができる。よって、容易に高
精度な光導波路デバイスを製造する製造方法となる。
The method of manufacturing an optical waveguide according to claim 9 is the method of manufacturing an optical waveguide device according to any one of claims 6 to 8, which is inserted in a transparent container. The position and / or the angle of the optical component can be adjusted from the outside of the transparent container. The adjusting means is, for example, a soft magnetic material attached to the bottom of the optical component and a magnet attached to the outside of the bottom surface of the housing. Both are fixed by magnetic force between the transparent container and the housing so as to be adjustable. Then, after the injection of the photocurable resin solution, the position of the optical component is adjusted by the adjusting means so that the light incident from one light introducing section at a wavelength at which the photocurable resin solution does not cure is emitted from the other light introducing section. Adjust and / or adjust angle. For example, if the displacement of the emission position is the displacement of the optical component with respect to the optical axis, the magnet is translated and adjusted. If the positional deviation is an angular deviation with respect to the optical axis of the optical component, the magnet is rotated to adjust. That is, the optical component can be adjusted while the photocurable resin solution is being filled. Therefore, the manufacturing method can easily manufacture a highly accurate optical waveguide device.

【0025】又、請求項10に記載の光導波路の製造方
法は請求項6乃至請求項9の何れか1項に記載の光導波
路デバイスの製造方法であって、光導波路の形成後は先
ず光導波路周囲の未硬化の光硬化性樹脂溶液を除去す
る。次に、形成された光導波路の屈折率より屈折率の低
い低屈折率樹脂溶液でその光導波路を包埋し固化する。
この時、低屈折率樹脂溶液は例えば光硬化性樹脂溶液又
は熱硬化性樹脂溶液である。光硬化性樹脂溶液の場合
は、例えば紫外線等で固化させ、熱硬化性樹脂溶液の場
合は熱で固化させる。
The optical waveguide manufacturing method according to claim 10 is the optical waveguide device manufacturing method according to any one of claims 6 to 9, wherein after the optical waveguide is formed, first the optical waveguide is formed. The uncured photocurable resin solution around the waveguide is removed. Next, the optical waveguide is embedded and solidified with a low refractive index resin solution having a refractive index lower than that of the formed optical waveguide.
At this time, the low refractive index resin solution is, for example, a photocurable resin solution or a thermosetting resin solution. In the case of a photocurable resin solution, it is solidified by, for example, ultraviolet rays, and in the case of a thermosetting resin solution, it is solidified by heat.

【0026】又、例えば光導波路を形成する樹脂溶液を
高屈折率光硬化性樹脂溶液、全体を固化させる溶液を低
屈折率樹脂溶液とする時、高屈折率光硬化性樹脂溶液の
硬化後の屈折率に合わせて、低屈折率樹脂溶液を選択す
る。即ち、例えば低損失なステップインデックス型の光
導波路になるように低屈折率樹脂溶液を設定する。ステ
ップインデックス型の光導波路となるので、伝送損失が
低減される。又、全体が固化されるので、頑強な光導波
路デバイスとなる。即ち、振動等の外乱の影響を受けな
い頑強で、且つ低損失な光導波路デバイスを製造するこ
とができる。
Further, for example, when the resin solution forming the optical waveguide is a high-refractive-index photocurable resin solution and the solution for solidifying the entire is a low-refractive-index photocurable resin solution, after curing the high-refractive-index photocurable resin solution, A low refractive index resin solution is selected according to the refractive index. That is, for example, the low refractive index resin solution is set so as to form a low-index step index type optical waveguide. Since it is a step index type optical waveguide, the transmission loss is reduced. Further, since the whole is solidified, it becomes a robust optical waveguide device. That is, it is possible to manufacture a robust optical waveguide device that is not affected by disturbance such as vibration and has low loss.

【0027】又、請求項11に記載の光導波路の製造方
法は請求項10に記載の光導波路デバイスの製造方法で
あって、低屈折率樹脂溶液には光導波路形成に使用した
光硬化性樹脂溶液と相溶性の高い光硬化性樹脂溶液又は
熱硬化性樹脂溶液を用いている。光硬化性樹脂溶液によ
って光導波路を形成する場合、その光硬化性樹脂溶液の
除去後にもその表面にはその光硬化性樹脂溶液が残存す
る。通常は、この残存液が光導波路の伝送損失の原因と
なる。本発明では、この状態で相溶性を有する低屈折率
樹脂溶液を注入する。相溶性を有するので、光導波路表
面に残存した光硬化性樹脂溶液は注入された低屈折率樹
脂溶液に溶融される。即ち、光導波路の表面が滑らかに
ほぼ均一となる。表面が均一になれば、伝搬(全反射)
による損失が低減される。即ち、低損失な光導波路デバ
イスを製造することができる。尚、通常は、光硬化性樹
脂溶液の除去後には洗浄工程が必要とされるが、本発明
では相溶性の低屈折率樹脂溶液を用いている。よって、
その洗浄工程を省略できる効果もある。
The method for manufacturing an optical waveguide according to claim 11 is the method for manufacturing an optical waveguide device according to claim 10, wherein the low refractive index resin solution contains a photocurable resin used for forming the optical waveguide. A photocurable resin solution or a thermosetting resin solution having high compatibility with the solution is used. When the optical waveguide is formed by the photocurable resin solution, the photocurable resin solution remains on the surface even after the photocurable resin solution is removed. Usually, this residual liquid causes the transmission loss of the optical waveguide. In the present invention, a low refractive index resin solution having compatibility is injected in this state. Because of the compatibility, the photocurable resin solution remaining on the surface of the optical waveguide is melted in the injected low refractive index resin solution. That is, the surface of the optical waveguide becomes smooth and substantially uniform. Propagation (total reflection) if the surface becomes uniform
The loss due to That is, a low loss optical waveguide device can be manufactured. Incidentally, a cleaning step is usually required after removing the photocurable resin solution, but in the present invention, a compatible low refractive index resin solution is used. Therefore,
There is also an effect that the cleaning step can be omitted.

【0028】又、請求項12に記載の光導波路の製造方
法は請求項6乃至請求項9の何れか1項に記載の光導波
路デバイスの製造方法であって、光硬化性樹脂溶液には
硬化開始波長が異なる高屈折率光硬化性樹脂溶液と低屈
折率光硬化性樹脂溶液からなる混合液を用いている。そ
して、光導波路の形成時には、高屈折率光硬化性樹脂溶
液のみが硬化する第1波長平行光を任意の光導入部から
導入する。そして、光導波路の形成後は高屈折率光硬化
性樹脂溶液と低屈折率光硬化性樹脂溶液の両方が硬化す
る第2波長光を光導波路周囲の未硬化の混合液全体に照
射し固化させる。
The method of manufacturing an optical waveguide according to claim 12 is the method of manufacturing an optical waveguide device according to any one of claims 6 to 9, wherein the photocurable resin solution is cured. A mixed liquid of a high refractive index photocurable resin solution and a low refractive index photocurable resin solution having different starting wavelengths is used. Then, when forming the optical waveguide, the first wavelength parallel light that cures only the high-refractive-index photocurable resin solution is introduced from an arbitrary light introduction part. After the formation of the optical waveguide, the second wavelength light that cures both the high-refractive-index photocurable resin solution and the low-refractive-index photocurable resin solution is applied to the entire uncured liquid mixture around the optical waveguide to be solidified. .

【0029】例えば、混合溶液に高屈折率光硬化性樹脂
溶液のみを硬化させる波長λw (λ 2 <λw <λ1 )の
光を導入する。ここに、波長λ1 は高屈折率光硬化性樹
脂溶液の硬化開始波長であり、波長λ2 は低屈折率光硬
化性樹脂溶液の硬化開始波長である。又、上記波長λw
の光は、例えばアルゴンイオンレーザ等の短波長レーザ
光である。これにより、混合溶液中の高屈折率光硬化性
樹脂溶液のみが光重合反応により硬化し、光導波路が形
成される。この時、光導波路外周には2種の光硬化性樹
脂溶液からなる混合溶液が残存することになる。次に、
この混合溶液の周囲より、両光硬化性樹脂溶液を硬化さ
せる波長帯λc(λc <λ2 )の光を、例えば紫外線ラ
ンプ等より照射させて、同じく光重合反応により残存混
合溶液を固化させる。この結果、光導波路(コア部)周
囲にクラッド部が形成されることになり、所謂ステップ
インデックス型の光伝送路が形成される。又、形成され
た光導波路と光部品と容器全体が固化される。よって、
これによっても頑強な光導波路デバイスが製造される。
本発明の製造方法によれば、光硬化性樹脂溶液の入れ替
え工程を必要としない。よって、作業性効率の向上した
製造方法ともなる。
For example, a high refractive index photocurable resin is added to the mixed solution.
Wavelength λ to cure only solutionw 2w1)of
Introduce light. Where wavelength λ1Is a high refractive index photocurable tree
The wavelength at which the oil solution begins to cure2Is a low refractive index light hard
It is a curing start wavelength of the chemical resin solution. Also, the above wavelength λw
Is a short wavelength laser such as an argon ion laser.
Light. This enables high refractive index photocurability in mixed solutions.
Only the resin solution is cured by the photopolymerization reaction, and the optical waveguide is shaped.
Is made. At this time, two kinds of photo-curable resin are provided on the outer circumference of the optical waveguide.
The mixed solution consisting of the fat solution remains. next,
Cure both photo-curable resin solutions from around this mixed solution.
Wavelength band λcc2) Light, for example, ultraviolet rays
Irradiation from a pump, etc.
Solidify the combined solution. As a result, the optical waveguide (core) circumference
A clad portion will be formed in the surrounding area.
An index type optical transmission line is formed. Also formed
The optical waveguide, the optical component, and the entire container are solidified. Therefore,
This also produces a robust optical waveguide device.
According to the manufacturing method of the present invention, replacement of the photocurable resin solution
No process is required. Therefore, work efficiency was improved.
It is also a manufacturing method.

【0030】又、本発明の請求項13に記載の光導波路
デバイスの製造方法は請求項6乃至請求項12の何れか
1項に記載の光導波路デバイスの製造方法であって、光
導波路形成に使用される所定波長光は、光導波路デバイ
スが形成された後に使用される光信号とは波長が異なる
ように設定されている。光導波路を形成する光硬化性樹
脂溶液は、所定波長の光エネルギーを吸収して固化され
る。即ち、所定波長光は光導波路形成時において、光硬
化性樹脂溶液が吸収し易い波長が選択される。これは、
形成された光導波路もその所定波長を微弱ながら吸収し
易いことを意味する。よって、完成された光導波路デバ
イスには、所定波長以外の波長の光を用いる。換言すれ
ば、光導波路の形成には光導波路デバイスが形成された
後に使用される光信号の波長とは異なる所定波長の光を
用いる。例えば、光信号(赤外〜可視光)に用いる波長
より短波長の光を用いる。これにより、低損失な光導波
路デバイスとすることができる。
A method for manufacturing an optical waveguide device according to a thirteenth aspect of the present invention is the method for manufacturing an optical waveguide device according to any one of the sixth to twelfth aspects, which is used for forming an optical waveguide. The predetermined wavelength light used is set to have a wavelength different from that of the optical signal used after the optical waveguide device is formed. The photocurable resin solution forming the optical waveguide absorbs light energy having a predetermined wavelength and is solidified. That is, as the light having the predetermined wavelength, a wavelength which is easily absorbed by the photocurable resin solution at the time of forming the optical waveguide is selected. this is,
This means that the formed optical waveguide also easily absorbs the predetermined wavelength although it is weak. Therefore, light having a wavelength other than the predetermined wavelength is used for the completed optical waveguide device. In other words, light having a predetermined wavelength different from the wavelength of the optical signal used after the optical waveguide device is formed is used for forming the optical waveguide. For example, light having a shorter wavelength than the wavelength used for the optical signal (infrared to visible light) is used. As a result, a low loss optical waveguide device can be obtained.

【0031】又、本発明の請求項14に記載の光導波路
デバイスは、請求項1乃至請求項5の何れか1項に記載
の光導波路デバイス製造用治具、及び請求項6乃至請求
項13の何れか1項に記載の光導波路デバイスの製造方
法を用いて製造される光導波路デバイスであって、その
光導波路デバイスの入出力端には光学素子及び/又は光
電変換素子が結合されている。光学素子とは、例えばレ
ンズ、フィルタ、光ファイバ等の素子である。これらの
素子が例えば、透明な接着剤で固定される。これによ
り、より小型で取り扱いの容易な光導波路デバイスとす
ることができる。又、光電変換素子とは、レーザダイオ
ード等の発光素子、フォトダイオード等の受光素子であ
る。これらの素子を入出力端に結合すれば、様々な送受
信デバイスを形成することができる。例えば、受光素子
を結合すれば光通信における受信装置とすることができ
る。又、発光素子を結合すれば光通信における通信装置
とすることができる。
An optical waveguide device according to a fourteenth aspect of the present invention is the optical waveguide device manufacturing jig according to any one of the first to fifth aspects, and the sixth to thirteenth aspects. An optical waveguide device manufactured by using the method for manufacturing an optical waveguide device according to any one of 1, wherein an optical element and / or a photoelectric conversion element is coupled to an input / output end of the optical waveguide device. . The optical element is an element such as a lens, a filter, or an optical fiber. These elements are fixed with, for example, a transparent adhesive. As a result, the optical waveguide device can be made smaller and easier to handle. The photoelectric conversion element is a light emitting element such as a laser diode and a light receiving element such as a photodiode. By connecting these elements to the input / output terminals, various transmitting / receiving devices can be formed. For example, if a light receiving element is combined, it can be used as a receiving device in optical communication. Further, by combining the light emitting elements, a communication device in optical communication can be obtained.

【0032】[0032]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。尚、本発明は下記実施例に限定され
るものではない。 (第1実施例)図1に本実施例の光導波路デバイス製造
用治具を示す。この治具により後述する光導波路デバイ
スが製造される。尚、図1(a)が上面図、(b)が正
面図である。本実施例の光導波路デバイス製造用治具
は、筐体10、筐体10の光導入部13に設けられた孔
11、12から構成される。この時、孔11と孔12は
後述する光電変換素子の位置に合わせて高精度に加工さ
れている。即ち、孔11と孔12の位置関係及びそれら
の直角度が高精度となっている。例えば、孔11、12
の中心座標のY座標の誤差は、精密加工により例えば数
μm〜数十ミクロン以内に設定されている。又、孔11
と孔12の直角度、即ち孔11の中心線と孔12の中心
線の交わる角度は例えば数十秒〜数百秒に設定されてい
る。これにより、例えば光ファイバをそれぞれの孔1
1、12に嵌合した場合は、その先端から出射される光
(例えば、レーザ光)は、正確にほぼ90度で交叉す
る。本実施例の光導波路デバイスは、この様な治具を用
いて形成される。よって、作業者は例えばそれぞれの光
ファイバの位置関係及び角度を調整する必要がない。こ
の治具に光ファイバを嵌合させて、所定波長光をそれぞ
れの光ファイバから導入し後述する所定の製造工程を行
うだけで、精度のよい光導波路デバイスを作成すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on specific embodiments. The present invention is not limited to the examples below. (First Embodiment) FIG. 1 shows a jig for manufacturing an optical waveguide device of this embodiment. An optical waveguide device described later is manufactured by this jig. 1A is a top view and FIG. 1B is a front view. The jig for manufacturing an optical waveguide device according to the present embodiment includes a housing 10 and holes 11 and 12 provided in a light introducing portion 13 of the housing 10. At this time, the holes 11 and 12 are processed with high precision according to the position of the photoelectric conversion element described later. That is, the positional relationship between the holes 11 and 12 and the squareness thereof are highly accurate. For example, holes 11, 12
The error of the Y coordinate of the center coordinate of is set to within several μm to several tens of microns by precision processing. Also, the hole 11
And the perpendicularity of the hole 12, that is, the angle at which the center line of the hole 11 and the center line of the hole 12 intersect is set to, for example, several tens of seconds to several hundreds of seconds. This allows, for example, an optical fiber to be attached to each hole 1
In the case of fitting in Nos. 1 and 12, the light emitted from the tip (for example, laser light) intersects at exactly 90 degrees. The optical waveguide device of this embodiment is formed using such a jig. Therefore, an operator does not need to adjust the positional relationship and angle of each optical fiber, for example. An optical waveguide device with high accuracy can be created by fitting an optical fiber into this jig, introducing light of a predetermined wavelength from each optical fiber, and performing a predetermined manufacturing process described later.

【0033】図2に、本実施例の光導波路デバイスの製
造方法を示す。図は工程図である。基本的な製造方法は
光硬化性樹脂に短波長レーザを導入し、光重合反応によ
りその樹脂を硬化させる所謂光造形法である。光造形法
との違いは可動部がなく光導波路が自律的に成長すると
いう点である。先ず、工程(a)において光導波路デバ
イス製造用治具の筐体10に例えばコア径100μm、
クラッド径140μmの石英からなる光ファイバ21、
22を備える。即ち、筐体10の孔11に光ファイバ2
1を嵌合し、孔12に光ファイバ22を嵌合する。又、
一方で例えば光部品である干渉フィルタ25を透明容器
20の所定位置に内挿し、高屈折率を有し光照射により
ラジカル重合反応を示すアクリル系の光硬化性樹脂溶液
23を満たす。そして、光ファイバ11、12を備えた
筐体10をその透明容器20に装着する。透明容器は、
例えば肉厚0.5mmの直方体アクリル容器である。そ
して、工程(b)に移行する。
FIG. 2 shows a method of manufacturing the optical waveguide device of this embodiment. The figure is a process drawing. The basic manufacturing method is a so-called stereolithography method in which a short wavelength laser is introduced into a photocurable resin and the resin is cured by a photopolymerization reaction. The difference from the stereolithography is that there is no moving part and the optical waveguide grows autonomously. First, in the step (a), for example, a core diameter of 100 μm is added to the housing 10 of the optical waveguide device manufacturing jig.
An optical fiber 21 made of quartz with a clad diameter of 140 μm,
22 is provided. That is, the optical fiber 2 is inserted into the hole 11 of the housing 10.
1 and the optical fiber 22 in the hole 12. or,
On the other hand, for example, an interference filter 25, which is an optical component, is inserted in a predetermined position of the transparent container 20 and filled with an acrylic photocurable resin solution 23 having a high refractive index and exhibiting a radical polymerization reaction by light irradiation. Then, the housing 10 including the optical fibers 11 and 12 is mounted in the transparent container 20. Transparent container,
For example, it is a rectangular parallelepiped acrylic container having a wall thickness of 0.5 mm. And it transfers to a process (b).

【0034】工程(b)では、所定波長光である、例え
ば短波長レーザ(波長λW )を光ファイバ21、22に
導入する。短波長レーザとは、例えば波長λw =488
nmのアルゴンイオンレーザである。そして、その先端
からの所定波長光(波長λW)を出力強度約150mW
で出射させ、それにより光硬化性樹脂溶液23を重合反
応させて硬化させる。この時、光導波路24の先端部で
は光硬化性樹脂溶液23の硬化による屈折率上昇が起こ
り、セルフフォーカシング効果により導波光を閉じ込め
ながら光導波路24が成長を続ける(自己形成型光導波
路)。そして、工程(c)に示すように例えば間隔5m
mに立設された干渉フィルタ25に到達する。干渉フィ
ルタ25は干渉波長以外の波長に対しては半透鏡であ
る。即ち、導入光の所定波長を干渉波長と異なるように
設定すれば、その一部は反射し一部は透過する。即ち、
その反射経路及び透過経路に順次、光導波路24が形成
される。そして、異なる経路から成長せられた光導波路
24は、セルフアライメント効果により、互いに引き込
み合い光導波路24が結合する。全ての光導波路24が
結合されると光ファイバ11、12によるレーザ照射を
停止する。この時、形成された光導波路24の直径は、
約120μmであり、波長850nmに対する伝送損失
は約0.8dB/cmである。又、干渉フィルタ25で
の損失は約0.5dB/cmである。そして、工程
(d)に移行する。
In step (b), for example, a short wavelength laser (wavelength λ W ) having a predetermined wavelength is introduced into the optical fibers 21 and 22. A short wavelength laser is, for example, wavelength λ w = 488.
nm argon ion laser. Then, the light with a predetermined wavelength (wavelength λ W ) from the tip is output with an intensity of about 150 mW.
And the photocurable resin solution 23 is polymerized and cured. At this time, the refractive index rises at the tip of the optical waveguide 24 due to the curing of the photocurable resin solution 23, and the optical waveguide 24 continues to grow while confining the guided light by the self-focusing effect (self-forming optical waveguide). Then, as shown in the step (c), for example, an interval of 5 m
The interference filter 25 erected at m is reached. The interference filter 25 is a semi-transparent mirror for wavelengths other than the interference wavelength. That is, if the predetermined wavelength of the introduced light is set to be different from the interference wavelength, part of the light is reflected and part of the light is transmitted. That is,
The optical waveguide 24 is sequentially formed on the reflection path and the transmission path. Then, the optical waveguides 24 grown from different paths are pulled into each other by the self-alignment effect and the optical waveguides 24 are coupled to each other. When all the optical waveguides 24 are coupled, the laser irradiation by the optical fibers 11 and 12 is stopped. At this time, the diameter of the formed optical waveguide 24 is
It is about 120 μm, and the transmission loss for a wavelength of 850 nm is about 0.8 dB / cm. The loss at the interference filter 25 is about 0.5 dB / cm. Then, the process proceeds to step (d).

【0035】工程(d)では、透明容器20から光硬化
性樹脂溶液23を除去し、光導波路24の屈折率より低
屈折率であるフッ素化したアクリル性の低屈折率光硬化
性樹脂溶液26を注入する。この時、光導波路24はそ
の端部が透明容器20に固定され、中央部は干渉フィル
タ25で固定されている。よって、溶液の入れ替え時に
も光導波路24は変形離脱することがない。又、機械振
動等に対しても頑強となっている。この時、入れ替える
低屈折率光硬化性樹脂溶液26は、光導波路形成用の光
硬化性樹脂溶液23と相溶性であることが望ましい。相
溶性を有する光硬化性樹脂溶液溶液を用いると、溶液の
入れ替え時に光硬化性樹脂溶液23の一部が光導波路表
面に残存せず、光導波路24の表面を平滑に形成するこ
とができる。これにより、伝送損失が低減された光導波
路が形成される。又、通常溶液入れ替え時には、溶剤に
よる洗浄工程が必要であり、その分製造コストが上昇す
る。本実施例の工程(d)では光硬化性樹脂溶液23と
相溶性の高い低屈折率光硬化性樹脂溶液26を注入する
ので、その洗浄工程も省略することができる。よって、
その製造コストもより安価となる。
In the step (d), the photocurable resin solution 23 is removed from the transparent container 20, and the fluorinated acrylic low refractive index photocurable resin solution 26 having a refractive index lower than that of the optical waveguide 24. Inject. At this time, the end portion of the optical waveguide 24 is fixed to the transparent container 20, and the central portion is fixed by the interference filter 25. Therefore, the optical waveguide 24 is not deformed and detached even when the solution is replaced. It is also robust against mechanical vibration. At this time, it is desirable that the low-refractive-index photocurable resin solution 26 to be replaced is compatible with the photocurable resin solution 23 for forming the optical waveguide. When a compatible photocurable resin solution solution is used, part of the photocurable resin solution 23 does not remain on the surface of the optical waveguide when the solutions are replaced, and the surface of the optical waveguide 24 can be formed smoothly. As a result, an optical waveguide with reduced transmission loss is formed. Also, when the solution is replaced, a washing step with a solvent is usually required, which increases the manufacturing cost. In the step (d) of this embodiment, the low-refractive-index photocurable resin solution 26 having a high compatibility with the photocurable resin solution 23 is injected, so that the cleaning step can be omitted. Therefore,
Its manufacturing cost also becomes cheaper.

【0036】次に、例えば紫外線ランプ等で、紫外線
(波長λc)を全体的に照射する。即ち、低屈折率光硬
化性樹脂溶液26を硬化させ全体を固化させる。これに
より、光導波路24の周囲にクラッドが形成されステッ
プインデックス型の光導波路が形成される。この時、上
述したように光導波路24はその表面は平滑であり、又
半径方向には急峻な屈折率変化を有する。即ち、より完
全なステップインデックス型の光導波路が形成され、よ
り低損失(約0.5dB/cm)となる。又、全体が固
化されるので頑強な光導波路が形成される。尚、光導波
路24の伝送損失を最小とするには、硬化後の光導波路
24の屈折率(コア部屈折率)と硬化後の低屈折率溶液
の屈折率(クラッド部屈折率)との差が最大になるよう
な低屈折率光硬化性樹脂溶液26を選択すればよい。1
例として、光硬化性樹脂溶液23(コア用の光硬化性樹
脂溶液)にアクリル系樹脂を用いた場合は、低屈折率光
硬化性樹脂溶液26(クラッド材用の光硬化性樹脂溶
液)にはアクリル系樹脂の他、エポキシ樹脂、オキセタ
ン樹脂、シリコーン樹脂を用いることができる。何れか
の低屈折率溶液を用いれば、低損失な光導波路が得られ
る。そして、最後の工程(e)に移行する。
Next, for example, an ultraviolet lamp or the like is used to irradiate the entire surface with ultraviolet light (wavelength λc). That is, the low refractive index photocurable resin solution 26 is cured to solidify the whole. As a result, a clad is formed around the optical waveguide 24 to form a step index type optical waveguide. At this time, as described above, the surface of the optical waveguide 24 is smooth, and the refractive index changes sharply in the radial direction. That is, a more complete step index type optical waveguide is formed, resulting in lower loss (about 0.5 dB / cm). Also, since the whole is solidified, a robust optical waveguide is formed. In order to minimize the transmission loss of the optical waveguide 24, the difference between the refractive index of the optical waveguide 24 after curing (refractive index of the core portion) and the refractive index of the low refractive index solution after curing (refractive index of the cladding portion). The low-refractive-index photocurable resin solution 26 may be selected so that 1
As an example, when an acrylic resin is used for the photo-curable resin solution 23 (photo-curable resin solution for core), a low-refractive-index photo-curable resin solution 26 (photo-curable resin solution for clad material) is used. In addition to acrylic resin, epoxy resin, oxetane resin, and silicone resin can be used. If any low refractive index solution is used, an optical waveguide with low loss can be obtained. And it transfers to the last process (e).

【0037】工程(e)では、光導波路デバイスが作成
される。この例は、例えば光導波路型受信センサであ
る。即ち、光導波路24の入射口27に新たな光ファイ
バ31を装着(接着)し、光導波路24の出射口28に
例えば光電変換素子である受光素子(フォトダイオー
ド)29A 、29B 、29C を設ける。尚、30は受光
素子29のリードフレームである。これにより、光導波
路型受信センサが形成される。例えば、この光導波路型
受信センサの光ファイバ31にλA 、λB 、λC をキャ
リアとした光信号を導入する。光ファイバ31から入力
された波長λA 、λB、λC の光信号は、それぞれの干
渉フィルタ25で反射されて、それぞれの受光素子29
A 、29B 、29C で受信される。即ち、光周波数多重
の光導波路型の受信センサとなる。本実施例では、図1
に示す光導波路デバイス製造用治具10を用いているの
で、このようなデバイスを容易に、又精度よく製造する
ことができる。尚、上記3波長λA 、λB 、λC はいず
れも所定波長λW より長波長であることが望ましい。λ
A 、λB 、λC が光導波路形成波長(所定波長)λW
しくは所定波長近傍であると、光導波路24に吸収され
やすく伝送損失が大となる。例えば、488nmで光導
波路24を形成した場合、488nmでの伝送損失は5
dB/cmであるが、波長670nmでは1.3dB/
cm、850nmでは0.8dBである。よって、48
8nmで光導波路を形成した場合は、光導波路デバイス
としての適用波長(通信デバイスであれば通信波長)
は、例えば600nm〜1500nmが望ましい。伝送
損失の少ない光導波路デバイスとなる。
In step (e), an optical waveguide device is produced. This example is, for example, an optical waveguide type reception sensor. That is, a new optical fiber 31 is attached (bonded) to the entrance 27 of the optical waveguide 24, and light receiving elements (photodiodes) 29 A , 29 B , and 29 C , which are photoelectric conversion elements, are attached to the exit 28 of the optical waveguide 24. To provide. Reference numeral 30 is a lead frame of the light receiving element 29. Thereby, the optical waveguide type reception sensor is formed. For example, an optical signal having λ A , λ B and λ C as carriers is introduced into the optical fiber 31 of this optical waveguide type reception sensor. The optical signals of wavelengths λ A , λ B , and λ C input from the optical fiber 31 are reflected by the respective interference filters 25, and the respective light receiving elements 29 are received.
It is received by A , 29 B and 29 C. That is, it becomes an optical waveguide type reception sensor of optical frequency multiplexing. In this embodiment, FIG.
Since the optical waveguide device manufacturing jig 10 shown in is used, such a device can be manufactured easily and accurately. It is desirable that all of the three wavelengths λ A , λ B and λ C are longer than the predetermined wavelength λ W. λ
If A , λ B , and λ C are at or near the optical waveguide formation wavelength (predetermined wavelength) λ W, they are easily absorbed by the optical waveguide 24, resulting in a large transmission loss. For example, when the optical waveguide 24 is formed at 488 nm, the transmission loss at 488 nm is 5
dB / cm, but 1.3 dB / at a wavelength of 670 nm
It is 0.8 dB at cm and 850 nm. Therefore, 48
When the optical waveguide is formed with 8 nm, the applicable wavelength as an optical waveguide device (communication wavelength for communication devices)
Is preferably 600 nm to 1500 nm, for example. It becomes an optical waveguide device with little transmission loss.

【0038】(第2実施例)第1実施例は、光硬化性樹
脂溶液で光導波路(コア部)を形成し、その光硬化性樹
脂溶液を低屈折率光硬化性樹脂溶液に入れ替えて、それ
を固化させてクラッド部を形成する例であった。本実施
例は、硬化開始波長と硬化後の屈折率が異なる2種類の
光硬化性樹脂溶液を混合させた混合溶液を用い、溶液の
入れ替え工程を省略した例である。即ち、図2における
第1実施例の工程(c)の後、溶液を入れ替えずに、即
座に紫外線照射工程(d)に移行する例である。又、第
1実施例の光導波路製造用治具の筐体10を筐体10a
と10bに分離し、より効率よく光導波路デバイスを製
造する例である。
(Second Embodiment) In the first embodiment, an optical waveguide (core portion) is formed from a photocurable resin solution, and the photocurable resin solution is replaced with a low refractive index photocurable resin solution. This is an example in which it is solidified to form a clad portion. The present embodiment is an example in which a mixed solution obtained by mixing two kinds of photocurable resin solutions having different curing start wavelengths and different refractive indexes after curing is used, and the solution replacement step is omitted. That is, this is an example in which after the step (c) of the first embodiment in FIG. 2, the solution is not replaced and the process immediately proceeds to the ultraviolet irradiation step (d). Further, the housing 10 of the optical waveguide manufacturing jig of the first embodiment is replaced with the housing 10a.
This is an example of manufacturing the optical waveguide device more efficiently by separating the optical waveguide device into 10 and 10b.

【0039】そのためには、硬化開始波長と硬化後の屈
折率が異なる2種の光硬化性樹脂溶液、即ち高屈折率光
硬化性樹脂溶液と低屈折率光硬化性樹脂溶液を混合し、
それを光造形法の光硬化性樹脂溶液とする。高屈折率光
硬化性樹脂溶液は、例えばラジカル重合反応を示すアク
リル系の光硬化性樹脂溶液である。又、低屈折率光硬化
性樹脂溶液はカチオン重合反応を示すエポキシ系光硬化
性樹脂溶液である。両者を例えば7:3の比率で混合
し、混合溶液30とする。両者の分光感度特性を図3に
示す。横軸が波長、縦軸が相対感度である。曲線Aが高
屈折率光硬化性樹脂溶液の分光感度特性であり、曲線B
が低屈折率光硬化性樹脂溶液の分光感度特性である。図
示するように、それぞれの光硬化性樹脂溶液のそれぞれ
の硬化開始波長(λ 1 、λ2 )は、使用する短波長レー
ザの波長λW を挟むように構成する。以降、この屈折率
の高い高屈折率光硬化性樹脂溶液を溶液A、屈折率の低
いそれを溶液Bと記す。
For that purpose, the curing start wavelength and the bending after curing are
Two kinds of photo-curable resin solutions with different folding rates, that is, high refractive index light
Mix curable resin solution and low refractive index photocurable resin solution,
It is used as a photo-curable resin solution for stereolithography. High refractive index light
The curable resin solution is, for example, an accelerator that exhibits a radical polymerization reaction.
It is a ril type photocurable resin solution. Also, low refractive index photocuring
Epoxy resin photo-curing that shows cationic polymerization reaction
Resin solution. Mix both at a ratio of 7: 3
To prepare a mixed solution 30. Figure 3 shows the spectral sensitivity characteristics of both.
Show. The horizontal axis represents wavelength and the vertical axis represents relative sensitivity. Curve A is high
It is the spectral sensitivity characteristic of the refractive index photocurable resin solution,
Is the spectral sensitivity characteristic of the low refractive index photocurable resin solution. Figure
As shown, each of the photocurable resin solutions
Curing start wavelength of (λ 1, Λ2) Is the short wavelength laser used
The wavelength λWIt is configured to sandwich. Since then, this refractive index
High refractive index photo-curable resin solution with a high solution A, low refractive index
Call it Solution B.

【0040】本実施例では、この様な混合溶液30を用
いて光導波路を作製する。その製造工程を図4に説明す
る。尚、光導波路形成治具10、光ファイバ21、2
2、干渉フィルタ25等の光部品の設置は第1実施例と
同等であるので、詳細な説明は省略する。又、筐体10
は分離されて自由度を持って使用されるものとする。先
ず、工程(a)において、この混合溶液30を透明容器
20に満たす。次に、工程(b)で上記分離された治具
をそれぞれ装着し、所定波長(アルゴンイオンレーザ:
λW =488nm)を導入する。この波長は、上述の様
に溶液Aの硬化開始波長より短く、溶液Bのそれより長
い。従って、溶液Aのみが硬化され、光導波路24が形
成される。尚、この時、光軸上にあった溶液Bは周囲に
押しやられる。そして、異なる方向からの光導波路24
が、セルフアライメント効果により互いに引き込まれて
連続した光導波路24が形成される。その後、工程
(c)で、所定波長光(波長λW )の導入を停止し、工
程(d)に移行する。
In this embodiment, an optical waveguide is manufactured using such a mixed solution 30. The manufacturing process will be described with reference to FIG. The optical waveguide forming jig 10, the optical fibers 21, 2
2. Since the optical components such as the interference filter 25 are installed in the same manner as in the first embodiment, detailed description will be omitted. Also, the housing 10
Shall be separated and used with a degree of freedom. First, in the step (a), the transparent container 20 is filled with the mixed solution 30. Next, the jigs separated in the step (b) are mounted respectively, and a predetermined wavelength (argon ion laser:
λ W = 488 nm) is introduced. This wavelength is shorter than the curing start wavelength of the solution A and longer than that of the solution B as described above. Therefore, only the solution A is cured and the optical waveguide 24 is formed. At this time, the solution B on the optical axis is pushed to the surroundings. Then, the optical waveguide 24 from different directions
However, the continuous optical waveguide 24 is formed by being drawn into each other by the self-alignment effect. Then, in step (c), the introduction of light of a predetermined wavelength (wavelength λ W ) is stopped, and the process proceeds to step (d).

【0041】工程(d)では、紫外線ランプ等によっ
て、波長λC の紫外線が周囲より一様に照射される。図
3に示すように、この波長λC は溶液A,Bの両溶液の
硬化開始波長より短い。よって、両溶液とも硬化させ
る。これにより、光導波路24の周囲の混合溶液30の
全体が硬化され、クラッド部が形成される。この時、ク
ラッド部の屈折率は、光導波路(コア部)24の屈折率
より小となる。即ち、ステップインデックス型の光導波
路が形成される。尚、次の工程(e)は、第1実施例の
それと同等であるので省略する。この様に、硬化開始波
長と硬化後の屈折率が異なる2種の光硬化性樹脂溶液を
混合し、波長の異なる光を2工程で照射すれば、簡単に
ステップインデックス型の光導波路を形成することがで
き、又それを用いて光導波路デバイスを製造することが
できる。
In step (d), ultraviolet rays having a wavelength λ C are uniformly irradiated from the surroundings by an ultraviolet lamp or the like. As shown in FIG. 3, this wavelength λ C is shorter than the curing start wavelength of both solutions A and B. Therefore, both solutions are cured. As a result, the entire mixed solution 30 around the optical waveguide 24 is hardened and a clad portion is formed. At this time, the refractive index of the clad portion is smaller than that of the optical waveguide (core portion) 24. That is, a step index type optical waveguide is formed. Note that the next step (e) is the same as that of the first embodiment and is therefore omitted. In this way, a step index type optical waveguide can be easily formed by mixing two kinds of photocurable resin solutions having different curing start wavelengths and different refractive indexes after curing and irradiating light with different wavelengths in two steps. It is possible to manufacture an optical waveguide device.

【0042】(変形例)以上、本発明を表す実施例を示
したが、他に様々な変形例が考えられる。例えば、第1
実施例及び第2実施例では、所定波長光は、全ての孔1
1、孔12から導入し、中間点で光導波路24が接続さ
れる方法を採ったが、それらの孔11,12の採用は任
意でもよい。即ち、全て双方向から所定波長光を導入せ
ずともよい。部分的には、片方向からのみ導入してもよ
い。例えば、図2(e)、図4(e)に示す受光素子2
C の受光面積が大である場合や、孔11と孔12の距
離、即ち光路が短い場合は、孔11から所定波長光を導
入するだけでよい。このようにしても良い。
(Modifications) Although the embodiments representing the present invention have been described above, various modifications are conceivable. For example, the first
In the embodiment and the second embodiment, the light having the predetermined wavelength is applied to all the holes 1
Although the method of introducing the optical waveguide 24 through the hole 12 and connecting the optical waveguide 24 at the intermediate point is adopted, the holes 11 and 12 may be adopted arbitrarily. That is, it is not necessary to introduce the light of the predetermined wavelength from both directions. It may be partially introduced only from one direction. For example, the light receiving element 2 shown in FIGS. 2 (e) and 4 (e)
When the light receiving area of 9 C is large, or when the distance between the holes 11 and 12, that is, the optical path is short, it is sufficient to introduce light of a predetermined wavelength from the hole 11. You may do this.

【0043】又、第2実施例では第1実施例の筐体10
を筐体10a、10bに分離して、両者を微調整して入
出力位置を決定し光導波路24を成長させたが、一方の
みでもよい。又、例えば筐体10aは必ずしも用いなく
ともよい。即ち、図5に示すように透明容器の側壁に筐
体10aの孔11に対応する孔41を設けそこに光ファ
イバ21を嵌合してもよい。光導波路デバイス製造用治
具を筐体10bと孔12のみとしてもよい。筐体10b
のみを微調整するだけで、容易に入出力位置を設定する
ことも可能である。尚、この場合は光ファイバ21の先
端から光導波路24が延出され、光導波路デバイスと光
ファイバ21が一体となったデバイスとなる。よって、
より接続損失の少ないデバイスとすることができる。例
えば、接続損失が0.1dBと極めて小さい光導波路デ
バイスとすることができる。この様にして、筐体10b
のみからなる光導波路デバイス製造用治具を使用して、
光ファイバ21が一体となったデバイスを製造してもよ
い。
In the second embodiment, the housing 10 of the first embodiment is used.
Was separated into housings 10a and 10b, and both were finely adjusted to determine the input / output position to grow the optical waveguide 24, but only one may be used. Further, for example, the housing 10a does not necessarily have to be used. That is, as shown in FIG. 5, a hole 41 corresponding to the hole 11 of the housing 10a may be provided on the side wall of the transparent container and the optical fiber 21 may be fitted therein. The jig for manufacturing the optical waveguide device may be only the housing 10b and the hole 12. Case 10b
It is also possible to easily set the input / output position by finely adjusting only the position. In this case, the optical waveguide 24 is extended from the tip of the optical fiber 21 to form a device in which the optical waveguide device and the optical fiber 21 are integrated. Therefore,
A device with less connection loss can be obtained. For example, the optical waveguide device can have an extremely small connection loss of 0.1 dB. In this way, the housing 10b
Using an optical waveguide device manufacturing jig consisting of only
A device in which the optical fiber 21 is integrated may be manufactured.

【0044】又、第1実施例、第2実施例では光ファイ
バ21、22から光導波路24を成長させたが、光ファ
イバを用いなくともよい。例えば、図6(a)に示すよ
うに所定波長光を半値全幅(FWHM)が約3mmのア
ルゴンイオンレーザ(200mW)を孔12から導入し
てもよい。径約2〜3mmの光導波路24が得られる。
このような光導波路デバイスを形成してもよい。又、所
定波長光は短波長レーザ光でなくともよい。例えば、紫
外線ランプを2つ以上のアパーチャで取り出して概略平
行光としてもよい。この概略平行光を図6に示す孔12
から導入してもよい。同等の結果が得られる。又、この
ようなレーザ光やランプ光を用いる場合には治具に孔を
設ける必要はなく、光導入部が透明であるならば、図6
(b)に示したような照射系でも同様の光導波路形成が
可能となる。
Although the optical waveguide 24 is grown from the optical fibers 21 and 22 in the first and second embodiments, the optical fiber may not be used. For example, as shown in FIG. 6A, an argon ion laser (200 mW) having a predetermined full width at half maximum (FWHM) of light of a predetermined wavelength may be introduced through the hole 12. An optical waveguide 24 having a diameter of about 2 to 3 mm is obtained.
You may form such an optical waveguide device. The predetermined wavelength light need not be short wavelength laser light. For example, the ultraviolet lamp may be taken out with two or more apertures to make a substantially parallel light. This roughly parallel light is shown in FIG.
It may be introduced from. Equivalent results are obtained. Further, when such laser light or lamp light is used, it is not necessary to provide a hole in the jig, and if the light introducing part is transparent, the
The same optical waveguide can be formed by the irradiation system as shown in (b).

【0045】又、第1実施例及び第2実施例では、筐体
10の孔11、12には凸レンズ等の集光光学系を設け
なかったが、図7(a)、(b)に示すように孔12の
透明容器20側に凸レンズ43(開口数0.25)を設
けてもよい。図7(a)が光ファイバ22を用いた場合
であり、図7(b)がFWHMが約3mmのレーザビー
ムを用いた場合である。孔12の透明容器20側にこの
凸レンズ43を設ければ、光ファイバ22を出射したレ
ーザ光を例えば透明容器20の壁近傍で集光させること
ができる(図7(a))。同様にFWHMが約3mmの
レーザビームを透明容器20の壁長近傍に集光させるこ
とができる(図7(b))。このようにレーザ光を集光
させれば、集光部分では光強度が増大するのでより迅速
により高硬度に光硬化性樹脂溶液を固化させることがで
きる。そして、その透明容器20の内壁により強固に固
定することができる。光導波路24が透明容器20の内
壁により強固に固定されるので、機械振動に頑強な光導
波路デバイスとすることができる。焦点距離の長いレン
ズを用いれば、レンズの設置位置は容器20側の反対側
(光源側)でも構わない。又、前述したように、透明な
光導入部であれば、孔を設ける必要はなく、レーザ光の
経路の任意の位置にレンズを設置すれば良い。
Further, in the first and second embodiments, the condensing optical system such as the convex lens is not provided in the holes 11 and 12 of the housing 10, but it is shown in FIGS. 7 (a) and 7 (b). As described above, the convex lens 43 (numerical aperture 0.25) may be provided on the transparent container 20 side of the hole 12. 7A shows the case where the optical fiber 22 is used, and FIG. 7B shows the case where the laser beam having the FWHM of about 3 mm is used. If this convex lens 43 is provided on the transparent container 20 side of the hole 12, the laser light emitted from the optical fiber 22 can be condensed, for example, near the wall of the transparent container 20 (FIG. 7A). Similarly, a laser beam having an FWHM of about 3 mm can be focused near the wall length of the transparent container 20 (FIG. 7B). By condensing the laser light in this way, the light intensity increases at the condensing portion, so that the photocurable resin solution can be solidified more rapidly and with higher hardness. Then, it can be more firmly fixed to the inner wall of the transparent container 20. Since the optical waveguide 24 is firmly fixed to the inner wall of the transparent container 20, an optical waveguide device that is robust against mechanical vibration can be obtained. If a lens having a long focal length is used, the lens may be installed on the opposite side of the container 20 side (light source side). Further, as described above, if it is a transparent light introducing portion, it is not necessary to provide a hole, and a lens may be installed at an arbitrary position on the path of laser light.

【0046】又、第1実施例及び第2実施例では光周波
数多重の受信デバイス(3波長多重片方向受信デバイ
ス)を製造する例を示した。本発明の適用は、受信デバ
イスに限らない。例えば、図8に示す(2波長多重単
線)双方向通信デバイスにも適用できる。この場合は、
光導波路24の端面37、38に光電変換素子として受
信センサ29A と発光素子39を装着させる。ファイバ
31から入力された波長λ 1 の光信号は、光導波路24
を伝搬し干渉フィルタ(波長選択性フィルタ)35を介
して、全て受光素子29A に入力される。即ち、信号が
受信される。一方、発光素子39からの発光された波長
λ2 の光信号は、干渉フィルタ34を介して、光導波路
24の端面27側に反射され、光ファイバ31に出力さ
れる。即ち、光信号が送信される。即ち、単線で送受信
可能な2波長多重通信デバイスが形成される。このよう
なデバイスとしてもよい。
In the first and second embodiments, the optical frequency is
Multiplexing receiving device (3 wavelength multiplexing unidirectional receiving device
The example of manufacturing The present invention is applied to the reception device.
Not limited to chairs. For example, as shown in FIG.
It is also applicable to two-way communication devices. in this case,
The end faces 37 and 38 of the optical waveguide 24 are received as photoelectric conversion elements.
Signal sensor 29AAnd the light emitting element 39 is attached. fiber
Wavelength λ input from 31 1Optical signal of the optical waveguide 24
Through the interference filter (wavelength selective filter) 35
Then, all the light receiving elements 29AEntered in. That is, the signal is
Be received. On the other hand, the wavelength of light emitted from the light emitting element 39
λ2Is transmitted to the optical waveguide through the interference filter 34.
It is reflected on the end face 27 side of 24 and output to the optical fiber 31.
Be done. That is, the optical signal is transmitted. That is, sending and receiving on a single line
A possible WDM device is formed. like this
Any device may be used.

【0047】又、第1実施例、第2実施例において、干
渉フィルタ25の厚みにばらつきがあると透過光の光路
がずれることになる。又、干渉フィルタ25の設置に角
度誤差がある場合は、反射光路が所定光路からずれるこ
とになる。この様な場合に備えて、図9に示すように、
干渉フィルタ等の光部品の下に光部品の位置と角度を調
整する調整手段を設けてもよい。例えば、光導波路デバ
イス製造用治具を、筐体10の側壁をL字形状にして、
それに底板が付けたものとする。調整手段は光部品下に
設けられた軟磁性材料13と透明容器20と筐体10の
底板を挟んで設けられた磁石14で構成される。そし
て、軟磁性材料13に直接、光部品を立設させるか、軟
磁性材料13に支柱を設けてこの支柱で光部品を支持す
ると共に光部品の回転軸とする。尚、図9は、光導波路
デバイス製造用治具の筐体10を光部品が搭載されてい
ない透明容器20に装着した図であり、図9(a)が上
面図、図9(b)が正面図である。使用時には、光部品
(例えば、干渉フィルタ25)をこの容器に内挿し、光
硬化性樹脂溶液23を注入する。その後、光硬化性樹脂
溶液23が硬化しない波長(例えば633nm)を光フ
ァイバ21から導入する。そして、出力側の各光ファイ
バ22でその導入光が最大となるように、磁石14を平
行移動することで、光部品の配設位置が変化でき、磁石
14を回転させることで、光部品を回転させて光の反射
角度を調整することができる。このようにすれば、確実
に光軸を合わせることができる。即ち、より高精度な光
導波路デバイスが製造できる。このようにしてもよい。
Further, in the first and second embodiments, if the thickness of the interference filter 25 varies, the optical path of the transmitted light will shift. Further, if there is an angular error in the installation of the interference filter 25, the reflected light path will deviate from the predetermined light path. In preparation for such a case, as shown in FIG.
Adjustment means for adjusting the position and angle of the optical component may be provided below the optical component such as the interference filter. For example, a jig for manufacturing an optical waveguide device is used, in which the side wall of the housing 10 is L-shaped,
It is assumed that the bottom plate is attached to it. The adjusting means is composed of the soft magnetic material 13 provided under the optical component, the transparent container 20, and the magnet 14 provided so as to sandwich the bottom plate of the housing 10. Then, the optical component is erected directly on the soft magnetic material 13, or a column is provided on the soft magnetic material 13 to support the optical component by this column and also serve as a rotation axis of the optical component. 9A and 9B are diagrams in which the housing 10 of the jig for manufacturing an optical waveguide device is mounted on the transparent container 20 on which no optical component is mounted. FIG. 9A is a top view and FIG. It is a front view. At the time of use, an optical component (for example, an interference filter 25) is inserted into this container and the photocurable resin solution 23 is injected. After that, a wavelength (for example, 633 nm) at which the photocurable resin solution 23 is not cured is introduced from the optical fiber 21. Then, by moving the magnet 14 in parallel so that the introduced light is maximized in each of the output-side optical fibers 22, the arrangement position of the optical component can be changed, and by rotating the magnet 14, the optical component is moved. It can be rotated to adjust the reflection angle of light. In this way, the optical axis can be surely aligned. That is, a highly accurate optical waveguide device can be manufactured. You may do this.

【0048】又、第1実施例においては、全体を固化す
るに当たって光硬化性樹脂溶液である低屈折率光硬化性
樹脂溶液26を透明容器20に注入しそれを紫外線(λ
C )で固化したが、その光硬化性樹脂溶液を熱硬化性シ
リコン樹脂としてもよい。その場合は、紫外線の照射の
代わりに加熱すればよい。この場合も伝送損失は約0.
5dB/cmとなる。又、熱硬化性シリコン樹脂を用い
る場合は光学ガラス等からなる透明容器20を用いる必
要がない。よって、安価に製造することができる。尚、
金属等の不透明容器を用いる場合は、光センサ等の光部
品をその内部に設けるか、不透明容器に孔を設けて直
接、光導波路が光センサに接続されるようにすればよ
い。同等の効果がある。
Further, in the first embodiment, when the whole is solidified, the low refractive index photocurable resin solution 26, which is a photocurable resin solution, is injected into the transparent container 20 and the ultraviolet ray (λ
Although solidified in C ), the photocurable resin solution may be a thermosetting silicone resin. In that case, heating may be performed instead of irradiation with ultraviolet rays. Also in this case, the transmission loss is about 0.
It becomes 5 dB / cm. Further, when the thermosetting silicone resin is used, it is not necessary to use the transparent container 20 made of optical glass or the like. Therefore, it can be manufactured at low cost. still,
When an opaque container made of metal or the like is used, an optical component such as an optical sensor may be provided therein, or a hole may be provided in the opaque container so that the optical waveguide is directly connected to the optical sensor. Has the same effect.

【0049】又、第1実施例、第2実施例において、短
波長レーザに波長λw =488nmのアルゴンイオンレ
ーザを用いたが、光硬化性樹脂溶液によっては波長λw
=325nmのHe−Cd(ヘリウムカドニウム)レー
ザを用いても良い。同等の結果を得ることができる。
又、超高圧水銀ランプ(λ=380nm)等も略平行光
線とすれば適用可能である。
[0049] The first embodiment, in the second embodiment uses an argon ion laser with a wavelength lambda w = 488 nm to the short wavelength laser, the wavelength lambda w depending photocurable resin solution
= 325 nm He-Cd (helium cadmium) laser may be used. Equivalent results can be obtained.
Further, an ultra-high pressure mercury lamp (λ = 380 nm) or the like can be applied as long as it is a substantially parallel light beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る光導波路デバイス製造用治具
の上面図(a)、正面図(b)。
FIG. 1 is a top view (a) and a front view (b) of an optical waveguide device manufacturing jig according to a first embodiment.

【図2】第1実施例に係る光導波路デバイスの製造工程
図。
FIG. 2 is a manufacturing process diagram of the optical waveguide device according to the first embodiment.

【図3】第2実施例に係る混合溶液の分光感度特性図。FIG. 3 is a spectral sensitivity characteristic diagram of the mixed solution according to the second embodiment.

【図4】第2実施例に係る光導波路デバイスの製造工程
図。
FIG. 4 is a manufacturing process diagram of an optical waveguide device according to a second embodiment.

【図5】変形例に係る光導波路デバイス製造用治具の配
置図。
FIG. 5 is a layout view of a jig for manufacturing an optical waveguide device according to a modification.

【図6】変形例に係るレーザビームを導入した場合の光
導波路形成図。
FIG. 6 is an optical waveguide formation diagram when a laser beam according to a modification is introduced.

【図7】変形例に係り、光導波路デバイス製造用治具に
凸レンズを備えた場合の光導波路形成図。
FIG. 7 is an optical waveguide formation diagram in the case where a jig for manufacturing an optical waveguide device is provided with a convex lens according to the modification.

【図8】変形例に係る光導波路型双方向通信デバイスの
構成断面図。
FIG. 8 is a configuration cross-sectional view of an optical waveguide type bidirectional communication device according to a modification.

【図9】変形例に係る光導波路デバイス用治具の上面図
(a)、正面図(b)。
FIG. 9 is a top view (a) and a front view (b) of an optical waveguide device jig according to a modified example.

【符号の説明】[Explanation of symbols]

10…筐体 11、12…孔 13…光導入部 20…透明容器 21、22…光ファイバ 23…光硬化性樹脂溶液 24…光導波路 25…干渉フィルタ 26…低屈折率光硬化性樹脂溶液 29A 、29B ,29C …受光素子 30…混合溶液 34、35…干渉フィルタ 39…発光素子 43…凸レンズ10 ... Casing 11, 12 ... Hole 13 ... Light introduction part 20 ... Transparent container 21, 22 ... Optical fiber 23 ... Photocurable resin solution 24 ... Optical waveguide 25 ... Interference filter 26 ... Low refractive index photocurable resin solution 29 A , 29 B , 29 C ... Light receiving element 30 ... Mixed solution 34, 35 ... Interference filter 39 ... Light emitting element 43 ... Convex lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 各務 学 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 山下 達弥 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 河崎 朱里 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 伊藤 博 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 伊縫 幸利 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 近藤 国芳 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 Fターム(参考) 2H047 KA04 LA00 LA14 LA18 MA05 MA07 PA15 PA22 PA28 QA05 TA41    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventors             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Tatsuya Yamashita             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Akari Kawasaki             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Hiroshi Ito             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor, Yuri Toshi             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. (72) Inventor Kuniyoshi Kondo             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. F term (reference) 2H047 KA04 LA00 LA14 LA18 MA05                       MA07 PA15 PA22 PA28 QA05                       TA41

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】単数又は複数の光部品を内挿し、N個の入
出力端を有する光導波路デバイスを製造する治具であっ
て、光硬化性樹脂溶液が注入された透明容器に前記単数
又は複数の光部品を設置し、該透明容器に装着して用い
る光導波路デバイス製造用治具であって、 筐体と、該筐体に所定の位置関係で設けられたN個の光
導入部からなり、前記N個の光導入部の任意の光導入部
から所定波長光を導入して前記光硬化性樹脂溶液を硬化
させ、光軸方向、及び前記光硬化性樹脂溶液内に設置さ
れた前記単数又は複数の光部品によって変換された光軸
方向に光導波路を成長させて、前記N個の光導入部と前
記単数又は複数の光部品とを前記光導波路で接続させ
て、前記N個の入出力端を有する光導波路デバイスを製
造することを特徴とする光導波路デバイス製造用治具。
1. A jig for manufacturing an optical waveguide device having N input / output ends by inserting a single or a plurality of optical parts, wherein the single or a plurality of optical parts are placed in a transparent container in which a photocurable resin solution is injected. A jig for manufacturing an optical waveguide device in which a plurality of optical components are installed and mounted in the transparent container, comprising: a housing and N light introducing portions provided in a predetermined positional relationship with the housing. The light having a predetermined wavelength is introduced from any of the N light introducing parts to cure the photocurable resin solution, and the optical axis direction and the light installed in the photocurable resin solution are set. An optical waveguide is grown in the optical axis direction converted by a single or a plurality of optical components, and the N light introducing portions and the single or a plurality of optical components are connected by the optical waveguide, and the N optical waveguides are connected. Optical waveguide characterized by manufacturing an optical waveguide device having an input / output end Device manufacturing jig.
【請求項2】前記任意の光導入部には孔が形成されてお
り、その孔に光ファイバが嵌合されることを特徴とする
請求項1に記載の光導波路デバイス製造用治具。
2. The jig for manufacturing an optical waveguide device according to claim 1, wherein a hole is formed in the arbitrary light introducing portion, and an optical fiber is fitted into the hole.
【請求項3】前記所定波長光が導入される前記任意の光
導入部には、集光光学系が付与されることを特徴とする
請求項1又は請求項2に記載の光導波路デバイス製造用
治具。
3. The optical waveguide device manufacturing method according to claim 1, wherein a condensing optical system is provided to the arbitrary light introducing section into which the light of the predetermined wavelength is introduced. jig.
【請求項4】前記光導波路デバイス製造用治具は、導入
光の光軸に対する前記光部品の位置及び/又は角度を調
整する調整手段を有することを特徴とする請求項1乃至
請求項3の何れか1項に記載の光導波路デバイス製造用
治具。
4. The optical waveguide device manufacturing jig comprises adjusting means for adjusting the position and / or angle of the optical component with respect to the optical axis of the introduced light. The jig for manufacturing an optical waveguide device according to any one of items.
【請求項5】前記N個の光導入部を有する前記筐体は、
複数に分離可能であることを特徴とする請求項1乃至請
求項4の何れか1項に記載の光導波路デバイス製造用治
具。
5. The casing having the N light introducing portions,
The jig for manufacturing an optical waveguide device according to any one of claims 1 to 4, wherein the jig is separable into a plurality of pieces.
【請求項6】請求項1乃至請求項5の何れか1項の光導
波路デバイス製造用治具を用いて形成する光導波路デバ
イスの製造方法であって、 透明容器に単数又は複数の光部品を所定位置に内挿して
該透明容器に光硬化性樹脂溶液を充填し、請求項1乃至
請求項5の何れか1項の光導波路デバイス製造用治具を
前記透明容器に装着してその任意の光導入部から所定波
長光を導入し、前記光硬化性樹脂溶液を硬化させて光導
波路を形成し、前記N個の光導入部と前記単数又は複数
の光部品とを光導波路で接続させてN個の入出力端を有
する光導波路デバイスを形成することを特徴とする光導
波路デバイスの製造方法。
6. A method of manufacturing an optical waveguide device, which is formed by using the optical waveguide device manufacturing jig according to claim 1, wherein a transparent container is provided with one or a plurality of optical components. The transparent container is inserted at a predetermined position to fill the transparent container with a photo-curable resin solution, and the optical waveguide device manufacturing jig according to any one of claims 1 to 5 is attached to the transparent container and any one of them is attached. Light of a predetermined wavelength is introduced from a light introducing part, the light curable resin solution is cured to form an optical waveguide, and the N light introducing parts and the one or more optical parts are connected by an optical waveguide. A method of manufacturing an optical waveguide device, which comprises forming an optical waveguide device having N input / output terminals.
【請求項7】前記任意の光導入部には孔が形成されてお
り、その孔には前記所定波長光を出射する光ファイバが
嵌合されることを特徴とする請求項6に記載の光導波路
デバイスの製造方法。
7. The light guide according to claim 6, wherein a hole is formed in the arbitrary light introducing portion, and an optical fiber for emitting the light of the predetermined wavelength is fitted into the hole. Method of manufacturing waveguide device.
【請求項8】前記光導波路は、少なくともその両端が前
記透明容器に固定されることを特徴とする請求項6又は
請求項7に記載の光導波路デバイスの製造方法。
8. The method of manufacturing an optical waveguide device according to claim 6, wherein at least both ends of the optical waveguide are fixed to the transparent container.
【請求項9】前記透明容器に内挿された前記光部品は、
前記透明容器の外部から位置調整及び/又は角度調整が
可能であり、前記光硬化性樹脂溶液の注入後に、前記光
硬化性樹脂溶液が硬化しない波長で一つの光導入部から
入射された光が他の光導入部から出射されるように前記
光部品の位置調整及び/又は角度調整が行われることを
特徴とする請求項6乃至請求項8の何れか1項に記載の
光導波路デバイスの製造方法。
9. The optical component inserted in the transparent container,
Position adjustment and / or angle adjustment is possible from the outside of the transparent container, and after the injection of the photocurable resin solution, the light incident from one light introduction part at a wavelength at which the photocurable resin solution is not cured is 9. The manufacturing of the optical waveguide device according to claim 6, wherein the position adjustment and / or the angle adjustment of the optical component is performed so that the optical component is emitted from another light introducing portion. Method.
【請求項10】前記光導波路の形成後は前記光導波路周
囲の未硬化の前記光硬化性樹脂溶液を除去し、続いて前
記光導波路の屈折率より屈折率の低い低屈折率樹脂溶液
で前記光導波路を包埋し固化することを特徴とする請求
項6乃至請求項9の何れか1項に記載の光導波路デバイ
スの製造方法。
10. After the formation of the optical waveguide, the uncured photocurable resin solution around the optical waveguide is removed, and then the low refractive index resin solution having a refractive index lower than that of the optical waveguide is used. The method for manufacturing an optical waveguide device according to any one of claims 6 to 9, wherein the optical waveguide is embedded and solidified.
【請求項11】前記低屈折率樹脂溶液は、前記光硬化性
樹脂溶液と相溶性の高い光硬化性樹脂溶液又は熱硬化性
樹脂溶液であることを特徴とする請求項10光導波路デ
バイスの製造方法。
11. The method of manufacturing an optical waveguide device according to claim 10, wherein the low refractive index resin solution is a photocurable resin solution or a thermosetting resin solution having high compatibility with the photocurable resin solution. Method.
【請求項12】前記光硬化性樹脂溶液は、硬化開始波長
が異なる高屈折率光硬化性樹脂溶液と低屈折率光硬化性
樹脂溶液の混合溶液であり、 光導波路の形成時には、前記高屈折率光硬化性樹脂溶液
のみが硬化する第1の所定波長光を前記N個の光導入部
の任意の光導入部から導入し、前記光導波路の形成後は
前記高屈折率光硬化性樹脂溶液と前記低屈折率光硬化性
樹脂溶液の両方が硬化する第2の所定波長光を前記光導
波路周囲の未硬化の前記混合溶液全体に照射し固化させ
ることを特徴とする請求項6乃至請求項9の何れか1項
に記載の光導波路デバイスの製造方法。
12. The photo-curable resin solution is a mixed solution of a high-refractive-index photo-curable resin solution and a low-refractive-index photo-curable resin solution having different curing start wavelengths. The first predetermined wavelength light that cures only the index photocurable resin solution is introduced from an arbitrary light introduction part of the N light introduction parts, and after the formation of the optical waveguide, the high refractive index photocurable resin solution 7. The second predetermined wavelength light that cures both the low refractive index photocurable resin solution and the low refractive index photocurable resin solution is irradiated onto the entire uncured mixed solution around the optical waveguide to solidify. 10. The method for manufacturing the optical waveguide device according to any one of items 9.
【請求項13】前記所定波長光は、前記光導波路デバイ
スが形成された後に使用される光信号とは波長が異なる
ことを特徴とする請求項6乃至請求項12の何れか1項
に記載の光導波路デバイスの製造方法。
13. The light of the predetermined wavelength has a wavelength different from that of an optical signal used after the optical waveguide device is formed, according to any one of claims 6 to 12. Manufacturing method of optical waveguide device.
【請求項14】請求項1乃至請求項5の何れか1項に記
載の光導波路デバイス製造用治具、及び請求項6乃至請
求項13の何れか1項に記載の光導波路デバイスの製造
方法を用いて製造される光導波路デバイスであって、 前記光導波路デバイスの入出力端には、光学素子及び/
又は光電変換素子が結合されることを特徴とする光導波
路デバイス。
14. A jig for manufacturing an optical waveguide device according to any one of claims 1 to 5, and a method for manufacturing an optical waveguide device according to any one of claims 6 to 13. An optical waveguide device manufactured by using an optical element and / or an input / output terminal of the optical waveguide device.
Alternatively, an optical waveguide device in which a photoelectric conversion element is coupled.
JP2001245705A 2001-08-13 2001-08-13 Manufacturing method of optical waveguide device Expired - Fee Related JP3984009B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001245705A JP3984009B2 (en) 2001-08-13 2001-08-13 Manufacturing method of optical waveguide device
DE60230369T DE60230369D1 (en) 2001-08-13 2002-08-09 Method for producing an optical waveguide device
EP02017929A EP1284426B1 (en) 2001-08-13 2002-08-09 Method of manufacturing optical waveguide device by use of a jig
US10/216,224 US6823116B2 (en) 2001-08-13 2002-08-12 Optical waveguide device manufacturing jig, method of manufacturing optical waveguide device by use of the same jig, and the same optical waveguide device
US10/920,233 US6925233B2 (en) 2001-08-13 2004-08-18 Optical waveguide device manufacturing jig, method of manufacturing optical waveguide device by use of the same jig, and the same optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245705A JP3984009B2 (en) 2001-08-13 2001-08-13 Manufacturing method of optical waveguide device

Publications (2)

Publication Number Publication Date
JP2003057476A true JP2003057476A (en) 2003-02-26
JP3984009B2 JP3984009B2 (en) 2007-09-26

Family

ID=19075402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245705A Expired - Fee Related JP3984009B2 (en) 2001-08-13 2001-08-13 Manufacturing method of optical waveguide device

Country Status (4)

Country Link
US (2) US6823116B2 (en)
EP (1) EP1284426B1 (en)
JP (1) JP3984009B2 (en)
DE (1) DE60230369D1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121677A (en) * 2001-10-17 2003-04-23 Ibiden Co Ltd Optical waveguide and method for manufacturing optical waveguide
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2006276462A (en) * 2005-03-29 2006-10-12 Toyoda Gosei Co Ltd Method for manufacturing optical module and device for manufacturing optical module
JP2006284988A (en) * 2005-04-01 2006-10-19 Toyoda Gosei Co Ltd Optical waveguide and method of manufacturing the same
WO2007029717A1 (en) * 2005-09-06 2007-03-15 Kabusiki Kaisha Toyota Chuo Kenkyusho Optical waveguide and method for fabricating same
JP2007249099A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
JP2007264286A (en) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
JP2008122743A (en) * 2006-11-14 2008-05-29 Toyota Central R&D Labs Inc Optical waveguide and method of manufacturing the same
JP2008122984A (en) * 2007-12-26 2008-05-29 Toyota Central R&D Labs Inc Self-forming optical waveguide and manufacturing method therefor
JP2009169039A (en) * 2008-01-16 2009-07-30 Toyoda Gosei Co Ltd Method for manufacturing self-forming optical waveguide
JP2009198609A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler
JP2009198608A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler, component parts thereof and manufacturing method thereof
JP2011034055A (en) * 2009-07-10 2011-02-17 Nippon Shokubai Co Ltd Optical device and method for manufacturing the same
US8170385B2 (en) 2008-02-19 2012-05-01 Toyoda Gosei Co., Ltd. Light coupler and manufacturing method thereof
JP2020528838A (en) * 2017-06-30 2020-10-01 株式会社ニコン How to manufacture optics and corresponding systems

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR876M (en) 1960-10-12 1961-10-16
EP1533635B1 (en) * 2000-11-30 2009-04-29 Toyoda Gosei Co., Ltd. Optical transmission and reception module
JP3841656B2 (en) * 2001-06-12 2006-11-01 株式会社豊田中央研究所 Manufacturing method of optical waveguide device
JP3984009B2 (en) * 2001-08-13 2007-09-26 株式会社豊田中央研究所 Manufacturing method of optical waveguide device
AU2004209554B2 (en) * 2003-02-04 2010-08-12 Warsaw Orthopedic, Inc. Polyurethanes for osteoimplants
US7166322B2 (en) * 2003-08-08 2007-01-23 Toyoda Gosei Co., Ltd. Optical waveguide and method for producing the same
US20050042387A1 (en) * 2003-08-21 2005-02-24 3M Innovative Properties Company Filament coating process and apparatus
US7560055B2 (en) 2004-06-02 2009-07-14 Toyoda Gosei Co. Ltd. Method of manufacturing an optical module
JP5170729B2 (en) * 2005-03-02 2013-03-27 株式会社ブリヂストン Photocurable resin composition
JP4452743B2 (en) * 2005-06-10 2010-04-21 富士通株式会社 Optical module manufacturing method, optical module, and optical module platform
US8287895B1 (en) 2008-04-24 2012-10-16 Hrl Laboratories, Llc Three-dimensional biological scaffold compromising polymer waveguides
US8197930B1 (en) 2007-05-10 2012-06-12 Hrl Laboratories, Llc Three-dimensional ordered open-cellular structures
US7382959B1 (en) * 2006-10-13 2008-06-03 Hrl Laboratories, Llc Optically oriented three-dimensional polymer microstructures
US7949219B1 (en) 2008-03-24 2011-05-24 Lockheed Martin Corporation Self forming waveguides for optical coupling and methodologies for making same
JP4970364B2 (en) * 2008-06-27 2012-07-04 豊田合成株式会社 Optical branching coupler and manufacturing method thereof
US20100010686A1 (en) * 2008-07-11 2010-01-14 Michael Wayne Shore Distributing Alternatively Generated Power to a Real Estate Development
US8195023B1 (en) 2008-12-18 2012-06-05 Hrl Laboratories, Llc Functionally-graded three-dimensional ordered open-cellular microstructure and method of making same
US8852523B1 (en) 2009-03-17 2014-10-07 Hrl Laboratories, Llc Ordered open-cellular materials for mass transfer and/or phase separation applications
TWI446038B (en) * 2009-12-21 2014-07-21 Hon Hai Prec Ind Co Ltd Fiber connector
FR2962814B1 (en) * 2010-07-19 2013-05-10 Lovalite METHOD OF SPLICING OPTICAL FIBERS AND JUNCTION OBTAINED BY SUCH A METHOD
WO2012148662A1 (en) * 2011-04-29 2012-11-01 Bae Systems Information And Electronic Systems Integration Inc. Rapid optical assembly via simultaneous passive bonding
US9539773B2 (en) 2011-12-06 2017-01-10 Hrl Laboratories, Llc Net-shape structure with micro-truss core
US9017806B2 (en) 2012-03-23 2015-04-28 Hrl Laboratories, Llc High airflow micro-truss structural apparatus
CZ2016653A3 (en) * 2016-10-18 2017-10-18 České vysoké učení technické v Praze, Fakulta elektrotechnická, Katedra mikroelektroniky A method of making flexible multi-mode optical planar waveguides and a device for performing this method
CN109283639A (en) * 2018-12-12 2019-01-29 成都光创联科技有限公司 A kind of assembly method of multiport photoelectric device filter supporter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297989A (en) * 1989-05-11 1990-12-10 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof
WO1992000185A1 (en) * 1990-06-22 1992-01-09 Martin Russell Harris Optical waveguides
JPH0540214A (en) * 1990-06-22 1993-02-19 Internatl Business Mach Corp <Ibm> Electro-optic type connector
JPH06324234A (en) * 1993-05-14 1994-11-25 Furukawa Electric Co Ltd:The Production of optical fiber array
JPH0777637A (en) * 1993-09-08 1995-03-20 Fujitsu Ltd Optical element coupling method and refractive index image forming material
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
WO1996042036A1 (en) * 1995-06-12 1996-12-27 California Institute Of Technology Self-trapping and self-focusing of optical beams in photopolymers
JPH0973028A (en) * 1995-09-04 1997-03-18 Kiyokuei Kenma Kako Kk Optical fiber packaging substrate and its packaging module and further, production of packaging module
JPH10104668A (en) * 1996-09-26 1998-04-24 Toshiba Corp Self-convergent type optical transmission body, converging device, and optical lens
JPH11326660A (en) * 1998-05-15 1999-11-26 Toyota Central Res & Dev Lab Inc Optical branching filter and its production
JP2000266965A (en) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd Optical information connector
JP2000347043A (en) * 1999-03-29 2000-12-15 Toyota Central Res & Dev Lab Inc Production of optical transmission path

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH626729A5 (en) * 1978-12-01 1981-11-30 Cabloptic Sa
US5923267A (en) * 1992-05-08 1999-07-13 U.S. Philips Corporation Device with a human-machine interface
DE69230419T2 (en) * 1991-05-31 2000-07-20 Koninkl Philips Electronics Nv Device with a human-machine interface
EP0689067A3 (en) * 1994-06-22 1997-04-09 Fujitsu Ltd Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board
SG65682A1 (en) * 1997-01-31 1999-06-22 Shonan Design Co Ltd Form for manufacturing resin mold and clamping jig for resin mold
EP1533635B1 (en) 2000-11-30 2009-04-29 Toyoda Gosei Co., Ltd. Optical transmission and reception module
US6904570B2 (en) * 2001-06-07 2005-06-07 Synaptics, Inc. Method and apparatus for controlling a display of data on a display screen
JP3841656B2 (en) * 2001-06-12 2006-11-01 株式会社豊田中央研究所 Manufacturing method of optical waveguide device
JP3984009B2 (en) * 2001-08-13 2007-09-26 株式会社豊田中央研究所 Manufacturing method of optical waveguide device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297989A (en) * 1989-05-11 1990-12-10 Matsushita Electric Ind Co Ltd Semiconductor laser device and manufacture thereof
WO1992000185A1 (en) * 1990-06-22 1992-01-09 Martin Russell Harris Optical waveguides
JPH0540214A (en) * 1990-06-22 1993-02-19 Internatl Business Mach Corp <Ibm> Electro-optic type connector
JPH06324234A (en) * 1993-05-14 1994-11-25 Furukawa Electric Co Ltd:The Production of optical fiber array
JPH0777637A (en) * 1993-09-08 1995-03-20 Fujitsu Ltd Optical element coupling method and refractive index image forming material
JPH08320422A (en) * 1994-06-22 1996-12-03 Fujitsu Ltd Production of optical waveguide system and optical device using the system
WO1996042036A1 (en) * 1995-06-12 1996-12-27 California Institute Of Technology Self-trapping and self-focusing of optical beams in photopolymers
JPH0973028A (en) * 1995-09-04 1997-03-18 Kiyokuei Kenma Kako Kk Optical fiber packaging substrate and its packaging module and further, production of packaging module
JPH10104668A (en) * 1996-09-26 1998-04-24 Toshiba Corp Self-convergent type optical transmission body, converging device, and optical lens
JPH11326660A (en) * 1998-05-15 1999-11-26 Toyota Central Res & Dev Lab Inc Optical branching filter and its production
JP2000266965A (en) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd Optical information connector
JP2000347043A (en) * 1999-03-29 2000-12-15 Toyota Central Res & Dev Lab Inc Production of optical transmission path

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
各務 学 他, 2000年電子情報通信学会エレクトロニクスソサイエティ大会講演論文集 2, vol. p.186-187 (SC-10-4), JPN4006024648, 7 September 2000 (2000-09-07), ISSN: 0000802831 *
各務 学 他, 2000年電子情報通信学会エレクトロニクスソサイエティ大会講演論文集 2, vol. p.186-187 (SC-10-4), JPNX007035133, 7 September 2000 (2000-09-07), ISSN: 0000868801 *
庄司 暁 他, 1997年(平成9年)秋季第58回応用物理学会学術講演会予稿集, 第3分冊, JPN4006024649, 2 October 1997 (1997-10-02), pages 927 - 2, ISSN: 0000802832 *
庄司 暁 他, 1997年(平成9年)秋季第58回応用物理学会学術講演会予稿集, 第3分冊, JPNX007035134, 2 October 1997 (1997-10-02), pages 927 - 2, ISSN: 0000868802 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121677A (en) * 2001-10-17 2003-04-23 Ibiden Co Ltd Optical waveguide and method for manufacturing optical waveguide
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2006276462A (en) * 2005-03-29 2006-10-12 Toyoda Gosei Co Ltd Method for manufacturing optical module and device for manufacturing optical module
JP2006284988A (en) * 2005-04-01 2006-10-19 Toyoda Gosei Co Ltd Optical waveguide and method of manufacturing the same
JP4682672B2 (en) * 2005-04-01 2011-05-11 豊田合成株式会社 Manufacturing method of optical waveguide
US7907808B2 (en) 2005-09-06 2011-03-15 Kabushiki Kaisha Totoya Chuo Kenkyusho Optical waveguide and method for manufacturing the same
WO2007029717A1 (en) * 2005-09-06 2007-03-15 Kabusiki Kaisha Toyota Chuo Kenkyusho Optical waveguide and method for fabricating same
JP2007249099A (en) * 2006-03-20 2007-09-27 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
JP4736880B2 (en) * 2006-03-20 2011-07-27 株式会社豊田中央研究所 Manufacturing method of optical module
JP2007264286A (en) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc Method of manufacturing optical module
JP4592628B2 (en) * 2006-03-28 2010-12-01 株式会社豊田中央研究所 Manufacturing method of optical module
JP4687632B2 (en) * 2006-11-14 2011-05-25 株式会社豊田中央研究所 Optical waveguide and method for manufacturing the same
JP2008122743A (en) * 2006-11-14 2008-05-29 Toyota Central R&D Labs Inc Optical waveguide and method of manufacturing the same
JP2008122984A (en) * 2007-12-26 2008-05-29 Toyota Central R&D Labs Inc Self-forming optical waveguide and manufacturing method therefor
JP4563445B2 (en) * 2007-12-26 2010-10-13 株式会社豊田中央研究所 Manufacturing method of self-forming optical waveguide
JP2009169039A (en) * 2008-01-16 2009-07-30 Toyoda Gosei Co Ltd Method for manufacturing self-forming optical waveguide
JP2009198608A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler, component parts thereof and manufacturing method thereof
JP2009198609A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler
US8170385B2 (en) 2008-02-19 2012-05-01 Toyoda Gosei Co., Ltd. Light coupler and manufacturing method thereof
JP2011034055A (en) * 2009-07-10 2011-02-17 Nippon Shokubai Co Ltd Optical device and method for manufacturing the same
JP2020528838A (en) * 2017-06-30 2020-10-01 株式会社ニコン How to manufacture optics and corresponding systems
JP7040802B2 (en) 2017-06-30 2022-03-23 株式会社ニコン How to make optics and the corresponding system
US11548215B2 (en) 2017-06-30 2023-01-10 Nikon Corporation Method of producing an optical device and a corresponding system

Also Published As

Publication number Publication date
US20030031414A1 (en) 2003-02-13
EP1284426A3 (en) 2004-06-23
US20050013578A1 (en) 2005-01-20
EP1284426B1 (en) 2008-12-17
EP1284426A2 (en) 2003-02-19
DE60230369D1 (en) 2009-01-29
US6823116B2 (en) 2004-11-23
JP3984009B2 (en) 2007-09-26
US6925233B2 (en) 2005-08-02

Similar Documents

Publication Publication Date Title
JP2003057476A (en) Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
EP1271195B1 (en) Method of manufacturing optical waveguide device
US8731349B2 (en) Integrated photonics device
US20220390693A1 (en) Micro-optical interconnect component and its method of fabrication
JP2001350037A (en) Plastic optical fiber with lens member, optical fiber coupler, connector structure thereof and connecting method
JPH0138664B2 (en)
JP3444352B2 (en) Optical transmission line manufacturing method
JP2023054292A (en) optical connection structure
JP4024031B2 (en) Manufacturing method of optical waveguide
JP4352944B2 (en) Optical circuit manufacturing method
JPH11202158A (en) Optical element
JP4086496B2 (en) Optical waveguide and optical waveguide manufacturing method
JP5737108B2 (en) Optical fiber unit and manufacturing method thereof
JP7464053B2 (en) Method for aligning optical waveguide element
JP3378511B2 (en) Photo detector
WO2023079720A1 (en) Optical element, optical integrated element, and method for manufacturing optical integrated element
CN113275195B (en) Optical device and manufacturing method thereof
JP3750671B2 (en) Manufacturing method of optical transmission line
JP4946879B2 (en) Optical connector and optical connector manufacturing method
KR101079034B1 (en) The optical fiber for two-way optical communication and method for manufacturing thereof
JP4211526B2 (en) Optical transmission path and photocurable resin solution for optical transmission path formation
JP4682672B2 (en) Manufacturing method of optical waveguide
JP2007264312A (en) Optical coupler
JP2002107564A (en) Optical waveguide module
JP2004212775A (en) High polymer optical waveguide element and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees