JP2007264286A - Method of manufacturing optical module - Google Patents

Method of manufacturing optical module Download PDF

Info

Publication number
JP2007264286A
JP2007264286A JP2006088925A JP2006088925A JP2007264286A JP 2007264286 A JP2007264286 A JP 2007264286A JP 2006088925 A JP2006088925 A JP 2006088925A JP 2006088925 A JP2006088925 A JP 2006088925A JP 2007264286 A JP2007264286 A JP 2007264286A
Authority
JP
Japan
Prior art keywords
optical
clad
light
manufacturing
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088925A
Other languages
Japanese (ja)
Other versions
JP4592628B2 (en
Inventor
Tatsuya Yamashita
達弥 山下
Manabu Kagami
学 各務
Takayuki Matsui
崇行 松井
Yukitoshi Inui
幸利 伊縫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2006088925A priority Critical patent/JP4592628B2/en
Publication of JP2007264286A publication Critical patent/JP2007264286A/en
Application granted granted Critical
Publication of JP4592628B2 publication Critical patent/JP4592628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To assemble a light receiving/emitting element into a self-forming optical waveguide without any deviation in the optical axis. <P>SOLUTION: Wavelength selective mirrors 31, 32 are erected in a container piece 10. Mold sections 21, 22 are fitted together to form a housing M, with a first photosetting resin liquid filled. Light is emitted from an optical fiber 100 inserted into a through hole 101 and from the light guiding parts 211, 221, 222 of the mold sections to form a core. With the unhardened first photosetting resin liquid removed, the second photosetting resin liquid is filled to form a clad 50c, so that projections from 511-1 to 522-2 are formed on the surface of the clad 50c. The projections 511-1 and 511-2 on the surface of the clad 50c and a core end 411-f are positioned by the light guiding part 211 of the mold section 21 and the recesses 211-1 and 211-2. By designing the light guiding part 211 of the mold section 21 and the recesses 211-1 and 211-2 correspondingly to the effective face and the recesses of the light receiving/emitting element to be assembled, the assembling and the optical coupling of the light receiving/emitting element are accomplished. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自己形成光導波路に受光素子及び/又は発光素子、その他の光学素子を組み付けた光モジュールに関する。   The present invention relates to an optical module in which a light receiving element and / or a light emitting element and other optical elements are assembled in a self-forming optical waveguide.

本発明者らは、光硬化性樹脂液に硬化波長光を導入し、当該光硬化性樹脂液を自己集光的に硬化させて軸状のコアとする、自己形成光導波路を種々提案している。例えば下記特許文献1乃至3、非特許文献1である。これらの技術によれば、透明容器に光ファイバを固定して樹脂の硬化波長光の導入端とし、光ファイバ端面からコアを成長させることで、光ファイバ端と光軸のずれの全く無い軸状の樹脂から成るコアを有する光導波路が容易に形成できる。このような光導波路を形成した後、コア端(成長端)が達した透明容器外側に受光素子又は発光素子(以下単に「受発光素子」と記載する)を組み付けることで、容易に光モジュールを構成できる。   The inventors have proposed various self-forming optical waveguides in which curing wavelength light is introduced into a photocurable resin liquid and the photocurable resin liquid is cured in a self-collecting manner to form an axial core. Yes. For example, the following Patent Documents 1 to 3 and Non-Patent Document 1. According to these techniques, an optical fiber is fixed to a transparent container to serve as an introduction end of resin curing wavelength light, and a core is grown from the end face of the optical fiber, so that there is no deviation between the optical fiber end and the optical axis. An optical waveguide having a core made of this resin can be easily formed. After forming such an optical waveguide, an optical module can be easily assembled by assembling a light receiving element or a light emitting element (hereinafter simply referred to as “light emitting / receiving element”) outside the transparent container where the core end (growth end) has reached. Can be configured.

光導波路を形成した後に受発光素子を組み付ける場合、光導波路端における光軸と受発光素子の光軸を一致させる必要がある。発光素子を組み付ける場合には、アクティブアライメント方式を用いることもできる。この方式は、発光素子が発光する光を光導波路に入射させて、他端から出射した光の出力強度を測定しながら、光を入射した発光素子を3次元方向に微調整移動させて、最も良好な光結合効率が得られる位置で光導波路を固定する方式である。   When the light emitting / receiving element is assembled after the optical waveguide is formed, the optical axis at the end of the optical waveguide needs to coincide with the optical axis of the light receiving / emitting element. When the light emitting element is assembled, an active alignment method can be used. In this method, the light emitted from the light emitting element is incident on the optical waveguide, and the output intensity of the light emitted from the other end is measured. In this method, the optical waveguide is fixed at a position where good optical coupling efficiency can be obtained.

組み付け自体により光軸を調整するパッシブアライメント方式もある。最良の光結合効率は得られないものの、多少の光結合効率の低下が問題とならない場合(短距離伝送用光通信モジュールなど)において、低コスト及び量産性に優れた方法である。特許文献4では、アライメント用の治具を用いて、光ファイバと光素子の光軸が一致するように配置せしめ、さらにこれらを光硬化性樹脂で固定する方法が開示されている。特許文献5では、光モジュール筐体中にアライメント用の構造が一体として形成されており、具体的には一方が有する勘合孔に、他方の位置合わせピンを勘合することで、素子が位置決めされた状態で固定される方法が開示されている。特許文献6においては、光重合性材料を充填するモールド型にガイドピンを設けておくことにより、光重合性材料に光照射して受発光素子上に光導波路を作製すると同時に、光導波路との位置合わせの基準となる勘合孔を作製する方法が開示されている。
特許第3444352号公報 特開2001−242353号公報 特開平11−326660号公報 特開2005−208612号公報 特開2001−154066号公報 特解2004−240315号公報 M. Yonemura et. al., Optics Letters, vol. 30, no. 17, pp. 2206-2208, 2005
There is also a passive alignment method in which the optical axis is adjusted by the assembly itself. Although the best optical coupling efficiency cannot be obtained, this method is excellent in low cost and mass productivity when a slight decrease in optical coupling efficiency is not a problem (such as an optical communication module for short-distance transmission). Patent Document 4 discloses a method of using an alignment jig so that the optical axes of optical fibers and optical elements are aligned with each other, and further fixing them with a photocurable resin. In patent document 5, the structure for alignment is integrally formed in the optical module housing. Specifically, the element is positioned by fitting the other alignment pin into the fitting hole of one. A method of fixing in a state is disclosed. In Patent Document 6, by providing a guide pin in a mold mold filled with a photopolymerizable material, the photopolymerizable material is irradiated with light to produce an optical waveguide on the light receiving and emitting element, and at the same time, A method for producing a fitting hole that serves as a reference for alignment is disclosed.
Japanese Patent No. 3444352 JP 2001-242353 A JP-A-11-326660 JP-A-2005-208612 JP 2001-154066 A Special Solution 2004-240315 M. Yonemura et.al., Optics Letters, vol. 30, no. 17, pp. 2206-2208, 2005

アクティブアライメント方式は、高い光結合効率が得られる反面、光軸調整装置が必要、かつ光軸調整に時間がかかる為、コスト及び量産性に問題がある。また、パッシブアライメント方式では、個々の光軸が外形乃至は勘合ピンに対して既定の位置となるよう精度良く定まっていなければ、組み付け時に光軸がずれてしまう可能性がある。したがって、個別部品が高い形状(位置)精度で作製されていることが要求され、コスト高につながる。   The active alignment method provides high optical coupling efficiency, but requires an optical axis adjusting device and takes time to adjust the optical axis, and thus has a problem in cost and mass productivity. Further, in the passive alignment method, if each optical axis is not accurately determined so as to be a predetermined position with respect to the outer shape or the fitting pin, there is a possibility that the optical axis is shifted at the time of assembly. Therefore, it is required that the individual parts are manufactured with high shape (position) accuracy, leading to high costs.

また、上記自己形成光導波路においては、更に次のような問題もあった。
第1に、光ファイバからの出射光で導波路作製するとき、自己形成過程の途中で樹脂液のゆらぎ(対流)により導波路の成長方向にずれが生じて、導波路の終端位置が安定しなかった。したがって、パッシブアライメントをしても受発光素子との結合効率が安定しなかった。
第2に、光導波路の光軸に対して位置合わせできる高精度の基準が無かった。従来は、透明筐体の外形を基準として導波路の位置を設定したが、透明筐体の作製精度は不安定な為に実用的ではなかった。
第3に、透明容器の壁厚により導波路と受発光素子の間に光が自由伝搬する領域ができ、光結合効率が減少する要因となっていた。
Further, the self-forming optical waveguide has the following problems.
First, when a waveguide is manufactured with light emitted from an optical fiber, a shift occurs in the growth direction of the waveguide due to fluctuation (convection) of the resin liquid during the self-forming process, and the end position of the waveguide is stabilized. There wasn't. Therefore, even when passive alignment is performed, the coupling efficiency with the light emitting / receiving element is not stable.
Second, there was no highly accurate reference that could be aligned with the optical axis of the optical waveguide. Conventionally, the position of the waveguide is set based on the outer shape of the transparent casing, but it is not practical because the manufacturing accuracy of the transparent casing is unstable.
Third, the wall thickness of the transparent container creates a region where light can freely propagate between the waveguide and the light emitting / receiving element, which is a factor in reducing optical coupling efficiency.

本発明者らは、光モジュールの低コスト化、量産性と光結合効率の向上を図り、自己形成光導波路の終端に受発光素子等を組み付ける方法を鋭意検討して本願発明を完成させた。即ち、本発明の目的は、自己形成光導波路を用いた光モジュールの量産性を向上させるべく、光学素子(受発光素子等)の実装工程を容易にすることである。また他の目的は、自己形成光導波路を用いた光モジュールにおける光結合効率を改善することである。   The inventors of the present invention have completed the present invention by intensively studying a method for assembling a light receiving / emitting element or the like at the end of a self-forming optical waveguide, in order to reduce the cost of the optical module, improve the mass productivity, and improve the optical coupling efficiency. That is, an object of the present invention is to facilitate the mounting process of an optical element (light emitting / receiving element or the like) in order to improve the mass productivity of an optical module using a self-forming optical waveguide. Another object is to improve the optical coupling efficiency in an optical module using a self-forming optical waveguide.

請求項1に係る発明は、光硬化性樹脂液を自己集光的に硬化させた軸状のコアと、当該コアを覆うクラッドとから成る光導波路と、1個以上の光学素子とを有する光モジュールの製造方法において、光学素子を取り付ける為の位置決め用の所定の構造をクラッドに形成するための型部と、当該型部と組み合わせることで、光硬化性樹脂液を保持可能な筐体を形成する容器片とを用い、光硬化性樹脂液を、型部と容器片とを組み合わせて得られる筐体内に保持し、少なくとも型部により位置決めされた光導入部を含む、2箇所以上から導入された所定の波長の光により硬化させて軸状のコアを形成する工程と、型部を用いて位置決め用の所定の構造を有するクラッドを形成する工程と、当該型部を光導波路から取り外す工程と、クラッドに形成された位置決め用の所定の構造を用いて、少なくとも1個の光学素子を取り付ける工程とを有し、当該光学素子の光軸を、型部の光導入部から導入された硬化波長光により形成されたコア端の光軸と一致させることを特徴とする光モジュールの製造方法である。   The invention according to claim 1 is a light having a shaft-like core obtained by self-condensing a photo-curable resin liquid, an optical waveguide including a clad covering the core, and one or more optical elements. In a module manufacturing method, a mold part for forming a predetermined positioning structure for mounting an optical element on a clad and a case capable of holding a photocurable resin liquid are formed by combining the mold part with the mold part. The photocurable resin liquid is held in a casing obtained by combining the mold part and the container piece, and is introduced from two or more locations including at least the light introducing part positioned by the mold part. A step of forming an axial core by curing with light of a predetermined wavelength, a step of forming a clad having a predetermined structure for positioning using a mold portion, and a step of removing the mold portion from the optical waveguide , Formed on the cladding A step of attaching at least one optical element using the predetermined positioning structure, and the optical axis of the optical element is formed by the curing wavelength light introduced from the light introduction part of the mold part. An optical module manufacturing method characterized in that the optical axis coincides with the optical axis of the core end.

請求項2に係る発明は、光学素子は、発光素子、受光素子、又は光導波路とその端に設けられた接続構造であることを特徴とする。請求項3に係る発明は、光モジュールは1個以上の分岐を有し、当該分岐点毎に波長選択性ミラーを有するものであって、当該波長選択性ミラーは硬化波長光に対して透過率及び反射率がいずれも20%以上であって、容器片に当該1個以上の波長選択性ミラーを固定した後に、光硬化性樹脂液を導入することを特徴とする。請求項4に係る発明は、容器片に、少なくとも1本の光ファイバを固定し、当該光ファイバを介して硬化波長光を光硬化性樹脂液に導入することを特徴とする。   The invention according to claim 2 is characterized in that the optical element is a light emitting element, a light receiving element, or an optical waveguide and a connection structure provided at an end thereof. According to a third aspect of the present invention, the optical module has one or more branches, and has a wavelength selective mirror for each branch point, and the wavelength selective mirror has a transmittance with respect to the curing wavelength light. And the reflectance is 20% or more, and the one or more wavelength-selective mirrors are fixed to the container piece, and then the photocurable resin liquid is introduced. The invention according to claim 4 is characterized in that at least one optical fiber is fixed to the container piece, and curing wavelength light is introduced into the photocurable resin liquid through the optical fiber.

請求項5に係る発明は、光学素子を取り付ける為の位置決め用の所定の構造は、型部の凸部及び/又は凹部を転写してクラッドの表面に形成された凹部及び/又は凸部によるものであることを特徴とする。当該クラッドの表面に形成された凹部及び/又は凸部は、請求項6に係る発明においては光学素子表面の対応する凸部及び/又は凹部と勘合するものであることを特徴とし、請求項7に係る発明においては、光学素子外周の形状と勘合するものであることを特徴とする   In the invention according to claim 5, the predetermined structure for positioning for attaching the optical element is due to the concave portion and / or convex portion formed on the surface of the clad by transferring the convex portion and / or concave portion of the mold portion. It is characterized by being. The concave portions and / or convex portions formed on the surface of the clad are fitted with the corresponding convex portions and / or concave portions on the surface of the optical element in the invention according to claim 6, and are characterized in that: The invention according to the invention is characterized in that it is fitted with the shape of the outer periphery of the optical element.

請求項8に係る発明は、光学素子を取り付ける為の位置決め用の所定の構造は、クラッドの形成前には型部に保持され、クラッドの形成後にはクラッドに固着された構造体によるものであることを特徴とする。構造体のクラッドからの露出部分の形状は、請求項9に係る発明においては、光学素子表面の対応する凸部及び/又は凹部と勘合するものであることを特徴とし、請求項10に係る発明においては、光学素子外周の形状と勘合するものであることを特徴とする。   In the invention according to claim 8, the predetermined structure for positioning for attaching the optical element is a structure that is held by the mold part before the clad is formed and is fixed to the clad after the clad is formed. It is characterized by that. In the invention according to claim 9, the shape of the exposed portion from the clad of the structure body is fitted with the corresponding convex portion and / or concave portion of the optical element surface, and the invention according to claim 10. Is characterized by being fitted with the shape of the outer periphery of the optical element.

請求項11に係る発明は、型部は複数個の型片から成り、分離可能であることを特徴とする。請求項12に係る発明は、型部の少なくとも1個の光導入部は、そのコアの端部と接する部分に、コア端部に凸レンズを形成するための凹部が形成されていることを特徴とする。   The invention according to claim 11 is characterized in that the mold part is composed of a plurality of mold pieces and is separable. The invention according to claim 12 is characterized in that at least one light introducing part of the mold part is formed with a concave part for forming a convex lens at the core end part in a part in contact with the end part of the core. To do.

型部には、光学素子を取り付ける為の位置決め用の所定の構造をクラッドに形成するための形状を有すると共に、コアを形成するための硬化波長の光の導入部が設けられている。よって、成長開始端であるコア端の光軸の位置と、当該クラッドに形成された位置決め構造との間に不整合は無い。即ち、ここに光学素子を組み付けることで、コア端の光軸と光学素子の光軸のずれを最小限に抑えることが可能となり、光学素子を容易に精度良く組み付けることが可能となる。また、クラッドの表面に設けられた位置決めの構造が、組み付けるべき光学素子との勘合構造であれば、“はめ合わせ”作業だけで光学素子の組み付けを、光軸のずれを最小限に抑えながら可能とできる。尚、複数箇所から光硬化により成長するコアは、若干の軸ズレが生じたとしてもセルフアライメントにより容易に合体するので、所望の光導波路コアを形成できる。   The mold part has a shape for forming a predetermined positioning structure for attaching the optical element in the clad, and is provided with a light-introducing part for forming a core for forming the core. Therefore, there is no mismatch between the position of the optical axis at the core end, which is the growth start end, and the positioning structure formed in the cladding. That is, by assembling the optical element here, it is possible to minimize the deviation between the optical axis of the core end and the optical axis of the optical element, and the optical element can be assembled easily and accurately. In addition, if the positioning structure provided on the surface of the clad is a fitting structure with the optical element to be assembled, it is possible to assemble the optical element with only a “fitting” operation while minimizing the deviation of the optical axis. And can. In addition, since the core which grows by photocuring from a plurality of locations is easily united by self-alignment even if a slight axial deviation occurs, a desired optical waveguide core can be formed.

また、光導波路と光学素子の結合部分は、透明容器の壁を介さずに結合されるので、光導波路と光学素子間の距離の短縮が可能になり、光結合効率が向上する。また、これらの結合は、立体的構造を有する勘合部によって行われる為、外力を受けて光軸ズレが生じる恐れもない。   Further, since the coupling portion between the optical waveguide and the optical element is coupled without passing through the wall of the transparent container, the distance between the optical waveguide and the optical element can be shortened, and the optical coupling efficiency is improved. Moreover, since these coupling | bonding is performed by the fitting part which has a three-dimensional structure, there is no possibility that an optical axis shift | offset | difference may arise by receiving external force.

このように、自己形成光導波路と、光学素子から構成される光導波路デバイスの作製工程の簡略化でき、生産性が向上する。また、自己形成光導波路と、光学素子との光軸のズレが無く、それらの間に透明容器等を介さないので光結合効率が向上する。   Thus, the manufacturing process of the optical waveguide device composed of the self-forming optical waveguide and the optical element can be simplified, and the productivity is improved. Further, there is no deviation of the optical axis between the self-forming optical waveguide and the optical element, and the optical coupling efficiency is improved because a transparent container or the like is not interposed between them.

その他、型部を設けることで、型部と接する部分のクラッドの表面に任意の形状をかたどることができる。例えば、型部の光導入部はコアと接するのであるから、当該コア端を凸レンズその他に形どることもできる。   In addition, by providing the mold part, an arbitrary shape can be formed on the surface of the clad in the part in contact with the mold part. For example, since the light introduction part of the mold part is in contact with the core, the end of the core can be shaped into a convex lens or the like.

型部の光導入部を含めて、3個以上の位置から光硬化によりコアを成長させると、分岐導波路も容易に形成できる。各分岐点に、波長選択性ミラーを配置させた後にコアを成長させれば、上記特許文献1乃至3に記載された光モジュールが容易に形成できる。この時、受発光素子等の光学素子を組み付けた際の光軸と、コアの成長開始点が一致しているので、多分岐の光モジュールを精度良く容易に形成することができる。   When the core is grown by photocuring from three or more positions including the light introduction part of the mold part, the branching waveguide can be easily formed. If the core is grown after the wavelength selective mirror is arranged at each branch point, the optical modules described in Patent Documents 1 to 3 can be easily formed. At this time, since the optical axis when the optical element such as the light emitting / receiving element is assembled coincides with the growth start point of the core, a multi-branch optical module can be easily formed with high accuracy.

本発明に用いる自己形成光導波路の製造方法は、本願出願人らによる任意の先行技術を用いることができる。コア材料となる第1の光硬化性樹脂液を用いてコアを形成した後、未硬化の残余の第1の光硬化性樹脂液を除き、クラッド材を充填する方法を採用しても良い。この場合、クラッド材の硬化方法は任意である。クラッド材として第2の光硬化性樹脂液を用いるのならば、第1の光硬化性樹脂液と相溶性があり、共重合可能なものを用いることで、第1の光硬化性樹脂液の排除の後の洗浄工程を省略できる。   For the manufacturing method of the self-forming optical waveguide used in the present invention, any prior art by the present applicants can be used. After forming a core using the 1st photocurable resin liquid used as a core material, you may employ | adopt the method of removing a 1st photocurable resin liquid uncured and filling a clad material. In this case, the method for curing the clad material is arbitrary. If the second photocurable resin liquid is used as the clad material, the first photocurable resin liquid is compatible with the first photocurable resin liquid and can be copolymerized. The cleaning step after the exclusion can be omitted.

共重合せず(重合機構が異なり)、屈折率の異なる2種類の光硬化性樹脂液の混合液を用い、各々の硬化波長が異なるように光重合開始剤を選定し、2段階の光硬化により、未硬化の光硬化性樹脂液を排除せずにコアとクラッドとを形成する技術を本願出願人らは2種類提案している。第1の技術は、より長波長で高屈折率側の光硬化性樹脂液のみを比較的ゆっくり硬化させ、高屈折率側の光硬化性樹脂硬化物をより多く含んだ軸状のコアを形成する技術である。第2の技術は、より長波長で低屈折率側の光硬化性樹脂液のみを比較的速やかに硬化させて、コア外周部の「液相」において2種類の光硬化性樹脂液の拡散により、最終的には低屈折率側の光硬化性樹脂硬化物をより多く含んだ鞘状のクラッドを有する、軸状のコアを形成する技術である。第1の技術は、特開2002−365459号公報その他にも記載されている。また、第2の技術は、特開2004−1499579号公報、特開2004−151160号公報その他に記載されたものである。   Two-stage photocuring by selecting a photopolymerization initiator so that each curing wavelength is different, using a mixture of two types of photocurable resin liquids with different refractive indices without copolymerization (different polymerization mechanisms) Thus, the applicants of the present application have proposed two types of techniques for forming the core and the clad without eliminating the uncured photocurable resin liquid. The first technique is to cure only the photocurable resin liquid on the higher refractive index side with a longer wavelength relatively slowly and form an axial core containing more of the cured photocurable resin on the higher refractive index side. Technology. The second technique is to cure only the photocurable resin liquid having a longer wavelength and a lower refractive index side relatively quickly, and by diffusing two kinds of photocurable resin liquids in the “liquid phase” of the outer periphery of the core. Finally, this is a technique for forming an axial core having a sheath-like clad containing a larger amount of a light-cured resin cured product on the low refractive index side. The first technique is also described in JP-A-2002-365459 and others. The second technique is described in JP 2004-1499579 A, JP 2004-151160 A, and others.

容器片は、クラッドを保持できるものが好ましく、使用するクラッド材との接着性が良いことが好ましい。クラッド材として光硬化性樹脂液を用いる場合は透明の樹脂を用いると硬化光を照射しやすい。容器片に光ファイバ端を接続する場合は、容器片の1箇所に貫通孔を開けて当該光ファイバ全体又はコアのみを挿入し、固定すると良い。その他、容器片に、型部に設ける光導入部と同様な光導入部を任意個形成しても良い。   The container piece is preferably one that can hold the clad, and preferably has good adhesion to the clad material to be used. When a photocurable resin liquid is used as the cladding material, it is easy to irradiate the curing light when a transparent resin is used. When the end of the optical fiber is connected to the container piece, it is preferable that a through hole is formed in one place of the container piece, and the entire optical fiber or only the core is inserted and fixed. In addition, any number of light introducing portions similar to the light introducing portions provided in the mold portion may be formed on the container piece.

型部には、クラッド表面に、受発光素子等の位置決めのための構造体を設ける。嵌め合わせのための構造体とするには、受発光素子等の当該嵌め合わせのための凹凸に対応して、型部に凹凸を設ける。型部は、光導入部が貫通孔であれば遮光性の材料を用いても良く、また、光導入部が貫通孔でない場合も、当該部分に透明の材料を用いれば他は透明で無くても良い。クラッドとの型離れを良くするため、型部に離型剤を塗布する等の工夫は任意に行って良い。   The mold part is provided with a structure for positioning the light emitting / receiving element or the like on the clad surface. In order to obtain a structure for fitting, the mold part is provided with irregularities corresponding to the irregularities for fitting such as light receiving and emitting elements. The mold part may use a light-shielding material if the light introduction part is a through-hole. Also, if the light introduction part is not a through-hole, the other part is not transparent if a transparent material is used for the part. Also good. In order to improve the mold separation from the clad, a device such as applying a release agent to the mold portion may be arbitrarily performed.

型部と容器片の一例を示すと共に、型部の「光導入部」、クラッド表面に形成すべき所定の構造、そのための型部の形状について説明する。図1.Aは、本発明の一具体例における、容器片10、型部21及び22を示した斜視図、図1.Bは、それらを組み合わせて光硬化性樹脂液を保持可能な筐体Mとした時の斜視図、図1.Cは本発明の一具体例における光モジュール1000の外観を示す斜視図である。   An example of the mold part and the container piece will be described, and a “light introducing part” of the mold part, a predetermined structure to be formed on the cladding surface, and the shape of the mold part for that purpose will be described. FIG. 1A is a perspective view showing a container piece 10 and mold parts 21 and 22 according to an embodiment of the present invention, FIG. B is a perspective view when they are combined to form a housing M capable of holding a photocurable resin liquid, FIG. C is a perspective view showing an appearance of an optical module 1000 according to an embodiment of the present invention.

図1.Aのように、本例では容器片10として、概略直方体の3面と接するような、3つの平板状の部分である、左側壁10a、底部10b、奥側壁10cを有するものを想定している。このうち、左側壁10aには貫通孔101が設けられており、外側からここに光ファイバのコアを挿入する。尚、図1.A及び図1.Bでは、波長選択性ミラー31及び32を底部10bに立設した図を示している。尚、波長選択性ミラー31及び32は、誘電体多層膜により任意の波長透過率特性となるように設計する。   FIG. As in A, in this example, the container piece 10 is assumed to have three left and right side walls 10a, a bottom 10b, and a back side wall 10c, which are in contact with three surfaces of a substantially rectangular parallelepiped. . Among these, the left side wall 10a is provided with a through hole 101, from which an optical fiber core is inserted from the outside. In addition, FIG. A and FIG. B shows a diagram in which the wavelength selective mirrors 31 and 32 are erected on the bottom 10b. The wavelength selective mirrors 31 and 32 are designed to have an arbitrary wavelength transmittance characteristic by a dielectric multilayer film.

図1.Aの容器片10の右側には型部21を、容器片10の手前側には型部22を配置させる。型部21と型部22には、図2以下で説明する凹部211−1及び211−2、凹部221−1及び221−2並びに凹部222−1及び222−2が設けられ、また、図3以下で説明する光導入部211、221及び222が設けられている。光導入部211、221及び222は、貫通孔であっても良く、また少なくともその部分が透明であっても良い。   FIG. A mold part 21 is arranged on the right side of the A container piece 10 and a mold part 22 is arranged on the front side of the container piece 10. The mold part 21 and the mold part 22 are provided with recesses 211-1 and 211-2, recesses 221-1 and 221-2 and recesses 222-1 and 222-2 described in FIG. Light introducing portions 211, 221 and 222 described below are provided. The light introducing portions 211, 221 and 222 may be through holes, or at least the portions may be transparent.

図1.Bのように、容器片10、型部21及び22を組み合わせて、筐体Mと成す。即ち、容器片10には左側壁10a、底部10b、奥側壁10cがあるが右側壁と手前側壁が無い。これらの役割を型部21及び22に補わせるのである。尚、光導入部211、221及び222が貫通孔である場合は、貫通孔101と同様に光ファイバのコアを挿入することで孔は塞がれる。こうして、少なくとも貫通孔101に挿入する光ファイバのコア端が埋没する量の、第1の光硬化性樹脂液を充填し、貫通孔101に挿入する光ファイバ及び光導入部211、221及び222から硬化波長光を導入すれば、コアが形成される。この後、未硬化の第1の光硬化性樹脂液を筐体Mから除き、第2の光硬化性樹脂液を筐体Mに充填して光硬化させる。   FIG. Like B, the container piece 10 and the mold parts 21 and 22 are combined to form the housing M. That is, the container piece 10 has a left side wall 10a, a bottom 10b, and a back side wall 10c, but does not have a right side wall and a front side wall. These roles are supplemented by the mold parts 21 and 22. In addition, when the light introduction parts 211, 221 and 222 are through holes, the holes are closed by inserting the core of the optical fiber in the same manner as the through hole 101. In this way, at least from the optical fiber and the light introducing portions 211, 221 and 222, which are filled with the first photo-curing resin liquid in such an amount that the core end of the optical fiber to be inserted into the through hole 101 is buried. If the curing wavelength light is introduced, a core is formed. Thereafter, the uncured first photocurable resin liquid is removed from the casing M, and the second photocurable resin liquid is filled into the casing M and photocured.

この後、型部21及び22を外すと、図1.Cの如く光モジュール1000が得られる。光モジュール1000は、容器片10に、第2の光硬化性樹脂液が硬化したクラッド50cが接合しており、右側面にコア端411−fと突起511−1及び511−2が、手前側面にコア端421−fと突起521−1及び521−2並びにコア端422−fと突起522−1及び522−2が露出している。尚、左側面には光ファイバ100が接合されており、光ファイバの図示しない側の端から導入する光は、波長により、右側面のコア端411−f、手前側面のコア端421−f及び422−fのいずれかから出射されることになる。クラッド50cの表面に形成された、第2の光硬化性樹脂液が硬化した突起511−1、511−2、521−1、521−2、522−1及び522−2は、接続される光学素子の位置決めに用いられる所定の構造である。   Thereafter, when the mold parts 21 and 22 are removed, FIG. As shown in C, the optical module 1000 is obtained. In the optical module 1000, the clad 50c obtained by curing the second photocurable resin liquid is joined to the container piece 10, and the core end 411-f and the protrusions 511-1 and 511-2 are arranged on the right side surface. The core end 421-f and the protrusions 521-1 and 521-2, and the core end 422-f and the protrusions 522-1 and 522-2 are exposed. The optical fiber 100 is bonded to the left side, and light introduced from the end of the optical fiber (not shown) depends on the wavelength, the core end 411-f on the right side, the core end 421-f on the front side, The light is emitted from any one of 422-f. The projections 511-1, 511-2, 521-1, 521-2, 522-1 and 522-2 formed on the surface of the clad 50c and cured by the second photocurable resin liquid are connected to the optical system. It is a predetermined structure used for element positioning.

本願の図4.A以下では、図2.Aの如く、第2の光硬化性樹脂液が硬化したクラッド50cの断面図を示し、あたかも図1.Cのような突起511−1、511−2、521−1、521−2、522−1及び522−2のみを意味するかに記載するが、クラッド50cの表面形状は図1.Cのような突起には限定されない。例えば図2.Bの平面図、図2.Cの断面図(図2.Bの一点鎖線での断面)のような、輪環状の凸部501でも良い。また、図2.Dの平面図、図2.Eの正面図のような、稜線を有する星型の凸部502でも良い。その他、公知の任意形状を採用することができ、各位置決め構造毎に異なっても良い。また、その個数も、接続される光学素子毎に、1個以上の任意である。   FIG. 4 of the present application. Below A, FIG. As shown in FIG. 1A, a cross-sectional view of the clad 50c in which the second photocurable resin liquid is cured is shown as if FIG. Although only the projections 511-1, 511-2, 521-1, 521-2, 522-1 and 522-2 like C are described, the surface shape of the clad 50c is shown in FIG. It is not limited to protrusions such as C. For example, FIG. FIG. An annular convex portion 501 such as a cross-sectional view of C (a cross section taken along a dashed line in FIG. 2.B) may be used. In addition, FIG. FIG. The star-shaped convex part 502 which has a ridgeline like the front view of E may be sufficient. In addition, a known arbitrary shape can be adopted and may be different for each positioning structure. Moreover, the number is arbitrary 1 or more for every optical element connected.

次に型部について図3で説明する。図3.Aのように、型部21は、凹部211−1及び211−2を有し、その形状は、受発光素子611の凹部611−1及び611−2に対応する。型部21の凹部211−1及び211−2の大きさ等は、それらにより形成される図2.Aの突起511−1、511−2が受発光素子611の凹部611−1及び611−2に嵌め合わせる用に適宜大きめ又は小さめに形成される。また、型部21は、光導入部211を有し、受発光素子611の有効面611−0の光軸と一致している。即ち、型部21の凹部211−1及び211−2と光導入部211との位置関係は、受発光素子611の凹部611−1及び611−2と有効面611−0の位置関係と対応する。   Next, the mold part will be described with reference to FIG. FIG. Like A, the type | mold part 21 has the recessed parts 211-1 and 211-2, and the shape respond | corresponds to the recessed parts 611-1 and 611-2 of the light emitting / receiving element 611. FIG. The sizes and the like of the concave portions 211-1 and 211-2 of the mold portion 21 are formed by them as shown in FIG. The projections 511-1 and 511-2 of A are formed to be appropriately larger or smaller for fitting into the recesses 611-1 and 611-2 of the light receiving and emitting element 611. The mold part 21 has a light introducing part 211 and coincides with the optical axis of the effective surface 611-0 of the light receiving and emitting element 611. That is, the positional relationship between the concave portions 211-1 and 211-2 of the mold portion 21 and the light introducing portion 211 corresponds to the positional relationship between the concave portions 611-1 and 611-2 of the light emitting / receiving element 611 and the effective surface 611-0. .

図3.Aの型部22の凹部221−1及び221−2と光導入部221との位置関係は、受発光素子621の凹部621−1及び621−2と有効面621−0の位置関係と対応する。同様に型部22の凹部222−1及び222−2と光導入部222は、図3.Aでは省略された受発光素子622の凹部621−1及び621−2と有効面621−0の位置関係と対応する。   FIG. The positional relationship between the concave portions 221-1 and 221-2 of the A mold portion 22 and the light introducing portion 221 corresponds to the positional relationship between the concave portions 621-1 and 621-2 of the light emitting and receiving element 621 and the effective surface 621-0. . Similarly, the concave portions 222-1 and 222-2 and the light introducing portion 222 of the mold portion 22 are formed as shown in FIG. This corresponds to the positional relationship between the concave portions 621-1 and 621-2 of the light receiving and emitting element 622 and the effective surface 621-0 omitted in A.

型部21の代わりに、図3.Bの型部21’を用いる実施例について後述されている。型部21’は、光導入部211’のコアと接する面が、凹面211cとなっており、コアにレンズ状の凸部を形成するために用いられる。図3.Bの型部21’の凹部211’−1及び211’−2と光導入部211’との位置関係は、図3.Aの受発光素子611の凹部611−1及び611−2と有効面611−0の位置関係と対応する。   Instead of the mold part 21, FIG. An embodiment using the B mold part 21 'will be described later. The mold portion 21 ′ has a concave surface 211 c in contact with the core of the light introducing portion 211 ′, and is used to form a lens-shaped convex portion on the core. FIG. The positional relationship between the concave portions 211'-1 and 211'-2 of the B mold portion 21 'and the light introducing portion 211' is shown in FIG. This corresponds to the positional relationship between the concave portions 611-1 and 611-2 of the A light emitting / receiving element 611 and the effective surface 611-0.

型部21の光導入部211は、次のように構成すると良い。尚、型部22の光導入部221及び222についても同様である。図3.Cのように、型部21に貫通孔211−thを設け、そこに光ファイバ200を挿入する。図3.Cでは、光ファイバ200のコア200−crとクラッド200−cldの破線より左側全てが型部21の貫通孔211−thに挿入される場合を示している。この際、光ファイバ200のコア200−crの破線より左側部分が、以下の各図における、型部21に設けられた光導入部211である。   The light introduction part 211 of the mold part 21 may be configured as follows. The same applies to the light introducing portions 221 and 222 of the mold portion 22. FIG. Like C, the mold part 21 is provided with a through hole 211-th, and the optical fiber 200 is inserted therein. FIG. In C, the case where all the left sides from the broken lines of the core 200-cr and the clad 200-cld of the optical fiber 200 are inserted into the through holes 211-th of the mold part 21 is shown. At this time, the left side portion of the core 200-cr of the optical fiber 200 from the broken line is a light introducing portion 211 provided in the mold portion 21 in each of the following drawings.

図3.Dのように、型部21に貫通孔211−thを設け、そこに光ファイバ200のコア200−crのみを挿入する。この際、光ファイバ200のコア200−crの破線より左側部分が、以下の各図における、型部21に設けられた光導入部211である。   FIG. Like D, the mold part 21 is provided with a through hole 211-th, and only the core 200-cr of the optical fiber 200 is inserted therein. At this time, the left side portion of the core 200-cr of the optical fiber 200 from the broken line is a light introducing portion 211 provided in the mold portion 21 in each of the following drawings.

図3.Eのように、型部21に透明部分21−trpを設け、ここに光ファイバ200のコア200−crを結合する。この際、型部21の透明部分21−trpが、以下の各図における、型部21に設けられた光導入部211である。尚、型部21の他の部分は透明であっても、遮光性であっても良い。   FIG. Like E, the mold part 21 is provided with a transparent part 21-trp, and the core 200-cr of the optical fiber 200 is coupled thereto. At this time, the transparent part 21-trp of the mold part 21 is the light introducing part 211 provided in the mold part 21 in the following drawings. The other part of the mold part 21 may be transparent or light-shielding.

図3.Fのように、型部21の光硬化性樹脂液と接する側に透明部分21−trpを設け、その外側には凹部21−vを設け、ここに光ファイバ200のコア200−crを挿入する。この際、型部21の透明部分21−trpと光ファイバ200のコア200−crの破線より左側部分が、以下の各図における、型部21に設けられた光導入部211である。尚、型部21の他の部分は透明であっても、遮光性であっても良い。   FIG. Like F, the transparent part 21-trp is provided in the side which contacts the photocurable resin liquid of the type | mold part 21, and the recessed part 21-v is provided in the outer side, The core 200-cr of the optical fiber 200 is inserted here. . At this time, the left part of the transparent part 21-trp of the mold part 21 and the broken line of the core 200-cr of the optical fiber 200 is the light introducing part 211 provided in the mold part 21 in the following drawings. The other part of the mold part 21 may be transparent or light-shielding.

このように、型部21及び22の各光導入部は様々に構成できる。容易に着想されるように、図3.C乃至図3.Fの「光ファイバ200」は他の光導波路に置き換えても良い。例えば、所望のレンズやアパチャーを介して、図3.Eの透明部分にレーザ光を直接照射しても良い。また、上記の構成を任意に変形、組み合わせることができる。   Thus, each light introduction part of mold part 21 and 22 can be constituted variously. As easily conceived, FIG. C to FIG. The “optical fiber 200” of F may be replaced with another optical waveguide. For example, through the desired lens or aperture, FIG. The transparent portion of E may be directly irradiated with laser light. In addition, the above configuration can be arbitrarily modified and combined.

図4.A〜図4.Fは、本実施例による光モジュール1000の製造方法を説明するための各工程を示す断面図である。図4.Aのように、容器片10と型部21及び22を用意した。容器片10は、図1.Aでも示した通り、3つの平板状の部分である、左側壁10a、底部10b、奥側壁10cを有する透明樹脂から成る。本実施例ではアクリル製で肉厚1mmとした。また、左側壁10aには貫通孔101が設けられている。この底部10bに、波長選択性ミラー31及び32を立設する。また、型部21と型部22には、図2及び図3で説明したように、凹部211−1、211−2、221−1、221−2、222−1及び222−2と、光導入部211、221及び222が設けられている。尚、図を簡略化するため、光導入部211、221及び222には、既に「光ファイバ等」が接続されているものとする。   FIG. A to FIG. F is a cross-sectional view illustrating each process for explaining a method of manufacturing the optical module 1000 according to the present embodiment. FIG. As in A, a container piece 10 and mold parts 21 and 22 were prepared. The container piece 10 is shown in FIG. As shown also in A, it consists of transparent resin which has the left side wall 10a, the bottom part 10b, and the back side wall 10c which are three flat parts. In this example, the thickness was 1 mm made of acrylic. A through hole 101 is provided in the left side wall 10a. Wavelength selective mirrors 31 and 32 are erected on the bottom 10b. Further, as described in FIGS. 2 and 3, the mold part 21 and the mold part 22 are provided with the recesses 211-1, 211-2, 221-1, 221-2, 222-1 and 222-2, Introducing portions 211, 221 and 222 are provided. In order to simplify the drawing, it is assumed that an “optical fiber or the like” is already connected to the light introducing portions 211, 221 and 222.

図4.Bのように、容器片10の貫通孔101に光ファイバ100のコアを挿入した。光ファイバ100及び、3つの光導入部211、221及び222に接続された図3.C〜3.Fの光ファイバ200としては、コア径100μm、クラッド径140μmの石英からなる光ファイバを用いた。次に容器片10と型部21及び22で形成された筐体Mに第1の光硬化性樹脂液40を充填する。第1の光硬化性樹脂液40としては、高屈折率を有し光照射によりラジカル重合反応を示すアクリル系の光硬化性樹脂を用いた。   FIG. Like B, the core of the optical fiber 100 was inserted into the through hole 101 of the container piece 10. 2. connected to the optical fiber 100 and the three light introducing portions 211, 221 and 222; C-3. As the optical fiber 200 for F, an optical fiber made of quartz having a core diameter of 100 μm and a cladding diameter of 140 μm was used. Next, the case M formed by the container piece 10 and the mold parts 21 and 22 is filled with the first photocurable resin liquid 40. As the first photocurable resin liquid 40, an acrylic photocurable resin having a high refractive index and showing a radical polymerization reaction by light irradiation was used.

次に、光ファイバ100の図示しない側の端と、光導入部211、221及び222から、短波長レーザ(波長λW)を筐体Mに保持された第1の光硬化性樹脂液40に導入した。短波長レーザとしては、波長λW=488nmのアルゴンイオンレーザを出力強度30mWで出射させた。これにより光硬化性樹脂液40を光重合反応させて硬化させた。このときコアの先端部では光硬化性樹脂液の硬化による屈折率上昇が起こり、セルフフォーカシング効果による導波光を閉じ込めながらコアが成長を続けた(自己形成光導波路)。即ち、図4.Cのように、光硬化性樹脂液40の、貫通孔101に挿入された光ファイバ100のコア端、光導入部211、221及び222と接している部分を成長開始面として、コア401、411、421、422が軸状に成長していった。硬化波長光は、波長λWに対して半透明の波長選択性ミラー31及び32に達し、一部は反射し一部は透過する。即ち、その反射経路および透過経路に沿って、コア401、411、421、422が軸状に成長した。この時、異なる成長開始面から成長したコアは、セルフアライメント(光ハンダ効果)により、互いに引き込みあいコアが結合した。このセルフアライメント効果により、導波路形成途中で、導波路成長方向に設計との角度ずれが若干生じた場合でも、コア同士が結合する。すべてのコアが結合されたのを確認して、光ファイバによるレーザ照射を停止した。この時、形成されたコアの直径は、約120μmであった(図4.D)。波長850nmに対する伝送損失は約0.8dB/cm、波長選択性ミラー31及び32での損失は約0.5dB/cmであった。尚、波長選択性ミラー31及び32の紙面内上方向に、コアの成長が若干生じたが、図4.D以下では省略した。 Next, from the end of the optical fiber 100 (not shown) and the light introducing portions 211, 221 and 222, the short wavelength laser (wavelength λ W ) is transferred to the first photocurable resin liquid 40 held in the housing M. Introduced. As a short wavelength laser, an argon ion laser having a wavelength λ W = 488 nm was emitted at an output intensity of 30 mW. As a result, the photocurable resin liquid 40 was cured by a photopolymerization reaction. At this time, the refractive index increased due to the curing of the photocurable resin liquid at the tip of the core, and the core continued to grow while confining the guided light by the self-focusing effect (self-forming optical waveguide). That is, FIG. As shown in C, the cores 401 and 411 are formed with the portion of the photocurable resin liquid 40 in contact with the core end of the optical fiber 100 inserted into the through-hole 101 and the light introducing portions 211, 221 and 222 as the growth start surface. , 421, 422 grew axially. The curing wavelength light reaches the wavelength-selective mirrors 31 and 32 that are translucent with respect to the wavelength λ W , partly reflected and partly transmitted. That is, the cores 401, 411, 421, and 422 grew in an axial shape along the reflection path and the transmission path. At this time, the cores grown from different growth starting surfaces were drawn into each other and bonded together by self-alignment (optical solder effect). Due to this self-alignment effect, the cores are coupled to each other even when a slight angle deviation from the design occurs in the waveguide growth direction during the waveguide formation. After confirming that all the cores were bonded, the laser irradiation by the optical fiber was stopped. At this time, the diameter of the formed core was about 120 μm (FIG. 4.D). The transmission loss for the wavelength of 850 nm was about 0.8 dB / cm, and the loss in the wavelength selective mirrors 31 and 32 was about 0.5 dB / cm. Although the core growth slightly occurred in the upward direction in the drawing of the wavelength selective mirrors 31 and 32, FIG. Omitted below D.

図4.Dの未硬化の第1の光硬化性樹脂液40を除去し、コア401、410、411、421、422(以下単にコア400)の屈折率より低い硬化後屈折率を有する第2の光硬化性樹脂液50を充填した(図4.E)。第2の光硬化性樹脂液50としてはアクリル系の低屈折光硬化性樹脂を用いた。これは、残余の第1の光硬化性樹脂液40と共重合可能であり、洗浄が不要となる点が良い。このとき、コアは、型部21及び22、波長選択性ミラー31及び32で固定されているので、光硬化性樹脂液の入れ替え時にもコアが変形したり離脱することがなかった。また、機械振動等にも頑強となっていた。   FIG. The uncured first photocurable resin liquid 40 of D is removed, and the second photocuring having a post-curing refractive index lower than the refractive index of the cores 401, 410, 411, 421, 422 (hereinafter simply referred to as the core 400). The resin liquid 50 was filled (FIG. 4.E). As the second photocurable resin liquid 50, an acrylic low refractive photocurable resin was used. This can be copolymerized with the remaining first photocurable resin liquid 40, and it is advantageous in that it does not require cleaning. At this time, since the core is fixed by the mold parts 21 and 22, and the wavelength selective mirrors 31 and 32, the core was not deformed or detached even when the photocurable resin liquid was replaced. Also, it was robust against mechanical vibrations.

この後、紫外線ランプで、紫外線(波長λC<λW)を全体に照射し、透明樹脂から成る容器片10内部の、低屈折率の第2の光硬化性樹脂液50を硬化させ全体を固化させた。これにより、コアの周囲にクラッド50cが形成されてステップインデックス型の光導波路が形成された。このとき、波長850nmに対する光伝送損失は約0.5dB/cmとなった。尚、クラッドを形成するための樹脂としては、上記の光硬化性樹脂の他、低屈折率の熱硬化性樹脂を用いて、熱照射により硬化させる方法を用いてもよい。 Thereafter, the whole is irradiated with ultraviolet rays (wavelength λ CW ) with an ultraviolet lamp to cure the low-refractive-index second photocurable resin liquid 50 inside the container piece 10 made of a transparent resin. Solidified. As a result, the clad 50c was formed around the core to form a step index type optical waveguide. At this time, the optical transmission loss with respect to the wavelength of 850 nm was about 0.5 dB / cm. In addition, as a resin for forming the clad, a method of curing by heat irradiation using a thermosetting resin having a low refractive index in addition to the above-described photocurable resin may be used.

こうして型部21及び22を取り外し、受発光素子611、621及び622を組み付けて光モジュール1000を得た。受発光素子611、621及び622は、クラッド50cの表面に形成された位置決め構造である突起511−1、511−2、521−1、521−2、522−1及び522−2により容易に組付けられた。また、受発光素子611、621及び622の有効面611−0、621−0及び622−0は、コア411、421及び422と光軸のズレが無く、精度良く光学結合された。また、受発光素子611、621及び622の有効面611−0、621−0及び622−0とコア411、421及び422との間に隙間は無く、この部分での光損失も抑制され、高い光結合効率が得られた。以上のようにして、3波長多重用の光モジュール1000を作製することができた。   Thus, the mold parts 21 and 22 were removed, and the light receiving and emitting elements 611, 621, and 622 were assembled to obtain the optical module 1000. The light emitting / receiving elements 611, 621 and 622 are easily assembled by the protrusions 511-1, 511-2, 521-1, 521-2, 522-1 and 522-2 which are positioning structures formed on the surface of the clad 50c. It was attached. In addition, the effective surfaces 611-0, 621-0, and 622-0 of the light emitting / receiving elements 611, 621, and 622 were optically coupled to the cores 411, 421, and 422 with no optical axis deviation and with high accuracy. Further, there are no gaps between the effective surfaces 611-0, 621-0 and 622-0 of the light emitting / receiving elements 611, 621 and 622 and the cores 411, 421 and 422, and the light loss in this portion is also suppressed and high. Optical coupling efficiency was obtained. As described above, an optical module 1000 for three-wavelength multiplexing could be manufactured.

型部21及び22と、コア400及びクラッド50cとの接着を防ぎ、取り外しが容易となるように、型部21及び22の表面をフッ素樹脂面とすると良く、あるいは離形剤等により表面処理がされていると良い。型部21及び22は取り外しやすいように、2つに分離できる構造を採用したが、1体のものを用いても良い。また例えば紫外線硬化性樹脂等の接着剤を光モジュール1000の表面に塗布することにより全ての素子を確実に固定させても良い。   The surfaces of the mold parts 21 and 22 may be made of a fluororesin surface to prevent adhesion between the mold parts 21 and 22 and the core 400 and the clad 50c and facilitate removal, or surface treatment with a mold release agent or the like. Good to have been. The mold parts 21 and 22 have a structure that can be separated into two parts so that they can be easily removed. Alternatively, for example, an adhesive such as an ultraviolet curable resin may be applied to the surface of the optical module 1000 to securely fix all the elements.

〔変形例1〕
実施例1では、第1の光硬化性樹脂液40で光導波路のコア部400を形成し、第2の光硬化性樹脂液50に入れ替えて、固化させてクラッド50cを形成する例であったが、本願出願人らの出願公開公報に記載されているような、硬化開始波長と硬化後の屈折率が異なる2種類の光硬化性樹脂液を混合させた混合液を用い、液の入れ替え工程を省略してもよい。この場合、図4.Dの後、光硬化性樹脂液を入れ替えずに、即座に紫外線を照射してクラッド50cを形成できる。
[Modification 1]
In the first embodiment, the core portion 400 of the optical waveguide is formed with the first photocurable resin liquid 40, and is replaced with the second photocurable resin liquid 50 and solidified to form the clad 50c. However, as described in the Applicant's application publication, using a mixed liquid in which two types of photocurable resin liquids having different curing start wavelengths and different refractive indexes after curing are used, the liquid replacement step May be omitted. In this case, FIG. After D, the clad 50c can be formed by immediately irradiating ultraviolet rays without replacing the photocurable resin liquid.

〔変形例2〕
実施例1では、光導入部211、221、222に各々光ファイバ200を接続してコア411、421、422を成長させたが、光ファイバ200を用いなくてもよい。例えば、所定波長光を半値全幅が約3mmのアルゴンイオンレーザ(100mW)を型部21及び22の光導入部211、221、222から導入しても良い。これにより直径2〜3mmの光導波路が得られる。或いは、紫外線ランプを2つ以上のアパーチャで取り出して概略平行光(ビーム)としても、同等の結果が得られる。
[Modification 2]
In the first embodiment, the optical fibers 200 are connected to the light introducing portions 211, 221 and 222 to grow the cores 411, 421 and 422. However, the optical fiber 200 may not be used. For example, an argon ion laser (100 mW) with a predetermined wavelength of light having a full width at half maximum of about 3 mm may be introduced from the light introducing portions 211, 221, and 222 of the mold portions 21 and 22. Thereby, an optical waveguide having a diameter of 2 to 3 mm is obtained. Alternatively, an equivalent result can be obtained even if the ultraviolet lamp is taken out with two or more apertures to obtain approximately parallel light (beam).

図5は、図3.Bで示した型部21’と、同様の型部22’を用いて凸レンズ状の集光光学系等の光学的形状を有するコア411c、421c、422cを形成する例である。図5.Aのように、型部21’及び22’の光導入部211’、221’、222’の第1の光硬化性樹脂液40と接する面は、凹面211c、221c、222cとなっている。これを用いて、実施例1の図4.Eまでと同様の工程を実施すると、凸レンズ状の集光光学系等の光学的形状を有するコア411c、421c、422cが形成される(図5.B)。型部21’及び22’を外して受発光素子611、621及び622を組み付けると、凸レンズの集光作用により、コア411c、421c、422cと受発光素子611、621及び622の光結合効率をより高めた光モジュール2000を得ることができる(図5.C)。尚、凸レンズを設けることにより生じる隙間には、設計により、任意の樹脂又は油脂を充填すると良い。   FIG. This is an example in which cores 411c, 421c, and 422c having an optical shape such as a convex lens-shaped condensing optical system are formed by using a mold part 21 'indicated by B and a similar mold part 22'. FIG. As in A, the surfaces of the light introducing portions 211 ′, 221 ′, and 222 ′ of the mold portions 21 ′ and 22 ′ that are in contact with the first photocurable resin liquid 40 are concave surfaces 211 c, 221 c, and 222 c. Using this, FIG. When steps similar to those up to E are performed, cores 411c, 421c, and 422c having an optical shape such as a convex lens-shaped condensing optical system are formed (FIG. 5.B). When the mold parts 21 ′ and 22 ′ are removed and the light receiving / emitting elements 611, 621, and 622 are assembled, the light coupling efficiency of the cores 411c, 421c, 422c and the light receiving / emitting elements 611, 621, and 622 is increased by the condensing function of the convex lens. An enhanced optical module 2000 can be obtained (FIG. 5.C). In addition, it is good to fill the clearance gap which arises by providing a convex lens with arbitrary resin or fats and oils by design.

以上の実施例では、受発光素子611、621及び622の凹部611−1及び611−2、621−1及び621−2、並びに622−1及び622−2に、クラッド50c自体の表面の形状である突起511−1、511−2、521−1、521−2、522−1、522−2を嵌め合わせるものを示したが、当該突起等は、クラッド50cとは異なる材料、例えば予め成形された金属ピンを用いても良い。これを図6に示す。金属ピン711−1、711−2、721−1、721−2、722−1、722−2が型部21及び22の凹部211−1、211−2、221−1、221−2、222−1、222−2に保持される(図6.A)。この後、実施例1の図4.Eまでと同様の工程を実施すると、図4.Eで突起511−1、511−2、521−1、521−2、522−1、522−2であった部分が、金属ピン711−1、711−2、721−1、721−2、722−1、722−2の露出部となった状態となる(図6.B)。金属ピン711−1、711−2、721−1、721−2、722−1、722−2の足部分はクラッド50cに埋没して抜けにくいように鍵状等としておくと良い。このような金属ピン711−1、711−2、721−1、721−2、722−1、722−2によって受発光素子611、621、622を嵌め合わせても、実施例1と同様に光結合損失の小さい光モジュール3000が容易に得られる。   In the above embodiment, the concave portions 611-1 and 611-2, 621-1 and 621-2, and 622-1 and 622-2 of the light receiving and emitting elements 611, 621, and 622 are formed in the shape of the surface of the cladding 50c itself. Although the projections 511-1, 511-2, 521-1, 521-2, 522-1, and 522-2 are shown fitted together, the projections and the like are made of a material different from that of the clad 50c, for example, pre-shaped. A metal pin may be used. This is shown in FIG. Metal pins 711-1, 711-2, 721-1, 721-2, 722-1, 722-2 are concave portions 211-1, 211-2, 221-1, 221-2, 222 of the mold parts 21 and 22. -1 and 222-2 (FIG. 6.A). Thereafter, FIG. When the same steps as those up to E are performed, FIG. In E, the protrusions 511-1, 511-2, 521-1, 521-2, 522-1, 522-2 are metal pins 711-1, 711-2, 721-1, 721-2, It becomes the state which became the exposed part of 722-1 and 722-2 (FIG. 6.B). The foot portions of the metal pins 711-1, 711-2, 721-1, 721-2, 722-1 and 722-2 are preferably key-shaped so as to be buried in the clad 50c and not easily pulled out. Even if the light receiving and emitting elements 611, 621, and 622 are fitted by such metal pins 711-1, 711-2, 721-1, 721-2, 722-1, and 722-2, the light is emitted in the same manner as in the first embodiment. An optical module 3000 having a small coupling loss can be easily obtained.

(その他の変形例)
以上の実施例は、光波長多重用の光受信モジュール(3波長多重片方向受信デバイス)を想定した例であるが、本発明は光受信モジュールに限らない。例えば、2線双方向通信デバイスや、2波長多重単線双方向通信デバイスにも適用できる。
(Other variations)
The above embodiment is an example in which an optical receiving module for optical wavelength multiplexing (three-wavelength multiplexing one-way receiving device) is assumed, but the present invention is not limited to the optical receiving module. For example, the present invention can be applied to a two-wire bidirectional communication device and a two-wavelength multiplex single-wire bidirectional communication device.

本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の工程に用いる治具を示す斜視図。The perspective view which shows the jig | tool used for the process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. クラッド50cの表面に形成する位置決め構造の例を示す図。The figure which shows the example of the positioning structure formed in the surface of the clad | crud 50c. 型部21及び22の形状と、光導入部211、221及び222の具体例を示す断面図。Sectional drawing which shows the specific example of the shape of the mold parts 21 and 22, and the light introduction part 211,221,222. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第1の実施例に係る光モジュール1000の製造方法の1工程を示す断面図。Sectional drawing which shows 1 process of the manufacturing method of the optical module 1000 which concerns on the specific 1st Example of this invention. 本発明の具体的な第2の実施例に係る光モジュール2000の製造方法の工程を示す断面図。Sectional drawing which shows the process of the manufacturing method of the optical module 2000 which concerns on the specific 2nd Example of this invention. 本発明の具体的な第3の実施例に係る光モジュール3000の製造方法の工程を示す断面図。Sectional drawing which shows the process of the manufacturing method of the optical module 3000 which concerns on the specific 3rd Example of this invention.

符号の説明Explanation of symbols

10:容器片
100:光ファイバ
21、22:型部
211、221、222:光導入部
211−1、211−2、221−1、221−2、222−1、222−2:凹部
31、32:波長選択性ミラー
401、410、411、421、422:コア400の部分
50c:クラッド
511−1、511−2、521−1、521−2、522−1、522−2:突起
611、621、622:受発光素子
611−0、621−0、622−0:有効面
611−1、611−2、621−1、621−2、622−1、622−2:凹部
10: container piece 100: optical fiber 21, 22: mold part 211, 221, 222: light introducing part 211-1, 211-2, 221-1, 221-2, 222-1, 222-2: concave part 31, 32: Wavelength selective mirror 401, 410, 411, 421, 422: Portion of core 400 50c: Cladding 511-1, 511-2, 521-1, 521-2, 522-1, 522-2: Protrusion 611, 621, 622: light emitting / receiving elements 611-0, 621-0, 622-0: effective surface 611-1, 611-2, 621-1, 621-2, 622-1, 622-2: concave portion

Claims (12)

光硬化性樹脂液を自己集光的に硬化させた軸状のコアと、当該コアを覆うクラッドとから成る光導波路と、
1個以上の光学素子とを有する光モジュールの製造方法において、
前記光学素子を取り付ける為の位置決め用の所定の構造をクラッドに形成するための型部と、
当該型部と組み合わせることで、前記光硬化性樹脂液を保持可能な筐体を形成する容器片とを用い、
前記光硬化性樹脂液を、前記型部と前記容器片とを組み合わせて得られる前記筐体内に保持し、少なくとも前記型部により位置決めされた光導入部を含む、2箇所以上から導入された所定の波長の光により硬化させて前記軸状のコアを形成する工程と、
前記型部を用いて前記位置決め用の所定の構造を有するクラッドを形成する工程と、
当該型部を光導波路から取り外す工程と、
前記クラッドに形成された前記位置決め用の所定の構造を用いて、少なくとも1個の前記光学素子を取り付ける工程とを有し、
当該光学素子の光軸を、前記型部の光導入部から導入された硬化波長光により形成されたコア端の光軸と一致させることを特徴とする光モジュールの製造方法。
An optical waveguide comprising a shaft-shaped core obtained by self-condensing a photocurable resin liquid, and a clad covering the core;
In a method for manufacturing an optical module having one or more optical elements,
A mold part for forming a predetermined structure for positioning on the clad for attaching the optical element;
By combining with the mold part, using a container piece that forms a housing capable of holding the photocurable resin liquid,
The photocurable resin liquid is held in the casing obtained by combining the mold part and the container piece, and is introduced from two or more places including at least a light introducing part positioned by the mold part A step of curing with light of the wavelength to form the shaft-shaped core;
Forming a clad having a predetermined structure for positioning using the mold part;
Removing the mold part from the optical waveguide;
Attaching at least one of the optical elements using the predetermined structure for positioning formed in the clad,
A method of manufacturing an optical module, characterized in that the optical axis of the optical element coincides with the optical axis of the core end formed by the curing wavelength light introduced from the light introducing part of the mold part.
前記光学素子は、発光素子、受光素子、又は光導波路とその端に設けられた接続構造であることを特徴とする請求項1に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to claim 1, wherein the optical element is a light emitting element, a light receiving element, or an optical waveguide and a connection structure provided at an end thereof. 前記光モジュールは1個以上の分岐を有し、当該分岐点毎に波長選択性ミラーを有するものであって、
当該波長選択性ミラーは前記硬化波長光に対して透過率及び反射率がいずれも20%以上であって、
前記容器片に当該1個以上の波長選択性ミラーを固定した後に、前記光硬化性樹脂液を導入することを特徴とする請求項1又は請求項2に記載の光モジュールの製造方法。
The optical module has one or more branches, and has a wavelength selective mirror at each branch point,
The wavelength selective mirror has a transmittance and a reflectance of 20% or more with respect to the curing wavelength light,
3. The method of manufacturing an optical module according to claim 1, wherein the photocurable resin liquid is introduced after the one or more wavelength selective mirrors are fixed to the container piece.
前記容器片に、少なくとも1本の光ファイバを固定し、
当該光ファイバを介して前記硬化波長光を光硬化性樹脂液に導入することを特徴とする請求項1乃至請求項3のいずれか1項に記載の光モジュールの製造方法。
Fixing at least one optical fiber to the container piece;
4. The method of manufacturing an optical module according to claim 1, wherein the curing wavelength light is introduced into the photocurable resin liquid through the optical fiber.
前記光学素子を取り付ける為の位置決め用の所定の構造は、前記型部の凸部及び/又は凹部を転写して前記クラッドの表面に形成された凹部及び/又は凸部によるものであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の光モジュールの製造方法。 The predetermined positioning structure for attaching the optical element is formed by a concave portion and / or a convex portion formed on the surface of the clad by transferring the convex portion and / or the concave portion of the mold portion. The manufacturing method of the optical module of any one of Claim 1 thru | or 4. 前記クラッドの表面に形成された凹部及び/又は凸部は、前記光学素子表面の対応する凸部及び/又は凹部と勘合するものであることを特徴とする請求項5に記載の光モジュールの製造方法。 6. The optical module according to claim 5, wherein the concave portion and / or convex portion formed on the surface of the clad is fitted with the corresponding convex portion and / or concave portion on the surface of the optical element. Method. 前記クラッドの表面に形成された凹部及び/又は凸部は、前記光学素子外周の形状と勘合するものであることを特徴とする請求項5に記載の光モジュールの製造方法。 6. The method of manufacturing an optical module according to claim 5, wherein the concave portion and / or the convex portion formed on the surface of the clad are fitted with a shape of the outer periphery of the optical element. 前記光学素子を取り付ける為の位置決め用の所定の構造は、クラッドの形成前には前記型部に保持され、前記クラッドの形成後には前記クラッドに固着された構造体によるものであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の光モジュールの製造方法。 The predetermined structure for positioning for mounting the optical element is a structure that is held by the mold part before formation of the clad and is fixed to the clad after formation of the clad. The manufacturing method of the optical module of any one of Claim 1 thru | or 4. 前記構造体の前記クラッドからの露出部分の形状は、前記光学素子表面の対応する凸部及び/又は凹部と勘合するものであることを特徴とする請求項8に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to claim 8, wherein the shape of the exposed portion of the structure from the clad is fitted with a corresponding convex portion and / or concave portion of the surface of the optical element. 前記構造体の前記クラッドからの露出部分の形状は、前記光学素子外周の形状と勘合するものであることを特徴とする請求項8に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to claim 8, wherein a shape of an exposed portion of the structure body from the clad is matched with a shape of an outer periphery of the optical element. 前記型部は複数個の型片から成り、分離可能であることを特徴とする請求項1乃至請求項10のいずれか1項に記載の光モジュールの製造方法。 The method of manufacturing an optical module according to claim 1, wherein the mold part includes a plurality of mold pieces and is separable. 前記型部の少なくとも1個の前記光導入部は、その前記コアの端部と接する部分に、前記コア端部に凸レンズを形成するための凹部が形成されていることを特徴とする請求項1乃至請求項11のいずれか1項に記載の光モジュールの製造方法。 2. The concave portion for forming a convex lens at the end of the core is formed in a portion of the mold portion that is in contact with the end of the core. The method for manufacturing an optical module according to claim 11.
JP2006088925A 2006-03-28 2006-03-28 Manufacturing method of optical module Expired - Fee Related JP4592628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088925A JP4592628B2 (en) 2006-03-28 2006-03-28 Manufacturing method of optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088925A JP4592628B2 (en) 2006-03-28 2006-03-28 Manufacturing method of optical module

Publications (2)

Publication Number Publication Date
JP2007264286A true JP2007264286A (en) 2007-10-11
JP4592628B2 JP4592628B2 (en) 2010-12-01

Family

ID=38637338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088925A Expired - Fee Related JP4592628B2 (en) 2006-03-28 2006-03-28 Manufacturing method of optical module

Country Status (1)

Country Link
JP (1) JP4592628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032582A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Method of manufacturing optical module
JP2011048298A (en) * 2009-08-28 2011-03-10 Toyoda Gosei Co Ltd Optical coupler and optical module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835507A (en) * 1981-08-26 1983-03-02 Sumitomo Electric Ind Ltd Optical connector
JPS6398508U (en) * 1986-12-16 1988-06-25
JPS63301007A (en) * 1987-05-31 1988-12-08 Matsushita Electric Ind Co Ltd Production of optical circuit substrate
JPH0411205A (en) * 1990-04-27 1992-01-16 Teiji Uchida Optical surface packaging circuit and its optical component
JP2002267893A (en) * 2001-03-13 2002-09-18 Seiko Epson Corp Optical module, method for manufacturing the same, and optical transmitter
JP2002365459A (en) * 2001-06-12 2002-12-18 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide device
JP2003057476A (en) * 2001-08-13 2003-02-26 Toyota Central Res & Dev Lab Inc Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
JP2003315636A (en) * 2002-04-25 2003-11-06 Smk Corp Ferrule and optical module
JP2005257741A (en) * 2004-03-09 2005-09-22 Toyota Central Res & Dev Lab Inc Optical circuit and manufacturing method thereof
JP2005347441A (en) * 2004-06-02 2005-12-15 Toyoda Gosei Co Ltd Optical module and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835507A (en) * 1981-08-26 1983-03-02 Sumitomo Electric Ind Ltd Optical connector
JPS6398508U (en) * 1986-12-16 1988-06-25
JPS63301007A (en) * 1987-05-31 1988-12-08 Matsushita Electric Ind Co Ltd Production of optical circuit substrate
JPH0411205A (en) * 1990-04-27 1992-01-16 Teiji Uchida Optical surface packaging circuit and its optical component
JP2002267893A (en) * 2001-03-13 2002-09-18 Seiko Epson Corp Optical module, method for manufacturing the same, and optical transmitter
JP2002365459A (en) * 2001-06-12 2002-12-18 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide device
JP2003057476A (en) * 2001-08-13 2003-02-26 Toyota Central Res & Dev Lab Inc Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
JP2003315636A (en) * 2002-04-25 2003-11-06 Smk Corp Ferrule and optical module
JP2005257741A (en) * 2004-03-09 2005-09-22 Toyota Central Res & Dev Lab Inc Optical circuit and manufacturing method thereof
JP2005347441A (en) * 2004-06-02 2005-12-15 Toyoda Gosei Co Ltd Optical module and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032582A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Method of manufacturing optical module
JP2011048298A (en) * 2009-08-28 2011-03-10 Toyoda Gosei Co Ltd Optical coupler and optical module

Also Published As

Publication number Publication date
JP4592628B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US20220390693A1 (en) Micro-optical interconnect component and its method of fabrication
JP3984009B2 (en) Manufacturing method of optical waveguide device
JP2008089879A (en) Optical coupler, optical connector, and receptacle type optical transmission module
US20190121030A1 (en) Optical coupler for coupling light in/out of an optical receiving/emitting structure
JP2007178852A (en) Optical wiring board and optical module using the same
JP2005195651A (en) Optical connection substrate, optical transmission system, and manufacturing method
JP2014029386A (en) Method for producing polymer waveguide array assembly of single mode
JP4592628B2 (en) Manufacturing method of optical module
US9671573B2 (en) Light receptacle and light module
JP2016224347A (en) Optical module
JP4487643B2 (en) Optical module and manufacturing method thereof
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2008003197A (en) Optical module and manufacturing method
JP5737108B2 (en) Optical fiber unit and manufacturing method thereof
JP2008233556A (en) Lens case and optical module
JPWO2019039049A1 (en) Optical communication component manufacturing method and optical communication component
JP2009162807A (en) Method of manufacturing optical waveguide for optical coupling
JP2010286549A (en) Light signal processing circuit, semiconductor device with the light signal processing circuit, and method of manufacturing the light signal processing circuit
JP2018146894A (en) Optical connector
Van Erps et al. Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnections
Trewhella et al. Evolution of optical subassemblies in IBM data communication transceivers
JP4924441B2 (en) Manufacturing method of self-forming optical waveguide
US20200142135A1 (en) Optical module, optical waveguide, and method of manufacturing optical waveguide
JP2002519711A (en) Optical coupling device
Frese et al. Polymer based optical interconnect components for high-speed Datacom approaches–Micromachining supported manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees