JP4924441B2 - Manufacturing method of self-forming optical waveguide - Google Patents

Manufacturing method of self-forming optical waveguide Download PDF

Info

Publication number
JP4924441B2
JP4924441B2 JP2008006471A JP2008006471A JP4924441B2 JP 4924441 B2 JP4924441 B2 JP 4924441B2 JP 2008006471 A JP2008006471 A JP 2008006471A JP 2008006471 A JP2008006471 A JP 2008006471A JP 4924441 B2 JP4924441 B2 JP 4924441B2
Authority
JP
Japan
Prior art keywords
self
optical waveguide
light
core
forming optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008006471A
Other languages
Japanese (ja)
Other versions
JP2009169039A (en
Inventor
和宏 寺田
健二 芳賀
幸利 伊縫
明子 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008006471A priority Critical patent/JP4924441B2/en
Publication of JP2009169039A publication Critical patent/JP2009169039A/en
Application granted granted Critical
Publication of JP4924441B2 publication Critical patent/JP4924441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、分岐を有した自己形成光導波路の製造方法に関するものである。   The present invention relates to a method for manufacturing a self-forming optical waveguide having a branch.

近年、光硬化性樹脂を用いて光導波路を形成する自己形成光導波路の技術が開発されている。これは、光ファイバの一端を筐体の内部に設置し、筐体内を光硬化性樹脂で満たし、光ファイバを介して光を照射することで光硬化性樹脂を線状に硬化させて光導波路のコアを形成する技術である。   In recent years, a self-forming optical waveguide technique for forming an optical waveguide using a photocurable resin has been developed. This is an optical waveguide in which one end of an optical fiber is installed inside a housing, the inside of the housing is filled with a photocurable resin, and the photocurable resin is cured linearly by irradiating light through the optical fiber. This technology forms the core.

この技術によって形成した自己形成光導波路のコアは、末端側に向かうにつれて細くなっていた。これは、末端側ほど光が拡散して光強度が低下するためである。自己形成光導波路のコアの末端を太くするにはレーザの照射時間を長くする必要があるが、照射時間を長くすると末端以外のコアが太くなりすぎてしまう。そのため、コアの太さを均一にすることが難しかった。コア径が均一でないと、光損失が増加してしまう。   The core of the self-forming optical waveguide formed by this technique becomes thinner toward the end side. This is because light diffuses toward the end side and the light intensity decreases. In order to increase the thickness of the end of the core of the self-forming optical waveguide, it is necessary to increase the laser irradiation time. However, if the irradiation time is increased, the core other than the end becomes too thick. Therefore, it has been difficult to make the core thickness uniform. If the core diameter is not uniform, light loss will increase.

この自己形成光導波路の末端側が細くなってしまうのを解決する技術が、特許文献1、2に示されている。   Patent Documents 1 and 2 disclose techniques for solving the problem that the end side of the self-forming optical waveguide is thinned.

特許文献1には、自己形成光導波路コアの末端側の筐体内面に、金属膜を設けることが示されている。金属膜による反射によって散乱した光を回帰させることができるため、末端側のコアを太くすることができる。   Patent Document 1 discloses that a metal film is provided on the inner surface of the housing on the terminal side of the self-forming optical waveguide core. Since the light scattered by the reflection by the metal film can be regressed, the core on the terminal side can be thickened.

また、特許文献2には、筐体内に2つの光ファイバの一端を向かい合うように配置し、一方の光ファイバの向かい合う側とは反対側の一端にミラーを設けることが示されている。ミラーを設けていない方の光ファイバを介して光を照射すると、ミラーによる反射によって他方の光ファイバ側からも光が照射されるため、両光ファイバ間に形成される自己形成光導波路のコアは均一な太さとなる。
特開2003−4990 特開2003−131063
Patent Document 2 discloses that one end of two optical fibers is arranged in a casing so as to face each other, and a mirror is provided on one end opposite to the side on which one optical fiber faces. When the light is irradiated through the optical fiber on which the mirror is not provided, the light is also irradiated from the other optical fiber side due to reflection by the mirror, so the core of the self-forming optical waveguide formed between the two optical fibers is Uniform thickness.
JP2003-4990 JP 2003-131063 A

しかし、特許文献1の方法では、必要としない部分にも自己形成光導波路のコアが形成されてしまうという問題があった。   However, the method of Patent Document 1 has a problem in that the core of the self-formed optical waveguide is formed in a portion that is not required.

また、特許文献2の方法は、2つの光ファイバ間を、自己形成光導波路によって接続する場合に適用できる技術であり、それ以外の構造、たとえばハーフミラーによる分岐を有した自己形成光導波路のコアを形成し、光ファイバと発光素子や受光素子とを自己形成光導波路によって接続する構造の実現には適用することができない。   The method of Patent Document 2 is a technique that can be applied when two optical fibers are connected by a self-forming optical waveguide. The other structure, for example, a core of a self-forming optical waveguide having a branch by a half mirror And cannot be applied to the realization of a structure in which an optical fiber and a light emitting element or a light receiving element are connected by a self-forming optical waveguide.

そこで本発明の目的は、ビームスプリッタによる分岐を有した自己形成光導波路の製造方法において、自己形成光導波路のコアの末端側が細くならないようにし、均一なコア径が得られる自己形成光導波路の製造方法である。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to manufacture a self-forming optical waveguide in which a uniform core diameter is obtained in a method for manufacturing a self-forming optical waveguide having a branch by a beam splitter so that the end side of the core of the self-forming optical waveguide is not thinned. Is the method.

第1の発明は、筐体内にビームスプリッタおよび光ファイバの一端を固定し、前記筐体内を光硬化性樹脂で満たし、前記光ファイバを介して光を射出して前記光硬化性樹脂を硬化させることにより、2つの角度を成す分岐を有した自己形成光導波路のコアを形成する自己形成光導波路の製造方法において、筐体の外側であって、光ファイバを介して光を照射した時にその光のビームスプリッタによる反射光および透過光が筐体から透過する位置に、L字型のアルミ板反射光および透過光に対して垂直となるよう配置した状態で、光ファイバを介して光を射出して、L字型のアルミ板により反射光および透過光を自己形成光導波路のコアの末端側へ反射させて光硬化性樹脂を硬化させることにより、2つの分岐端の双方を均一なコア径とする、ことを特徴とする自己形成光導波路の製造方法である。 1st invention fixes the end of a beam splitter and an optical fiber in a housing | casing, the inside of the said housing | casing is filled with a photocurable resin, light is inject | emitted through the said optical fiber, and the said photocurable resin is hardened. by the manufacturing method of the self-forming optical waveguide for forming the self-forming optical waveguide core having a branch forming the two angles, an outer casing, the light when irradiated with light through the optical fiber Light is emitted through an optical fiber with an L-shaped aluminum plate placed perpendicular to the reflected light and transmitted light at a position where the reflected light and transmitted light from the beam splitter are transmitted from the housing. Then , the L-shaped aluminum plate reflects reflected light and transmitted light toward the terminal side of the core of the self-forming optical waveguide to cure the photo-curing resin, so that both the two branch ends have a uniform core diameter. Toss A method for producing a self-forming optical waveguide, characterized in that.

反射板にはアルミニウムなどの高反射な金属からなる金属板を用いることができる。   As the reflection plate, a metal plate made of a highly reflective metal such as aluminum can be used.

第2の発明は、第1の発明において、ビームスプリッタは、ハーフミラーまたは波長選択フィルタであることを特徴とする自己形成光導波路の製造方法である。 A second invention is the method for manufacturing a self-forming optical waveguide according to the first invention, wherein the beam splitter is a half mirror or a wavelength selective filter.

第1の発明によると、筐体を透過した光は反射板によって反射されて自己形成光導波路のコア末端側に戻るので、自己形成光導波路のコア末端側の光強度が増加し、コア径を太くすることができる。そのため、自己形成光導波路のコア径を均一に形成することができ、光損失を抑制することができる。また、反射板を用いない場合と比べて均一なコア径となるまでに要する時間を大幅に短縮することができる。   According to the first invention, since the light transmitted through the housing is reflected by the reflector and returns to the core end side of the self-forming optical waveguide, the light intensity on the core end side of the self-forming optical waveguide increases, and the core diameter is increased. Can be thick. Therefore, the core diameter of the self-forming optical waveguide can be formed uniformly, and light loss can be suppressed. In addition, the time required to obtain a uniform core diameter can be greatly shortened compared to the case where no reflector is used.

また、第2の発明のように、ビームスプリッタとしてハーフミラーや波長選択フィルタを用いることができる。 Further, as in the second invention, a half mirror or a wavelength selection filter can be used as the beam splitter.

以下、本発明の具体的な実施例を図を参照にしながら説明するが、本発明はそれらの実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to these examples.

図1は、実施例1の自己形成光導波路の製造工程について示した図である。以下、図1を参照に自己形成光導波路の製造工程について詳しく説明する。   FIG. 1 is a diagram illustrating the manufacturing process of the self-forming optical waveguide according to the first embodiment. Hereinafter, the manufacturing process of the self-formed optical waveguide will be described in detail with reference to FIG.

まず、透明なアクリル樹脂からなり、光ポートと中空部10aを有した直方体状の筐体10を用意し、筐体10の光ポートにPOF(プラスチック製光ファイバ)11を用いた光ケーブルのコネクタ12を差し込み、POF11の一端が筐体10の中空部10a側となるようにして固定する。また、ハーフミラー13をその法線が光ファイバの光軸に対して45度となるように筐体10の中空部10a内に設置して固定する(図1a)。   First, a rectangular parallelepiped casing 10 made of a transparent acrylic resin and having an optical port and a hollow portion 10 a is prepared, and an optical cable connector 12 using a POF (plastic optical fiber) 11 as an optical port of the casing 10. Is inserted and fixed so that one end of the POF 11 is on the hollow portion 10 a side of the housing 10. Further, the half mirror 13 is installed and fixed in the hollow portion 10a of the housing 10 so that the normal line thereof is 45 degrees with respect to the optical axis of the optical fiber (FIG. 1a).

次に、筐体10の中空部10aを光硬化性樹脂14で満たし、筐体10の外側には、L字型のアルミ板15を筐体10の外壁に接して配置する。アルミ板15の配置は、POF11を介して光を照射した際に、ハーフミラー13による透過光および反射光が筐体10を透過する位置であって、透過光および反射光の進行方向に対して垂直となるようにする(図1b)。   Next, the hollow portion 10 a of the housing 10 is filled with the photocurable resin 14, and an L-shaped aluminum plate 15 is disposed outside the housing 10 in contact with the outer wall of the housing 10. The aluminum plate 15 is disposed at a position where transmitted light and reflected light from the half mirror 13 pass through the housing 10 when light is irradiated through the POF 11, with respect to the traveling direction of the transmitted light and reflected light. Be vertical (FIG. 1b).

光硬化性樹脂14には、自己形成光導波路に関する従来文献に示された任意のものを用いることができる。たとえば、特許文献2には、アクリル樹脂、エポキシ樹脂、シリコーン樹脂に光重合開始材などの添加剤を混合したものを用いることが示されている。   As the photocurable resin 14, any of those shown in the conventional literature on self-forming optical waveguides can be used. For example, Patent Document 2 discloses that an acrylic resin, an epoxy resin, or a silicone resin mixed with an additive such as a photopolymerization initiator is used.

次に、POF11を介してレーザ光を光硬化性樹脂14に照射する。光硬化性樹脂14は硬化によって屈折率が上昇するため、軸状に硬化していき、筐体10の中空部10a内に自己形成光導波路のコア16が形成される。ハーフミラー13により光は透過光と反射光に分割されるため、自己形成光導波路のコア16もハーフミラー13の位置から2つに分岐した軸状に形成される。このとき、ハーフミラー13による透過光および反射光は、アルミ板15によって反射されて、自己形成光導波路コア16の末端16a側に照射される。これにより末端16a側の光強度が増加するため、自己形成光導波路コア16の末端16aの成長が促進される。その結果、末端16a側の自己形成光導波路コア16が短時間で太くなり、均一な太さのコア16が形成される(図1c)。   Next, laser light is irradiated to the photocurable resin 14 through the POF 11. Since the refractive index of the photocurable resin 14 is increased by curing, the photocurable resin 14 is cured in a shaft shape, and the core 16 of the self-forming optical waveguide is formed in the hollow portion 10 a of the housing 10. Since the light is divided into transmitted light and reflected light by the half mirror 13, the core 16 of the self-forming optical waveguide is also formed in an axial shape branched into two from the position of the half mirror 13. At this time, the transmitted light and the reflected light from the half mirror 13 are reflected by the aluminum plate 15 and applied to the end 16 a side of the self-forming optical waveguide core 16. As a result, the light intensity on the end 16a side is increased, so that the growth of the end 16a of the self-forming optical waveguide core 16 is promoted. As a result, the self-forming optical waveguide core 16 on the end 16a side becomes thick in a short time, and the core 16 having a uniform thickness is formed (FIG. 1c).

次に、未硬化の光硬化性樹脂14を除去した後、紫外光を照射して自己形成光導波路のコア16を完全に硬化させる。次に、筐体10の中空部10aをクラッド材で満たし、紫外光を照射して硬化させることでコア16をクラッド17で覆う(図1d)。   Next, after removing the uncured photocurable resin 14, the core 16 of the self-formed optical waveguide is completely cured by irradiation with ultraviolet light. Next, the hollow portion 10a of the housing 10 is filled with a clad material, and the core 16 is covered with the clad 17 by irradiating and curing ultraviolet light (FIG. 1d).

以上が実施例1のハーフミラーによって分岐した、コア径が均一な自己形成光導波路の製造方法である。   The above is the manufacturing method of the self-forming optical waveguide branched by the half mirror of Example 1 and having a uniform core diameter.

次に、光硬化性樹脂14を硬化させて均一なコア径を得るのに要する光照射時間について、実施例1の製造方法による場合と従来の製造方法による場合とを比較検討した。   Next, the light irradiation time required to cure the photocurable resin 14 to obtain a uniform core diameter was compared between the case of the production method of Example 1 and the case of the conventional production method.

図2は、実施例1の自己形成光導波路の製造方法を用いた場合の、光硬化性樹脂14を硬化させるためのレーザ光の照射時間と自己形成光導波路コア16末端のコア径の関係について示したグラフである。また、図3は、アルミ板15を配置せずに自己形成光導波路を形成する従来の自己形成光導波路の製造方法を用いた場合の、レーザ光の照射時間とコア16末端のコア径の関係について示したグラフである。横軸は照射時間を示し、単位は秒である。また、縦軸はコア16末端のコア径を示し、単位はmmである。なお、POF11のコア径は約1mmである。   FIG. 2 shows the relationship between the irradiation time of the laser beam for curing the photocurable resin 14 and the core diameter of the end of the self-forming optical waveguide core 16 when the manufacturing method of the self-forming optical waveguide of Example 1 is used. It is the shown graph. FIG. 3 shows the relationship between the laser light irradiation time and the core diameter at the end of the core 16 when a conventional self-forming optical waveguide manufacturing method in which a self-forming optical waveguide is formed without the aluminum plate 15 being disposed. It is the graph shown about. The horizontal axis indicates the irradiation time, and the unit is seconds. The vertical axis indicates the core diameter at the end of the core 16 and the unit is mm. The core diameter of POF 11 is about 1 mm.

この図2のグラフから、実施例1の自己形成光導波路の製造方法を用いた場合には、コア16末端のコア径がPOF11のコア径と等しくなるまでのレーザ光の照射時間は約12秒であることがわかる。また、図3のグラフから、従来の自己形成光導波路の製造方法を用いた場合には、コア16末端のコア径がPOF11のコア径と等しくなるまでのレーザ光の照射時間は約130秒であることがわかる。このように、本発明の自己形成光導波路の製造方法では、アルミ板15を配置しないで形成する従来の製造方法と比較して、末端のコア径がPOFのコア径と等しくなるまでの時間が1/10以下になっていて、コアの形成時間を大幅に短縮できることがわかる。   From the graph of FIG. 2, in the case of using the manufacturing method of the self-forming optical waveguide of Example 1, the irradiation time of the laser light until the core diameter at the end of the core 16 becomes equal to the core diameter of the POF 11 is about 12 seconds. It can be seen that it is. From the graph of FIG. 3, when the conventional method for producing a self-forming optical waveguide is used, the irradiation time of the laser beam until the core diameter at the end of the core 16 becomes equal to the core diameter of the POF 11 is about 130 seconds. I know that there is. Thus, in the manufacturing method of the self-forming optical waveguide according to the present invention, the time until the end core diameter becomes equal to the core diameter of POF is compared with the conventional manufacturing method in which the aluminum plate 15 is not disposed. It can be seen that the core formation time can be greatly shortened by 1/10 or less.

以上のように、本発明による自己形成光導波路の製造方法を用いると、従来は筐体外部に透過していたハーフミラーによる透過光と反射光を、アルミ板による反射によってコア末端側に照射することができるため、分岐を有しコア径が均一な自己形成光導波路を短時間で形成することができる。また、コア径が均一に形成されるため、光損失を低減することができる。   As described above, when the method for manufacturing a self-forming optical waveguide according to the present invention is used, the transmitted light and reflected light from the half mirror, which has conventionally been transmitted to the outside of the housing, are irradiated to the core end side by reflection from the aluminum plate. Therefore, a self-forming optical waveguide having a branch and a uniform core diameter can be formed in a short time. Moreover, since the core diameter is formed uniformly, optical loss can be reduced.

なお、実施例ではハーフミラーを用いて自己形成光導波路のコアを2方向に分岐させているが、ハーフミラーに替えて波長選択フィルタを用いてもよい。また、POFではなくGOF(ガラス製光ファイバ)を用いてもよい。また、実施例ではハーフミラーを1つ用いて2分岐にしているが、複数のハーフミラーを用いて3以上の分岐を有した自己形成光導波路のコアを形成するようにしてもよい。   In the embodiment, the core of the self-formed optical waveguide is branched in two directions using a half mirror, but a wavelength selective filter may be used instead of the half mirror. Further, GOF (glass optical fiber) may be used instead of POF. Further, in the embodiment, one half mirror is used to make two branches. However, a self-formed optical waveguide core having three or more branches may be formed using a plurality of half mirrors.

また、実施例ではアルミ板を用いているが、これに限るものではなく、光硬化性樹脂の硬化に用いる光を反射できる反射板であればよい。   Moreover, although the aluminum plate is used in the embodiments, the present invention is not limited to this, and any reflecting plate that can reflect light used for curing the photocurable resin may be used.

また、実施例では、未硬化の光硬化性樹脂を除去し、コアをクラッド材中に浸漬した後、紫外光を照射してクラッドを形成しているが、クラッドの形成方法はこれに限るものではなく、従来より知られている種々の方法を用いることができる。たとえば、光硬化性樹脂として感光性の異なるコア形成用樹脂とクラッド形成用樹脂とを混合したものを用いる方法がある。これは、先に感光性の高いコア形成用樹脂を硬化させた後、より強度の高い光を照射して感光性の低いクラッド形成用樹脂を硬化させる方法である。この方法によると、実施例で示したような未硬化の光硬化性樹脂を除去する工程を必要とせずにクラッドを形成できる。また、クラッドを形成せず、銀などの高反射な金属をコアにメッキするようにしてもよい。   In the examples, the uncured photocurable resin is removed, the core is immersed in the clad material, and then the ultraviolet rays are irradiated to form the clad. However, the clad forming method is not limited to this. Instead, various conventionally known methods can be used. For example, there is a method of using a mixture of a core forming resin and a clad forming resin having different photosensitivity as a photocurable resin. This is a method in which the core forming resin having high photosensitivity is first cured, and then light having higher intensity is irradiated to cure the resin having low photosensitivity. According to this method, the clad can be formed without requiring the step of removing the uncured photocurable resin as shown in the embodiment. Alternatively, the core may be plated with a highly reflective metal such as silver without forming a clad.

本発明は、光モジュールの製造に用いることができる。   The present invention can be used for manufacturing an optical module.

実施例1の自己形成光導波路の製造工程について示した図。The figure shown about the manufacturing process of the self-forming optical waveguide of Example 1. FIG. 実施例1の自己形成光導波路の製造方法を用いた場合の光照射時間と自己形成光導波路の末端コア径の関係を示したグラフ。The graph which showed the relationship between the light irradiation time at the time of using the manufacturing method of the self-forming optical waveguide of Example 1, and the terminal core diameter of a self-forming optical waveguide. 従来の自己形成光導波路の製造方法を用いた場合の光照射時間と自己形成光導波路の末端コア径の関係を示したグラフ。The graph which showed the relationship between the light irradiation time at the time of using the manufacturing method of the conventional self-forming optical waveguide, and the terminal core diameter of a self-forming optical waveguide.

10:筐体
10a:中空部
11:POF
12:コネクタ
13:ハーフミラー
14:光硬化性樹脂
15:アルミ板
16:コア
17:クラッド
10: Housing 10a: Hollow part 11: POF
12: Connector 13: Half mirror 14: Photo curable resin 15: Aluminum plate 16: Core 17: Clad

Claims (2)

筐体内にビームスプリッタおよび光ファイバの一端を固定し、前記筐体内を光硬化性樹脂で満たし、前記光ファイバを介して光を射出して前記光硬化性樹脂を硬化させることにより、2つの角度を成す分岐を有した自己形成光導波路のコアを形成する自己形成光導波路の製造方法において、
前記筐体の外側であって、前記光ファイバを介して光を照射した時にその光の前記ビームスプリッタによる反射光および透過光が前記筐体から透過する位置に、L字型のアルミ板前記反射光および前記透過光に対して垂直となるよう配置した状態で、前記光ファイバを介して光を射出して、前記L字型のアルミ板により前記反射光および前記透過光を前記自己形成光導波路のコアの末端側へ反射させて前記光硬化性樹脂を硬化させることにより、2つの分岐端の双方を均一なコア径とする、ことを特徴とする自己形成光導波路の製造方法。
By fixing one end of the beam splitter and the optical fiber in the housing, filling the housing with a photocurable resin, and emitting light through the optical fiber to cure the photocurable resin, two angles are obtained. In a method of manufacturing a self-forming optical waveguide that forms a core of a self-forming optical waveguide having a branch that forms :
Wherein an outer casing, to the position where the beam reflected and transmitted light by the splitter of the light when irradiated with light through the optical fiber passes from said housing, said L-shaped aluminum plate while arranged so as to be perpendicular to the reflected light and the transmitted light, the optical fiber by injecting the light through, the L-shaped wherein the reflected light and the transmitted light by an aluminum plate self-forming light guide A method for producing a self-forming optical waveguide, characterized in that both of the two branch ends have a uniform core diameter by being reflected toward the end of the core of the waveguide to cure the photocurable resin.
前記ビームスプリッタは、ハーフミラーまたは波長選択フィルタであることを特徴とする請求項1に記載の自己形成光導波路の製造方法。 The method of manufacturing a self-forming optical waveguide according to claim 1, wherein the beam splitter is a half mirror or a wavelength selective filter.
JP2008006471A 2008-01-16 2008-01-16 Manufacturing method of self-forming optical waveguide Active JP4924441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006471A JP4924441B2 (en) 2008-01-16 2008-01-16 Manufacturing method of self-forming optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006471A JP4924441B2 (en) 2008-01-16 2008-01-16 Manufacturing method of self-forming optical waveguide

Publications (2)

Publication Number Publication Date
JP2009169039A JP2009169039A (en) 2009-07-30
JP4924441B2 true JP4924441B2 (en) 2012-04-25

Family

ID=40970278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006471A Active JP4924441B2 (en) 2008-01-16 2008-01-16 Manufacturing method of self-forming optical waveguide

Country Status (1)

Country Link
JP (1) JP4924441B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550323B2 (en) * 2001-06-25 2010-09-22 イビデン株式会社 Method for forming optical waveguide
JP3984009B2 (en) * 2001-08-13 2007-09-26 株式会社豊田中央研究所 Manufacturing method of optical waveguide device
JP2005106882A (en) * 2003-09-29 2005-04-21 Ricoh Co Ltd Optical device, optical waveguide member, core forming method, optical interconnection system and fiber distribution module
JP4544210B2 (en) * 2006-06-21 2010-09-15 豊田合成株式会社 Optical module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009169039A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4577376B2 (en) Manufacturing method of optical waveguide
JP2008151843A (en) Optical component for optical transmission and method of manufacturing same
JP2003057476A (en) Tool for manufacturing optical waveguide device, method for manufacturing optical waveguide device by using the tool, and optical waveguide device
JP2009198804A (en) Optical module and optical waveguide
US7242822B2 (en) Optical connection board and optical signal transmission
JP2007178852A (en) Optical wiring board and optical module using the same
JP3444352B2 (en) Optical transmission line manufacturing method
JP2014029386A (en) Method for producing polymer waveguide array assembly of single mode
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
TW201727294A (en) Low reflection fiber-optic connector
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2016224347A (en) Optical module
JP4924441B2 (en) Manufacturing method of self-forming optical waveguide
JP5737108B2 (en) Optical fiber unit and manufacturing method thereof
JP2010122292A (en) Optical ferrule and manufacturing method of same
JP2007121503A (en) Method for splicing optical fibers
JP4134481B2 (en) Manufacturing method of optical transmission module
US20220057586A1 (en) Photoinduced optical interconnect
JP2007171775A (en) Method for manufacturing optical waveguide having light condensing function
JP4592628B2 (en) Manufacturing method of optical module
JP4524390B2 (en) Manufacturing method of optical connection device
Kagami et al. Light-induced self-written optical waveguides
JP3750671B2 (en) Manufacturing method of optical transmission line
JP4728857B2 (en) Optical coupler
JP2011145494A (en) Bending optical waveguide structure, optical transmission and reception module, and optical connector module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250